
TORAL QUIJAS, L.A. 2024. Towards automated remote inspection of anomalies in offshore components. Robert
Gordon University, MRes thesis. Hosted on OpenAIR [online]. Available from: https://doi.org/10.48526/rgu-wt-

2801306

The author of this thesis retains the right to be identified as such on any occasion in which content from this
thesis is referenced or re-used. The licence under which this thesis is distributed applies to the text and any
original images only – re-use of any third-party content must still be cleared with the original copyright holder.

This document was downloaded from
https://openair.rgu.ac.uk

Towards automated remote inspection of
anomalies in offshore components.

TORAL QUIJAS, L.A.

2024

https://doi.org/10.48526/rgu-wt-2801306
https://doi.org/10.48526/rgu-wt-2801306

Towards automated remote inspection
of anomalies in offshore components

Luis Alberto Toral Quijas

A report submitted as part of the requirements for the degree

of MRes in Computing: Data Science

at the School of Computing

Robert Gordon University

Aberdeen, Scotland

July 2024

Supervisor Prof Eyad Elyan, Dr Carlos Moreno-Garcia

Abstract

This dissertation marks a significant advancement in offshore structural inspections,

focusing on the development, integration, and evaluation of advanced deep-learning

models. The research encompasses a thorough literature review identifying innovation

opportunities in deep learning for industrial inspections; the development of a General

Classification Model using cutting-edge architectures for precise classification of circum-

ferential welds; the design and training of an anomaly detection model to enhance fault

identification; the implementation of a human-in-the-loop system for improved model

accuracy and reliability; and a comprehensive evaluation of these models’ real-world

applicability.

The study not only showcases cutting-edge deep learning techniques for defect detection

but also highlights critical research gaps, providing a guide for future investigation. The

novel incorporation of human expertise with machine learning via a Human-in-the-Loop

approach is a significant innovation, bolstering decision-making and potentially lowering

error rates.

This research presents a comprehensive model that could serve as a benchmark in the

field, valuable to both academics and industry professionals. It concludes by reflecting

on the framework’s successes and limitations, discussing its implications for offshore

inspection practices, and suggesting future research directions and potential broader

industry impacts.

ii

Acknowledgements

I extend my heartfelt gratitude to the AISUS team’s practical insights, Jan Stander’s

mentorship, the financial backing from Innovate UK, the collaborative platform pro-

vided by the North Scotland KTP Centre, Prof. Elyan’s academic guidance, and Dr

Carlos Moreno. Their encouragement has been instrumental in the successful comple-

tion of this dissertation. Their collective contributions have profoundly shaped this

work and laid a strong foundation for future advancements in the field.

iii

Declaration

I confirm that the work contained in this MRes project report has

been composed solely by myself and has not been accepted in any

previous application for a degree. All sources of information have

been specifically acknowledged and all verbatim extracts are distin-

guished by quotation marks.

Signed .. Date

Luis Alberto Toral Quijas

iv

Contents

Abstract ii

Acknowledgements iii

Declaration iv

1 Introduction 1

1.1 Background . 2

1.2 Motivation . 4

1.3 Objectives . 4

1.4 Thesis Contribution . 5

1.5 Thesis Structure . 6

2 Literature Review 7

2.1 Inspection Challenges in the Energy Sector 8

2.2 DL Applications in the Energy Sector 11

2.2.1 Underwater Monitoring and Corrosion Detection 12

2.2.2 Pipeline and Structural Integrity Assessment 13

2.2.3 Surface Defect Detection and Classification 15

2.3 Review of DL Frameworks for Inspection 16

2.3.1 Vision Transformer . 16

2.3.2 EfficientNet . 18

2.3.3 You-Only-Look-Once (YOLO) 18

2.3.4 Transfer Learning . 20

2.4 Challenges and Limitations of Current DL Approaches 21

2.4.1 Data Scarcity and Quality . 21

2.4.2 Environmental and Operational Variability 21

2.4.3 Integration with Existing Systems 22

2.4.4 Summary . 23

v

2.5 Conclusions . 24

3 Design 26

3.1 Proposed Framework . 26

3.2 Data . 28

3.3 Methods & Experiments . 29

3.3.1 Stage 1 - General Classification Model 29

3.3.2 Stage 2 - Anomaly Detection Model 35

3.3.3 Stage 3 - Human in the Loop . 38

3.4 Conclusion . 40

4 Implementation & Results 41

4.1 Stage 1: General Classification Model 41

4.1.1 Data Collection . 41

4.1.2 Data Pre-processing . 43

4.1.3 Training and Validation . 45

4.2 Stage 2: Anomaly Detection Model . 49

4.2.1 Data Collection . 49

4.2.2 Data Annotation . 50

4.2.3 Training and Validation . 51

4.3 Stage 3: Human in the Loop . 54

4.3.1 Image Pre-processing . 55

4.3.2 DL Models . 58

4.3.3 Human Feedback . 59

4.4 Conclusion . 62

5 Evaluation 63

5.1 Stage 1: General Classification Model 63

5.1.1 ViT Model . 63

5.1.2 EfficientNet . 66

5.1.3 Results Analysis . 69

5.1.4 Discussion . 72

5.2 Stage 2: Anomaly Detection Model . 74

5.2.1 Analysis of Detection Metrics Over Epochs 75

5.2.2 Learning Rate and Loss Analysis 75

5.2.3 Detection Examples . 78

5.2.4 Overall Assessment . 79

5.3 Stage 3: Human in the Loop . 79

5.3.1 User Feedback . 80

vi

5.3.2 Areas of Opportunity . 81

5.4 Conclusion . 81

6 Conclusion & Future Directions 84

6.1 Summary of Findings . 84

6.2 Contributions to the Field . 85

6.3 Future Directions . 86

A Annex 94

A.1 Custom Filter . 94

A.2 General Classifier . 95

A.2.1 Visual Transformer (ViT) . 95

A.2.2 EfficientNet Model . 100

A.3 Anomaly Detection Model . 108

A.4 API Integration . 110

A.4.1 Home Page . 110

A.4.2 Image Processing and Timestamp Classifier 111

A.4.3 General Classifier Model and Anomaly detection 116

vii

List of Tables

4.1 Dataset distribution . 43

4.2 Ultralytics YOLOv8 Model Training Configuration Parameters 53

5.1 Model Evaluation Metrics . 72

viii

List of Figures

1.1 View of Offshore Structure from the splash-zone area 2

2.1 This figure provides a detailed overview of the different zones of an off-

shore component, illustrating the varied environmental conditions each

section faces. 9

2.2 This figure illustrates a caisson undergoing inspection, showing the dif-

ference in anomaly visibility before (left) and after (right) the cleaning

process, highlighting the importance of surface preparation in accurate

defect detection. 10

2.3 Example of a 180° internal panoramic view of a component circumferen-

tial weld with defects. 11

3.1 Current Practices of a Remote Visual Inspection Workflow 26

3.2 Proposed Framework . 27

3.3 Inspection Vehicles for Visual Inspection 28

3.4 Comparison of SD, HD, and 4K Image Resolutions from Remote Inspec-

tion Vehicles . 29

3.5 Example of blurred section of inspection images 29

3.6 Flowchart of the General Classification Training Process 30

3.7 The training flowchart of the YOLOv8 anomaly detection model. 36

3.8 The workflow for API integration in the automated inspection system. . 39

4.1 Circumferential weld (top) and non-circumferential weld (bottom) . . . 43

4.2 Comparison of a circumferential weld using different filters. 45

4.3 API Home Page . 55

4.4 Image Processing . 56

4.5 Selecting Inspection Stills . 57

4.6 Saved Images . 58

4.7 Enable Anomaly Detection Model . 58

ix

4.8 The interface showcases the ’Save Images’ and ’Upload Annotations’

functionalities. 60

4.9 Annotated Image Data CSV File. 61

5.1 Left: Training Loss of the ViT model; Right: Validation accuracy of the

ViT model . 64

5.2 Sample test set prediction of ViT . 65

5.3 Left: Training Loss of the EfficientNetB0 model; Right: Validation ac-

curacy of the EfficientNetB0 model . 66

5.4 Sample test set prediction of EfficientNetB0 68

5.5 Left: Confusion Matrix of the EfficientNetB0 model; Right: Confusion

Matrix of the ViT model . 70

5.6 Performance evaluation plots including Precision-Confidence, F1-

Confidence, Precision-Recall, and Recall-Confidence curves for the

YOLO model. 74

5.7 Metrics over epochs for the YOLO model, illustrating the precision, re-

call, mAP at IoU=0.5, and mAP at IoU=0.50-0.95. 76

5.8 Learning rate changes over epochs for different parameter groups, indi-

cating the optimization dynamics of the YOLO model during training. . 76

5.9 Training losses over epochs, displaying the box, classification, and direc-

tional field losses indicative of the learning progression. 77

5.10 Validation losses over epochs for the YOLO model, which aid in under-

standing the model’s generalization performance. 78

5.11 Example of actual(left) vs predicted (right) anomalies by the YOLOv8

model, showcasing the model’s ability to detect various anomalies with

corresponding confidence scores. 79

5.12 User Interaction with API platform . 80

x

Listings

A.1 Image enhancement process using OpenCV. 94

A.2 Mounting the Google Drive to access the dataset. 96

A.3 Changing the current working directory to the dataset directory. 96

A.4 Installing the Hugging Face Transformers library. 96

A.5 Training the Visual Transformer model. 96

A.6 Evaluation of the Visual Transformer model on the validation set. . . . 97

A.7 Implementing early stopping based on validation loss. 98

A.8 Performing inference on test images and visualizing predictions. 98

A.9 Generating a confusion matrix to visualize the model’s performance. . . 99

A.10 Saving the trained Visual Transformer model to disk. 100

A.11 Loading the saved Visual Transformer model. 100

A.12 Configuring TensorFlow to use a TPU environment 101

A.13 Setting up TensorFlow’s distribution strategy 101

A.14 Mounting Google Drive to access the dataset 101

A.15 Changing the current working directory to the dataset directory 102

A.16 Loading the dataset using TensorFlow’s image-dataset-from-directory . 102

A.17 Building and compiling the EfficientNet model for binary classification. 103

A.18 Training the model using TensorFlow’s distribution strategy. 104

A.19 Plotting training and validation accuracy and loss. 105

A.20 Saving the trained model for later use. 106

A.21 Evaluating the model’s performance on the test dataset. 106

A.22 Displaying test images with their predicted labels. 106

A.23 Generating a classification report and visualizing the confusion matrix. . 107

A.24 Mounting Google Drive in Colab for data access. 108

A.25 Navigating to the dataset directory in Google Drive. 108

A.26 Cloning the YOLOv8 repository from Ultralytics. 108

A.27 Checking GPU availability and installing YOLOv8 dependencies. 109

A.28 Initiating the training of the YOLOv8 model with specified parameters. 109

A.29 Implementing early stopping during model training. 109

xi

A.30 Evaluating the YOLOv8 model on the validation dataset. 109

A.31 Conducting inference with the trained model and compiling results. . . . 110

A.32 Streamlit setup and UI elements . 110

A.33 Configuration and Library Imports . 112

A.34 Custom FileLikeObject Class . 112

A.35 Function to Fetch and Process Images from Dropbox 112

A.36 Function to Create ZIP File from Saved Images 113

A.37 Function to Load Image from Byte Data 113

A.38 Initializing Session State Variables . 114

A.39 Handling Dropbox URL Input . 114

A.40 Selecting Timestamps and Processing Images 115

A.41 Downloading Saved Images . 116

A.42 Imported Packages . 116

A.43 Image Pre-processing for GCM . 117

A.44 ZIP image files function . 117

A.45 List with model’s labels . 117

A.46 Decode GCM predictions . 117

A.47 Upload Deep Learning models . 118

A.48 Declare session state variables . 118

A.49 Predictions . 118

A.50 Image Annotations . 119

A.51 Saving and Downloading Annotated Images 120

xii

Chapter 1

Introduction

In an era where the offshore industry prioritizes asset integrity and safety, this disserta-

tion introduces a deep learning (DL) based framework to enhance inspection methods.

This work, situated in the context of Aberdeen’s significant offshore engineering ad-

vancements, proposes innovative solutions for the challenges faced in this sector.

Subsection Introductions:

1. Background: This section delves into the evolution of the offshore industry, high-

lighting the critical need for efficient inspection methods and the role of Aberdeen

in this transformation.

2. Motivation: Discusses the driving forces behind this research, emphasizing the

need for advanced inspection techniques to ensure structural integrity and safety.

3. Objectives: Outlines the primary goals of the dissertation, focusing on developing

and applying a DL framework for improving offshore inspection processes.

4. Thesis Contribution: Details the unique contributions of this thesis to the field

of offshore engineering, particularly in asset management and safety.

5. Thesis Structure: Provides an overview of the dissertation’s structure, guiding

the reader through the upcoming chapters and their significance in the broader

context of this research.

1

1.1 Background

The offshore industry, integral to the global energy sector, is undergoing a substantial

transformation in its approach to maintaining the safety and integrity of its infras-

tructure. Historically, this industry has predominantly relied on manual inspection

methods. While foundational, these traditional techniques are increasingly recognized

as inefficient, time-consuming, and unable to scale with the growing complexity of

offshore operations.

Figure 1.1: View of Offshore Structure from the splash-zone area

Recent technological advancements, particularly in robotics and artificial intelligence

(AI), including DL, offer promising solutions. Studies Sudevan, Shukla, and Karki

2018; Dias et al. 2022; De Tomi et al. 2014 have highlighted how technologies like wall-

climbing robots and Unmanned Aerial Vehicles (UAVs) are revolutionizing inspection

processes in the oil and gas industry, including those for vertical structures and offshore

wind turbines. These technological innovations provide safer and more efficient alter-

natives to conventional methods, significantly reducing the risks and costs associated

with traditional inspection processes.

Advancing AI’s role in the offshore sector, a study from Alharam et al. 2020 titled ’Real

Time AI-Based Pipeline Inspection using Drone for Oil and Gas Industries’ showcases

an innovative drone-based system for pipeline inspection. This system, equipped with

a thermal camera and AI-based real-time processing, addresses the challenges of tradi-

tional human inspections by offering a safer, more efficient, and less intrusive method.

Its ability to rapidly detect leakages and cracks in hard-to-access areas significantly

reduces inspection costs and time, enhancing the safety and efficiency of offshore oper-

ations.

Adding to the technological strides in AI, the ’A Machine Learning Approach for

2

Big Data in Oil and Gas Pipelines’ study emphasizes machine learning for enhanc-

ing pipeline inspections. It introduces an approach combining Magnetic Flux Leakage

sensors with neural networks to process large data volumes, improving pipeline de-

fect detection accuracy. This method not only streamlines the inspection process but

also outperforms traditional methods, demonstrating the increasing relevance of AI in

refining offshore inspection techniques A. Mohamed, Hamdi, and Tahar 2015

In addition to robotics, AI’s role in sustainable development within the oil and gas sector

has been increasingly recognized, as evidenced in the systematic literature review by

Waqar, Othman, Shafiq, et al. 2023. This study underscores a positive trend in AI

research related to oil and gas construction projects, highlighting AI’s potential to

enhance operational efficiency, reliability, and sustainability. Despite the challenges

associated with AI, such as impacts on privacy and labour, its advantages in driving

sustainable development are substantial and undeniable.

In line with these technological advancements, the application of DL, a branch of ma-

chine learning, is gaining traction in addressing inspection challenges in the offshore

industry. For instance, Wu et al. 2021 developed a DL-based approach for Automatic

Surface Defect Inspection (ASDI) that demonstrates high accuracy with limited train-

ing data. While this study primarily focuses on industrial applications, its methods

can be effectively applied to the offshore sector, particularly for high-resolution image

analysis of offshore structures. Such an approach could be instrumental in accurately

detecting surface defects, crucial for maintaining the structural integrity of these in-

stallations.

Transitioning from general to specific applications, the study ’A DL-Based Ultrasonic

Pattern Recognition Method for Inspecting Girth Weld Cracking of Gas Pipeline’ en-

hances pipeline weld inspections. It addresses the limitations of Electromagnetic Acous-

tic Transducer (EMAT) technology by combining a deep Convolutional Neural Network

(CNN) with a Support Vector Machine (SVM) classifier. This approach improves the

signal-to-noise ratio (SNR) in detecting weld cracks and surpasses traditional methods,

demonstrating DL’s effectiveness in specialized inspection tasks Yan et al. 2020.

Furthermore, Langenkämper et al. 2020 demonstrated the effectiveness of DL, par-

ticularly Convolutional Neural Networks (CNN), in the visual monitoring of offshore

windmill installations. This methodology allows for the accurate detection and clas-

sification of damage patterns, contributing significantly to the efficient inspection and

maintenance of the growing number of offshore windmills.

Similarly, Xia et al. 2018 explored a DL-based image recognition and processing model

3

for electric equipment inspection. Their work highlights the potential of DL in au-

tomating and improving the accuracy of inspections, an essential aspect of maintaining

offshore operations.

In conclusion, the offshore industry’s transition towards DL-based inspection methods

represents a necessary evolution driven by the need to address growing complexities

and heightened safety standards. DL frameworks are emerging to complement pivotal

technologies, promising to redefine this sector’s inspection and maintenance paradigms.

The subsequent chapters will delve into these technologies’ theoretical underpinnings

and practical applications in offshore inspections, highlighting their potential to signif-

icantly enhance safety and operational efficiency.

1.2 Motivation

The offshore industry faces challenges in ensuring the integrity and reliability of its

structures. Traditional inspection methods have limitations in efficiency, risk, and

comprehensiveness, especially under the strenuous conditions of offshore environments.

The motivation behind this work is twofold: firstly, to demonstrate how DL can enhance

the precision and thoroughness of offshore structural assessments, thereby contributing

to the overall safety of these critical installations. Secondly, this research seeks to

showcase the potential of AI-driven approaches in revolutionizing traditional practices,

setting a precedent for future technological integration in offshore engineering.

Through this investigation, this thesis aims to substantiate the premise that DL is

a viable tool and a necessary evolution in the ongoing effort to uphold the highest

safety and efficiency standards in offshore operations. The findings and developments

presented herein aspire to contribute significantly to the body of knowledge in offshore

engineering, potentially reshaping inspection practices and fostering greater operational

effectiveness and safety.

1.3 Objectives

This dissertation aims to advance the state-of-the-art in automated visual inspection

systems by developing, integrating, and evaluating DL models. The specific objectives

set to achieve this goal are as follows:

1. Examine and Critically Evaluate DL-based Methods: Investigate how DL

has been applied in the context of condition monitoring and remote inspection

in industrial settings. This will involve critically evaluating existing literature’s

4

methodologies, tools, and outcomes to identify gaps and opportunities for inno-

vation in automated visual inspection systems.

2. Develop an Image Classification Framework: Create an image classifica-

tion framework utilizing advanced DL architectures. This framework should be

capable of accurately classifying various conditions in engineering images, focus-

ing on versatility and adaptability to different types of engineering environments

and challenges.

3. Create Anomaly Detection Methods: Develop and train a machine learning

model specifically for anomaly detection within engineering images. This method

should enhance the fault identification process in automated inspection systems,

emphasising precision and reliability in diverse operational scenarios.

4. Implement a Human-in-the-Loop API: Establish a system for integrating

human expert feedback into the model’s decision-making process. This can be

achieved through API integration, enabling a collaborative approach where hu-

man expertise supplements the automated system, thereby improving the model’s

accuracy and reliability.

1.4 Thesis Contribution

To succinctly summarize the key contributions of your thesis in bullet points, you can

focus on the three most significant advancements your research offers. Here’s a concise

version:

1. Examination and Critical Evaluation of DL Methods: Thorough investi-

gation of DL applications in condition monitoring and remote inspection in in-

dustrial settings, critically evaluating existing methodologies to identify gaps and

opportunities for innovative solutions in automated visual inspection systems.

2. Development of an Image Classification Framework: Creation of a ver-

satile and adaptable image classification framework using advanced DL archi-

tectures to accurately classify various conditions in engineering images across

different engineering environments.

3. Advancement in Anomaly Detection Techniques: Development of a ma-

chine learning model for anomaly detection in engineering images, enhancing fault

identification processes in automated inspection systems focusing on precision and

reliability in diverse operational scenarios.

5

1.5 Thesis Structure

This thesis is structured into chapters, each targeting a specific objective:

Chapter 2 Literature Review: Focuses on Objective 1 by reviewing DL applications

in industrial inspection and defect recognition. It critically evaluates existing litera-

ture to identify gaps and opportunities for innovation in automated visual inspection

systems.

Chapter 3 Design: Corresponds to Objective 2, detailing the creation of an image

classification framework using advanced DL architectures. The chapter discusses the

framework’s design and adaptability to various engineering environments.

Chapter 4 Implementation: Aligns with Objective 3 and Objective 4. It covers

developing and training an anomaly detection model and implementing a human-in-the-

loop system via an API, focusing on enhancing fault identification and model accuracy.

Chapter 5 Evaluation & Testing: Dedicated to the evaluation and testing of the

developed models, covering performance metrics such as accuracy, precision, recall,

and F1-score. This chapter ensures that the models meet the required standards of

reliability and effectiveness.

Chapter 6 Conclusion: Synthesizes the research findings, reflecting on the achieve-

ments and limitations of the work. It discusses the broader implications for the future

of automated inspection systems and suggests directions for future research.

6

Chapter 2

Literature Review

Before delving into the transformative role of DL and transfer learning in industrial

inspections, it is essential to provide some context on the domain knowledge and AI

techniques pertinent to this field. The offshore industry, integral to the global energy

sector, demands rigorous inspection and maintenance practices to ensure the safety

and integrity of its infrastructure. Over the years, AI techniques, particularly DL, have

emerged as powerful tools in enhancing these inspection processes. DL, a subset of

machine learning, involves training neural networks on large datasets to perform highly

accurate tasks such as image and pattern recognition. This chapter aims to bridge

the gap between traditional inspection methods and modern AI applications, setting

the stage for a comprehensive understanding of how DL can revolutionize inspection

practices in the offshore industry.

This Literature Review chapter delves into the transformative role of DL and trans-

fer learning in industrial inspections, particularly emphasising the energy sector. We

commence by exploring a range of DL methodologies, underscoring their significant

advancements in enhancing the accuracy and reliability of defect detection in complex

environments. The evolution of these technologies is traced from traditional manual

methods to sophisticated, data-driven approaches. Emphasizing the importance of

transfer learning, we highlight its critical role in overcoming challenges posed by data

scarcity and harsh environmental conditions in the energy sector.

7

2.1 Inspection Challenges in the Energy Sector

The complexities highlighted in ’Digitisation of Assets from the Oil & Gas Industry:

Challenges and Opportunities’ underscore the broader context of challenges in the off-

shore energy sector. This paper delves into the hurdles of digitizing vital engineering

documents like Piping and Instrumentation Diagrams (P&IDs), essential for risk assess-

ments yet complex due to issues like document quality, skewed data distribution, and

topology. It reviews advanced methodologies to address these challenges, illustrating

the need for integrated digital solutions. Such technologies could streamline processes,

enhance defect detection accuracy, and improve critical assets’ safety and reliability.

Moreno-Garcia and Elyan 2019.

In conjunction with these digitization challenges, it is crucial to acknowledge the unique

environmental and geographical challenges faced in offshore operations. The paper

’Challenges for the Inspection of Pre-Salt Ultra-deep Offshore Production Facilities’

offers insight into these specific challenges. Concentrating on the Brazilian Pre-Salt

oilfields located in deep waters far from the coast highlights the necessity of using ROVs

for inspections. It emphasizes the need for sophisticated management of technology and

inspection processes in these demanding deep-sea environments. This research points

out how extreme conditions and logistical complexities compound the challenges of

maintaining operational integrity, reinforcing the imperative for innovative inspection

methods and robust asset management strategies in the oil and gas industry. De Tomi

et al. 2014.

Building on this understanding of the diverse challenges in the sector, managing ageing

offshore energy infrastructure, especially in critical areas like the splash zone, becomes

a focal point. Often characterized by harsh environmental conditions, these zones

demand advanced inspection techniques to ensure infrastructure integrity and safety.

Such areas are subject to varying submersion levels due to tides and winds, making them

particularly challenging to inspect and maintain. Therefore, developing and integrating

sophisticated inspection and digitization technologies are beneficial and essential for

efficiently managing these vital offshore components.

These offshore components are categorized into three primary segments: topside,

splash-zone, and sub-sea (see Figure 2.1). The topside is the area under the deck,

typically dry and less exposed to marine conditions. In contrast, the splash zone ex-

periences intermittent submersion due to tides and winds, making it a critical area

for inspection. The sub-sea segment, typically the most extensive, requires thorough

inspection due to its constant exposure to marine conditions and higher likelihood of

anomalies.

8

Figure 2.1: This figure provides a detailed overview of the different zones of an offshore
component, illustrating the varied environmental conditions each section faces.

In regions like the United Kingdom Continental Shelf (UKCS), there has been an in-

creasing concern over the past decades regarding the deterioration and failure of critical

offshore components, including caissons, J-tubes, conductors, and risers. These failures

not only pose risks to the structural integrity of the installations but can also lead

to severe consequences like gas leaks and operational disruptions. These components’

intricate nature and exposure to aggressive marine environments underscore the need

for more sophisticated inspection methodologies.

One of the biggest threats to the integrity of these components is internal corrosion.

Due to the loss of coating or lining, the interior of these components is vulnerable to

corrosion, and only a minimal amount of protection is provided by the external coating

protection (CP) system. For instance, pump caissons can suffer severe corrosion damage

caused by galvanic action between the pump and the caisson. Thus, internal corrosion

shall be monitored by conducting a periodical internal inspection.Regulator 2021

The two most common inspection techniques in offshore operations are general visual

inspection (GVI) and closed visual inspection (CVI). GVI, typically conducted by re-

motely operated vehicles (ROVs), serves to verify the presence of components and

identify any major flaws, deformations, or damage without the need for pre-cleaning.

In contrast, CVI is employed for a more detailed assessment of the component’s con-

dition and requires prior cleaning of marine growth to identify local defects or damage

9

Figure 2.2: This figure illustrates a caisson undergoing inspection, showing the differ-
ence in anomaly visibility before (left) and after (right) the cleaning process, highlight-
ing the importance of surface preparation in accurate defect detection.

accurately. This technique often results in a comprehensive report comprising still im-

ages of identified anomalies, which are critical for subsequent analyses (See Figure 2.2).

Health and Executive 2009

The process of a full-caisson inspection is comprehensive, beginning with surface clean-

ing and preparation, followed by a remote ultrasonic inspection, and culminating in

a remote visual inspection. The initial phase involves high-pressure water jetting to

remove loose coatings and surface corrosion, with the resulting debris either released

to sea or collected in recovery baskets. Next, robotic ultrasonic inspection tools are

deployed to measure the caisson’s thickness along its entire length, providing real-time

data essential for preliminary condition assessment. The final stage involves remotely

deploying inspection cameras to visually confirm any defects or irregularities detected

during the ultrasonic inspection, with particular attention to the surface condition and

circumferential welds.

In offshore structures, the integrity of welded components is of paramount importance.

Welded joints inherently retain residual stresses, which can be as significant as the

material’s yield strength. In engineering structures, such tensile residual stresses are

detrimental to structural integrity. Thus, a critical aspect of remote visual inspec-

tions involves assessing these welds, especially circumferential welds (CW), which are

vulnerable to localized corrosion and fatigue. These stresses are often exacerbated by

external forces such as ocean currents and tidal movements, making CWs a focal point

in structural assessments. Y. Zhang et al. 2013a; Y. Zhang et al. 2013b.

The task of inspecting and assessing these components is not only critical but also

time-intensive. Classifying circumferential welds from the images captured during an

inspection is laborious and meticulous. Each circumferential weld, potentially man-

ifesting different forms of deterioration or damage, must be examined precisely. An

inspection engineer is tasked with capturing a comprehensive 360-degree view of the

10

Figure 2.3: Example of a 180° internal panoramic view of a component circumferential
weld with defects.

inner circumference of the component, which typically results in a collection of 20 to 26

images for a mere fraction of a meter. Given the extensive length of these components,

ranging from 30 to 70 meters, and the frequency of circumferential welds occurring every

few meters, the volume of images generated for a single inspection can be substantial.

Moreover, the classification phase is just the precursor to the critical analysis of each

identified weld. Post-classification, the engineer must scrutinize each image for defects,

requiring a high level of expertise and an eye for detail to ensure no anomaly goes unno-

ticed. The defects in circumferential welds, such as cracking, corrosion, or deformation,

are varied and may also be subtle and difficult to detect, adding further complexity to

the task. The manual process, inherently prone to human error, is further exacerbated

by factors such as poor lighting conditions, biofouling, and the turbidity of the water,

which can obscure the visibility of the defects.

Therefore, this exhaustive and demanding process underscores the critical need for

more efficient and reliable inspection methods. The imperative for innovation in this

field is clear: enhancing defect detection accuracy, expediting the assessment process,

and reducing human error risks are essential for safeguarding the safety and integrity

of these vital sub-sea structures.

2.2 DL Applications in the Energy Sector

Advancements in DL have significantly enhanced monitoring and maintenance practices

within the energy sector. These technological developments are pivotal for inspecting

submerged structures and vast pipeline networks, ensuring their integrity and function-

ality. The application of DL extends to detecting minute surface anomalies, potentially

indicating more significant underlying issues. Moreover, transfer learning has emerged

as a powerful approach, enabling efficient and practical analysis in environments where

conventional methods fall short. The forthcoming sections will delineate using DL for

underwater inspection, pipeline integrity assessment, surface defect identification, and

the application of transfer learning in challenging settings.

11

2.2.1 Underwater Monitoring and Corrosion Detection

The advent of DL has significantly advanced underwater monitoring and corrosion de-

tection, which is essential for maintaining subsea infrastructure. While machine vision

applications in these domains have been innovative, several challenges and limitations

remain.

O’Byrne et al. 2018 explored semantic segmentation of underwater imagery using deep

networks trained on synthetic data, focusing on bio-fouling detection. While their

framework achieved commendable accuracy, the reliance on synthetic data may not

fully capture the complexity of real-world underwater environments. The transition

from synthetic to real-world data remains a significant challenge, potentially impacting

the model’s practical applicability.

De Masi et al. 2015 utilized machine learning to predict corrosion rates in subsea

pipelines. Their approach, processing a substantial amount of inspection data, showed

the feasibility of predictive models. However, the study’s effectiveness in real-world

scenarios may be limited by the variability in environmental conditions and the dynamic

nature of subsea corrosion processes, which are not always predictable.

Soares et al. 2021 focused on classifying underwater corrosion levels by training a CNN

with modified gamma variables in images. While their method showed high accuracy,

the simulation of turbidity effects may not fully represent the diverse and unpredictable

conditions encountered in natural underwater settings. Additionally, the study high-

lights the need for more robust models that can adapt to varying levels of visibility and

environmental factors.

Adding to these advancements, a recent study by Smith, Coffelt, and Lingemann 2022

presents ”A DL Framework for Semantic Segmentation of Underwater Environments.”

This research addresses the challenge of object classification and segmentation in un-

derwater robotic missions, often hindered by water turbidity and light attenuation. The

study proposes a unique solution involving the procedural creation of randomized un-

derwater scenes and the generation of corresponding point clouds with semantic labels.

This approach, using synthetic data for training a 3D segmentation network, shows

promise in overcoming the limitations of traditional perception methods in harsh un-

derwater conditions. The network’s performance, validated on actual underwater point

cloud data, signifies a step forward in enhancing the accuracy of underwater monitoring

using DL.

The study presented by Prasad, Parikh, and Prasanth 2023 proposes an algorithm for

detecting and classifying various underwater objects, emphasizing the versatility of DL

in diverse applications. However, the effectiveness of such an algorithm in complex and

12

turbid underwater environments, where visibility is often compromised, is yet to be

fully explored. The study allows further research to improve image clarity and object

detection accuracy in challenging underwater conditions.

Transfer learning, as investigated in Pirie and Moreno-Garcia 2021 for underwater

corrosion segmentation, shows promise in enhancing model performance. However,

adapting models from surface to underwater scenarios raises questions about the gen-

eralizability of such approaches. The preprocessing techniques required for this transi-

tion need further refinement to ensure robust performance across different underwater

environments.

Anastasios et al. Stamoulakatos, Cardona, Mccaig, et al. 2020 demonstrated using

ResNet-50 CNN for the multi-label classification of underwater inspection images.

While their model achieved high accuracy, the scalability of such a system in extensive,

real-world underwater environments poses a challenge. Additionally, the study high-

lights the need for large, diverse datasets for training to ensure the model’s effectiveness

across various underwater scenarios.

These studies highlight the growing impact of DL in underwater monitoring and cor-

rosion detection. They offer promising directions for future research, particularly in

enhancing data realism, model generalizability, and robustness in diverse and challeng-

ing underwater conditions. Future research should focus on bridging the gap between

controlled experiments and real-world applications, ensuring the practical deployment

of these technologies in subsea infrastructure maintenance.

2.2.2 Pipeline and Structural Integrity Assessment

The integrity of pipelines and structural components is crucial in the energy sector,

with corrosion as a primary challenge. While recent research leveraging DL shows

promising results, it’s essential to critically evaluate these advancements in the context

of practical applications and inherent limitations.

Bastian et al. 2019 introduced a DL framework using Convolutional Neural Networks

(CNNs) for pipeline corrosion detection. While their approach marks a significant step

in defect identification, the model’s generalizability across different pipeline materials

and environments remains a question. Additionally, the reliance on high-quality image

data may limit its applicability in less ideal conditions often encountered in real-world

scenarios.

Hoang and Duc 2019 combined image texture analysis with a machine-learning algo-

rithm for automating corrosion detection. Their method’s integration of traditional

13

and modern techniques is innovative; however, the model’s performance in varied light-

ing and weather conditions, typical in outdoor pipeline environments, needs further

exploration. The effectiveness of the meta-heuristic optimization in diverse settings

also warrants additional validation.

A novel approach proposed by Bhavani et al. 2022 that integrates DL with traditional

non-destructive testing methods advances pipeline inspection methodologies. This re-

search enhances magnetic flux leakage (MFL), a common technique for pipeline inspec-

tion, using DL to analyze patterns in MFL signals. By classifying these signals through

a convolutional neural network and assessing damage indices based on enveloped MFL

signal and threshold values, this method proposes a more quantitative and real-time

approach to pipeline integrity assessment. Integrating DL in this traditional NDT

method underscores the potential for advanced technologies to enhance the accuracy

and efficiency of pipeline inspections.

Using aerial imagery, Ortiz et al. 2016 developed new descriptors for detecting coating

breakdown corrosion. Their method emphasizes the importance of feature extraction

in machine vision. Nonetheless, the accuracy of these descriptors in differentiating

between corrosion and similar-looking anomalies in complex backgrounds is an area

that could benefit from more research, especially considering the vast range of textures

and colours present in outdoor environments.

Mazzella et al. 2020 offered a model combining machine learning with geospatial anal-

ysis for pipeline wall loss risk estimation. While this approach is comprehensive, the

challenge lies in its scalability and adaptability to different pipeline networks with vary-

ing data availability and quality. Additionally, integrating real-time data for dynamic

risk assessment could enhance the model’s utility.

These studies represent a significant stride in applying machine vision and DL to assess

pipeline and structural integrity. They offer robust tools for the energy sector yet

underscore ongoing research’s need to address challenges like model generalizability,

performance in diverse and unpredictable conditions, and scalability. Future research

should focus on enhancing these models’ robustness and adaptability, ensuring their

effective deployment in varied and real-world settings, where conditions are often far

from ideal. This progression is essential for developing truly reliable and efficient tools

for structural integrity assessment in the energy sector.

14

2.2.3 Surface Defect Detection and Classification

The detection and classification of surface defects are crucial in maintaining the integrity

and safety of infrastructural components. Profound learning advancements have no-

tably improved automated surface defect recognition, yet a critical evaluation of these

methods reveals areas for further development.

Fu et al. 2019 developed a Convolutional Neural Network (CNN) model for steel surface

defect classification using a SqueezeNet pretrained architecture and a multi-receptive

field module. While their model achieved high accuracy, the challenge remains in its

application to diverse surface materials under varying environmental conditions. The

model’s performance in real-world industrial settings, where data may be more irregular

and less controlled, is an essential area for future research.

Ren, Hung, and K. C. Tan 2018 introduced a generic approach to automate surface

inspection, creating a defect heat map using a pretrained DL network. This method

streamlined the defect detection process and demonstrated adaptability to different

datasets. However, the study’s reliance on pretrained networks raises questions about

the model’s specificity and sensitivity in unique defect scenarios, suggesting a need for

customization in applications with distinct defect characteristics.

Similarly, Altabey et al. 2022 further extends the application of DL in surface defect

detection. This research focuses on efficiently and accurately monitoring pipeline sur-

face cracks using a CNN algorithm, enhancing the traditional Magnetic Flux Leakage

(MFL) method. The approach involves detailed analysis and classification of MFL

signals, applying DL to improve the identification and localization of pipeline cracks.

While demonstrating promising results, this method’s effectiveness in varying pipeline

conditions and its computational efficiency in large-scale applications warrant further

investigation and optimization.

Building on the theme of specialized defect detection, Medak et al. (2022) Medak et al.

2022 proposed ”DefectDet,” a novel DL architecture for detecting defects in ultrasonic

images, commonly used in non-destructive testing (NDT). This architecture is tailored

to handle the extreme aspect ratios often found in ultrasonic images, employing a

lightweight feature extractor and a modified detection head. Tested on an extensive

in-house dataset, their architecture achieved superior performance over state-of-the-

art methods while also reducing inference time, showcasing the potential of DL in

specialized NDT applications.

Lin, Chou, and Cheng 2023 tackled dataset variability and model generalization in Au-

tomated Optical Inspection (AOI). Their DL-based General Defect Detection Frame-

work (DL-GDD) addressed insufficient defect samples and achieved high accuracy and

15

low false rates, demonstrating DL’s potential in AOI.

Zhu, Ge, and Z. Liu 2019 combined CNN with random forest classifiers for weld sur-

face defect identification. Their approach effectively learned high-level features and

provided robust predictions. Still, integrating machine learning techniques like random

forests with DL models may require further refinement to optimize performance and

computational efficiency.

Atha and Jahanshahi 2018 compared various CNN architectures for corrosion assess-

ment on metallic surfaces. Their findings indicated the superiority of CNNs, partic-

ularly when fine-tuned, over traditional corrosion detection methods. However, the

fine-tuning process demands extensive datasets and computational resources, which

could be limiting factors in some practical applications.

Huang, Li, and D.-m. Zhang 2018 proposed a DL-based method for identifying cracks

and leakage in metro shield tunnels using a two-stream algorithm for semantic seg-

mentation. While their method outperformed traditional segmentation methods, the

increased computational time required for processing poses a challenge for real-time

applications.

Collectively, these studies underscore the effectiveness of DL in surface defect detection

and classification. They offer promising directions for maintenance and safety in vari-

ous sectors, including energy. Future research should focus on enhancing the models’

applicability in diverse real-world scenarios, improving computational efficiency, and

addressing the challenges of dataset variability and environmental conditions. This

progression is crucial for advancing reliable and efficient tools for surface defect assess-

ment in practical applications.

2.3 Review of DL Frameworks for Inspection

To advance DL and computer vision for analysing offshore inspection images, our strat-

egy is leveraging the most effective models tailored for such intricate tasks. The ar-

chitectures of choice are the Vision Transformer (ViT) for its novel approach to image

classification and EfficientNet for its optimized balance of model depth, width, and

resolution.

2.3.1 Vision Transformer

The Vision Transformer (ViT) introduces an innovative approach to image classifica-

tion, applying transformer models from natural language processing. Diverging from

16

the conventional CNNs, ViT leverages a self-attention mechanism, allowing it to ana-

lyze various parts of an image about each other, enhancing the overall understanding

of the image’s content Dosovitskiy, Beyer, Kolesnikov, et al. 2020.

ViT processes an image by dividing it into fixed-size patches, linearly embedding them

along with position encoding. These embedded patches are then inputted into trans-

former encoder layers, which consist of multi-head self-attention and fully connected

neural networks. This structure allows ViT to capture detailed features and broader

contextual information within the image Dosovitskiy, Beyer, Kolesnikov, et al. 2020.

A key advantage of ViT is scalability, improving performance with larger training

datasets, and its ability to benefit from transfer learning. This makes it well-suited

for tasks with extensive data, such as image classification on large corpora like Im-

ageNet or JFT-300M Dosovitskiy, Beyer, Kolesnikov, et al. 2020, Kolesnikov, Beyer,

Zhai, et al. 2019.

In practical applications, Komijani et al. (2022) Komijani et al. 2022 demonstrated

ViT’s adaptability by using it for multi-label classification of steel surface defects,

achieving an impressive weighted F1 score of 92%. This highlights ViT’s capability to

handle complex classification tasks in various industrial settings.

Furthering the application of ViT, Liu et al. (2023) Y. Liu et al. 2023 developed the

Fast Multi-Path Vision transformer (FMPVit), an optimized version for welding defect

detection. FMPVit addresses the limitations of standard transformer models, such as

large parameter sizes and computational resource demands, by enhancing local feature

detection capabilities through an advanced architecture. Validated on a dataset of weld

seams, FMPVit showed significant improvements over traditional models.

By expanding on these advancements, Chen et al. (2024) Chen et al. 2023 introduced

a hybrid method that combines YOLOv5 and ViT to detect pipeline defects. This

approach, employing a cascaded DL framework, surpasses YOLOv5 alone in accuracy,

illustrating the effectiveness of combining different architectures for intricate defect

detection tasks.

ViT’s comprehensive image analysis and sequence-to-sequence classification approach

are highly beneficial for offshore inspections, where identifying subtle anomalies is cru-

cial. Its scalability and ability to fine-tune on specific datasets make ViT an apt choice

for analyzing the integrity of structures like circumferential welds, thereby enhancing

the reliability of remote visual inspections.

In conclusion, ViTForImageClassification, with its global receptive field and scalabil-

ity, is poised to set new standards in offshore inspection, transforming image-based

17

structural analysis through advanced DL techniques.

2.3.2 EfficientNet

EficientNet represents a paradigm shift in the scaling of convolutional neural networks

(CNNs), employing a compound scaling method for balanced adjustments in network

depth, width, and resolution. This harmonized scaling enhances model capacity and

accuracy M. Tan and Le 2019.

EfficientNet’s innovative scaling technique improves performance without dispropor-

tionately increasing computational costs. Starting with the baseline EfficientNet-B0,

the model is scaled to more potent versions like EfficientNet-B7, depending on the

complexity of the problem and computational resources available M. Tan and Le 2019.

Li et al. (2023) Hoang and Duc 2019 and de Moura et al. (2022) de Moura et al. 2022

demonstrated EfficientNet’s application in submarine pipeline inspection and deep-

water oil-spill monitoring, highlighting its adaptability in diverse scenarios.

Further showcasing EfficientNet’s versatility, Yu et al. (2022) Yu et al. 2022 explored its

application in the intelligent detection of forging defects. They developed an improved

model using EfficientNet as the backbone and Feature Pyramid Network (FPN) as the

fusion layer, enhanced with an Attention Mechanism and optimized by a Particle Swarm

Optimization algorithm. This approach significantly improved the detection accuracy of

automobile steel forging defects, achieving a mean Average Precision (mAP) of 95.69%

and an F1 score of 0.94. The study exemplifies EfficientNet’s potential in industrial

quality control, offering a highly accurate and efficient solution for defect detection in

manufacturing processes.

EfficientNet’s adaptability in applications ranging from environmental monitoring to

industrial defect detection underlines its suitability for offshore inspection image anal-

ysis. Its ability to efficiently scale and capture a wide range of features makes it a

valuable tool for customized approaches to analyzing complex visual data.

In conclusion, incorporating EfficientNet into our computational pipeline for offshore

inspection and environmental monitoring tasks leverages its balance between efficiency

and performance, enabling accurate analysis and decision-making in diverse offshore

and marine applications.

2.3.3 You-Only-Look-Once (YOLO)

The YOLO (You Only Look Once) series of models is among the most prominent ar-

chitectures for real-time object detection. YOLO’s fundamental innovation lies in its

18

unified architecture, which simultaneously predicts bounding boxes and class probabil-

ities in a single forward pass through the neural network. This design allows for rapid

object detection, making YOLO highly suitable for real-time analysis applications like

video surveillance, autonomous vehicles, and industrial inspections.

YOLO models divide the input image into a grid, and each grid cell predicts a certain

number of bounding boxes. For each bounding box, the model computes a confidence

score reflecting an object’s presence and the box’s accuracy. In parallel, the model

predicts class probabilities for each grid cell. This approach allows YOLO to capture

spatial context and object classification highly efficiently.

You Only Look Once (YOLO) is an innovative object detection method that revolu-

tionized the field of computer vision with its introduction in 2015 by Joseph Redmon

et al. Unlike traditional object detection systems which employ separate models for

classification and localization, YOLO unifies the entire object detection pipeline into a

single neural network, enabling it to perform detection in real-time. The architecture

processes the input image only once (hence the name) through a single convolutional

neural network (CNN) and divides the image into a grid. Each grid cell predicts a cer-

tain number of bounding boxes and confidence scores for those boxes, including class

probabilities. This end-to-end learning approach allows YOLO to predict bounding

boxes and class labels simultaneously for all classes, making it exceptionally fast and

efficient compared to its predecessors.Redmon et al. 2016

YOLOv8, developed by Ultralytics, builds upon the strengths of previous versions, of-

fering several improvements. It inherits the unified, single-stage detector characteristic,

enhancing it with a more refined architecture and advanced features. YOLOv8’s de-

sign is optimized for speed and accuracy, with substantial improvements allowing it to

outperform its predecessors. It provides state-of-the-art object detection capabilities

with increased precision and real-time performance. It is ideal for applications requir-

ing rapid and reliable visual recognition, such as offshore inspection tasks. Gašparović

et al. 2023a

This latest iteration maintains compatibility with both CPU and GPU environments,

ensuring accessibility and scalability. The YOLOv8 model stands out for its ability to

immediately handle complex object detection, classification, and segmentation tasks.

It is equipped with a suite of pre-trained weights and can be fine-tuned on custom

datasets to enhance its performance on specialized tasks, such as identifying defects

in welds during inspections. The versatility and power of YOLOv8 lie in its advanced

engineering, which integrates lessons learned from earlier versions and incorporates new

techniques from current research to push the boundaries of what’s possible in real-time

19

object detection.

2.3.4 Transfer Learning

Transfer learning has emerged as a powerful tool in machine learning, particularly in

environments where data collection is challenging or where the environment is harsh

and unpredictable.

Training DL models from scratch is a resource-intensive task that often requires large

datasets and significant computational power. Sarker 2021 In the context of offshore

inspections, where data can be scarce and computational resources are limited, this

becomes a substantial challenge. Transfer learning addresses these challenges by uti-

lizing a model pre-trained on a large dataset and adapting it to the specific task at

hand, thereby leveraging the generic features learned by the model on a broad range of

images.

Ali et al. Ali et al. 2020 leveraged transfer learning to accurately detect cracks on

concrete surfaces. By using pre-trained models like MobileNet and Inception V2, they

demonstrated the potential of transfer learning to adapt to new, similar tasks effectively.

Liang Lu 2021 evaluated various DL methods, including transfer learning, to identify

pavement cracks in visual images. By comparing different datasets and models, Liang’s

work underscores the adaptability of transfer learning to diverse image-based detection

tasks.

In the context of building inspections, Perez et al. Perez, Tah, and Mosavi 2019 utilized

a pre-trained CNN classifier to detect and locate building defects. Their work showed

how transfer learning could reduce the need for extensive data labelling while still

achieving high accuracy in defect classification.

Mohammed et al. Y. S. Mohamed et al. 2019 applied transfer learning to estimate

steel crack depth from 2D images, demonstrating that neural networks can accurately

estimate physical attributes from visual data. Akira et al. Oyama et al. 2021 employed

DL-based methods, including transfer learning, to detect rust in pressure pipes from

2D images, highlighting the method’s efficacy in pattern recognition tasks even with

complex visual patterns.

Lastly, in the study by authors in Pirie and Moreno-Garcia 2021, transfer learning was

explored for segmenting underwater corrosion from imagery. The study indicates that

when fine-tuned with task-specific data, pre-trained models can improve segmentation

results, showcasing the potential of transfer learning in underwater imaging applica-

tions.

20

These studies collectively show the versatility of transfer learning in adapting pre-

trained models to new domains, particularly in harsh environments where traditional

data gathering and processing methods are insufficient or impractical.

2.4 Challenges and Limitations of Current DL Ap-

proaches

This section critically evaluates the challenges and limitations inherent in applying DL

techniques to the energy sector, as identified in the preceding sections of this literature

review.

2.4.1 Data Scarcity and Quality

The efficacy of DL models is heavily contingent on the availability and quality of train-

ing data. However, as identified in Section 2.1, the offshore energy sector frequently

grapples with data scarcity and inconsistent data quality, posing significant challenges

for these models.

Data Acquisition Challenges: Collecting extensive datasets in offshore environ-

ments is a formidable task due to various factors. Logistical hurdles, high operational

costs, and the inherently hazardous nature of offshore environments contribute to the

scarcity of data. Additionally, the sporadic nature of inspections and maintenance ac-

tivities results in datasets that are limited in size and sporadically collected, leading to

temporal gaps in the data.

Annotation and Labeling Issues: Another critical aspect is the labour-intensive

and expert-driven process of annotating and labelling the data, which is essential for

supervised learning models. The complexity and specialized nature of offshore inspec-

tion data require expert knowledge for accurate labelling, further complicating the data

preparation process.

While techniques such as data augmentation, synthetic data generation, and transfer

learning have been proposed to mitigate these issues, they have limitations. Data

augmentation can introduce biases, synthetic data may not capture the full complexity

of real-world scenarios, and transfer learning relies on the assumption that pre-trained

models on large datasets apply to the specific needs of the offshore sector.

2.4.2 Environmental and Operational Variability

The offshore energy sector is characterized by its challenging and variable environmental

and operational conditions, which significantly impact the application and effectiveness

21

of DL models.

Impact of Environmental Conditions: As highlighted in Section 2.3, offshore en-

vironments pose unique challenges such as poor visibility, underwater turbidity, and

extreme weather conditions. For instance, the studies on underwater monitoring and

corrosion detection (O’Byrne et al. 2018, De Masi et al. 2015) illustrate how environ-

mental factors like bio-fouling and turbidity can drastically affect the quality of visual

data, posing a significant challenge for image-based DL models. These conditions can

lead to substantial inaccuracies in tasks like defect detection and structural assessment.

Variability in Operational Settings: The operational settings in the energy sector

vary widely, as evidenced by the different inspection techniques used for diverse struc-

tures like pipelines, caissons, and risers. Each structure and environment demands

specific inspection methods, as indicated by the studies on pipeline integrity and struc-

tural assessment (Bastian et al. 2019, Hoang and Duc 2019). The success of DL models

in one scenario does not guarantee their effectiveness in another, underscoring the need

for adaptable and robust models.

Challenges in Model Training and Adaptation: Training DL models to handle

this environmental and operational variability is challenging. The models need to be ro-

bust enough to handle diverse and often suboptimal data conditions. The pipeline and

structural integrity assessment study using aerial imagery (Ortiz et al. 2016) demon-

strates the complexity of extracting relevant features in varied lighting and weather

conditions.

Current DL approaches often rely on controlled or ideal conditions for training, which

may not represent real-world offshore environments. Techniques such as augmenting

training data with environmental noise and using simulation environments offer poten-

tial solutions, but they may not fully capture the complexity and unpredictability of

real-world conditions.

2.4.3 Integration with Existing Systems

Integrating DL solutions into the established operational frameworks of the offshore

energy sector presents a complex challenge, as noted in various parts of the literature

review.

Compatibility Issues: A critical hurdle, as indicated in Section 2.3, is the compati-

bility of DL models with existing inspection and monitoring systems. The specialized

nature of offshore operations often relies on legacy systems that may not be readily

compatible with advanced AI technologies. For instance, the integration of AI-based

corrosion detection or structural assessment tools (De Masi et al. 2015, Bastian et al.

22

2019) into existing pipeline inspection workflows requires careful consideration of data

formats, software platforms, and operational protocols.

Workflow Modification and Training: Incorporating AI solutions often necessi-

tates significant modifications to existing workflows, as seen in the application of mod-

els like YOLO for real-time object detection (Redmon et al. 2016). This integration is

not just a technical challenge but also an operational one, requiring the staff retraining

and potentially restructuring inspection processes. The change management aspect,

including training personnel to work alongside AI systems, is critical to successful in-

tegration.

Interdisciplinary Collaboration: Effective integration demands a collaborative ap-

proach that combines expertise in AI and DL with domain-specific knowledge from

the energy sector. This interdisciplinary collaboration is essential for addressing the

practical and technical nuances of integrating DL into existing systems.

Resistance to Technological Changes: Another significant barrier is the resistance

to change within organizations. The introduction of AI-based methods can be met with

skepticism, especially in a field where traditional methods have been long-established

and trusted. Overcoming this resistance requires demonstrating the clear benefits of

AI integration, such as improved accuracy, efficiency, and safety in inspections.

While the integration of DL presents a path to enhanced efficiency and accuracy in

offshore operations, the practical challenges of such integration must not be underesti-

mated. Solutions need to be user-friendly, cost-effective, and easily adaptable to exist-

ing operations. Moreover, ensuring the security and reliability of these AI-integrated

systems is paramount, given the high-stakes nature of offshore energy operations.

2.4.4 Summary

This section critically examines the multifaceted challenges that DL faces in the offshore

energy sector. A key takeaway is addressing data scarcity and quality. Effective data

collection methods and the development of robust models that can handle data quality

issues are essential. Innovative strategies to maximize the utility of limited data are

also crucial.

The generalizability and adaptability of DL models emerge as critical concerns. Models

must be tailored to withstand offshore environments’ diverse and dynamic conditions.

This necessitates a deep understanding of these unique operational settings and the

development of flexible models that can adapt to varying conditions.

Environmental and operational variability in the offshore sector significantly impacts

23

DL applications. Models must be resilient to changes in environmental factors such

as visibility and weather conditions and operational factors like equipment variability

and inspection protocols. Creating models that effectively navigate these complexities

requires a collaborative approach, blending domain-specific insights with cutting-edge

AI research.

Lastly, the integration of DL technologies into existing offshore systems presents its own

set of challenges. It requires a nuanced approach that balances technical compatibility

with the need for operational adjustments and sensitivity to organizational culture.

Successful integration hinges on developing solutions that are not only technically sound

but also align with the practical realities and workflows of the energy sector.

In conclusion, overcoming these challenges is key to unlocking the transformative po-

tential of DL in offshore inspections and the broader energy sector. Future efforts

should be directed towards creating integrative, adaptable, and robust DL solutions,

paving the way for their practical and smooth adoption in this high-stakes and complex

domain.

2.5 Conclusions

In conclusion, this Literature Review chapter has delved deeply into the growing areas

of DL and transfer learning in industrial inspections, particularly emphasising the en-

ergy sector. We have covered a wide range of research, showcasing how these advanced

technologies significantly improve the accuracy, reliability, and efficiency of identifying

and categorizing defects. From ensuring the integrity of pipelines to detecting under-

water corrosion, the studies reviewed demonstrate the flexibility and effectiveness of

DL models, even in environments where data is limited.

By incorporating advanced methods such as the Vision Transformer and EfficientNet

into our research approach, we show our commitment to utilizing the most effective

technologies for complex offshore inspection tasks. This strategic choice and our in-

vestigation of the YOLO architecture and the practical advantages of transfer learning

place our research at the forefront of innovation in industrial inspections.

Moreover, our thorough examination of the current challenges in the energy sector’s

inspection processes, particularly in offshore settings, highlights the pressing need for

more efficient, reliable, and innovative methods. The complexity and critical nature

of these inspection tasks call for advanced solutions that can enhance the safety and

integrity of essential infrastructures and reduce the time and human resources needed.

As this chapter concludes, we are ready to apply these insights to the practical aspects

24

of our research. The comprehensive review we have conducted lays a solid foundation

for our work. It guides us toward developing and implementing DL solutions that can

significantly improve inspection practices in the energy sector. Therefore, this chapter

serves as a detailed guide and a driving force for future progress in remote offshore

inspections.

25

Chapter 3

Design

This chapter presents our DL (DL) framework, developed to automate the remote visual

inspection of offshore assets. The focus is on enhancing the standard of inspections by

improving their accuracy, efficiency, and consistency.

The framework is designed to streamline the traditionally labour-intensive process of

visual inspections, including reviewing inspection images, identifying and classifying

defects, and detailed documentation. The framework aims to reduce the manual effort

involved in these tasks by automating anomaly detection and classification. This chap-

ter will first introduce the data used in our system and then explain the methodology

and the specific models employed.

3.1 Proposed Framework

The proposed DL framework is a sophisticated, API-driven process that enhances off-

shore visual inspection operations. The framework automates several steps of the tradi-

tional inspection process, as illustrated in Figure 3.1, which depicts the current practices

of a remote visual inspection workflow.

Figure 3.1: Current Practices of a Remote Visual Inspection Workflow

Upon uploading images to the API, the system initiates a pre-processing sequence to

prepare the data for analysis. The images are then processed through a two-tiered model

26

system. Initially, a General Classification discerns images featuring circumferential

welds from those without. Subsequently, an object detection model scans for anomalies

within the images. This process significantly reduces the manual effort traditionally

required in offshore visual inspections.

Engineers can review and refine these automated predictions to ensure accuracy. Post-

validation, images are tagged and archived, streamlining the process for engineers who

then incorporate only the final, vetted images into their reports. This process is further

illustrated in the corresponding diagram (Figure 3.2), showcasing the seamless integra-

tion of AI with expert oversight, enhancing the efficiency and effectiveness of offshore

asset inspections.

Figure 3.2: Proposed Framework

The development of our inspection framework is strategically segregated into three piv-

otal stages, each designed to build upon the insights and advancements of the preceding

one, culminating in a robust tool for practical application by engineering professionals.

The first stage centres on the training of the General Classification. In this foundational

phase, we focus on constructing and honing a binary classification system that can dis-

tinguish between images containing circumferential welds and those without. Through

a rigorous process involving data collection, preprocessing, and augmentation, we train

two sophisticated neural network architectures: the Visual Transformer (ViT) and Ef-

ficientNet. Upon training, these models undergo a thorough evaluation to ascertain

their efficacy, with the best-performing model being selected for subsequent stages.

Transitioning to the second stage, we delve into the realm of Object Detection. Lever-

aging the YOLOv8 framework, we train our model to detect the presence of welds and

pinpoint and classify various defect types within these images. This stage is character-

ized by meticulous data annotation, model training, and validation, ensuring that our

object detection system operates with high precision and accuracy.

Finally, the third stage is integrating and optimising Models into an API. Here, the

27

trained models are encapsulated within a user-friendly application programming inter-

face (API) specifically tailored for use by engineers in the field. This API is a conduit

between the complex underlying machine learning models and the end-users, providing

a seamless, interactive platform for real-time image analysis and inspection. Through

iterative feedback and performance monitoring, the API is continually refined to meet

the dynamic demands of practical engineering applications, ensuring it remains a state-

of-the-art tool in the industry.

Each stage of the framework is designed as a step in the process and a gateway for

iterative improvement, fostering a system that evolves in response to real-world data

and expert feedback.

3.2 Data

Remote Operated Vehicles (ROVs) are pivotal in our offshore visual inspection, en-

abling access to subsea infrastructures’ internal and external aspects, see Figure 3.3.

These ROVs, guided by centralizers for internal and crawlers for external inspections,

are meticulously manoeuvred via gravity-fed hoist chain mechanisms to adapt to the

underwater installations’ varying conditions and complex designs. The data acquisition

from these vehicles is diverse, yielding imagery in standard definition (SD), high defi-

nition (HD), and even 4K resolutions. Our dataset is constructed from these varying

qualities of imagery, ensuring a detailed and comprehensive range of visual data for our

DL framework.

Figure 3.3: Inspection Vehicles for Visual Inspection

The visual data retrieved by our Remote Operated Vehicles (ROVs) is critical for iden-

tifying anomalies during offshore inspections. The imagery, which ranges from standard

definition to 4K resolution, is showcased in Figure 3.4, demonstrating the varying clarity

and detail captured. A higher resolution, such as 4K, significantly enhances the visibil-

ity of anomalies, providing superior-quality data. Nonetheless, environmental factors

and lighting conditions remain challenges that can impact image quality, regardless of

28

resolution.

Figure 3.4: Comparison of SD, HD, and 4K Image Resolutions from Remote Inspection
Vehicles

Each captured image is timestamped and appended with pertinent metadata, includ-

ing the date, time, operator information, asset details, and the component tag. This

metadata serves as a digital ledger of the inspection, providing valuable context for

each image. The metadata can be embedded within the JPEG format, known as EXIF

data, or overlaid directly onto the image. After inspections, images are stored on hard

drives and transported offshore for analysis and reporting. In our dataset, the meta-

data section of the images is blurred for security reasons, to maintain anonymity and

protect sensitive data. An example of such an image with the metadata section blurred

can be seen in Figure 3.5.

Figure 3.5: Example of blurred section of inspection images

3.3 Methods & Experiments

Our methodology embraces a three-stage approach for automating the classification

and detection of anomalies in offshore inspection imagery, operationalized through DL

models and human expertise.

3.3.1 Stage 1 - General Classification Model

The development of the General Classification Model (GCM) begins with a rigorous

data collection and pre-processing routine, ensuring a well-defined substrate for training

sophisticated models such as the Visual Transformer (ViT) and EfficientNet. These

29

models undergo a comprehensive training process, which includes data enhancement

techniques for optimal feature recognition. The evaluation stage assesses each model’s

performance, with the best-performing model selected for real-world application or

further refinement (see Figure 3.6).

Data

Collection

Data Pre-

processing

Data En-

hancement

Training

ViT Model
Efficient

Net Model

Evaluation

Select Best

Model

Figure 3.6: Flowchart of the General Classification Training Process

30

Model Architectures

The EfficientNet B0 architecture introduces a systematic approach to scaling convo-

lutional neural networks. At its core lies the innovative use of MBConv blocks, which

implement mobile inverted bottleneck convolutions with depthwise separable convolu-

tions. This technique significantly streamlines the network’s complexity and size. With

a strategic balance of network depth, width, and resolution, EfficientNet B0 effectively

learns diverse features while conserving computational resources. Its culmination with

global average pooling and fully connected layers equips it for various image classifica-

tion tasks, achieving high accuracy with fewer parameters.

On the other hand, theVision Transformer (ViT) model, particularly the ViT-

Base-Patch16-224 variant, revolutionizes image classification by applying transformer

architecture to images. Core features of this model include dividing an image into

fixed-size patches and linearly embedding each of them, akin to words in a sentence,

for natural language processing. These patches are then processed by a series of trans-

former encoder layers, which use self-attention mechanisms to weigh the importance

of different image parts. Positional embeddings are added to retain the order of the

patches. The model is topped with a Multi-Layer Perceptron (MLP) head for the final

classification. This approach allows the ViT to focus on relevant parts of the image for

better classification performance.

Training Strategy EfficientNet model

Model Initialization The EfficientNet B0 model, a part of TensorFlow’s Keras ap-

plications, is the foundational architecture for the image classification task. The model

leverages a transfer learning approach using pre-trained weights from the ImageNet

dataset. This method is advantageous for harnessing the robust feature extraction ca-

pabilities inherent in models trained on extensive and diverse datasets like ImageNet.

Data Augmentation Strategy Image augmentation enhances the model’s ability

to generalize and perform accurately on varied data. Introducing transformations and

variations in the training images makes the model more adept at handling real-world

variations in the input data.

Model Configuration In the initial phase, the EfficientNet B0 model is config-

ured with its pretrained weights frozen (model.trainable = False). This freezing of

weights ensures that the initial learning phase focuses exclusively on the newly added

layers, thus allowing these layers to learn task-specific features without altering the

already learned representations. The model’s top is customized with layers designed

31

to pool, normalize, and regularize the features, culminating in a dense layer with a

sigmoid activation function, ideal for binary classification tasks.

Initial Compilation and Training The model is compiled using the Adam opti-

mizer with a learning rate set at 1 × 10−4, and a binary cross-entropy loss function.

This initial training phase, spanning 25 epochs, allows the newly added layers to adjust

their weights based on the specific characteristics of the training data. In contrast, the

frozen layers preserve their pre-learned feature representations.

Model Fine-Tuning Post the initial training, the model undergoes a fine-tuning

process where the top 20 layers are unfrozen (excluding BatchNorm layers), allowing

these layers to adjust their weights more nuancedly. During this phase, the learning

rate is reduced to 1 × 10−5, facilitating finer adjustments and preventing overfitting.

This fine-tuning is critical for tailoring the model more precisely to the specific features

of the dataset in question.

This training strategy, encompassing transfer learning and fine-tuning, is designed to

optimize the EfficientNet B0 model for the specific requirements of the image clas-

sification task. By leveraging pre-trained weights and fine-tuning the model to the

nuances of the dataset, the strategy aims to achieve high accuracy and robustness in

the classification performance.

Training Strategy ViT model

Model Initialization The Vision Transformer (ViT) model is initialized using the

pre-trained ‘google/vit-base-patch16-224-in21k‘ model. This approach utilizes transfer

learning, where the pre-trained model, trained on a large and diverse dataset, provides a

robust starting point for feature extraction. The ViT model is known for its effectiveness

in handling image data through its unique transformer architecture.

Model Configuration The ViT model in this study is adapted for image classifica-

tion with a custom classifier head. The model architecture includes a dropout layer for

regularization and a linear layer for classification. The number of output classes is set

based on the dataset used. This customization is crucial for tailoring the pre-trained

ViT model to the specific requirements of the image classification task.

Training Preparation An essential aspect of the training strategy is preparing the

data and model for the training process. This includes setting up the feature extractor

designed explicitly for the ViT model, configuring the optimizer, and defining the loss

function. The feature extractor is critical in pre-processing the images to a format

32

suitable for the ViT model. The Adam optimizer is chosen for its effectiveness in

handling sparse gradients, with a learning rate of 2× 10−5, a value selected to balance

the speed and stability of the learning process. The cross-entropy Loss function, which

is suitable for classification tasks with multiple classes, is used.

Training Process The training process involves iterating the dataset in batches,

applying the feature extractor to each batch, and feeding the processed data into the

model. The model’s parameters are updated based on the computed loss. Additionally,

the training process includes evaluating the model on a separate test dataset at regular

intervals. This evaluation step is crucial for monitoring the model’s performance and

generalization capabilities.

Computational Considerations The use of GPU for training is an important con-

sideration, given the computational intensity of the ViT model. The model is trans-

ferred to the GPU, significantly speeding up the training process. This approach high-

lights the computational requirements of training sophisticated models like the Vision

Transformer.

The training strategy for the Vision Transformer model is designed to leverage the

strengths of transfer learning while also customizing the model to fit the specific image

classification task. The plan encompasses data preprocessing, model configuration, and

iterative training and testing, all aimed at optimizing the model’s performance for the

dataset.

Evaluation Metrics

In machine learning, particularly in binary classification tasks, model performance eval-

uation transcends beyond mere accuracy. A comprehensive understanding of a model’s

effectiveness necessitates a multifaceted approach encompassing several key metrics.

These metrics provide insights into various aspects of the model’s predictive capabil-

ities, each addressing specific characteristics of the model’s behaviour. This section

outlines the critical evaluation metrics utilized in assessing the performance of binary

classifier models. These metrics include accuracy, precision, recall, and F1 score. Their

collective interpretation offers a holistic view of the model’s performance, balancing the

trade-offs between different types of errors and capturing the nuances of prediction in

a binary classification context.

Accuracy: This is one of the most intuitive performance measures. It is the ratio of

correctly predicted observations to the total observations and provides a quick snapshot

of the model’s overall correct predictions. However, it can be misleading when class

33

distributions are imbalanced.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

Precision: The positive predictive value is the ratio of correctly predicted positive

observations to the total predicted positives. It shows the model’s ability not to label

as positive a sample that is negative. This metric is critical when the cost of a false

positive is high.

Precision =
TP

TP + FP
(3.2)

Recall (Sensitivity): This measures the ratio of correctly predicted positive observations

to all actual positives. It shows the model’s ability to find all the positive samples,

making it crucial when false negatives occur unacceptably high.

Sensitivity =
TP

TP + FN
(3.3)

F1 Score: The F1 Score is the harmonic mean of precision and recall, considering false

positives and false negatives. It is an excellent way to show a class has low precision

and recall. This score is instrumental when you need to balance precision and recall.

F1 Score =
2× TP

2× TP + FP + FN
(3.4)

Negative Predictive Value: The ratio of correctly predicted negative observations to

the total predicted negatives. It measures the model’s ability to identify negatives and

is important in scenarios where false negatives are highly risky.

Negative Predictive Value =
TN

TN + FN
(3.5)

False Positive Rate: The ratio of incorrectly predicted positives to the total negatives.

This is significant in contexts where false alarms are to be minimized.

False Positive Rate =
FP

FP + TN
(3.6)

False Discovery Rate: This is the proportion of false positives among all positive predic-

tions and is important when the consequences of false discoveries need to be controlled.

34

False Discovery Rate =
FP

FP + TP
(3.7)

False Negative Rate: This indicates the proportion of incorrect positives classified as

negatives. It’s crucial in applications where missing out on actual positives is costly.

False Negative Rate =
FN

FN + TP
(3.8)

Matthews Correlation Coefficient (MCC): The Matthews Correlation Coefficient is a

metric that evaluates the performance of a binary classification model by consider-

ing both the correct and incorrect predictions. It’s valued for providing a balanced

assessment, which is beneficial when predicted classes have significant size differences.

Matthews Correlation Coefficient =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(3.9)

3.3.2 Stage 2 - Anomaly Detection Model

Advancing to the Anomaly Detection Model, we implement the YOLOv8 framework

to identify critical defects from the visual data. This stage includes meticulous data

annotation to train the model in detecting and categorizing anomalies. The iterative

training process refines the model’s accuracy, culminating in a validation phase that

ensures the model’s efficacy and readiness for deployment in practical scenarios (refer

to Figure 3.7).

YOLOv8 Anomaly Detection Model Training Flowchart

35

Data Collection

Data Pre-processing

Data Annotation

YOLOv8 Training

Validation

Figure 3.7: The training flowchart of the YOLOv8 anomaly detection model.

YOLOv8 Architecture

YOLOv8 differentiates itself from previous iterations by integrating advanced mecha-

nisms like spatial attention, feature fusion, and context aggregation, contributing to its

enhanced performance. These architectural innovations enable YOLOv8 to surpass its

predecessors in speed and accuracy in certain applications.Gašparović et al. 2023b

The backbone of YOLOv8 is designed to capture a wide range of features from the

input image. The neck uses a novel cross-stage partial network design to enhance

feature propagation and reuse, which can be helpful for detecting anomalies in complex

offshore images. The head of the network, which includes a series of convolutional and

fully connected layers, benefits from a self-attention mechanism, allowing the model to

focus on salient features that are indicative of anomalies.

For offshore inspection imagery, where anomalies could be subtle or manifest at vari-

ous scales, YOLOv8’s multi-scale prediction capability is particularly advantageous. It

utilizes a Feature Pyramid Network (FPN) to integrate features from different levels of

the network, enabling the detection of both small and large-scale anomalies. Advanced

training techniques, such as adaptive learning rates and sophisticated data augmen-

tation, ensure the model is robust and can generalize well to new, unseen offshore

imagery.

36

Moreover, YOLOv8’s adaptive use of mosaic augmentation optimizes training with-

out compromising performance, an essential factor when dealing with the unique and

varied characteristics of anomalies in such specialized imagery. These attributes make

YOLOv8 particularly suited to the high precision and real-time demands of internal

component inspection scenarios.

Training Strategy

The YOLOv8 model was trained to detect anomalies in offshore inspection imagery.

Utilizing the ’yolov8s.pt’ configuration, denoting the ’small’ variant of the model opti-

mized for speed and efficiency, the training was executed over 60 epochs with a batch

size of 16, ensuring a balance between computational resource utilization and learning

effectiveness.

Model Configuration The training strategy commenced with configuring the

YOLOv8 ’small’ model (yolov8s.pt). This model variant was specifically chosen for

its streamlined architecture, which is designed to provide a balance between speed

and accuracy. Transfer learning was used, leveraging learned features from extensive

datasets to improve training efficiency.

Training Preparation Preparation for training involved setting up the data process-

ing pipeline as specified in ’data.yaml’. Images were resized to 640x640 pixels to ensure

a uniform input size for the model while keeping the computational load manageable.

The batch size was set to 16, and adaptive learning rate schedules were implemented,

with a starting learning rate of 0.01. Patience was configured to 10 epochs to introduce

an early stopping mechanism, preventing overfitting and promoting model generaliza-

tion.

Training Process The model underwent training for 60 epochs, including real-time

visualisation to closely monitor and adjust the training progress. Data augmentation

was extensively used to enhance the model’s robustness against the diverse anomalies

encountered in offshore structures. The strategy also employed advanced techniques

such as adaptive learning rates to adjust the training regime dynamically, maximizing

the model’s learning potential throughout the training epochs.

Validation

Object detection models are evaluated based on their ability to identify and locate

objects within images accurately. For the YOLOv8 model, which is applied to detecting

37

anomalies, it is essential to use a set of metrics that can capture both the precision of

classification and the accuracy of localization.

Precision and Recall: Precision measures the proportion of predicted positives that

are true positives, essentially quantifying the model’s accuracy in predicting anomalies.

On the other hand, Recall quantifies the model’s ability to detect all actual anomalies,

reflecting the model’s sensitivity to the presence of defects.

Intersection over Union (IoU): Intersection over Union (IoU) is a crucial metric

for assessing the accuracy of an object’s predicted location. It is determined by dividing

the overlapping area between the predicted bounding box and the actual ground truth

bounding box by the total area encompassed by both boxes. The performance of models

like YOLOv8 is partially evaluated based on their capability to achieve high IoU scores,

which signify precise detection and localization of objects.

Mean Average Precision (mAP): mAP provides an overall effectiveness measure

of the model across multiple thresholds and classes. For YOLOv8, mAP is computed

at different IoU levels, including mAP at IoU=0.5 (mAP@0.5) and mAP across a range

from 0.50 to 0.95 (mAP@0.50-0.95). These metrics indicate the model’s robustness

across various overlap and detection difficulty degrees.

F1 Score: The F1 score is the harmonic mean of precision and recall, providing a

single score that balances the two. It is beneficial when seeking a model that must

balance finding all anomalies (high recall) and maintaining high classification accuracy

(high precision).

The YOLOv8 model’s capability to detect anomalies is quantified through these met-

rics, offering insights into its practical deployment for automated inspection. High

scores in these metrics indicate a model that can reliably assist in identifying defects,

which is paramount in ensuring the integrity and safety of the inspected structures.

The performance of the YOLOv8 model in detecting anomalies was evaluated quan-

titatively using a test set of labelled images, which included known defects such as

through-wall defects, coating loss, and pitting. The model’s effectiveness was measured

using previously defined metrics, focusing on precision, recall, mAP, and F1 score.

3.3.3 Stage 3 - Human in the Loop

The final stage integrates human validation into the loop, where engineers review and

provide feedback on the model’s predictions through an API. This feedback loop is

essential for continuous improvement, enabling the retraining of models to enhance

38

precision and effectiveness. The platform also streamlines the data management pro-

cess, significantly reducing manual classification work and expediting the inspection

workflow (see Figure 3.8).

Figure 3.8: The workflow for API integration in the automated inspection system.

This structured approach, from data acquisition to model training and human integra-

tion, outlines a comprehensive system designed to augment the accuracy and efficiency

of offshore visual inspections.

API Design

The API is structured into three phases, each building upon the previous to enhance

functionality and user interaction.

Phase 1: Image Pre-processing The first stage involves uploading inspection im-

ages. Users can provide a link to a local directory or, by default, to a cloud storage

server where the images reside. The API then downloads the image folder, validating

the integrity and format of the images. These images are temporarily stored in the

API’s memory for efficient processing in subsequent stages.

A critical component of Stage 1 is applying Optical Character Recognition (OCR) to

classify the images based on time stamps, as detailed in the ”design-data” section.

This classification aligns with the inspection process used by engineers, who record

the time of anomaly detection. The API significantly reduces manual search efforts by

organizing images by the minute they are taken.

Phase 2: DL Models In the second stage, the focus shifts to detailed image classi-

fication and anomaly detection. This stage integrates the General Classification Model

(GCM) and an anomaly detection system. Images selected and labelled with elevation

in Stage 1 are processed here.

39

Engineers can further annotate these images, explaining their selection and the nature

of the content. The API supports a variety of annotations, including image features

(automatically suggested by GCM for recognized objects like circumferential welds)

and anomaly types. An object detection feature allows for more specific anomaly

identification.

Phase 3: Human Feedback The final stage involves saving the annotated images,

which can be downloaded in a zip file format. The naming convention for saved images

includes the still number, elevation, feature, and anomaly type. Moreover, this stage

retrieves annotations and model predictions in a CSV format. This data is crucial for

analyzing the performance of our models and providing insights for future training and

model improvement.

3.4 Conclusion

Our framework unfolds across three stages, each building upon the last to create a com-

prehensive inspection system. Initially, we focus on training DL models to distinguish

between different types of weld images. We then advance to the second stage, refining

our models to identify welds and accurately detect and classify various defects. The

culmination of our design is the third stage, where we integrate these models into an

API, crafting an interface that offers engineers a direct and simplified interaction with

our advanced tools.

This tiered approach to design fosters a culture that values continuous development and

leverages expert feedback to refine and enhance our system. Integrating the General

Classification Model with the YOLOv8 anomaly detector represents a significant step

towards a user-centred platform that evolves to meet the dynamic needs of its users.

40

Chapter 4

Implementation & Results

This chapter outlines developing and implementing a sophisticated two-stage classi-

fication system, pivotal in automating anomaly detection within engineering images,

mainly focusing on welded structures. Initially, the chapter delves into creating a

General Classification Model, employing advanced deep-learning architectures for ini-

tial defect identification. This progresses to a more focused anomaly detection model,

which leverages state-of-the-art machine learning techniques to pinpoint and classify

specific anomalies. The final stage introduces a Human-in-the-Loop API, integrating

expert human feedback into the decision-making process and enhancing the model’s

accuracy and reliability in varied operational scenarios.

This chapter contributes significantly to the realization of Objectives 3 and 4. Ob-

jective 3, which revolves around developing a specialized machine-learning model for

anomaly detection, is addressed through the careful construction and training of the

system. Objective 4, focused on integrating human expertise, is actualized in the lat-

ter stage, where a collaborative approach is established between automated systems

and human judgment. This integrated methodology not only underscores the chapter’s

alignment with the project’s goals but also showcases a comprehensive approach to

refining automated inspection systems in engineering.

4.1 Stage 1: General Classification Model

4.1.1 Data Collection

Welded components frequently contain inherent stresses, with the intensity of these

stresses often equating to the material’s yield strength. As detailed in Zhang’s re-

search, inherent tensile stresses adversely affect the structural soundness of engineering

41

structures. Y. Zhang et al. 2013a. Hence, when conducting remote visual inspections

of caissons, a key focus is the evaluation of their welds. Caissons are commonly con-

nected through circumferential welds (CWs), which join two cylindrical objects along

their periphery. Due to their exposure to stresses from surface tides and ocean currents,

CWs are prone to localized corrosion and fatigue, as discussed in the referenced study

on welds Y. Zhang et al. 2013b (Figure 2.3).

Remotely inspecting circumferential welds (CWs) in caissons presents numerous chal-

lenges, particularly underwater environments. The images’ quality is often compro-

mised by fluctuating lighting conditions, material reflectivity, water movement, and

water turbidity. These challenges increase the likelihood of errors and contribute to

the time-intensive nature of the inspections. This is compounded by current manual

inspection techniques being error-prone and time-consuming.

Circumferential welds, commonly called CWs, display a diversity in size, thickness,

and colour, shaped by various factors. Notably, every CW is characterized by visible

horizontal lines at the top and bottom, resulting from the changes that occur during the

welding process. These alterations are significant, as they lead to a distinct difference in

the microstructure and properties of the welded area compared to the original material.

Despite the clear visibility of these horizontal lines to the human eye, identifying CWs

in underwater environments is challenging. Factors such as low contrast, suspended

particles in the water, and varying underwater lighting conditions contribute to the

difficulty in spotting these welds in subsea sections.

A carefully selected team, composed of offshore and onshore engineers, including a

senior inspection engineer with extensive experience in remote visual inspections, was

formed. This team’s task was to sort through an extensive collection of remote visual

inspection records to ensure a diverse and representative sample of circumferential welds

(CWs) from various geographical areas and caisson designs. A simple Pareto chart

was created to display the distribution of these inspection jobs across different regions

globally. The objective was to develop a model capable of handling a broad sample

of CWs against varied backgrounds. The team’s expertise was crucial in establishing

clear-cut criteria for categorizing images into two distinct groups: ’cw’ and ’non-cw’,

as indicated in the referenced figure (See Figure 4.1).

From the refined database, a collection of 9,100 images was gathered. These images,

showcasing various inspection stills in multiple format sizes, were handpicked and cate-

gorized. The dataset was then divided into two distinct categories: ’ cw’ and ’non-cw’.

The distribution of this data across the training, validation, and test sets is detailed in

Table 4.1.

42

Figure 4.1: Circumferential weld (top) and non-circumferential weld (bottom)

Table 4.1: Dataset distribution

Label Training Validation Test Total

cw 3,185 910 455 4550

non-cw 3,185 910 455 4550

Note that all annotated data (stills and labels) have been checked for annotation cor-

rectness three times: one from the inspection technician who collected and reported

the data, subsequently on-shore by the senior inspection engineer for the approval of

the report, and finally during the manual extraction of the dataset itself by the offshore

operations manager.

4.1.2 Data Pre-processing

In internal inspections, the quality of captured images is paramount, yet environmental

adversities and variable lighting conditions frequently compromise it. These factors can

significantly degrade the visual clarity, thus impeding accurate analysis. Prior studies,

notably by Pirie et al.. Pirie and Moreno-Garcia 2021, have explored an array of filter-

ing techniques to mitigate these issues, such as Contrast-Limited Adaptive Histogram

Equalization (CLAHE), grayscale conversion, and inpainting, each designed to enhance

image fidelity under challenging conditions.

Our tailored approach to image preprocessing incorporated these established methods,

synergizing them into a custom filter meticulously calibrated to our specific dataset.

This bespoke filter was systematically developed to accentuate the defining features of

circumferential welds—particularly the top and bottom horizontal lines indicative of

43

the Heat-Affected Zone (HAZ)—while reducing glare and achieving a more consistent

overall brightness.

The algorithm begins with converting images to grayscale, simplifying the data by re-

ducing it to a single luminance channel, thus streamlining the subsequent enhancement

process. We then apply a CLAHE filter, which adapts the image histogram in local-

ized tiles to improve contrast without amplifying noise, a common pitfall of traditional

histogram equalization.

In conjunction with CLAHE, we implement inpainting techniques to reconstruct areas

of the image marred by glare or other distortions. This process employs advanced

algorithms to fill these regions with plausible data inferred from the surrounding pixels,

effectively ’healing’ the visual data.

As shown in 4.2, our composite filter demonstrates a marked improvement in image

quality, as evidenced by side-by-side comparisons with unfiltered images. The resulting

enhanced images exhibit clear and discernible weld lines with minimal interference

from reflections or uneven lighting, thus providing an optimal starting point for further

processing by the General Classification Model and the YOLOv8 anomaly detector.

The intricate details of the custom filter algorithm and its implementation, which play

a critical role in the preprocessing of inspection images, are comprehensively detailed

in the annexe of this document A.1.

Furthermore, we standardized the size of all images to 224x224 pixels. This resizing is

not merely for convenience but stems from the necessity of matching the input dimen-

sions required by the architectures of our chosen models, EfficientNet B0 and the Vision

Transformer (ViT). Both models are designed to work with images of this specific size,

allowing them to effectively process and extract features from the data. By conform-

ing to this dimensionality, we ensure that our models receive the data in an optimised

format. This is crucial for maintaining the integrity of the feature extraction process

and the subsequent accuracy of the classification and detection tasks. This uniformity

in image size also facilitates more efficient batch processing during model training and

inference, leading to improved computational performance.

44

Figure 4.2: Comparison of a circumferential weld using different filters.

Having established the importance of data preprocessing and the standardization of

image sizes for practical model training, we now focus on the intricacies of configuring

and validating our chosen deep-learning models. The subsequent sections are dedicated

to elucidating the processes involved in training the Visual Transformer (ViT) and Effi-

cientNet models. Each model’s unique architecture necessitates a tailored approach to

training and validation, which is critical for achieving optimal performance in our clas-

sification tasks. We will delve into the specific hyperparameters selected, the rationale

behind these choices, and the methods employed to ensure our models generalize well

to new, unseen data. This level of detail is intended to provide clarity and insight into

our machine-learning pipeline, illustrating how each decision is grounded in creating

the most accurate and reliable classifier for the task at hand.

4.1.3 Training and Validation

Training and Validation - ViT model

The Visual Transformer (ViT) brings a novel approach to image classification by adopt-

ing the transformer architecture, renowned in natural language processing. This in-

novative model, particularly the ‘vit-base-patch16-224‘ variant from Google, analyzes

various segments of an image to identify the most critical features for accurate classi-

fication. The following outlines the steps undertaken to operationalize the ViT model,

45

specifically the ‘vit-base-patch16-224‘ version, for our classification objectives.

Environment Setup and Library Installation The initial phase of our project

involved establishing a robust computational environment. Google Colab was selected

for its provision of complimentary access to high-performance computing resources. We

integrated our Google Drive with the Colab environment, a centralized repository for

our image dataset.

After the environment setup, we installed the essential libraries necessary for our

project. The Transformers library from Hugging Face, a comprehensive suite of pre-

trained models and tools optimized for machine learning tasks, was particularly critical

for working with the ViT model. We specifically utilized the ‘vit-base-patch16-224‘

model, which is pre-trained on a large corpus of images and fine-tuned for our specific

dataset to achieve optimal performance in image classification tasks.

Model Training Procedure Upon configuring our toolkit, we commenced training

on the ViT model. The images were organized into batches using data loaders, a

mechanism that systematically presents groups of images to the model, akin to an

assembly line in a factory.

The training process involved guiding the model through a cycle of predictions and

adjustments. The model attempted to identify patterns for each batch and compare

its predictions to the actual labels. Discrepancies between the two triggered a learning

process where a loss function quantified the model’s prediction errors. An optimizer,

functioning as the navigator for the learning process, directed the model to alter its

parameters incrementally, thereby improving its predictive accuracy.

To ensure the model did not simply memorize the training images, we implemented

dropout regularization, randomly concealing parts of the data, compelling the model to

discern more general patterns. Additionally, early stopping criteria were implemented

to terminate training if the model ceased to demonstrate improvement, thus preventing

overfitting.

Model Evaluation Post-training, a rigorous evaluation was conducted using a vali-

dation set composed of images previously unseen by the model. The focus was not only

on the loss metrics but also on the accuracy rate—the proportion of correct predictions

made by the model.

Alertness to recurrent errors was paramount during this phase; a rise in validation loss

or stagnation in accuracy improvement signalled the need to recalibrate the learning

process.

46

Inference and Performance Visualization Satisfaction with the model’s valida-

tion performance led to its application to a new set of images. We employed Matplotlib

to visualize the model’s predictions against the actual labels, which provided tangible

insights into the model’s classification strengths and weaknesses.

Further, we constructed a confusion matrix, a strategic tool that illustrates the model’s

predictive confusion—mislabeling images of one class as another, which is critical for

understanding the model’s limitations and areas for refinement.

Model Saving and Loading The culmination of the training process was the preser-

vation of the model. The entire trained model was saved to disk, encompassing its

structural configuration and learned parameters. This file can be reloaded for future

evaluation, further training, or deployment, ensuring the continuity of our work.

In conclusion, the training and validation journey of the ViT model has underscored its

potential as a formidable instrument for image classification. Its distinctive analytical

approach to images promises to enhance our ability to make precise predictions.

Training and Validation - EfficientNet model

In this section, we detail the process of training and evaluating an EfficientNet-based

image classification model. The approach leverages TensorFlow and Keras, utilizing

hardware acceleration through GPUs/TPUs to facilitate the training and fine-tuning

of the model. The methodology encompasses pre-processing and augmentation of the

dataset, followed by a structured training procedure.

Pre-processing and Data Augmentation

Data preparation is crucial for effective model training. Our dataset, mounted from

Google Drive, contains images that vary in size and require standardization. We utilized

TensorFlow’s image dataset from directory to load the images in batches, catego-

rizing them into ’cw’ and ’non-cw’ for the binary classification task. To accommodate

the EfficientNet input requirements, we resized all images to 224x224 pixels.

To enhance the robustness and generalization ability of our model, we implemented

several data augmentation techniques. Data augmentation helps in artificially expand-

ing the dataset by creating modified versions of images, thereby preventing overfitting

and improving the model’s performance on unseen data. The following augmentation

strategies were employed:

47

• Random Flipping: This technique involves randomly flipping the images hor-

izontally or vertically. Flipping helps the model become invariant to the orien-

tation of the images, which is particularly useful when defects might appear in

various orientations.

• Random Contrast Adjustment: We applied random contrast adjustments

with a factor of 0.2. This helps the model handle variations in lighting conditions

by simulating different levels of image contrast.

• Random Rotation: Images were randomly rotated by up to 20%. This ensures

the model can recognize patterns and defects regardless of their image orientation.

• Random Zoom: We used random zooming with height and width factors 0.2.

This augmentation allows the model to focus on different parts of the image,

enhancing its ability to detect features at various scales.

These augmentation techniques were chosen to simulate real-world variations and en-

hance the model’s capability to generalize well across different inspection scenarios.

Training Procedure

With the data pre-processed and augmented, we constructed the model using the Ef-

ficientNet architecture with pre-trained ImageNet weights, modifying the top layer to

suit our binary classification needs. The training procedure was conducted in two

phases:

First Phase: We initially trained the model with the base layers frozen to retain the

learned ImageNet features, focusing the learning on the new classification layer. The

model was compiled with a binary cross-entropy loss function and accuracy metrics.

This phase helps to leverage the general features learned from the large ImageNet

dataset and adapt them to our specific task.

Second Phase: After the initial phase, we unfroze the top 20 layers and employed

a smaller learning rate to fine-tune the model. This phase allows the model to adjust

its more abstract representations for our specific task while minimizing the risk of

overfitting. The learning rate was reduced to ensure gradual adjustments, preventing

drastic changes that could disrupt the learned features.

To avoid overfitting during training, we implemented the following measures:

• Dropout: We used a dropout rate of 0.2 in the top layers to randomly deactivate

neurons during training, which helps in preventing the model from becoming

overly reliant on specific neurons.

48

• Batch Normalization: Applied after the global average pooling layer to nor-

malize the output and stabilize the learning process.

• Early Stopping: Utilized callback functions to monitor validation performance

and stop training when there was no improvement for a specified number of

epochs, thus preventing overfitting.

• Checkpoints: Saved the best model weights during training based on validation

accuracy to ensure the best-performing model was retained.

We also used an adaptive learning rate schedule to further optimize the training process.

Initially, we set a higher learning rate to speed up convergence. In the second phase, we

lowered the learning rate to fine-tune the model more carefully. This approach allows

the model to make significant updates during the early stages of training and more

precise adjustments later on.

The complete training process was designed to systematically adapt the EfficientNet

model to our dataset, carefully balancing the retention of pre-trained knowledge with

the acquisition of new, task-specific information.

4.2 Stage 2: Anomaly Detection Model

The development of an accurate image classification model hinges on the availability

of a well-curated dataset. This section outlines the meticulous data collection and

annotation process to compile a comprehensive set of images for training our object

detection model.

4.2.1 Data Collection

The dataset comprised 4,038 images sourced from the blob storage backend of our

application. These images were integral to the study as they captured a range of defects

commonly encountered in our domain, such as coating loss, pitting, and through-wall

defects (holes), alongside images that depicted no defects, serving as a contrast for the

model to discern.

The data collection process involved offshore and onshore engineers working collabora-

tively to ensure the quality and relevance of the collected images. Offshore engineers

were responsible for capturing images during inspections using high-resolution cam-

eras and specialized inspection equipment. These engineers documented the conditions

and identified potential defect areas, ensuring comprehensive coverage of the inspection

sites. The captured images were then uploaded to the blob storage backend for further

processing.

49

Onshore engineers played a critical role in curating and refining the dataset. They

reviewed the uploaded images to ensure they met the required quality standards and

represented the various defect types. Any images that did not meet these criteria were

discarded. This collaborative approach ensured that the dataset was extensive and

relevant, providing a solid foundation for model training.

The collected images were then divided into three distinct sets to facilitate a robust

training regime and subsequent evaluation:

• Training set: Consisting of 2,826 images, this dataset formed the foundation for

the model to learn the intricate features and variations of defects.

• Validation set: Containing 807 images, it was used to fine-tune the model

parameters and to prevent overfitting during the training phase.

• Test set: Comprising 403 images, this set was pivotal for assessing the model’s

final performance, reflecting its ability to generalize and detect defects in unseen

data.

4.2.2 Data Annotation

For labelling the images, we employed the Computer Vision Annotation Tool (CVAT),

an open-source platform conducive to annotating digital images. CVAT is revered for its

support in various machine learning tasks such as object detection, image classification,

and segmentation, thereby serving as an ideal tool for our annotation needs.

The initial annotation was performed by a mechanical engineer with expertise in iden-

tifying and categorizing the types of defects present in the images. Each image was

scrutinized, and labels were assigned to areas showcasing defects or lack thereof. Sub-

sequently, a senior inspection engineer reviewed each labelled image to ensure the pre-

cision of the annotations. This two-tier annotation process not only reinforced the

accuracy of the labels but also enriched the dataset with expert knowledge, an invalu-

able asset for training a reliable object detection model.

• Annotation Process: Each image underwent a systematic labelling process

where defects were marked and categorized based on their characteristics. Images

without defects were also labelled accordingly to provide the model with examples

of both positive and negative instances.

• Quality Assurance: The annotations were subject to rigorous quality checks

conducted by the senior inspection engineer, ensuring that the labels were con-

sistent, accurate, and reflected the defects’ true nature.

50

With the high-precision annotations complete, the dataset was well-prepared to serve as

the foundation for training our model. This annotated dataset became the cornerstone

of our training process, enabling the YOLOv8 model to effectively learn and differen-

tiate between various defect types and undamaged surfaces. The rich and accurately

labelled set of images provided the essential data needed for the model to develop a

robust understanding of the inspection scenarios.

In summary, the data collection and annotation phases were critical in establishing a

solid foundation for developing an object detection model that could meet our applica-

tion’s stringent requirements. The engineers’ expertise in the labelling process played

a significant role in ensuring the dataset’s quality, which was pivotal in successfully

training the YOLOv8 model.

4.2.3 Training and Validation

Implementing the YOLOv8 model for image classification entailed a series of systematic

steps designed to leverage the capabilities of the Visual Transformer architecture. This

process began with configuring our computational environment, which was instrumental

in the seamless execution of the model training.

Environment Setup The foundation of our model training was laid by establishing

a robust computational environment using Google Colab. This cloud-based platform

provided us with the necessary computational resources, such as GPUs and TPUs,

which are essential for the processing demands of DL models like YOLOv8.

Once the computational resources were allocated, we mounted our Google Drive to

the environment. This step was akin to connecting an external drive to a computer,

providing direct access to our dataset stored in the cloud.

Repository Setup Subsequently, we prepared the necessary directories and cloned

the official YOLOv8 repository from Ultralytics. This repository contained the latest

updates and algorithms required for the YOLOv8 model, ensuring we had access to

cutting-edge object detection techniques.

Despite the pre-existence of the ’ultralytics’ directory, indicative of a previous clone

operation, this step was crucial to verify that the necessary files were in place for model

training.

Custom Model Training The training of our custom YOLOv8 model was initiated

after setting up the environment and ensuring the availability of the GPU resources.

Before the commencement of training, we verified the GPU status using NVIDIA’s

51

System Management Interface, which confirmed the availability and readiness of the

GPU for training. Following this, we installed the required YOLOv8 packages and their

dependencies. This included packages like ’ultralytics’ and ’thop’, which were necessary

for the training process. This balance was especially crucial given the Tesla T4 GPU

with 15102MiB memory, ensuring that the hardware was utilized efficiently. The table

4.2 shows an overview of the parameters from the yolov8 model was configured.

Training Execution The model was trained for 60 epochs, a sufficient duration for

the model to converge and learn the necessary features from the data. A batch size of

16 was chosen. This size is large enough to provide a representative sample of the data

and small enough to manage memory usage effectively. Each input image was resized to

640 pixels, a suitable compromise between retaining enough detail for accurate object

detection and maintaining a manageable computational load. An initial learning rate

of 0.01, coupled with a learning rate factor (lrf) of the same value, was set to enable

a gradual and effective learning process. The model’s momentum was set at 0.937,

smoothing out model weights and biases updates.

52

Parameter Value

Model Version Ultralytics YOLOv8.0.154

GPU Tesla T4, 15102MiB

Epochs 60

Patience 10

Batch Size 16

Image Size 640

Workers 8

Optimizer auto

Close Mosaic 10

AMP True

Overlap Mask True

Mask Ratio 4

Validation True

Split val

IOU Threshold 0.7

Max Detections 300

Learning Rate (lr0) 0.01

Learning Rate Factor (lrf) 0.01

Momentum 0.937

Weight Decay 0.0005

Warmup Epochs 3.0

Warmup Momentum 0.8

Warmup Bias Learning Rate 0.1

Flip Left/Right 0.5

Mosaic 1.0

Table 4.2: Ultralytics YOLOv8 Model Training Configuration Parameters

A weight decay of 0.0005 was also applied to regularize the model and prevent overfit-

ting. Warm-up epochs were set to 3.0 with a warm-up momentum of 0.8 and a warm-up

bias learning rate of 0.1, which helped stabilize the learning process at the beginning of

the training. Applying Mosaic augmentation in the final 10 epochs indicates a strategy

where the model, after learning the basic features and patterns from the training data

in its less augmented form, is further challenged with more complex and varied data

representations towards the end of its training.

An automatic choice of optimizer by the model allowed for selecting the most effective

53

algorithm based on the training data and model architecture. Features like Automatic

Mixed Precision (AMP) and an overlap mask with a ratio of 4 were employed to en-

hance training efficiency and effectiveness. Data augmentation techniques, such as flip

left/right with a probability of 0.5 and mosaic augmentation, were used to improve the

model’s generalization capabilities.

Early Stopping and Model Optimization During the training, an early stopping

mechanism was employed to monitor the model’s performance. Training was halted if

no improvement was observed in the validation metrics over a predetermined number

of epochs. This strategy was pivotal in preventing overfitting and ensuring the model’s

generalizability. A ’patience’ parameter of 10 epochs was set for early stopping. This

means the training process will be halted if the model’s performance on the validation

dataset does not improve for ten consecutive epochs.

Model Validation and Inference Once the early stopping criterion was met, the

model state at the point of highest validation accuracy was saved. This model is

considered the most optimized version for deployment or further testing. Upon the

completion of training, the model underwent a validation phase where it was tested

against a set of unseen images to evaluate its detection performance. Validation was

conducted on a separate dataset (as indicated by split=val) to ensure the model’s

performance was assessed consistently against unseen data. The model’s predictions

were then visualized and saved, providing qualitative and quantitative insights into its

capabilities.

4.3 Stage 3: Human in the Loop

The implementation of the first stage, which involves uploading inspection images, is

encapsulated within the API’s home page interface.

The API home page, as depicted in Figure 4.3, serves as the primary interface for users,

specifically engineers, to interact with the system. Central to this page is a prominent

video tutorial to guide users through the API’s functionalities. This tutorial is an

integral part of the user experience, providing immediate assistance and instruction on

using the API for image uploading and processing efficiently.

54

Figure 4.3: API Home Page

In the top left corner of the home page, users can find three distinct tabs: ’Home’,

’Stamp Time Classifier’, and ’Report’. These tabs represent the core components of

the API’s functionality.

This interface design ensures a user-friendly experience, allowing engineers to easily

navigate through image processing and report generation stages, from the initial upload

to zipping the selected images they will use for the final report.

4.3.1 Image Pre-processing

The first phase of the API’s operation involves the engineer uploading images. This

process is streamlined to ensure efficiency and ease of use. As illustrated in Figure ??,

the engineer is provided with a simple input field on the bar’s left side. This field is

specifically designated for the engineer to input the URL of the cloud storage server

where the batch of images is located.

55

Figure 4.4: Image Processing

Upon entering the URL, the API’s backend is triggered to download the content. This

initial step is crucial as it ensures that all images are efficiently transferred and stored

in the API’s memory. This storage in the API’s memory is an essential aspect of the

design, enabling swift and practical application of the subsequent processing stage.

By focusing on this straightforward method of uploading images, the API significantly

simplifies the initial phase of the inspection process. It allows engineers to initiate the

analysis workflow quickly, setting the stage for more advanced processing and classifi-

cation in the following stages.

56

Figure 4.5: Selecting Inspection Stills

Figure 4.5 illustrates the interface engineers use for selecting and classifying inspection

stills after they have been successfully uploaded and time-stamped. This stage is critical

for organizing and preparing the images for further detailed analysis.

Once the images are uploaded and classified by their timestamp, the engineer is pre-

sented with a user-friendly interface that allows for efficient browsing and selection of

the stills. The key feature of this interface is the ability to visualize all the uploaded

images in a scrollable format. This design ensures that engineers can quickly and easily

review the entire set of images without navigating through multiple pages or complex

menus.

Additionally, on the left-hand side of the interface, there is a dropdown menu that

enables the engineer to select images based on the exact minute they were taken. This

functionality significantly speeds up the classification task by allowing the engineer to

filter and view images from specific time intervals, thereby streamlining the selection

process.

57

Figure 4.6: Saved Images

Once the relevant images are identified, the engineer can select them and assign two

critical pieces of information: the still number and the elevation at which each image

was taken during the offshore visual inspection. This labelling format, as shown in

Figure 4.6, is essential for subsequent stages of the analysis, as it provides context and

categorization for each image, facilitating more accurate and efficient processing and

reporting.

4.3.2 DL Models

Figure 4.7: Enable Anomaly Detection Model

58

Figure 4.7 demonstrates the interface where the General Classification Model (GCM) is

applied to the images selected in the previous phase. This stage is pivotal in automating

part of the classification process by utilizing the capabilities of the GCM.

When the GCM detects a circumferential weld (CW) in an image, it automatically

selects the ’CW’ option from a dropdown menu. This feature is designed to streamline

the classification task by pre-populating the tags based on the model’s predictions, thus

reducing manual input requirements.

As shown in the figure, the model selects the appropriate tag and displays the proba-

bility of the inspection still containing a circumferential weld. This probability metric

is displayed below the image, offering immediate feedback on the model’s confidence in

its classification. This information is crucial for engineers as it provides a quantifiable

measure of the model’s assessment, aiding decision-making.

Additionally, the interface allows the user to activate the anomaly detection model.

This feature allows for a more detailed examination of the stills, where anomalies can

be visualized and further analyzed. The user interface, as depicted in the figure, is intu-

itively designed to facilitate easy activation and interaction with the anomaly detection

model.

Integrating the GCM and the anomaly detection model in this interface significantly

enhances the efficiency and accuracy of the image classification process. It empowers

the engineers to identify key features and anomalies in the inspection images quickly,

optimizing the workflow for generating detailed and informative reports.

4.3.3 Human Feedback

This figure 4.8 presents the user interface of an engineering image annotation tool. On

the left-hand side of the application, the interface displays a list of images annotated

by the engineers. Each image in this list is accompanied by its respective label, which

the engineer has assigned during the annotation process.

59

Figure 4.8: The interface showcases the ’Save Images’ and ’Upload Annotations’ func-
tionalities.

There are two primary buttons available in this interface. The first button, labelled

”Save images,” serves a key function. Upon clicking this button, the application com-

piles all the annotated images into a zip file. This zip file is then made available for

download, allowing the engineer to conveniently download the entire folder of anno-

tated images. This feature is handy for engineers, allowing them to quickly transfer

these images to their company’s data management platform for further use or storage.

The second button, labelled ”Upload annotations,” offers another crucial functionality.

When clicked, this button facilitates the export of the image annotations into a CSV

(Comma-Separated Values) file format. The naming convention for this file is based on

a data timestamp, ensuring that each annotation export is uniquely identified and can

be easily traced back to its respective annotation session.

60

Figure 4.9: Annotated Image Data CSV File.

This figure illustrates a CSV file displayed in a spreadsheet application, representing

the annotations made by engineers on various images. The CSV file is organized into

four columns:

• FileName: Lists the names of image files, following a naming convention that

includes an identifier (e.g., ”Still3”), elevation information (e.g., ”EL 10.00m”),

and a description of the image content (e.g., ”CW Coating Loss”).

• Model Prediction: Contains predictions made by a model, with entries such

as ”CW” (possibly indicating a specific condition or category) and ”non-CW”

(indicating a different condition or category).

• Anomaly Detection Enabled: Indicates whether anomaly detection was en-

abled for each image, with entries being ”Yes” or ”No”.

• Date Processed: Shows the timestamp for each image’s processing in the format

”day/month/year hour: minute”.

The file records the work completed, including automated model predictions and the

status of anomaly detection for each image. This CSV can be downloaded for local

use or uploaded to cloud storage services like Azure for further analysis, sharing, or

archiving as part of the company’s data management practices.

61

4.4 Conclusion

The ”Implementation” chapter has systematically articulated the multifaceted ap-

proach to address the challenge of classifying and detecting anomalies within the visual

inspection of offshore components, specifically circumferential welds (CWs) in caissons.

This chapter has elucidated the rigorous process of data collection, which harnessed a

significant volume of remote visual inspection data, ensuring a dataset that encapsu-

lates the diverse manifestations of weld defects and non-defect scenarios. The meticu-

lous data annotation, led by domain experts, imbued the dataset with high precision,

providing a solid foundation for the subsequent training of advanced DL models.

The General Classification Model (GCM) training was underpinned by state-of-the-art

architectures such as the Visual Transformer (ViT) and EfficientNet, selected for their

proven efficacy in image classification tasks. This chapter detailed the comprehensive

training and validation methodologies, highlighting the significance of environmental

setup, data pre-processing, and augmentation techniques that collectively contributed

to the robustness of the models.

The implementation of dropout regularization, early stopping, and other strategic mea-

sures underscored our commitment to developing models that perform with high accu-

racy and exhibit the capacity to generalize well beyond the training data. The chapter

has also touched upon the importance of model evaluation, setting the stage for an

in-depth analysis in the subsequent ”Evaluation” chapter.

The ”Evaluation” chapter will build on the foundation to critically assess the imple-

mented models’ performance and present a cohesive understanding of their capabilities

and potential for practical deployment.

62

Chapter 5

Evaluation

This chapter comprehensively evaluates the DL models developed for offshore inspection

tasks. The focus here is to critically assess the performance of our General Classification

Model and the Anomaly Detection Model, both of which are pivotal in the automated

analysis of inspection images. This assessment is not merely a quantitative exercise in

metrics but a deeper exploration into how effectively these models meet the practical

requirements of the offshore inspection domain.

5.1 Stage 1: General Classification Model

This section delves into the meticulous evaluation of our General Classification Model,

specifically focusing on the Vision Transformer (ViT) and EfficientNet models. This

evaluation is critical in determining the efficacy of these models in accurately clas-

sifying images relevant to offshore inspections, specifically in distinguishing between

’cw’ (circumferential weld) and ’non-cw’ classes. Our approach encompasses a detailed

analysis of various performance metrics across training epochs, emphasizing the pro-

gression in model performance and its ability to generalize from the training data. We

also explore the models’ responses to different surface conditions through test images,

assessing their real-world applicability and robustness. This comprehensive evaluation

aims not only to gauge the accuracy and reliability of the models but also to uncover

potential issues, such as overfitting, thereby ensuring that the models are well-suited

for practical deployment in the demanding field of offshore structural assessments.

5.1.1 ViT Model

In the model ”vit-base-patch-16-224” evaluation chapter, a comprehensive analysis of

the validation results reveals a significant progression in model performance over the

63

training epochs. The detected classes are binary, categorized as ’cw’ and ’non-cw’,

indicating a binary classification task. Figure 5.1 illustrates the model’s training and

validation metrics. On the left, the training loss decreased steadily, indicative of the

model’s improving ability to generalize from the training data. On the right, the valida-

tion accuracy achieved high scores early in the training process. This combined visual-

ization underscores the model’s potential efficacy, although further testing is warranted

to confirm its generalizability and robustness.

Figure 5.1: Left: Training Loss of the ViT model; Right: Validation accuracy of the
ViT model

Initially, at epoch 0, the model exhibited a substantial variation in training loss, starting

at a higher loss of 0.7300 and dramatically decreasing to as low as 0.0116 by the end.

Despite the fluctuating loss within this initial phase, the validation accuracy swiftly

reached a perfect score of 1.00 after a few iterations, except for two instances where it

slightly dipped to 0.90. This rapid achievement of high validation accuracy suggests

an overly optimistic scenario, possibly due to overfitting or a simple validation task.

As the training progressed to epochs 1 and 2, the training loss consistently decreased,

indicating an improvement in the model’s ability to generalize from the training data.

This is corroborated by a stable validation accuracy, which consistently remained at 1.00

or near-perfect scores, except for occasional decreases to 0.90. The persistence of high

validation accuracy throughout these epochs suggests that the model has effectively

learned the distinguishing features of the ’cw’ and ’non-cw’ classes.

However, the initial fluctuations in training loss and the quick attainment of high val-

idation accuracy raise questions about the complexity of the validation set and the

model’s capacity to generalize to unseen data. It would be advisable to evaluate the

model further on a more challenging and diverse test set to assess its real-world appli-

cability.

Additionally, the learning rate, batch size, and other hyperparameters should be fine-

tuned to ensure that the model is not overfitting and is indeed capturing the underlying

patterns in the data. Regularization techniques and cross-validation could also be

64

employed to enhance the robustness of the model’s performance metrics.

In conclusion, while the ”vit-base-patch-16-224” model displays promising validation

accuracy early in training, careful consideration must be given to potential overfit-

ting, and further validation is recommended to ensure the model’s efficacy in practical

scenarios.

In our analysis of the ”vit-base-patch-16-224” model’s performance, a set of images was

subjected to the model to assess its predictive capabilities in a real-world scenario. As

shown in Figure 5.2, the images represent various surface conditions our model is tasked

to classify. These may include multiple states of wear, corrosion, or other material

conditions critical for maintenance and safety assessments in industrial settings.

Figure 5.2: Sample test set prediction of ViT

The model effectively identifies vital characteristics of circumferential welds (’cw’). For

example, it accurately classifies an image with significant rust in the top-left as ’cw’,

65

differentiating structural joinery from material degradation. Despite reflective surfaces

suggesting smoothness, it correctly identifies the second and third images in the top

row as ’non-cw’, demonstrating its ability to discern despite camera angle variations.

In the middle row, the rightmost image poses a challenge with its complex textures of

corrosion and potential weld seams, yet the model skillfully detects rust streaks and

classifies them as ’cw’. The central and leftmost images, depicting wall loss patterns,

are also accurately classified.

The bottom row showcases the model’s precision; it identifies a faint yellowish linear

indentation in the leftmost image as ’cw’. Under reflective-light conditions, the centre

and rightmost images, with more apparent ’cw’ indicators, are correctly classified.

Overall, the model’s high accuracy in distinguishing ’cw’ from ’non-cw’ is evident.

However, its handling of ambiguous features highlights the need for refinement. It

could enhance its performance by incorporating a wider variety of training data to

cover the entire weld appearance spectrum. Additionally, implementing a confidence

scoring system would provide greater insight into its predictive certainty, aiding in

interpreting classifications across various scenarios.

5.1.2 EfficientNet

The learning dynamics of the EfficientNet B0 model are depicted in Figure 5.3. The

left graph within the figure presents the training loss, showing a steady decrease as the

model learns from the data. The right graph displays the validation accuracy, which

increases correspondingly, indicating the model’s improving predictive accuracy.

Figure 5.3: Left: Training Loss of the EfficientNetB0 model; Right: Validation accuracy
of the EfficientNetB0 model

The ”Start Fine Tuning” marker indicates a strategic shift in the training approach.

From this point, the model maintains a relatively stable validation accuracy, plateauing

slightly above the training accuracy. This period of fine-tuning is critical as it allows

the model to refine its parameters on a more granular level, potentially improving its

performance on the validation set.

66

Moving to the loss graph, training and validation loss decrease steadily, which is ex-

pected during the initial phase of model training. The decline in loss indicates that

the model is learning to minimize the error in its predictions. Like the accuracy graph,

the validation loss mirrors the training loss closely until the fine-tuning phase begins.

After the ”Start Fine Tuning” marker, the losses converge, and the model achieves a

low and stable loss, which is an ideal outcome of fine-tuning.

The convergence of training and validation loss at a low level and high training and

validation accuracy that does not diverge significantly suggest that the model is not

memorizing the training data. Instead, it is learning generalizable patterns, which is

the hallmark of a well-trained neural network.

However, a detailed analysis would also consider the complexity of the dataset, the

diversity of the validation set, and whether the validation metrics continue to hold

when the model is exposed to an utterly unseen test set. Moreover, if the validation

accuracy plateaus or starts to decrease. In contrast, the training accuracy continues

to increase; this might indicate overfitting, which should be addressed with techniques

such as early stopping, regularization, or further data augmentation.

The EfficientNet B0 model exhibits promising training behaviour with practical learning

and fine-tuning phases. The close tracking of training and validation metrics suggests

good generalization. However, the ultimate test of the model’s performance will be its

ability to maintain this accuracy on an independent test dataset.

The classification efficacy of the EfficientNet B0 model is exemplified in Figure 5.4,

where the model discerns images containing a circumferential weld (’cw’) from those

without (’non-cw’). The photos are annotated with both the predicted and actual

labels, enabling a direct assessment of the model’s accuracy.

67

Figure 5.4: Sample test set prediction of EfficientNetB0

The top row of Figure 5.4 showcases the model’s precision in identifying ’cw’ conditions,

even with appearance and texture variances that could confound a less robust classifier.

The accurate prediction of a ’non-cw’ situation in the third image underscores the

model’s nuanced understanding of the defining characteristics of circumferential welds.

Continuing to the second row, the model sustains its high-performance level, correctly

labelling ’cw’ and ’non-cw’ conditions. This row further demonstrates the model’s

generalization capabilities, crucial for practical applications where lighting conditions

and surface textures vary significantly.

The third row reinforces the model’s consistent performance with correct ’cw’ identifi-

cations despite the subtler visual cues present in these particular images. The model’s

correct ’non-cw’ classification in the last image highlights its reliability and suggests a

high level of sophistication in feature extraction.

68

Collectively, the predictions displayed in Figure 5.4 illustrate the EfficientNet B0

model’s potential as a tool for automated identification of circumferential welds. Its

demonstrated ability to distinguish between ’cw’ and ’non-cw’ conditions with high

accuracy is promising. However, further testing on an extensive and varied dataset is

recommended to confirm these findings and to establish the model’s robustness across

a broader range of real-world scenarios.

5.1.3 Results Analysis

This section aims to dissect and contrast the performance of two sophisticated machine

learning models—the EfficientNetB0 and the Vision Transformer (ViT). A meticulous

examination of each model’s capabilities is conducted, utilizing a comprehensive suite

of evaluation metrics to measure their proficiency in classifying images that contain

circumferential welds (CW).

In this comparative study, we draw upon the confusion matrices of both models, which

delineate the true positives, true negatives, false positives, and false negatives encoun-

tered during the classification process. The matrices offer a granular view of the models’

performances, revealing their strengths and weaknesses in distinguishing between CW-

containing and non-CW images. This analysis is paramount, as it directly informs the

choice of the most suitable model for deployment in real-world settings, where accuracy

and reliability are non-negotiable.

For clarity and to facilitate direct comparison, we collate the key performance met-

rics for both models in Table 5.1. These metrics, which include Sensitivity, Speci-

ficity, Precision, and others, indicate the models’ classification accuracy and predictive

power. Mainly, they highlight how each model fares in correctly identifying CW images,

avoiding false alarms, and maintaining an overall balance between various classification

errors.

The confusion matrix is a powerful tool for evaluating the performance of classifica-

tion models, particularly in binary classification tasks like ours. It provides a visual

representation of the accuracy of the predictions made by the model by comparing

the predicted class labels with the actual class labels. For our models, the confusion

matrix helps us understand how well the models distinguish between images containing

circumferential welds (CW) and those without (non-CW).

In the context of our study, where each model assessed a total of 910 images, the

confusion matrix is instrumental in quantifying the true positives (TP), true negatives

(TN), false positives (FP), and false negatives (FN). These metrics are crucial as they

directly impact other essential performance measures such as precision, recall, and

69

F1-score.

The true positives and true negatives represent the images correctly identified by the

model as CW and non-CW, respectively. These are the ideal outcomes we aim for.

False positives occur when the model incorrectly labels a non-CW image as CW, which

could lead to unnecessary scrutiny or maintenance actions. Conversely, false nega-

tives represent a more critical error, where the model misses a CW image, potentially

overlooking a weld that requires attention.

A balanced ratio of these four outcomes indicates a well-performing classifier, as seen

in the confusion matrices for the EfficientNetB0 and Vision Transformer (ViT) models.

In our evaluation, we strive for a high number of true positives and true negatives while

minimizing the false positives and false negatives, ensuring the reliability and utility of

the models in practical scenarios.

Moreover, the confusion matrix allows us to calculate the sensitivity (recall) and speci-

ficity of the models—key metrics that provide insights into the models’ ability to detect

CW images (sensitivity) and their capability to ignore non-CW images (specificity) cor-

rectly.

By examining the confusion matrices, detailed in Figure 5.5, we gain valuable feedback

on the models’ classification prowess, informing further optimization and deployment

decisions in our automated inspection system.

Figure 5.5: Left: Confusion Matrix of the EfficientNetB0 model; Right: Confusion
Matrix of the ViT model

The comprehensive evaluation of the binary classification models, EfficientNetB0 and

Vision Transformer (ViT), with base patch size 16 and image size 224, reveals significant

insights into their performance. Table 5.1 encapsulates the quantitative metrics, and the

70

ensuing analysis draws comparisons to understand their efficacy in image classification

tasks.

Sensitivity, or the True positive rate, indicates the model’s ability to identify positive

instances correctly. The ViT model outperforms EfficientNetB0 with a sensitivity score

of 0.9699 compared to 0.9348, suggesting that ViT is more adept at detecting True

circumferential welds within the dataset.

Specificity measures the True negative rate, reflecting the model’s capability to rec-

ognize negatives accurately. Again, ViT demonstrates superior performance, with a

specificity of 0.9941 over EfficientNetB0’s 0.9393, indicating fewer false alarms during

classification.

Precision, or the positive predictive value, assesses the model’s accuracy in predicting

positive labels. ViT achieves an impressive precision of 0.9923, significantly higher than

EfficientNetB0’s 0.9233, indicating that it is usually correct when ViT predicts a weld.

The Negative Predictive Value (NPV) complements precision by reflecting the model’s

accuracy in predicting negative labels. ViT’s NPV stands at 0.9769, superior to Effi-

cientNetB0’s 0.9486, indicating ViT’s higher reliability in classifying non-weld images.

The False Positive Rate (FPR) and False Discovery Rate (FDR) are critical in scenarios

where the cost of false alarms is high. ViT’s lower FPR and FDR of 0.0059 and 0.0077,

respectively, compared to EfficientNetB0’s 0.0607 and 0.0767, signify a model less likely

to identify non-welds as welds mistakenly.

Conversely, the False Negative Rate (FNR) indicates missed positive detections. The

lower FNR of ViT at 0.0301, against EfficientNetB0’s 0.0652, underscores its reduced

likelihood of missing actual welds in the classification process.

Accuracy is the overall correctness of the model, and here ViT notably prevails with a

score of 0.9835 against EfficientNetB0’s 0.9374, marking it as the more accurate model

overall.

The F1 Score is a balanced measure that considers both precision and sensitivity. ViT’s

F1 Score of 0.9810 is considerably higher than EfficientNetB0’s 0.9290, suggesting a

more harmonious balance between accuracy and sensitivity in the ViT model.

Lastly, the Matthews Correlation Coefficient (MCC), which provides a balanced mea-

sure of the quality of binary classifications, strongly favours vit-base-patch16-224 with

a score of 0.9666 over EfficientNetB0’s 0.8730, indicating a higher correlation between

observed and predicted classifications.

71

In summary, the comparative analysis underscores the vit-base-patch16-224 model’s ro-

bustness and reliability in classifying images for the presence of circumferential welds.

Its consistent outperformance across almost all metrics suggests that it is a more suit-

able candidate for deployment in practical applications within the domain of weld

inspection. This section presents a side-by-side comparison of the two models across

several standard metrics.

Table 5.1: Model Evaluation Metrics

Measure EfficientNetB0 vit-base-patch16-224

Sensitivity 0.9900 0.9699

Specificity 0.9824 0.9941

Precision 0.9778 0.9923

Negative Predictive Value 0.9921 0.9769

False Positive Rate 0.0176 0.0059

False Discovery Rate 0.0222 0.0077

False Negative Rate 0.0100 0.0301

Accuracy 0.9857 0.9835

F1 Score 0.9839 0.9810

Matthews Correlation Coefficient 0.9711 0.9666

5.1.4 Discussion

Comparative Evaluation of EfficientNetB0 and Vision Transformer (ViT)

In the comparative analysis of the EfficientNetB0 and Vision Transformer (ViT) models,

distinct characteristics emerge, revealing each model’s strengths and potential limita-

tions in image classification tasks involving circumferential welds (CW).

Model Size and Efficiency : A crucial aspect of this comparison lies in the model size,

where EfficientNetB0, with a significantly smaller footprint of 139MB, contrasts with

ViT’s 337MB. This difference is not just a matter of storage efficiency but also impacts

the deployment feasibility in resource-constrained environments. EfficientNetB0’s com-

pact size makes it more adaptable for integration into systems with limited memory

and processing power, such as handheld devices or embedded systems used in industrial

inspections.

Training Time Considerations: Another critical factor is the training time. Efficient-

NetB0 required approximately 1.5 hours for training, substantially longer than ViT’s

swift 10-minute training period. While this might seem a drawback for EfficientNetB0

at first glance, it’s essential to consider the context of model training. The longer

training time could be attributed to EfficientNetB0’s architecture, which is designed

72

to balance efficiency and accuracy meticulously. In scenarios where model training

is a one-off or infrequent task, the longer training time of EfficientNetB0 may be a

reasonable trade-off for its benefits in terms of deployment efficiency and model size.

Performance Metrics Analysis: When considering key performance metrics like sen-

sitivity, specificity, and accuracy, both models demonstrate commendable proficiency.

However, the slightly lower performance of EfficientNetB0 in some metrics should be

weighed against its size and training time advantages. The trade-offs between these

models become a matter of prioritizing either performance or efficiency, depending on

the specific requirements of the deployment environment.

Favoring EfficientNetB0 for Resource-Constrained Environments

Given the constraints of model size and deployment context in resource-limited settings,

EfficientNetB0 is a favourable choice. Its smaller size and satisfactory performance

metrics position it as a more versatile model for practical applications, particularly

where model agility and adaptability are paramount.

Model Deployment and Practicality : In real-world scenarios where models need to be

deployed on devices at the edge, such as remote inspection vehicles, EfficientNetB0’s

compactness and efficiency offer tangible benefits. These advantages facilitate easier

integration and lower computational demands, which are crucial for continuous, real-

time operations in industrial settings.

Balancing Accuracy and Efficiency : While the training time is notably longer for Ef-

ficientNetB0, this aspect becomes less significant when considering a model’s lifecycle

in practical applications. The initial investment in training time is often offset by

the benefits gained during the deployment phase, especially in lower computational

requirements and greater adaptability to diverse operating conditions.

Concluding Remarks

In conclusion, while ViT demonstrates impressive speed in training and high perfor-

mance in specific metrics, the EfficientNetB0 model’s balance of size, efficiency, and

reasonably high accuracy makes it a compelling choice for practical applications in en-

vironments where model size and computational efficiency are critical. This analysis

underscores the importance of considering model characteristics, including size, training

time, and performance metrics, to make informed decisions tailored to specific opera-

tional needs and constraints. Future research might explore optimizing EfficientNetB0

further, enhancing its accuracy without significantly impacting its size or efficiency,

thereby solidifying its suitability for real-world industrial applications.

73

5.2 Stage 2: Anomaly Detection Model

The YOLOv8 model achieved a precision peak at a confidence threshold of 0.903, as

depicted in Figure 5.6, indicating a high level of accuracy in the predictions made

by the model. The recall showed a high value at lower confidence levels, suggesting

that the model has a solid capability to detect the presence of anomalies. However,

the recall decreased with an increased confidence threshold, a common occurrence in

precision-recall trade-offs.

Figure 5.6: Performance evaluation plots including Precision-Confidence, F1-
Confidence, Precision-Recall, and Recall-Confidence curves for the YOLO model.

The model’s F1 score, which balances precision and recall, peaked at 0.76 for a confi-

dence threshold of approximately 0.36, signifying an optimal balance at this threshold

level. The mAP for the model at an IoU threshold of 0.5 was 0.792, demonstrating

robust detection across all classes. The mAP at varying IoU thresholds from 0.50 to

0.95 (mAP@0.50-0.95) was also calculated to ensure a comprehensive evaluation across

different levels of detection difficulty, with the model achieving a respectable score.

74

5.2.1 Analysis of Detection Metrics Over Epochs

The evolution of detection metrics throughout training provides critical insights into the

model’s learning trajectory and eventual proficiency in anomaly detection. As depicted

in Figure 5.7, the metrics of precision, recall, and mean average precision (mAP) at

varying intersections over union (IoU) thresholds are charted across epochs. Precision,

which gauges the model’s accuracy in predicting true anomalies, demonstrates a trend

of stabilization after initial fluctuations. This behaviour reflects the model’s increasing

discernment in correctly classifying anomalies as it learns discriminative features over

time.

Recall, indicative of the model’s sensitivity in identifying all present anomalies, exhibits

a gradual ascent to an equilibrium point. This ascent suggests an initial phase of

expansive learning where the model can capture a broader spectrum of anomalies. The

plateau in recall underlines a state of balance where the model maintains a consistent

detection rate for anomalies within the test set.

The mAP metrics are an aggregate measure of the model’s precision and recall across

multiple IoU thresholds, offering a comprehensive view of performance. The mAP at

IoU=0.5 offers a lenient threshold for overlap between predicted and actual bounding

boxes. In contrast, the mAP at IoU=0.50-0.95 imposes a more stringent set of criteria,

evaluating the model’s precision at finer gradations of detection accuracy. The observed

stability in mAP scores across epochs underscores the model’s robustness and capability

to generalize well to unseen data, maintaining a steady level of performance even as

the criteria for correct detections are tightened.

The trends observed in these metrics are symbolic of a well-tuned training process. The

stabilization of precision and recall points to a model that has effectively converged,

achieving a balance between identifying true anomalies and minimizing false positives.

The consistent mAP scores across strict IoU thresholds affirm the model’s reliability

and precision in localizing anomalies. This is vital for practical applications where the

exact delineation of defects is crucial for subsequent analysis and decision-making.

5.2.2 Learning Rate and Loss Analysis

The optimization strategy for DL models significantly impacts their learning efficiency

and final performance. For the YOLOv8 model, an adaptive learning rate schedule

was implemented to optimize the detection of anomalies in inspection images. As illus-

trated in Figure 5.8, the learning rate for parameter group 0 (PG0) started at a higher

magnitude and experienced a rapid decline within the initial epochs. This approach,

often called learning rate annealing, exploits the benefits of a more significant learning

75

Figure 5.7: Metrics over epochs for the YOLO model, illustrating the precision, recall,
mAP at IoU=0.5, and mAP at IoU=0.50-0.95.

rate—navigating the parameter space more broadly to escape local minima—before

refining the model parameters as the loss landscape becomes smoother.

Figure 5.8: Learning rate changes over epochs for different parameter groups, indicating
the optimization dynamics of the YOLO model during training.

76

Following the steep descent, the learning rates for all parameter groups entered a subtle,

steady decay phase. This gradual reduction aligns with the principles of fine-tuning,

where more minor updates are made to hone in on optimal parameters without over-

shooting. The continuous, albeit marginal, adjustments suggest employing a decay

function or a scheduler like exponential decay, where the learning rate decreases by a

multiplicative factor each epoch or a more sophisticated method that adjusts the rate

based on validation performance.

The interplay between learning rate and loss is evident when examining the training

and validation losses in Figures 5.9 and 5.10. Initially, a pronounced drop in all three

loss components—box, classification, and directional field—signifies the model’s rapid

learning and adaptation. Subsequently, the losses plateau, reflecting the diminishing

returns of learning as the model approaches an optimal state. The consistency between

the training and validation loss trends indicates that the model is not overfitting to the

training data, maintaining its ability to generalize to unseen data, which is crucial for

its application in practical scenarios.

Moreover, the directional field loss, representing the model’s understanding of object

orientations and boundaries, decreases in lockstep with the classification loss. This

synchronized reduction underscores the model’s concurrent learning of object features

and spatial relations, a testament to its comprehensive learning capability.

Figure 5.9: Training losses over epochs, displaying the box, classification, and direc-
tional field losses indicative of the learning progression.

77

Figure 5.10: Validation losses over epochs for the YOLO model, which aid in under-
standing the model’s generalization performance.

5.2.3 Detection Examples

Visual inspection of the model’s predictions on test images provides further insight

into its performance. As shown in Figure 5.11, the model successfully detects various

anomalies confidently. The bounding boxes closely align with the anomalies, and the

confidence scores correlate well with the type and severity of the defects. This visual

evidence supports the model’s quantitative metrics, showcasing its practical utility in

automated inspection tasks.

78

Figure 5.11: Example of actual(left) vs predicted (right) anomalies by the YOLOv8
model, showcasing the model’s ability to detect various anomalies with corresponding
confidence scores.

5.2.4 Overall Assessment

The quantitative results underscore the YOLOv8 model’s capability to serve as an

effective tool for anomaly detection. The high precision and mAP scores indicate an

accurate and reliable model. In contrast, the high initial recall suggests that the model

can be adjusted to prioritize detecting all possible anomalies, an essential requirement

for inspection tasks where missing a defect could have severe implications.

These results, combined with the qualitative analysis, affirm the model’s applicability in

real-world scenarios, particularly in domains where the accurate detection of anomalies

is critical to safety and operational integrity.

5.3 Stage 3: Human in the Loop

In this evolving phase of our project, where engineers currently utilise the entire API,

a comprehensive evaluation of its effectiveness and efficiency is still underway. While

the primary scope of this work was centred around the development and streamlining

of the integration of DL model frameworks and data preprocessing to expedite remote

visual inspections, the ongoing use of the API by engineers provides invaluable insights

for future assessments.

79

Figure 5.12: User Interaction with API platform

5.3.1 User Feedback

The preliminary observations indicate that the tool has reduced the time engineers

spend selecting the appropriate images for reporting by an estimated 20-30%. This

significant reduction in time is a testament to the effectiveness of the API’s user-friendly

design and the integration of advanced DL technologies. However, as the tool is still

in its early stages of deployment, a complete evaluation encompassing all aspects of its

functionality and user experience is yet to be conducted.

The future evaluation will focus on various critical aspects:

1. User Experience and Efficiency: Assessing how the API’s design and workflow

optimization contribute to the overall user experience for engineers. This will

include evaluating the ease of uploading and processing images, the effectiveness

of the tutorial and guidance provided, and the overall usability of the interface.

2. Accuracy and Reliability of DL Models: Understanding how the integrated DL

models perform in real-world scenarios, including their accuracy in classifying and

detecting anomalies and their adaptability based on engineer feedback.

3. Impact of Human Feedback: Investigating the role of human-in-the-loop feed-

back in refining and enhancing the model’s performance over time. This will

80

also involve assessing the system’s learning curve as it adapts to new data and

annotations provided by the engineers.

4. Time Efficiency: Quantitatively measure the time saved in the inspection process

due to implementing the API and identify areas where further efficiency can be

gained.

5.3.2 Areas of Opportunity

As the full-scale evaluation of the API is still pending, this section will serve as a

preliminary acknowledgement of the potential limitations and challenges that might

arise. These could include technical issues, user interface improvements, the need for

more robust data handling, and ensuring the reliability of the models under varied

inspection conditions. We aim to address these challenges in future work, continually

refining and enhancing the API based on real-world usage and feedback.

In summary, while the current implementation of the API has shown promising results

in terms of time efficiency, a detailed evaluation and refinement process is planned for

the near future. This will ensure that the tool maintains its efficacy in speeding up

remote visual inspections and evolves to meet the changing needs and challenges of the

field.

5.4 Conclusion

The comprehensive evaluation of the General Classification Model, encompassing both

the Vision Transformer (ViT) and EfficientNet models, was a crucial aspect of this

project to enhance the efficacy of offshore inspection processes. The critical comparison

points between these models were multifaceted, focusing on model size, training time,

accuracy, and efficiency in real-world scenarios.

Comparison Between Vision Transformer (ViT) and EfficientNet:

1. Model Size and Efficiency: EfficientNet emerged as a more compact model with

a smaller footprint of 139MB compared to ViT’s 337MB. This smaller size makes

EfficientNet particularly suitable for deployment in environments with limited

computational resources, such as handheld devices or embedded systems used in

offshore inspections.

2. Training Time: EfficientNet required approximately 1.5 hours, substantially

longer than ViT’s 10-minute training period. However, given the context in which

these models are deployed, the longer training time of EfficientNet can be a rea-

sonable trade-off considering its benefits in terms of deployment efficiency and

81

model size.

3. Performance Metrics: In terms of performance metrics like sensitivity, specificity,

and accuracy, both models demonstrated high proficiency. EfficientNet, despite

its slightly lower performance in some metrics, was favoured due to its balance

between model size and efficiency.

4. Practical Deployment: EfficientNet’s balance of size, efficiency, and reasonably

high accuracy made it a more pragmatic choice for practical applications, espe-

cially in environments where model size and computational efficiency are crucial

considerations.

Evaluation of the Anomaly Detection Model (YOLOv8):

The evaluation of YOLOv8 focused on its precision, recall, and mean average precision

(mAP) at various intersections over union (IoU) thresholds. The model demonstrated

high precision and mAP scores, indicating its accuracy and reliability in anomaly de-

tection. The balance between precision and recall, as evidenced by the model’s F1

score, indicated its capability to effectively detect anomalies in inspection images. The

learning rate and loss analysis further substantiated the model’s comprehensive learning

capability and ability to generalize well to unseen data.

Integration into the Company Pipeline:

Integrating these models into the company’s pipeline was a pivotal step. Engineers

now interact directly with the models via a user-friendly API, streamlining the inspec-

tion process. This integration has facilitated a more efficient workflow and opened

continuous feedback and improvement channels.

API Design and Workflow: The API’s design ensures an intuitive user experience for

engineers, enabling easy navigation through image processing and report generation

stages.

Human-in-the-Loop Feedback: The system’s design incorporates human feedback, al-

lowing engineers to provide inputs that can be used to refine and enhance the model’s

performance continually. This aspect is crucial for adapting the system to real-world

variations and complexities.

Time Efficiency and User Experience: Preliminary observations indicate a significant

reduction in engineers’ time selecting images for reporting. The ongoing use of the API

provides invaluable insights for future assessments and refinements.

82

In conclusion, the choice of EfficientNet as the preferred model was driven by its bal-

anced attributes suitable for the constrained environments typical in offshore inspec-

tions. The evaluation of YOLOv8 highlighted its robustness in anomaly detection.

Integrating these models into the company’s pipeline, facilitated through a thought-

fully designed API, represents a significant advancement in automating and optimizing

offshore inspection tasks. The future evaluation will further enhance this integration,

ensuring the system’s adaptability and efficiency in real-world applications.

83

Chapter 6

Conclusion & Future Directions

6.1 Summary of Findings

This dissertation has significantly advanced automated visual inspection systems by

developing, integrating, and evaluating DL models tailored for the energy sector, par-

ticularly in offshore asset inspections. The following highlights encapsulate the project’s

objectives and achievements:

In-Depth Literature Review: The review underscored the transformative impact of

DL and transfer learning in industrial inspections, spotlighting technologies like Vision

Transformer, EfficientNet, and YOLO architectures. This review informed the research

and identified gaps and potential for innovation.

Implementation of a Novel-DL Framework : A General Classification Model was

developed using state-of-the-art architectures. The ADM, specifically YOLOv8, was

designed for precise anomaly detection. These models demonstrated high proficiency

in classifying and detecting anomalies in weld images and offshore components.

Human-in-the-Loop API Integration: A significant achievement was integrating

these models into a user-friendly API. This integration facilitated direct interaction with

the models, streamlining the inspection process and incorporating human feedback,

which is crucial for the continual refinement of the models.

Model Performance Evaluation: The evaluation phase thoroughly compared the

Vision Transformer and EfficientNet on various parameters like model size, efficiency,

and training time. EfficientNet was chosen for its balance between size and efficiency,

suitable for constrained offshore environments. YOLOv8 excelled in precision, recall,

and mean average precision, indicating its reliability in anomaly detection.

84

Practical Implementation and Impact: The practical application of these models

in offshore asset inspections marked a significant shift towards more efficient, accurate,

and automated processes. The integration into the company’s pipeline and API de-

sign led to a more efficient workflow and reduced the time and resources required for

inspections.

The dissertation’s outcomes have fulfilled its objectives and set a benchmark in the

field, showcasing a systematic approach that blends expert knowledge, cutting-edge

technology, and meticulous planning. The resulting models and systems demonstrate

a potentially revolutionary impact on the reliability and efficiency of remote visual

inspections in structural engineering.

6.2 Contributions to the Field

This dissertation makes significant contributions to offshore engineering and data sci-

ence by innovatively merging advanced DL technologies with practical industrial ap-

plications. The impact of this project on safety, efficiency, and reliability in offshore

inspections is profound and multi-dimensional, setting new benchmarks in these critical

areas.

Advancing Offshore Engineering Practices: The integration of the General Clas-

sification Model and the Anomaly Detection Model, particularly the implementation of

YOLOv8, represents a substantial leap in the capabilities of offshore inspection tech-

nologies. These models, underpinned by state-of-the-art architectures like the Vision

Transformer and EfficientNet, elevate the accuracy and precision of defect detection in

challenging offshore environments. This advancement directly translates to enhanced

safety in offshore operations, as more accurate and reliable inspections can prevent

potential hazards caused by undetected faults.

Innovations in Data Science Applications: The project showcases the potential

of data science in industrial applications, specifically in the processing and analysis of

complex visual data. The use of DL for image classification and anomaly detection in an

industrial context exemplifies how theoretical data science principles can be effectively

applied to solve real-world problems. This cross-disciplinary approach not only enriches

the field of data science but also opens up new avenues for research and development.

Enhancing Safety in Offshore Inspections: One of the most significant impacts

of this dissertation is the improvement of safety standards in offshore inspections. By

automating the detection of faults and anomalies in offshore structures, the risk of

human error is significantly reduced. This automation ensures a more consistent and

thorough inspection process, which is crucial in maintaining the integrity and safety of

85

offshore facilities.

Improving Efficiency and Reducing Costs: Implementing these models through a

human-in-the-loop API optimizes the inspection process, making it more efficient and

less time-consuming. This efficiency is a game-changer for offshore engineering, where

traditional inspection methods are often slow and labour-intensive. Reducing time and

labour directly translates to cost savings, making it an economically attractive solution

for the industry.

Reliability and Future Readiness: The dissertation demonstrates the reliability of

automated systems in critical inspection tasks. By rigorously evaluating the models

against various performance metrics, this research ensures that the systems are effective

in current scenarios and adaptable to future challenges. This reliability and adaptability

aspect is crucial for offshore inspection technologies’ long-term sustainability.

In summary, this dissertation contributes to offshore engineering and data science by

showcasing how advanced technological solutions can be effectively employed to enhance

safety, efficiency, and reliability in offshore inspections. The project addresses current

challenges in the industry and lays a robust foundation for future innovations.

6.3 Future Directions

While marking a significant advance in applying DL to offshore inspections, this dis-

sertation has encountered several challenges that open avenues for future research and

enhancements.

Enhancing Data Collection and Model Robustness: One of the primary chal-

lenges faced was data diversity and volume limitation. To address this, future research

should focus on expanding the dataset to include a wider variety of defect types, es-

pecially rare or underrepresented ones. Innovative data collection strategies, such as

synthetic data generation and advanced augmentation techniques, could help overcome

current limitations, improving the models’ robustness and generalization capabilities.

Balancing Model Complexity and Computational Resources: The advanced

nature of the DL architectures used posed significant demands on computational re-

sources. Investigating alternative architectures and emerging technologies could lead to

more efficient models that balance computational efficiency with performance. Future

work could explore newer neural network versions, hybrid models, and advancements

in edge computing to enhance on-site processing capabilities.

Adapting to Real-world Conditions and Scalability: Translating the models

from controlled environments to real-world offshore settings revealed challenges due

86

to environmental variability. Extending the models’ applicability to various offshore

assets and conditions is vital. This involves scaling the models, ensuring adaptability

to different inspection types, and maintaining performance in dynamic operational

environments.

Integration, User Acceptance, and Ethical Considerations: Integrating the

models into existing workflows and achieving user acceptance remains an ongoing pro-

cess. Future efforts should continue to focus on developing user-friendly interfaces and

addressing resistance to technological change. Maintaining ethical considerations in

automated systems is crucial for gaining trust and acceptance.

Long-term Performance Evaluation: Continuous and comprehensive evaluation

of the models in real-world scenarios is essential. Longitudinal studies assessing the

models’ long-term performance under various operational conditions will be crucial to

identify areas for improvement and ensure reliability.

In summary, the future direction of this research involves refining the existing frame-

work and exploring new methodologies and technologies. The aim is to continually

enhance the safety, efficiency, and reliability of offshore inspections through innovative

deep-learning applications, ensuring they are adaptable, user-friendly, and meet the

sector’s ethical standards.

87

Bibliography

Alharam, Aysha et al. (2020). “Real Time AI-Based Pipeline Inspection using Drone for

Oil and Gas Industries in Bahrain”. In: 2020 International Conference on Innovation

and Intelligence for Informatics, Computing and Technologies (3ICT), pp. 1–5. doi:

10.1109/3ICT51146.2020.9312021.

Ali, Sayyed Bashar et al. (2020). “Wall Crack Detection Using Transfer Learning-

based CNN Models”. In: 2020 IEEE 17th India Council International Conference

(INDICON), pp. 1–7. doi: 10.1109/INDICON49873.2020.9342392.

Altabey, Wael A. et al. (2022). “A Deep Learning-Based Approach for Pipeline Cracks

Monitoring”. In: 2022 International Conference on Electrical, Computer, Commu-

nications and Mechatronics Engineering (ICECCME), pp. 1–6. doi: 10 . 1109 /

ICECCME55909.2022.9987998.

Atha, Deegan J and Mohammad R Jahanshahi (2018). “Evaluation of deep learn-

ing approaches based on convolutional neural networks for corrosion detection”. In:

Structural Health Monitoring 17.5, pp. 1110–1128. doi: 10.1177/1475921717737051.

url: https://doi.org/10.1177/1475921717737051.

Bastian, Blossom Treesa et al. (2019). “Visual inspection and characterization of ex-

ternal corrosion in pipelines using deep neural network”. In: NDT E International

107, p. 102134. issn: 0963-8695. doi: https://doi.org/10.1016/j.ndteint.

2019.102134. url: https://www.sciencedirect.com/science/article/pii/

S096386951930060X.

Bhavani, Nallamilli P.G. et al. (2022). “Real-Time Inspection in Detection Magnetic

Flux Leakage by Deep Learning Integrated with Concentrating Non-Destructive Prin-

ciple and Electromagnetic Induction”. In: IEEE Instrumentation Measurement Mag-

azine 25.7, pp. 48–54. doi: 10.1109/MIM.2022.9908257.

Chen, Pengchao et al. (2023). “A cascaded deep learning approach for detecting pipeline

defects via pretrained YOLOv5 and ViT models based on MFL data”. In: Mechanical

Systems and Signal Processing 206, p. 110919. doi: 10.1016/j.ymssp.2023.110919.

url: https://doi.org/10.1016/j.ymssp.2023.110919.

88

https://doi.org/10.1109/3ICT51146.2020.9312021
https://doi.org/10.1109/INDICON49873.2020.9342392
https://doi.org/10.1109/ICECCME55909.2022.9987998
https://doi.org/10.1109/ICECCME55909.2022.9987998
https://doi.org/10.1177/1475921717737051
https://doi.org/10.1177/1475921717737051
https://doi.org/https://doi.org/10.1016/j.ndteint.2019.102134
https://doi.org/https://doi.org/10.1016/j.ndteint.2019.102134
https://www.sciencedirect.com/science/article/pii/S096386951930060X
https://www.sciencedirect.com/science/article/pii/S096386951930060X
https://doi.org/10.1109/MIM.2022.9908257
https://doi.org/10.1016/j.ymssp.2023.110919
https://doi.org/10.1016/j.ymssp.2023.110919

De Masi, Giulia et al. (May 2015). “Machine learning approach to corrosion assessment

in subsea pipelines”. In: OCEANS 2015 - Genova, pp. 1–6. doi: 10.1109/OCEANS-

Genova.2015.7271592.

de Moura, Nájla Vilar Aires et al. (2022). “Deep-water oil-spill monitoring and re-

currence analysis in the Brazilian territory using Sentinel-1 time series and deep

learning”. In: International Journal of Applied Earth Observation and Geoinforma-

tion 107, p. 102695. issn: 1569-8432. doi: https://doi.org/10.1016/j.jag.

2022.102695. url: https://www.sciencedirect.com/science/article/pii/

S0303243422000216.

De Tomi, G. et al. (2014). “Challenges for the inspection of Pre-Salt ultra-deep offshore

production facilities”. In: 2014 Oceans - St. John’s, pp. 1–7. doi: 10.1109/OCEANS.

2014.7003301.

Dias, A. et al. (2022). “Unmanned Aerial Vehicle for Wind-Turbine Inspection. Next

Step: Offshore”. In: OCEANS 2022, Hampton Roads, pp. 1–6. doi: 10 . 1109 /

OCEANS47191.2022.9977308.

Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, et al. (2020). “An Image

is Worth 16x16 Words: Transformers for Image Recognition at Scale”. In: CoRR

abs/2010.11929. arXiv: 2010.11929. url: https://arxiv.org/abs/2010.11929.

Fu, Guizhong et al. (2019). “A deep-learning-based approach for fast and robust steel

surface defects classification”. In: Optics and Lasers in Engineering 121, pp. 397–405.

issn: 0143-8166. doi: https://doi.org/10.1016/j.optlaseng.2019.05.005. url:

https://www.sciencedirect.com/science/article/pii/S0143816619301678.

Gašparović, Boris et al. (2023a). “Evaluating YOLOV5, YOLOV6, YOLOV7, and

YOLOV8 in Underwater Environment: Is There Real Improvement?” In: 2023 8th

International Conference on Smart and Sustainable Technologies (SpliTech), pp. 1–4.

doi: 10.23919/SpliTech58164.2023.10193505.

– (2023b). “Evaluating YOLOV5, YOLOV6, YOLOV7, and YOLOV8 in Underwa-

ter Environment: Is There Real Improvement?” In: 2023 8th International Confer-

ence on Smart and Sustainable Technologies (SpliTech), pp. 1–4. doi: 10.23919/

SpliTech58164.2023.10193505.

Health and Safety Executive (2009). “HSE”. In: Structural Integrity Management

Framework for Fixed Jacket Structures. url: https://www.hse.gov.uk/research/

rrpdf/rr684.pdf.

Hoang, Nhat-Duc and Tran Duc (June 2019). “Image Processing Based Detection of

Pipe Corrosion Using Texture Analysis and Metaheuristic-Optimized Machine Learn-

ing Approach”. In: Computational Intelligence and Neuroscience In Press. doi: 10.

1155/2019/8097213.

89

https://doi.org/10.1109/OCEANS-Genova.2015.7271592
https://doi.org/10.1109/OCEANS-Genova.2015.7271592
https://doi.org/https://doi.org/10.1016/j.jag.2022.102695
https://doi.org/https://doi.org/10.1016/j.jag.2022.102695
https://www.sciencedirect.com/science/article/pii/S0303243422000216
https://www.sciencedirect.com/science/article/pii/S0303243422000216
https://doi.org/10.1109/OCEANS.2014.7003301
https://doi.org/10.1109/OCEANS.2014.7003301
https://doi.org/10.1109/OCEANS47191.2022.9977308
https://doi.org/10.1109/OCEANS47191.2022.9977308
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://doi.org/https://doi.org/10.1016/j.optlaseng.2019.05.005
https://www.sciencedirect.com/science/article/pii/S0143816619301678
https://doi.org/10.23919/SpliTech58164.2023.10193505
https://doi.org/10.23919/SpliTech58164.2023.10193505
https://doi.org/10.23919/SpliTech58164.2023.10193505
https://www.hse.gov.uk/research/rrpdf/rr684.pdf
https://www.hse.gov.uk/research/rrpdf/rr684.pdf
https://doi.org/10.1155/2019/8097213
https://doi.org/10.1155/2019/8097213

Huang, Hong-wei, Qing-tong Li, and Dong-ming Zhang (2018). “Deep learning based

image recognition for crack and leakage defects of metro shield tunnel”. In: Tunnelling

and Underground Space Technology 77, pp. 166–176. issn: 0886-7798. doi: https:

//doi.org/10.1016/j.tust.2018.04.002. url: https://www.sciencedirect.

com/science/article/pii/S0886779817310258.

Kolesnikov, Alexander, Lucas Beyer, Xiaohua Zhai, et al. (2019). “Large Scale Learning

of General Visual Representations for Transfer”. In: CoRR abs/1912.11370. arXiv:

1912.11370. url: http://arxiv.org/abs/1912.11370.

Komijani, A. et al. (2022). “Multi-label Classification of Steel Surface Defects Using

Transfer Learning and Vision Transformer”. In: 2022 13th International Conference

on Information and Knowledge Technology (IKT), pp. 1–5. doi: 10.1109/IKT57960.

2022.10039038.

Langenkämper, Daniel et al. (2020). “Efficient visual monitoring of offshore wind-

mill installations with online image annotation and deep learning computer vision”.

In: Global Oceans 2020: Singapore – U.S. Gulf Coast, pp. 1–6. doi: 10 . 1109 /

IEEECONF38699.2020.9389305.

Lin, Chia-Yu, Yan-Hung Chou, and Yun-Chiao Cheng (2023). “A Deep Learning-based

General Defect Detection Framework for Automated Optical Inspection”. In: 2023

IEEE International Conference on Industry 4.0, Artificial Intelligence, and Com-

munications Technology (IAICT), pp. 332–337. doi: 10.1109/IAICT59002.2023.

10205799.

Liu, Yang et al. (2023). “NDT Method for Weld Defects Based on FMPVit Transformer

Model”. In: IEEE Access 11, pp. 61390–61400. doi: 10.1109/ACCESS.2023.3283589.

Lu, Kai-Liang (2021). Evaluation and Comparison of Deep Learning Methods for Pave-

ment Crack Identification with Visual Images. arXiv: 2112.10390 [cs.CV].

Estimating Wall Loss Risk Distributions Using Machine Learning and Geospatial An-

alytics (June 2020). Vol. All Days. NACE-2020-14640. eprint: https://onepetro.

org / NACECORR / proceedings - pdf / CORR20 / All - CORR20 / NACE - 2020 - 14640 /

2247055/nace-2020-14640.pdf.

Medak, Duje et al. (2022). “DefectDet: A deep learning architecture for detection

of defects with extreme aspect ratios in ultrasonic images”. In: Neurocomputing

473, pp. 107–115. issn: 0925-2312. doi: https://doi.org/10.1016/j.neucom.

2021.12.008. url: https://www.sciencedirect.com/science/article/pii/

S0925231221018464.

Mohamed, Abduljalil, Mohamed Salah Hamdi, and Sofiène Tahar (2015). “A Machine

Learning Approach for Big Data in Oil and Gas Pipelines”. In: 2015 3rd International

Conference on Future Internet of Things and Cloud, pp. 585–590. doi: 10.1109/

FiCloud.2015.54.

90

https://doi.org/https://doi.org/10.1016/j.tust.2018.04.002
https://doi.org/https://doi.org/10.1016/j.tust.2018.04.002
https://www.sciencedirect.com/science/article/pii/S0886779817310258
https://www.sciencedirect.com/science/article/pii/S0886779817310258
https://arxiv.org/abs/1912.11370
http://arxiv.org/abs/1912.11370
https://doi.org/10.1109/IKT57960.2022.10039038
https://doi.org/10.1109/IKT57960.2022.10039038
https://doi.org/10.1109/IEEECONF38699.2020.9389305
https://doi.org/10.1109/IEEECONF38699.2020.9389305
https://doi.org/10.1109/IAICT59002.2023.10205799
https://doi.org/10.1109/IAICT59002.2023.10205799
https://doi.org/10.1109/ACCESS.2023.3283589
https://arxiv.org/abs/2112.10390
https://onepetro.org/NACECORR/proceedings-pdf/CORR20/All-CORR20/NACE-2020-14640/2247055/nace-2020-14640.pdf
https://onepetro.org/NACECORR/proceedings-pdf/CORR20/All-CORR20/NACE-2020-14640/2247055/nace-2020-14640.pdf
https://onepetro.org/NACECORR/proceedings-pdf/CORR20/All-CORR20/NACE-2020-14640/2247055/nace-2020-14640.pdf
https://doi.org/https://doi.org/10.1016/j.neucom.2021.12.008
https://doi.org/https://doi.org/10.1016/j.neucom.2021.12.008
https://www.sciencedirect.com/science/article/pii/S0925231221018464
https://www.sciencedirect.com/science/article/pii/S0925231221018464
https://doi.org/10.1109/FiCloud.2015.54
https://doi.org/10.1109/FiCloud.2015.54

Mohamed, Yasser S. et al. (2019). “Steel crack depth estimation based on 2D images

using artificial neural networks”. In: Alexandria Engineering Journal 58.4, pp. 1167–

1174. issn: 1110-0168. doi: https://doi.org/10.1016/j.aej.2019.10.001. url:

https://www.sciencedirect.com/science/article/pii/S1110016819301048.

Moreno-Garcia, Carlos Francisco and Eyad Elyan (2019). “Digitisation of Assets from

the Oil Gas Industry: Challenges and Opportunities”. In: 2019 International Confer-

ence on Document Analysis and Recognition Workshops (ICDARW). Vol. 7, pp. 2–5.

doi: 10.1109/ICDARW.2019.60122.

O’Byrne, Michael et al. (2018). “Semantic Segmentation of Underwater Imagery Using

Deep Networks Trained on Synthetic Imagery”. In: Journal of Marine Science and

Engineering 6.3. issn: 2077-1312. doi: 10.3390/jmse6030093. url: https://www.

mdpi.com/2077-1312/6/3/93.

Ortiz, Alberto et al. (2016). “Vision-based corrosion detection assisted by a micro-aerial

vehicle in a vessel inspection application”. In: Sensors 16.12. issn: 1424-8220. doi:

10.3390/s16122118. url: https://www.mdpi.com/1424-8220/16/12/2118.

Oyama, Akira et al. (July 2021). “Detection of rust from images in pipes using

deep learning”. In: 2021 18th International Conference on Ubiquitous Robots (UR),

pp. 476–479. doi: 10.1109/UR52253.2021.9494700.

Perez, Husein, Joseph Tah, and Amir Mosavi (Aug. 2019). Deep learning for de-

tecting building defects using convolutional neural networks. doi: 10 . 20944 /

preprints201908.0068.v1.

Pirie, Craig and Carlos Francisco Moreno-Garcia (Aug. 2021). “Image pre-processing

and segmentation for real-time subsea corrosion inspection.” In: 22nd Engineering

Applications of Neural Networks Conference (EANN2021). Ed. by Lazaros Iliadis et

al. Springer, pp. 220–231. isbn: 9783030805678. doi: 10.1007/978-3-030-80568-

5_19. url: https://rgu-repository.worktribe.com/output/1369876.

Prasad, Jayashree Rajesh, Ayushi Parikh, and Hridya K Prasanth (2023). “Exploration

of Deep Learning Based Underwater Image Processing Techniques”. In: 2023 10th

International Conference on Computing for Sustainable Global Development (INDI-

ACom), pp. 1222–1225.

Redmon, Joseph et al. (2016). “You Only Look Once: Unified, Real-Time Object De-

tection”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 779–788. doi: 10.1109/CVPR.2016.91.

Regulator, Offshore Safety Directive (2021). “Offshore Safety Directive Regulator”.

In: Caisson Structural Integrity. url: https : / / www . hse . gov . uk / offshore /

infosheets/is5-2019.pdf.

91

https://doi.org/https://doi.org/10.1016/j.aej.2019.10.001
https://www.sciencedirect.com/science/article/pii/S1110016819301048
https://doi.org/10.1109/ICDARW.2019.60122
https://doi.org/10.3390/jmse6030093
https://www.mdpi.com/2077-1312/6/3/93
https://www.mdpi.com/2077-1312/6/3/93
https://doi.org/10.3390/s16122118
https://www.mdpi.com/1424-8220/16/12/2118
https://doi.org/10.1109/UR52253.2021.9494700
https://doi.org/10.20944/preprints201908.0068.v1
https://doi.org/10.20944/preprints201908.0068.v1
https://doi.org/10.1007/978-3-030-80568-5_19
https://doi.org/10.1007/978-3-030-80568-5_19
https://rgu-repository.worktribe.com/output/1369876
https://doi.org/10.1109/CVPR.2016.91
https://www.hse.gov.uk/offshore/infosheets/is5-2019.pdf
https://www.hse.gov.uk/offshore/infosheets/is5-2019.pdf

Ren, Ruoxu, Terence Hung, and Kay Chen Tan (2018). “A Generic Deep-Learning-

Based Approach for Automated Surface Inspection”. In: IEEE Transactions on Cy-

bernetics 48.3, pp. 929–940. doi: 10.1109/TCYB.2017.2668395.

Sarker, Iqbal H. (2021). “Deep Learning: A Comprehensive Overview on Techniques,

Taxonomy, Applications and Research Directions”. In: SN Computer Science 2.420.

doi: 10.1007/s42979-021-00815-1. url: https://doi.org/10.1007/s42979-

021-00815-1.

Smith, Amos, Jeremy Coffelt, and Kai Lingemann (2022). “A Deep Learning Frame-

work for Semantic Segmentation of Underwater Environments”. In: OCEANS 2022,

Hampton Roads, pp. 1–7. doi: 10.1109/OCEANS47191.2022.9977212.

Soares, Luciane et al. (2021). “A Visual Inspection Proposal to Identify Corrosion

Levels in Marine Vessels Using a Deep Neural Network”. In: 2021 Latin American

Robotics Symposium (LARS), 2021 Brazilian Symposium on Robotics (SBR), and

2021 Workshop on Robotics in Education (WRE), pp. 222–227. doi: 10.1109/LARS/

SBR/WRE54079.2021.9605400.

Stamoulakatos, Anastasios, Javier Cardona, Chris Mccaig, et al. (Jan. 2020). “Auto-

matic Annotation of Subsea Pipelines Using Deep Learning”. In: Sensors 20. doi:

10.3390/s20030674.

Sudevan, Vidya, Amit Shukla, and Hamad Karki (2018). “Current and Future Research

Focus on Inspection of Vertical Structures in Oil and Gas Industry”. In: 2018 18th

International Conference on Control, Automation and Systems (ICCAS), pp. 144–

149.

Tan, Mingxing and Quoc V. Le (2019). “EfficientNet: Rethinking Model Scaling for

Convolutional Neural Networks”. In: Proceedings of the 36th International Confer-

ence on Machine Learning, pp. 6105–6114.

Waqar, Asad, Idris Othman, Nasir Shafiq, et al. (2023). “Applications of AI in oil

and gas projects towards sustainable development: a systematic literature review”.

In: Artificial Intelligence Review 56, pp. 12771–12798. doi: 10.1007/s10462-023-

10467-7. url: https://doi.org/10.1007/s10462-023-10467-7.

Wu, Xiaojun et al. (2021). “Deep Learning-Based Generic Automatic Surface Defect

Inspection (ASDI) With Pixelwise Segmentation”. In: IEEE Transactions on Instru-

mentation and Measurement 70, pp. 1–10. doi: 10.1109/TIM.2020.3026801.

Xia, Yiyu et al. (2018). “A Deep Learning Based Image Recognition and Processing

Model for Electric Equipment Inspection”. In: 2018 2nd IEEE Conference on Energy

Internet and Energy System Integration (EI2), pp. 1–6. doi: 10.1109/EI2.2018.

8582593.

92

https://doi.org/10.1109/TCYB.2017.2668395
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1109/OCEANS47191.2022.9977212
https://doi.org/10.1109/LARS/SBR/WRE54079.2021.9605400
https://doi.org/10.1109/LARS/SBR/WRE54079.2021.9605400
https://doi.org/10.3390/s20030674
https://doi.org/10.1007/s10462-023-10467-7
https://doi.org/10.1007/s10462-023-10467-7
https://doi.org/10.1007/s10462-023-10467-7
https://doi.org/10.1109/TIM.2020.3026801
https://doi.org/10.1109/EI2.2018.8582593
https://doi.org/10.1109/EI2.2018.8582593

Yan, Y. et al. (2020). “A Deep Learning-Based Ultrasonic Pattern Recognition Method

for Inspecting Girth Weld Cracking of Gas Pipeline”. In: IEEE Sensors Journal

20.14, pp. 7997–8006. doi: 10.1109/JSEN.2020.2982680.

Yu, Tang et al. (2022). “Intelligent Detection Method of Forgings Defects Detection

Based on Improved EfficientNet and Memetic Algorithm”. In: IEEE Access 10,

pp. 79553–79563. doi: 10.1109/ACCESS.2022.3193676.

Zhang, Yanhui et al. (June 2013a). “Measurement and Modelling of Residual Stresses

in Offshore Circumferential Welds”. In: vol. 3. doi: 10.1115/OMAE2013-10234.

– (June 2013b). “Measurement and Modelling of Residual Stresses in Offshore Circum-

ferential Welds”. In: vol. 3. doi: 10.1115/OMAE2013-10234.

Zhu, Haixing, Weimin Ge, and Zhenzhong Liu (2019). “Deep Learning-Based Classi-

fication of Weld Surface Defects”. In: Applied Sciences 9.16. issn: 2076-3417. doi:

10.3390/app9163312. url: https://www.mdpi.com/2076-3417/9/16/3312.

93

https://doi.org/10.1109/JSEN.2020.2982680
https://doi.org/10.1109/ACCESS.2022.3193676
https://doi.org/10.1115/OMAE2013-10234
https://doi.org/10.1115/OMAE2013-10234
https://doi.org/10.3390/app9163312
https://www.mdpi.com/2076-3417/9/16/3312

Appendix A

Annex

A.1 Custom Filter

1 import cv2

2 import numpy as np

3 import time

4 import glob

5

6 # Create a CLAHE object (Contrast Limited Adaptive Histogram Equalization)

7 clahefilter = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(16,16))

8

9 # Initialize a counter for the image files

10 cont = 0

11 for filename in glob.glob("images/*.jpg"): # Iterate over jpg files in the ’clean’ ←↩
directory

12

13 # Read the image

14 img = cv2.imread(filename)

15

16 # Convert the image to grayscale

17 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

18

19 # Define the range for glare in HSV color space

20 GLARE_MIN = np.array([0, 0, 50], np.uint8)

21 GLARE_MAX = np.array([0, 0, 225], np.uint8)

22

23 # Convert the image to HSV color space

24 hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

25

26 # Create a mask for the glare

27 frame_threshed = cv2.inRange(hsv_img, GLARE_MIN, GLARE_MAX)

28

94

29 # Apply inpainting to the original image using the glare mask

30 result = cv2.inpaint(img, frame_threshed, 0.1, cv2.INPAINT_TELEA)

31

32 # Apply CLAHE to the grayscale image

33 claheCorrecttedFrame = clahefilter.apply(gray)

34

35 # Convert the image to LAB color space for color enhancement

36 lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)

37 lab_planes = cv2.split(lab)

38 clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))

39 lab_planes[0] = clahe.apply(lab_planes[0])

40 lab = cv2.merge(lab_planes)

41 clahe_bgr = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR)

42

43 # Convert the enhanced color image to grayscale

44 grayimg1 = cv2.cvtColor(clahe_bgr, cv2.COLOR_BGR2GRAY)

45 # Create a mask for the bright areas in the enhanced image

46 mask2 = cv2.threshold(grayimg1, 220, 255, cv2.THRESH_BINARY)[1]

47 # Apply inpainting to the original image using the new mask

48 result2 = cv2.inpaint(img, mask2, 0.1, cv2.INPAINT_TELEA)

49

50 # Combine the previous inpainting result with CLAHE

51 lab1 = cv2.cvtColor(result, cv2.COLOR_BGR2LAB)

52 lab_planes1 = cv2.split(lab1)

53 clahe1 = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))

54 lab_planes1[0] = clahe1.apply(lab_planes1[0])

55 lab1 = cv2.merge(lab_planes1)

56 clahe_bgr1 = cv2.cvtColor(lab1, cv2.COLOR_LAB2BGR)

57

58 # Write the final image to a file with a modified name

59 cv2.imwrite(filename[0:5] + ’_’ + str(cont) + ’.jpg’, clahe_bgr1)

60 cont += 1

Listing A.1: Image enhancement process using OpenCV.

A.2 General Classifier

A.2.1 Visual Transformer (ViT)

The Visual Transformer (ViT) represents a class of models that employ the transformer

architecture, which has been highly successful in natural language processing, to the

domain of image classification. This section outlines the steps taken to train and

evaluate a ViT model, starting with the setup of the environment and installation of

necessary libraries.

95

Environment Setup and Library Installation

Before training the ViT model, it is necessary to mount the Google Drive to access

the dataset and change the working directory to the folder containing the dataset.

Additionally, relevant libraries, particularly Hugging Face’s Transformers library, need

to be installed as it provides the implementation of the ViT model.

1 from google.colab import drive

2 drive.mount("/content/gdrive")

Listing A.2: Mounting the Google Drive to access the dataset.

1 %cd /content/gdrive/MyDrive/Work/image_classification/dataset_TW

Listing A.3: Changing the current working directory to the dataset directory.

1 !pip install -q git+https://github.com/huggingface/transformers

Listing A.4: Installing the Hugging Face Transformers library.

This setup is a prerequisite for further actions such as data preprocessing, model train-

ing, and evaluation. Ensuring that the correct libraries are installed is crucial for the

seamless functioning of the model training code that follows.

Model Training Procedure

Once the environment is configured and the necessary libraries are in place, we com-

mence with the training of the ViT model. The dataset is loaded into data loaders,

which handle batching, shuffling, and providing data to the model during the training

loop. The code block below demonstrates the initialization of data loaders and the

training loop where the model parameters are updated in each epoch.

1 import torch.utils.data as data

2 from torch.autograd import Variable

3 import numpy as np

4

5 # Detect the available number of classes based on the dataset

6 print("Number of train samples: ", len(train_ds))

7 print("Number of test samples: ", len(valid_ds))

8 print("Detected Classes are: ", valid_ds.class_to_idx)

9

10 # Data loaders for batching, shuffling, and loading data in parallel

11 train_loader = data.DataLoader(train_ds, batch_size=BATCH_SIZE, shuffle=True, ←↩
num_workers=2)

12 test_loader = data.DataLoader(valid_ds, batch_size=BATCH_SIZE, shuffle=True, ←↩
num_workers=2)

13

96

14 # Training loop

15 for epoch in range(EPOCHS):

16 model.train()

17 for step, (x, y) in enumerate(train_loader):

18 # Preprocessing of input batch and forward pass

19 # ...

20

21 optimizer.zero_grad()

22 loss.backward()

23 optimizer.step()

Listing A.5: Training the Visual Transformer model.

In this code segment, the model is set to training mode. Each batch of data is passed

through the model, the loss is calculated, and the gradients are propagated back through

the model (backpropagation). The optimizer then updates the model’s weights. This

process is repeated for a specified number of epochs or until a certain condition, such

as early stopping, is met.

This training procedure is iterative and can be adjusted based on the performance

observed during the validation phase, which helps in fine-tuning the model to achieve

better accuracy on the dataset.

Model Evaluation

Post-training, it is critical to evaluate the ViT model’s performance to ensure it has

learned to classify images accurately. The model evaluation is done using the validation

set, where we calculate the loss and accuracy to understand the model’s effectiveness.

The following code details the evaluation loop where the model is set to evaluation

mode, thus disabling any training-specific operations like dropout.

1 # Model evaluation on validation set

2 model.eval()

3 val_loss = 0

4 accuracy = 0

5 num_samples = 0

6 with torch.no_grad():

7 for step, (x, y) in enumerate(test_loader):

8 # Forward pass and loss computation

9 # ...

10

11 # Update total validation loss

12 val_loss += loss.item() * x.size(0)

13 # Calculate accuracy

14 # ...

15

97

16 val_loss /= num_samples

17 accuracy /= num_samples

18 print(f’Validation loss: {val_loss:.4f}, Validation accuracy: {accuracy:.4f}’)

Listing A.6: Evaluation of the Visual Transformer model on the validation set.

This validation loop traverses through the validation dataset and aggregates the losses

and correct predictions to compute the average loss and accuracy over all validation

samples. These metrics provide an indication of how well the model will perform on

unseen data.

Moreover, this section could include any early stopping mechanisms used to halt the

training process if the model ceases to improve, thus preventing overfitting and saving

computational resources.

1 # Early stopping condition

2 if val_loss < min_val_loss:

3 min_val_loss = val_loss

4 patience_counter = 0

5 else:

6 patience_counter += 1

7 if patience_counter >= EARLY_STOPPING_PATIENCE:

8 print("Early stopping triggered. Stopping training.")

9 break

Listing A.7: Implementing early stopping based on validation loss.

Early stopping is an approach used to terminate the training process if the model’s

performance on the validation set does not improve for a specified number of epochs,

referred to as the ”patience” period. This is an effective method to avoid overfitting

and is especially useful when training deep learning models.

Inference and Performance Visualization

Following the model’s evaluation, it is insightful to conduct inference on individual test

images. This step is critical for visually assessing the model’s predictive capability.

The code below demonstrates how to load a batch of test images, perform inference to

obtain the model’s predictions, and then visualize these alongside the true labels for

comparison.

1 # Inference on test images

2 import matplotlib.pyplot as plt

3

4 # Load a batch of test images

5 eval_loader = data.DataLoader(test_ds, batch_size=EVAL_BATCH, shuffle=True)

98

6 with torch.no_grad():

7 # Obtain a batch of test images and labels

8 inputs, targets = next(iter(eval_loader))

9 # ...

10

11 # Generate predictions for the batch

12 predictions = model(inputs)

13 # ...

14

15 # Visualize the test images and the model’s predictions

16 for i in range(EVAL_BATCH):

17 plt.subplot(1, EVAL_BATCH, i + 1)

18 plt.imshow(inputs[i].permute(1, 2, 0).numpy())

19 plt.title(f’Predicted: {predicted_labels[i]}, Actual: {target_labels[i]}’)

20 plt.axis(’off’)

21 plt.show()

Listing A.8: Performing inference on test images and visualizing predictions.

This visualization provides an immediate qualitative assessment of the model’s perfor-

mance on the test set. Such visual feedback is invaluable for understanding the model’s

behavior, including any systematic errors it may be making.

Additionally, it is beneficial to compute and visualize quantitative metrics such as the

confusion matrix to summarize the performance of the model in a format that is easily

interpretable.

1 from sklearn.metrics import classification_report, confusion_matrix

2 from mlxtend.plotting import plot_confusion_matrix

3

4 # Compute the confusion matrix

5 conf_matrix = confusion_matrix(target_labels, predicted_labels)

6

7 # Plot the confusion matrix

8 fig, ax = plot_confusion_matrix(conf_mat=conf_matrix, figsize=(6, 6), cmap=’Blues’)

9 plt.xlabel(’Predicted labels’)

10 plt.ylabel(’True labels’)

11 plt.title(’Confusion Matrix’)

12 plt.show()

Listing A.9: Generating a confusion matrix to visualize the model’s performance.

The confusion matrix and classification report provide a comprehensive overview of

the model’s performance across all classes, highlighting the true positive, false positive,

true negative, and false negative predictions. These tools are essential for fine-tuning

99

the model and can guide further improvements to the training process or model archi-

tecture.

Model Persistence

Preserving the trained model allows us to deploy the model in different environments or

continue development at a later time without retraining from scratch. The code snippet

below outlines the process of saving the entire ViT model to disk. This includes the

model architecture, weights, and training configuration, enabling an exact replica of

the model to be reloaded.

1 # Save the entire model to a file

2 torch.save(model.state_dict(), ’ViT_model.pth’)

3

4 print("Model saved successfully!")

Listing A.10: Saving the trained Visual Transformer model to disk.

The model is saved using PyTorch’s native ‘save‘ function, which serializes the model

to a file. The saved model file can then be reloaded using PyTorch’s ‘load‘ function

and the model’s ‘load-state-dict‘ method, restoring the saved model’s state.

1 # Load the model for inference or further training

2 model = TheModelClass(*args, **kwargs)

3 model.load_state_dict(torch.load(’ViT_model.pth’))

4 model.eval()

5

6 print("Model loaded successfully for inference!")

Listing A.11: Loading the saved Visual Transformer model.

This process is particularly important for operationalizing the model in production

environments or for conducting further experiments and research. It ensures that the

model’s exact configuration and learned knowledge are preserved and can be easily

shared or deployed.

A.2.2 EfficientNet Model

The following sections describe the implementation details of the EfficientNet model

used for image classification. The process begins with the configuration of the comput-

ing environment to utilize TensorFlow’s capabilities fully, followed by the data prepro-

cessing steps necessary for training such a model effectively.

100

Environment Setup

The training of deep learning models can be significantly accelerated by leveraging

specialized hardware such as TPUs (Tensor Processing Units) or GPUs (Graphics Pro-

cessing Units). The code snippet below illustrates the setup of a TPU client within

the TensorFlow framework. This setup is essential for utilizing the TPU’s computing

power efficiently, as it configures the TPU to the correct version of TensorFlow that we

are using.

1 from cloud_tpu_client import Client

2 c = Client()

3 c.configure_tpu_version(tf.__version__, restart_type="always")

Listing A.12: Configuring TensorFlow to use a TPU environment

Following the TPU configuration, we establish TensorFlow’s distribution strategy. This

strategy allows for a model to be trained on multiple TPU cores simultaneously, which

is crucial for handling large datasets and complex models like EfficientNet. If a TPU

is not available, the strategy defaults to using available CPUs or GPUs, ensuring that

the training process can still proceed.

1 import tensorflow as tf

2

3 try:

4 tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect()

5 print("Device:", tpu.master())

6 strategy = tf.distribute.TPUStrategy(tpu)

7 except ValueError:

8 print("Not connected to a TPU runtime. Using CPU/GPU strategy")

9 strategy = tf.distribute.MirroredStrategy()

Listing A.13: Setting up TensorFlow’s distribution strategy

Data Access

Training a model like EfficientNet requires access to a substantial amount of data.

When working in cloud-based notebooks such as Google Colab, it’s common to store

and retrieve training data from Google Drive. The code below demonstrates how to

mount a Google Drive in Colab and change the directory to the location where the

dataset is stored. This step ensures that our training environment has direct access

to the data, allowing for efficient reading and processing of the dataset required for

training the model.

1 from google.colab import drive

2 drive.mount("/content/gdrive")

101

Listing A.14: Mounting Google Drive to access the dataset

Once the drive is mounted, we navigate to the specific directory within the drive where

the dataset resides. This is typically a folder that contains subdirectories for training,

validation, and testing data.

1 %cd /content/gdrive/MyDrive/ds_small

Listing A.15: Changing the current working directory to the dataset directory

Loading and Preprocessing the Dataset

With the training environment set up and the data access established, the next step is

to load the dataset. This involves specifying the paths to the data, and utilizing Tensor-

Flow’s utilities to preprocess the images to be suitable for feeding into the EfficientNet

model. The following code demonstrates the initialization of the dataset variables and

the use of TensorFlow’s image dataset from directory to efficiently load the data.

1 from tensorflow import keras

2

3 batch_size = 64

4

5 # specify the path to the train and test folders

6 train_dir = "train"

7 val_dir = "val"

8 test_dir = "test"

9

10 # Loading the dataset

11 ds_train = keras.preprocessing.image_dataset_from_directory(

12 train_dir,

13 validation_split=0.2,

14 subset="training",

15 seed=123,

16 image_size=(224, 224),

17 batch_size=batch_size

18)

19

20 ds_val = keras.preprocessing.image_dataset_from_directory(

21 val_dir,

22 validation_split=0.2,

23 subset="validation",

24 seed=123,

25 image_size=(224, 224),

26 batch_size=batch_size

27)

102

28

29 # Check labels

30 print(list(ds_train.as_numpy_iterator())[0][1])

Listing A.16: Loading the dataset using TensorFlow’s image-dataset-from-directory

This segment of the code is vital as it not only loads the data but also splits it into

training and validation sets, which is necessary for evaluating the model’s performance

during training and making adjustments if needed. The batch size is defined, and the

image size is set to match the input size expected by the EfficientNet model. Addition-

ally, a seed for reproducibility is specified to ensure that the dataset splits are consistent

across different runs.

The last line of the code outputs the labels of the first batch of the training dataset,

which serves as a quick check to ensure that the data is loaded correctly and that the

labels are as expected.

This careful loading and checking of the dataset set the stage for an effective training

process, ensuring that the model has the right data in the right format for learning.

Model Initialization and Training

The core of our model training involves initializing the EfficientNet model with pre-

trained ImageNet weights and setting it up for transfer learning. The model is adapted

for our specific binary classification task by adding a custom top layer. The following

code illustrates the process of building the model, compiling it with the necessary loss

function and metrics, and then training it with our dataset.

1 from tensorflow.keras.applications import EfficientNetB0

2 from tensorflow.keras import layers

3 import tensorflow as tf

4

5 def build_model(num_classes):

6 inputs = layers.Input(shape=(IMG_SIZE, IMG_SIZE, 3))

7 x = img_augmentation(inputs)

8 model = EfficientNetB0(include_top=False, input_tensor=x, weights="imagenet")

9

10 # Freeze the pretrained weights

11 model.trainable = False

12

13 # Rebuild top

14 x = layers.GlobalAveragePooling2D(name="avg_pool")(model.output)

15 x = layers.BatchNormalization()(x)

16

17 top_dropout_rate = 0.2

103

18 x = layers.Dropout(top_dropout_rate, name="top_dropout")(x)

19 outputs = layers.Dense(num_classes, activation="sigmoid", name="pred")(x)

20

21 # Compile the model

22 model = tf.keras.Model(inputs, outputs, name="EfficientNet")

23 optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4)

24 model.compile(

25 optimizer=optimizer, loss="binary_crossentropy", metrics=["accuracy"]

26)

27 return model

Listing A.17: Building and compiling the EfficientNet model for binary classification.

With the model built and compiled, the next snippet of code demonstrates the training

process within the scope of TensorFlow’s distribution strategy. This is critical for

leveraging the TPU or GPU setup configured earlier.

1 NUM_CLASSES = 1 # Binary classification

2 IMG_SIZE = 224 # Size of the input images

3

4 with strategy.scope():

5 model = build_model(num_classes=NUM_CLASSES)

6

7 epochs = 25

8 hist = model.fit(

9 ds_train,

10 epochs=epochs,

11 validation_data=ds_val,

12 verbose=2

13)

Listing A.18: Training the model using TensorFlow’s distribution strategy.

The strategy’s scope ensures that the model is distributed across available devices,

which can significantly speed up the training process. The model is trained for a

specified number of epochs, with the training and validation datasets defined earlier.

This process encapsulates the first phase of the model’s training, where the base lay-

ers with the ImageNet weights are frozen to ensure that the learned features are re-

tained during the initial adaptation to our dataset. The model’s performance is tracked

through accuracy and loss metrics, providing insight into the training process and al-

lowing for early detection of issues such as overfitting or underfitting.

104

Training Visualization and Model Persistence

After the training process, it is important to visualize the training and validation met-

rics to understand the model’s learning behavior over time. The following code segment

plots the accuracy and loss for both training and validation sets, providing a visual rep-

resentation of the model’s performance across epochs.

1 import matplotlib.pyplot as plt

2

3 initial_epochs = epochs

4 history = hist

5

6 acc = history.history[’accuracy’]

7 val_acc = history.history[’val_accuracy’]

8

9 loss = history.history[’loss’]

10 val_loss = history.history[’val_loss’]

11

12 plt.figure(figsize=(8, 8))

13 plt.subplot(2, 1, 1)

14 plt.plot(acc, label=’Training Accuracy’)

15 plt.plot(val_acc, label=’Validation Accuracy’)

16 plt.legend(loc=’lower right’)

17 plt.ylabel(’Accuracy’)

18 plt.ylim([0,1.0])

19 plt.title(’Training and Validation Accuracy’)

20

21 plt.subplot(2, 1, 2)

22 plt.plot(loss, label=’Training Loss’)

23 plt.plot(val_loss, label=’Validation Loss’)

24 plt.legend(loc=’upper right’)

25 plt.ylabel(’Cross Entropy’)

26 plt.ylim([0,1.0])

27 plt.title(’Training and Validation Loss’)

28 plt.xlabel(’epoch’)

29 plt.show()

Listing A.19: Plotting training and validation accuracy and loss.

This visualization is essential for identifying patterns such as overfitting, where the

model performs well on the training data but poorly on the validation data. Adjust-

ments to the model, such as early stopping or changes in the learning rate, can be made

based on insights from these plots.

Upon satisfactory training and validation results, the model is saved to disk. This

allows us to preserve the state of the model after training, enabling us to reload it later

for evaluation or further fine-tuning without the need to retrain from scratch.

105

1 # Save the fine-tuned model

2 model.save(’efficientnet_fine_tuned.h5’)

3

4 # The model can later be loaded using:

5 # model = tf.keras.models.load_model(’efficientnet_fine_tuned.h5’)

Listing A.20: Saving the trained model for later use.

Saving the model is straightforward in TensorFlow and Keras, and the saved model

includes both the architecture and the learned weights. This step concludes the training

and visualization phase, leading to the next stage of our workflow, which involves model

evaluation and performance analysis on the test dataset.

Model Evaluation and Performance Analysis

The trained model’s performance is quantitatively evaluated on the test dataset to

ensure it generalizes well to new, unseen data. The following code demonstrates how

to load the test dataset, evaluate the model’s accuracy, and print the test accuracy.

Furthermore, it includes the steps to visualize the predictions alongside the actual

images for a qualitative assessment.

1 from tensorflow.keras.models import load_model

2

3 # Load the fine-tuned model

4 model = load_model(’efficientnet_fine_tuned.h5’)

5

6 # Evaluate on the test dataset

7 loss, accuracy = model.evaluate(ds_test)

8 print(’Test accuracy:’, accuracy)

Listing A.21: Evaluating the model’s performance on the test dataset.

The above evaluation provides a straightforward accuracy metric, but for a more in-

depth analysis, we plot some of the test images with their predicted labels. This visual

inspection can offer insights into the types of errors the model is making and whether

there are any patterns in the misclassifications.

1 # Retrieve a batch of images from the test set

2 image_batch, label_batch = ds_test.as_numpy_iterator().next()

3 predictions = model.predict_on_batch(image_batch).flatten()

4

5 # Apply a sigmoid since our model returns logits

6 predictions = tf.nn.sigmoid(predictions)

7 predictions = tf.where(predictions < 0.65, 0, 1)

8

106

9 print(’Predictions:\n’, predictions.numpy())

10 print(’Labels:\n’, label_batch)

11

12 # Plot some test images with predictions

13 plt.figure(figsize=(10, 10))

14 for i in range(9):

15 ax = plt.subplot(3, 3, i + 1)

16 plt.imshow(image_batch[i].astype("uint8"))

17 plt.title(class_names[predictions[i]])

18 plt.axis("off")

Listing A.22: Displaying test images with their predicted labels.

Finally, for a comprehensive analysis, we perform a classification report which includes

precision, recall, and F1-score metrics, and we visualize the confusion matrix. These

metrics provide a more nuanced view of the model’s performance beyond simple accu-

racy.

1 import numpy as np

2 from sklearn.metrics import classification_report, confusion_matrix

3 import seaborn as sns

4

5 # Make predictions for the entire test dataset

6 predictions = []

7 labels = []

8 for image_batch, label_batch in ds_test.as_numpy_iterator():

9 pred_batch = model.predict_on_batch(image_batch).flatten()

10 pred_batch = tf.nn.sigmoid(pred_batch)

11 pred_batch = tf.where(pred_batch < 0.65, 0, 1)

12 predictions.extend(pred_batch.numpy())

13 labels.extend(label_batch)

14

15 # Obtain recall, precision, and F1-score

16 print(classification_report(labels, predictions))

17

18 # Calculate the confusion matrix

19 conf_matrix = confusion_matrix(labels, predictions)

20

21 # Plot the confusion matrix

22 plt.figure(figsize=(10, 10))

23 sns.heatmap(conf_matrix, annot=True, fmt=’d’, cmap=plt.cm.Blues)

24 plt.xlabel(’Predicted Label’)

25 plt.ylabel(’True Label’)

26 plt.title(’Confusion Matrix’)

27 plt.show()

Listing A.23: Generating a classification report and visualizing the confusion matrix.

107

These steps complete the model’s evaluation, providing both quantitative metrics and

qualitative visuals to thoroughly understand the model’s performance. The generated

insights are crucial for determining if the model is ready for deployment or if further

refinement is needed.

A.3 Anomaly Detection Model

As we ventured into training a custom YOLOv8 model for object detection tasks, our

initial setup involved configuring the Google Colab environment to harness the compu-

tational power of TPUs and GPUs. The following code snippets and their respective

captions illustrate the step-by-step procedure adopted in our study.

Mounting the Google Drive To access the dataset required for training, we inte-

grated Google Drive with the Colab environment. This process is akin to connecting

an external storage device to a computer, allowing for seamless data retrieval during

the training process.

1 from google.colab import drive

2 drive.mount("/content/gdrive")

Listing A.24: Mounting Google Drive in Colab for data access.

Setting Up the Working Directory After establishing the connection to our data

repository, we navigated to the specific directory within Google Drive that contained

our dataset. This ensured that all file operations would occur in the correct location.

1 %cd /content/gdrive/MyDrive

Listing A.25: Navigating to the dataset directory in Google Drive.

Cloning the Official YOLOv8 Repository To utilize the latest YOLOv8 algo-

rithms, we cloned the official Ultralytics repository. This repository provided us with

the necessary codebase to execute our object detection models.

1 import os

2 if not os.path.isdir("yolo"):

3 os.makedirs(’yolo’)

4 %cd yolo

5 !git clone https://github.com/ultralytics/ultralytics.git

Listing A.26: Cloning the YOLOv8 repository from Ultralytics.

108

Training the Anomaly Model With the preliminary setup complete, we began

training our custom YOLOv8 model. This involved verifying the available GPU with

NVIDIA’s System Management Interface (SMI) and then proceeding with the instal-

lation of the YOLOv8 package and its dependencies.

1 !nvidia-smi

2 !pip install ultralytics

3 !pip install thop

Listing A.27: Checking GPU availability and installing YOLOv8 dependencies.

Upon successful installation, we initiated the model training procedure. Our command

specified the task, mode, model, data, epochs, image size, visualization, augmentation,

batch size, and patience, which are crucial hyperparameters and settings for effective

model training.

1 !yolo task=detect mode=train model=yolov8s.pt data=data.yaml epochs=60 imgsz=640 ←↩
visualize=True augment=True batch=16 patience=10

Listing A.28: Initiating the training of the YOLOv8 model with specified parameters.

Early Stopping and Validation Throughout the training process, we monitored

the model’s performance and implemented early stopping to prevent overfitting. The

training was halted if no improvement was observed over a defined number of epochs,

ensuring that the model generalized well to new data.

1 # Early stopping was triggered based on the predefined patience parameter.

Listing A.29: Implementing early stopping during model training.

Model Evaluation Post-training, the model was subjected to a thorough evaluation

using the validation dataset. This phase was critical to assess the model’s detection

capabilities and involved saving the results in a JSON format for further analysis.

1 !yolo task=detect mode=val model=runs/detect/train5/weights/best.pt data=data.yaml ←↩
save_json=True

Listing A.30: Evaluating the YOLOv8 model on the validation dataset.

Inference and Result Compilation The trained model was then utilized for in-

ference on new data, demonstrating its predictive performance. The predictions were

compiled into a structured format using a pandas DataFrame, which was subsequently

saved to a CSV file for record-keeping and analysis.

109

1 !yolo task=detect mode=predict model=runs/detect/train5/weights/best.pt conf=0.3 ←↩
source=/content/gdrive/MyDrive/yolo/datasets/test/images save=True save_txt=True ←↩
save_conf=True save_crop=True

Listing A.31: Conducting inference with the trained model and compiling results.

In summary, the training and evaluation of the YOLOv8 model were meticulously

executed, following a structured approach to optimize the model’s performance for our

object detection tasks.

To obtain the Confussion matrix, we used https://onlineconfusionmatrix.com/

A.4 API Integration

A.4.1 Home Page

This code snippet demonstrates the setup of a python-based web application for an

”Inspection Stills Reporting API” with a focus on the home page. The code performs

the following tasks:

1. Sets the page title and icon for the web application.

2. Hides the Streamlit menu and footer for a cleaner interface.

3. Displays a logo image with dynamic column width to fit the content.

4. Sets the title as ”Welcome to the Inspection Stills Reporting API.”

5. Adds a subheader for a video tutorial section.

The code is structured to create a welcoming and user-friendly interface for the API’s

home page.

1 import streamlit as st

2

3 # Set page title and icon

4 st.set_page_config(

5 page_title="Image Classification",

6 page_icon=":camera:",

7)

8

9 # Hide Streamlit menu and footer

10 hide_streamlit_style = """

11 <style>

12 #MainMenu {visibility: hidden;}

13 footer {visibility: hidden;}

110

14 </style>

15 """

16 st.markdown(hide_streamlit_style, unsafe_allow_html=True)

17

18 # Display a logo image

19 logo_image = "media/Logo_nobackground.png"

20 st.image(logo_image, use_column_width=True)

21

22 # Set the title

23 st.title("Welcome to the Inspection Stills Reporting API")

24

25 # Add a subheader for video tutorial

26 st.subheader("Video tutorial")

27 st.video("Inserted video tutorial")

Listing A.32: Streamlit setup and UI elements

The code aims to create an aesthetically pleasing and informative home page for the

Inspection Stills Reporting API using Streamlit.

A.4.2 Image Processing and Timestamp Classifier

This code snippet is an image processing and timestamp classification application.

It utilizes various libraries and functions to process and classify images. The main

functionalities include:

1. Importing necessary libraries, including Streamlit, PyTesseract, OpenCV, PIL,

and others.

2. Configuring the Tesseract OCR engine path.

3. Defining functions to modify Dropbox URLs, fetch images from Dropbox, and

create a ZIP file.

4. Loading and processing image files to extract timestamps and other information.

5. Handling user interactions through a Streamlit web interface.

The code is designed to process inspection still images, extract timestamps, and provide

an interface for users to interact with the processed data.

Configuration and Library Imports

This section of the code snippet initializes the configuration and imports necessary

libraries for the image processing and timestamp classification application. It sets the

111

path for the Tesseract OCR engine and imports libraries for image manipulation, text

recognition, and file handling.

1 import streamlit as st

2 import pytesseract

3 import cv2

4 import numpy as np

5 import re

6 from PIL import Image

7 from collections import defaultdict

8 import io

9 import base64

10 import zipfile

11 import requests

12 from io import BytesIO

13

14 # Indicate tesseract.exe directory path

15 pytesseract.pytesseract.tesseract_cmd = r’/usr/bin/tesseract’

Listing A.33: Configuration and Library Imports

Functions and Classes

This class represents a custom file-like object that extends the BytesIO class. It is

used to encapsulate file content along with its name, size, and type (assumed to be

’image/jpeg’ for simplicity).

1 class FileLikeObject(BytesIO):

2 def __init__(self, name, content):

3 super().__init__(content)

4 self.name = name

5 self.size = len(content)

6 # Assuming all images are JPEG for simplicity; adjust as needed.

7 self.type = ’image/jpeg’

Listing A.34: Custom FileLikeObject Class

This function fetches images from a provided Dropbox URL, processes them, and re-

turns a list of custom FileLikeObject instances containing image data. It also updates

a progress bar to show the upload progress.

1 def fetch_images_from_dropbox(url, progress_bar):

2 try:

3 response = requests.get(url)

4 response.raise_for_status()

5

6 with zipfile.ZipFile(BytesIO(response.content)) as zip_file:

112

7 file_like_objects = []

8 total_files = len(zip_file.namelist())

9 processed = 0

10 for file in zip_file.namelist():

11 if file.endswith(’.jpg’) or file.endswith(’.png’):

12 img_data = zip_file.read(file)

13 file_like_object = FileLikeObject(file, img_data)

14 file_like_objects.append(file_like_object)

15

16 processed += 1

17 progress_bar.progress(processed / total_files, text="Uploading images ←↩
")

18 return file_like_objects

19 except requests.exceptions.RequestException as e:

20 st.error(f"Error fetching file: {e}")

21 return []

22 except zipfile.BadZipFile:

23 st.error("The downloaded file is not a valid ZIP file.")

24 return []

Listing A.35: Function to Fetch and Process Images from Dropbox

This function creates a ZIP file containing saved image data. It takes a list of tuples,

where each tuple contains a file name and image data, and generates a ZIP file with

the specified content.

1 def create_zip_file(saved_images_data):

2 zip_buffer = io.BytesIO()

3 with zipfile.ZipFile(zip_buffer, ’a’, zipfile.ZIP_DEFLATED, False) as zip_file:

4 for file_name, img_data in saved_images_data:

5 zip_file.writestr(file_name, img_data)

6 return zip_buffer.getvalue()

Listing A.36: Function to Create ZIP File from Saved Images

This function loads an image from its byte data and returns it as a PIL Image object.

It also returns the original byte data.

1 def load_image(file_bytes):

2 try:

3 img = Image.open(io.BytesIO(file_bytes)).convert(’RGB’)

4 return img, file_bytes

5 except Exception as e:

6 raise e

Listing A.37: Function to Load Image from Byte Data

113

Time-stamp Classifier

This section defines the main application function responsible for timestamp classifica-

tion and image processing. It initializes the user interface, session state variables, and

handles the user input for processing inspection stills.

1 # Initialize session state variables if they don’t exist

2 if ’last_processed_url’ not in st.session_state:

3 st.session_state.last_processed_url = ’’

4

5 if ’times_by_minute’ not in st.session_state:

6 st.session_state.times_by_minute = {}

7

8 if ’timestamps’ not in st.session_state:

9 st.session_state.timestamps = {}

10

11 if ’unrecognized_images’ not in st.session_state:

12 st.session_state.unrecognized_images = []

13

14 if ’uploaded_files’ not in st.session_state:

15 st.session_state.uploaded_files = []

16

17 if ’saved_images’ not in st.session_state:

18 st.session_state.saved_images = []

19

20 if ’image_details’ not in st.session_state:

21 st.session_state.image_details = []

Listing A.38: Initializing Session State Variables

In this part of the code, session state variables are initialized. These variables are used

to store and manage application data across different user interactions. If these session

state variables don’t exist, they are created with default values.

1 # Dropbox URL input

2 dropbox_url = st.sidebar.text_input("Enter Link to Inspection Stills Folder: ")

3 # Initialize saved_images and image_details in session_state if they don’t exist

4

5 if dropbox_url and dropbox_url != st.session_state.last_processed_url:

6

7 st.session_state.last_processed_url = dropbox_url

8 direct_url = modify_dropbox_url(dropbox_url)

9 # Initialize progress bar for fetching images

10 fetch_progress_bar = st.progress(0, text="Uploading images")

11 st.session_state.uploaded_files = fetch_images_from_dropbox(direct_url, ←↩
fetch_progress_bar)

12 fetch_progress_bar.progress(0.5, text="Recognizing text in images")

13 # Process the images and retrieve the results

114

14 st.session_state.timestamps, st.session_state.times_by_minute, st.session_state. ←↩
unrecognized_images = process_files(st.session_state.uploaded_files, ←↩
fetch_progress_bar)

15 fetch_progress_bar.progress(1.0, text =’Completed’)

16 else:

17 st.info("At the left-hand side panel, Please enter the URL path to the folder ←↩
containing the inspection stills")

Listing A.39: Handling Dropbox URL Input

This part of the code handles user input for the URL to the path folder images. It

displays a text input field in the sidebar where the user can enter the link to the

inspection stills folder. It checks if the entered URL is different from the last processed

URL to avoid redundant processing. The progress bar is updated during image upload

and OCR processing.

1 # Dropdown for selecting timestamp

2 if st.session_state.times_by_minute:

3 if ’selected_minute’ not in st.session_state:

4 st.session_state.selected_minute = list(st.session_state.times_by_minute.keys ←↩
())[0]

5

6 # Create the selectbox and link it directly to the session state variable

7 st.sidebar.selectbox("Select Time", list(st.session_state.times_by_minute.keys() ←↩
), key=’selected_minute’)

8

9 selected_timestamps = st.session_state.times_by_minute.get(st.session_state. ←↩
selected_minute, [])

10 for timestamp in selected_timestamps:

11 for idx, file_bytes in enumerate(st.session_state.timestamps.get(timestamp, ←↩
[])):

12 img = Image.open(io.BytesIO(file_bytes))

13 st.image(img)

14

15 # Create columns for each input field

16 col1,col2,col3 = st.columns(3)

17

18 # Dropdown for Still number

19 still_options = list(range(1, 51))

20 still_number = col1.selectbox("Still Number", still_options, key=f"still_ ←↩
{timestamp}")

21

22 # Text input for Elevation

23 elevation = col2.text_input("Elevation LAT, (+/- 0.00m)", key=f" ←↩
elevation_{timestamp}")

24

25 # Save button in a new row

115

26 if col3.button("Save", key=f"btn_save_{timestamp}_{idx}"):

27 if still_number and elevation:

28 file_name = f"Still{still_number}_EL{elevation}m.png

29 st.session_state.saved_images.append((file_name, file_bytes))

30 st.session_state.image_details.append(file_name)

Listing A.40: Selecting Timestamps and Processing Images

A dropdown is created to allow the user to select a timestamp. It checks if there are

timestamps available in the session state and initializes the selected timestamp if it

doesn’t exist. It displays images corresponding to the selected timestamp, provides

input fields for selecting a still number and entering elevation, and allows the user to

save the images. The saved images and their details are stored in session state variables.

1

2 if st.session_state.saved_images:

3 st.sidebar.header("Saved Images")

4 for image_name in st.session_state.image_details:

5 st.sidebar.write(image_name)

6 if st.sidebar.button("Download"):

7 zip_data = create_zip_file(st.session_state.saved_images)

8 b64_zip = base64.b64encode(zip_data).decode()

9 st.sidebar.markdown(

10 f’<a href="data:application/zip;base64,{b64_zip}" download="saved_images. ←↩
zip">Download saved images as ZIP’,unsafe_allow_html=True)

Listing A.41: Downloading Saved Images

This part of the code provides a download button for the saved images. If there are

saved images available in the session state, it displays them in the sidebar and allows

the user to download them as a ZIP file.

A.4.3 General Classifier Model and Anomaly detection

Imported Packages

This section lists the packages and libraries imported in the code. These packages

provide essential functionality for various tasks within the application.

1 import streamlit as st

2 from PIL import Image

3 import io

4 from io import BytesIO

5 import base64

6 import zipfile

7 from tensorflow.keras.models import load_model

8 from tensorflow.keras.preprocessing import image

116

9 from tensorflow.keras.preprocessing.image import img_to_array

10 from tensorflow.keras.applications.efficientnet import preprocess_input

11 from tensorflow.keras.applications.efficientnet import decode_predictions

12 import tensorflow as tf

13 from ultralytics import YOLO

14 from PIL import Image, ImageDraw

15 import numpy as np

16 import cv2

Listing A.42: Imported Packages

Functions

This section defines several functions used in the application. These functions perform

various tasks such as image preprocessing, creating ZIP files, and decoding predictions.

1 def preprocess_image(img, target_size):

2 img = img.resize(target_size)

3 img_array = img_to_array(img)

4 img_array = np.expand_dims(img_array, axis=0)

5 return preprocess_input(img_array)

Listing A.43: Image Pre-processing for GCM

This function preprocesses the image to feed into the GCM (”EfficientNetB0”) by

resizing it to a specified target size, converting it to an array, and expanding the

dimensions to match the model input shape.

1 def create_zip_file(saved_images_data):

2 zip_buffer = io.BytesIO()

3 with zipfile.ZipFile(zip_buffer, ’a’, zipfile.ZIP_DEFLATED, False) as zip_file:

4 for file_name, img_data in saved_images_data:

5 zip_file.writestr(file_name, img_data)

6 return zip_buffer.getvalue()

Listing A.44: ZIP image files function

This function creates a ZIP file containing saved images and their data.

1 class_names = [’Circumferental Weld’, ’non-CW’]

Listing A.45: List with model’s labels

This variable holds a list of class names used for decoding predictions. In this case, it

represents two classes: ’Circumferential Weld’ and ’non-CW’.

1 def decode_predictions(preds, top=1):

2 results = []

117

3 for pred in preds:

4 top_indices = pred.argsort()[-top:][::-1]

5 result = [class_names[i] for i in top_indices]

6 results.append(result)

7 return results

Listing A.46: Decode GCM predictions

This function decodes the predictions generated by a model and returns the top class

names.

Loading models

1 # Load the GCM

2 model_path = ’models/model.h5’ # Update this to the path of your model

3 model_effnet = load_model(model_path)

4

5 # Load the ADM

6 model_path = ’models/best.pt’

7 model_yolo = YOLO(model_path)

Listing A.47: Upload Deep Learning models

Both models, the GCM and the yolov8 are uploaded.

1 # Check if the variable exists in the session state before accessing it

2 if ’gemini_details’ not in st.session_state:

3 st.session_state.gemini_details = []

4

5

6 if ’gemini_images’ not in st.session_state:

7 st.session_state.gemini_images = []

Listing A.48: Declare session state variables

Checks there are existing images in the session state variables. If not, they are initialized

as empty lists. This is likely for storing and managing user session data like image

details and selections.

1 if ’saved_images’ in st.session_state:

2 for idx, (image_name, image_binary) in enumerate(st.session_state.saved_images):

3 st.write(f"Image {idx+1}: {image_name}")

4

5 image_bytes_io = BytesIO(image_binary)

6 image = Image.open(image_bytes_io)

7

8 # Checkbox to enable/disable anomaly detection

118

9 detect_anomalies = st.checkbox(f"Detect Anomalies for Image {idx+1}", key=f" ←↩
anomaly_detection_{idx}")

10

11 if detect_anomalies:

12 # Perform YOLOv8 inference

13 yolo_results = model_yolo(image)

14 draw = ImageDraw.Draw(image)

15

16 for result in yolo_results:

17 boxes = result.boxes

18 for box in boxes.xyxy:

19 x1, y1, x2, y2 = box.tolist()

20 draw.rectangle([x1, y1, x2, y2], outline="red", width=2)

21

22 # Display the image with bounding boxes

23 st.image(image, use_column_width=True)

24

25 # Preprocess the image and predict

26 processed_image = preprocess_image(image, target_size=(224, 224)) # ←↩
EfficientNetB0 default size

27 predictions = model_effnet.predict(processed_image)[0] # Assuming single ←↩
image prediction

28 probability = tf.nn.sigmoid(predictions[0]) # If the model outputs a single ←↩
logit

29 col1, col2 = st.columns(2)

30

31 with col1:

32 st.info(f"Probability of ’{class_names[1]}’: {probability * 100:.2f}%")

33 with col2:

34 st.info(f"Probability of ’{class_names[0]}’: {(1 - probability) * 100:.2f ←↩
}%")

Listing A.49: Predictions

This code displays saved images from the session state. Each image is given an option

to detect anomalies using the YOLO model. If selected, the model detects objects in

the image, and their bounding boxes are drawn. Each image is also processed and fed

into the GCM for classification. The probability of the image belonging to a particular

class (e.g., ’Circumferential Weld’ or ’non-CW’) is displayed.

1 col3, col4, col5, col6 = st.columns(4)

2

3 feature_options = [’GeneralView’, ’SideWall’, ’CW’, ’SeamWeld’, ’Termination’ ←↩
, ’RetentionBars’, ’Splashzone’, ’MechanicalConnection’, ’SwageLiner’, ’ ←↩
Ext Wrap’, ’Other’,’select_option’]

4 default_feature = ’CW’ if (1 - probability) > probability else ’select_option ←↩
’

119

5 default_index = feature_options.index(default_feature)

6 feature = col3.selectbox("Feature", feature_options, index=default_index, key ←↩
=f"feature_{idx}")

7 # feature = col1.selectbox("Feature", feature_options, key=f"feature_{idx}")

8

9 anomaly_options = [’WallLoss’, ’CoatingLoss’, ’Pitting’, ’Debris’, ’Corrosion ←↩
’, ’Crack’, ’Thru-wall’, ’Weldroot’, ’Abrasion’, ’Fretting’, ’MIC’, ’ ←↩
MechanicalDamage’, ’GoodCondition’, ’Other’]

10 anomaly = col4.selectbox("Description", anomaly_options, key=f"anomaly_{idx}" ←↩
)

11

12 severity_options = [’High’, ’Moderate’, ’Low’, "NA"]

13 severity = col5.selectbox("Severity", severity_options, key=f"severity_{idx}" ←↩
)

14

15 # Save button in a new row

16 if col6.button("Save", key=f"btn_save_{image_name}{idx}"):

17 if feature and anomaly and severity:

18 file_name = f"{image_name[:-4]}_{feature}_{anomaly}_{severity}.png"

19 st.session_state.gemini_images.append((file_name, image_binary))

20 st.session_state.gemini_details.append(file_name)

Listing A.50: Image Annotations

This code, provides options for the user to select features, descriptions, and severity of

any detected issues or anomalies in the image. There is a save button for each image

to save these annotations.

1 # Download button for the saved images

2 if st.session_state.gemini_images:

3 st.sidebar.header("Gemini Images")

4 for image_name in st.session_state.gemini_details:

5 st.sidebar.write(image_name)

6 if st.sidebar.button("Download"):

7 zip_data = create_zip_file(st.session_state.gemini_images)

8 b64_zip = base64.b64encode(zip_data).decode()

9 st.sidebar.markdown(

10 f’<a href="data:application/zip;base64,{b64_zip}" download=" ←↩
gemini_images.zip">Download gemini images as ZIP’,

11 unsafe_allow_html=True)

Listing A.51: Saving and Downloading Annotated Images

If the save button is clicked, the annotated image details are added to the session state.

There is also an option to download all saved and annotated images as a ZIP file.

120

	coversheet_template_THESIS
	TORAL QUIJAS 2024 Towards automated remote
	Abstract
	Acknowledgements
	Declaration
	Introduction
	Background
	Motivation
	Objectives
	Thesis Contribution
	Thesis Structure

	Literature Review
	Inspection Challenges in the Energy Sector
	DL Applications in the Energy Sector
	Underwater Monitoring and Corrosion Detection
	Pipeline and Structural Integrity Assessment
	Surface Defect Detection and Classification

	Review of DL Frameworks for Inspection
	Vision Transformer
	EfficientNet
	You-Only-Look-Once (YOLO)
	Transfer Learning

	Challenges and Limitations of Current DL Approaches
	Data Scarcity and Quality
	Environmental and Operational Variability
	Integration with Existing Systems
	Summary

	Conclusions

	Design
	Proposed Framework
	Data
	Methods & Experiments
	Stage 1 - General Classification Model
	Stage 2 - Anomaly Detection Model
	Stage 3 - Human in the Loop

	Conclusion

	Implementation & Results
	Stage 1: General Classification Model
	Data Collection
	Data Pre-processing
	Training and Validation

	Stage 2: Anomaly Detection Model
	Data Collection
	Data Annotation
	Training and Validation

	Stage 3: Human in the Loop
	Image Pre-processing
	DL Models
	Human Feedback

	Conclusion

	Evaluation
	Stage 1: General Classification Model
	ViT Model
	EfficientNet
	Results Analysis
	Discussion

	Stage 2: Anomaly Detection Model
	Analysis of Detection Metrics Over Epochs
	Learning Rate and Loss Analysis
	Detection Examples
	Overall Assessment

	Stage 3: Human in the Loop
	User Feedback
	Areas of Opportunity

	Conclusion

	Conclusion & Future Directions
	Summary of Findings
	Contributions to the Field
	Future Directions

	Annex
	Custom Filter
	General Classifier
	Visual Transformer (ViT)
	EfficientNet Model

	Anomaly Detection Model
	API Integration
	Home Page
	Image Processing and Timestamp Classifier
	General Classifier Model and Anomaly detection

