
DASANAYAKE, S.D.L.V., SENANAYAKE, J. and WIJAYANAYAKE, W.M.J.I. 2025. DevSecOps implementation for
continuous security in financial trading software application development. In Proceedings of the 25th International

conference on advanced research in computing 2025 (ICARC 2025): converging horizons: uniting disciplines in
computing research through AI innovation, 19-20 February 2025, Belihuloya, Sri Lanka. Piscataway: IEEE [online],

pages 457-462. Available from: https://doi.org/10.1109/ICARC64760.2025.10963292

© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

This document was downloaded from
https://openair.rgu.ac.uk

DevSecOps implementation for continuous
security in financial trading software application

development.

DASANAYAKE, S.D.L.V., SENANAYAKE, J. and WIJAYANAYAKE, W.M.J.I.

2025

https://doi.org/10.1109/ICARC64760.2025.10963292

DevSecOps Implementation for Continuous Security
in Financial Trading Software Application

Development
S.D.L.V. Dasanayake

Department of Industrial Management
Faculty of Science

University of Kelaniya
Sri Lanka

lashadyavidumini@gmail.com

Janaka Senanayake
Robert Gordon University

United Kingdom
University of Kelaniya

Sri Lanka
j.senanayake@rgu.ac.uk

W.M. J. I. Wijayanayake
Department of Industrial Management

Faculty of Science
University of Kelaniya
Kelaniya, Sri Lanka

janaka@kln.ac.lk

Abstract—DevSecOps incorporates security into the DevOps
workflow, ensuring robust protection throughout the software
development lifecycle. This research addresses the security gaps
in financial trading applications, where traditional methods often
prioritize speed over security. Using the Design Science Research
Methodology (DSRM), the study examines secure coding prac-
tices, regulatory compliance, and incident response strategies.
Findings highlight the benefits of embedding automated security
testing and continuous monitoring to enhance resilience against
evolving threats. Tailored developer training addresses knowledge
gaps specific to trading platforms, ensuring compliance with
regulatory demands and safeguarding sensitive financial data. By
accelerating deployment timelines while strengthening security
and compliance, this study demonstrates the critical role of
a DevSecOps model in creating scalable, secure, and resilient
trading applications.

Keywords—DevSecOps, cybersecurity, financial trading, secure
coding, continuous monitoring.

I. INTRODUCTION

A. DevOps to DevSecOps

B. The Need of DevSecOps in Trading
Current practices in financial trading software development

prioritize speed and agility over robust security measures.
Security considerations are often deferred, leading to vulner-
abilities that expose systems to significant threats, including
data breaches, financial losses, and reputational damage. De-
velopers’ limited expertise in secure coding further exacerbates
these challenges, as does the lack of standardized frameworks
tailored for the unique requirements of trading platforms.
Despite the critical need for security in these systems, the
adoption of DevSecOps principles in financial trading appli-
cations remains inadequate.

C. Aim
This study aims to evaluate the effectiveness of integrating

DevSecOps practices into the development of financial trading
applications. Specifically, it focuses on creating a conceptual
model to enhance security outcomes by examining the inter-
play of factors such as secure coding, team collaboration, and
threat modeling.

The following research questions will be addressed in this
study
Research Question 01

• How can security practices be effectively integrated and
enhanced in the development lifecycle of financial trading
applications?

Research Question 02
• What strategies can improve the adoption of secure

development methodologies in financial trading software?
Research Question 03

• How can collaboration among development, security, and
operations optimize security outcomes in financial trading
applications?

II. RELATED WORKS

A. DevSecOps and Its Role in Secure Software Development
DevSecOps represents an evolution of the traditional De-

vOps framework by integrating security practices at every

The integration of development, operations, and automation
through DevOps has revolutionized software development
processes, fostering collaboration and enhancing agility. How-
ever, traditional DevOps methodologies often treat security
as a secondary concern, addressing it in the later stages of
the Software Development Lifecycle (SDLC). This approach
leaves software systems vulnerable to emerging cybersecu-
rity threats, particularly in domains where data sensitivity
and regulatory compliance are paramount, such as financial
trading applications. DevSecOps extends the principles of
DevOps by embedding security practices into every phase
of the development lifecycle. It emphasizes proactive secu-
rity measures, such as secure coding, continuous monitoring,
and automated vulnerability assessment. This transition from
DevOps to DevSecOps is essential for safeguarding financial
trading platforms, which handle highly sensitive data and
operate under stringent regulatory frameworks.

stage of the software development lifecycle. Unlike tradi-
tional security approaches that address vulnerabilities post-
development, DevSecOps advocates for proactive measures
such as secure coding, automated vulnerability detection, and
continuous monitoring. Researchers, [1] emphasize the ben-
efits of DevSecOps, including the shift-left approach, which
brings security considerations earlier in the development pro-
cess, reducing overall risks and costs.

B. Security Practices in the Software Development Lifecycle
(SDLC)

Traditional SDLC methodologies often treat security as an
afterthought, resulting in vulnerabilities that are expensive and
difficult to address in later stages. Secure Software Devel-
opment Lifecycle (SSDLC) frameworks attempt to integrate
security from the planning phase but are less dynamic com-
pared to DevSecOps approaches. Challenges such as unclear
guidelines, developer resistance, and limited automation have
hindered the effective adoption of SSDLC practices [2].

DevSecOps enhances SDLC practices by embedding auto-
mated security testing, fostering collaboration across devel-
opment, operations, and security teams, and aligning with
industry standards such as OWASP and NIST [3]. Despite
these advancements, the literature indicates a need for tailored
frameworks to address specific security needs in trading plat-
forms, where rapid deployment cycles and complex regulatory
environments demand specialized solutions.

C. Security Challenges in Financial Trading Applications

Trading platforms operate in a unique environment char-
acterized by high-frequency transactions, sensitive financial
data, and stringent regulatory requirements. Studies have docu-
mented cybersecurity threats specific to this domain, including
phishing, ransomware, and unauthorized breaches [4], [5]. The
inherent risks associated with these platforms are exacerbated
by the limited focus on security in traditional development
workflows.

Most security frameworks focus on general financial appli-
cations and do not address the unique threats and vulnera-
bilities in trading platforms, and they lack adaptability to the
dynamic nature of trading applications. This gap highlights
the necessity of integrating DevSecOps principles tailored for
trading platforms, ensuring the need of adaptability of models
in a trading context.

D. Frameworks and Their Adaptation

Researchers adopts the ISSRM framework to categorize and
address security risks, focusing on asset-related, risk-related,
and risk treatment-related concepts [6].

Additionally, the study draws on previous work to highlight
the importance of secure coding strategies, such as utilizing
tools for static and dynamic code analysis, developer train-
ing, and gamified learning approaches [7], [8].While existing
studies explore these techniques broadly, their application
to trading platforms remains underexplored, representing a
critical contribution of this research.

E. Threats in the Trading

Trading applications face various security threats that can
severely impact their functionality and reliability. Key threats
include data exfiltration and intellectual property theft, where
sensitive financial data and proprietary algorithms are accessed
or stolen, leading to financial loss and reputational damage [9],
[10]. Market manipulation and insider trading further under-
mine trust in the system, with malicious actors influencing
prices and misusing confidential information for personal gain
[5], [11].

Cyberattacks, such as DDoS and ransomware, disrupt trad-
ing activities by overwhelming servers or encrypting critical
data [12], [13]. Phishing tactics, including email, vishing, and
smishing, also pose risks by deceiving users into revealing
sensitive credentials [13]. Unpatched vulnerabilities and Ad-
vanced Persistent Threats (APTs) allow attackers to infiltrate
systems undetected, while cryptocurrency platforms are at risk
of hot wallet breaches and double-spending attacks [14], [15].

Non-compliance with KYC/AML regulations can result in
legal penalties, and the lack of audit trails increases the risk of
fraud [16], [17]. Fake news and disinformation campaigns also
manipulate market behavior [10]. Lastly, poor network security
and supply chain attacks expose platforms to unauthorized
access and infiltration [9], [13].

F. Secure Coding Practices

Secure coding practices are essential for safeguarding trad-
ing applications, which handle sensitive financial data. Key
practices include input validation and sanitization to prevent
attacks like SQL injection and XSS, using whitelisting over
blacklisting to allow only safe inputs, and sanitizing inputs
to remove dangerous scripts [7], [18]. Output encoding is also
critical, ensuring that data is securely processed in its intended
environment to prevent script execution [19].

Authentication and authorization practices, such as en-
forcing strong password policies, implementing multi-factor
authentication (MFA), and secure session management, help
protect against unauthorized access [18]. For data protection,
using encryption algorithms and avoiding hardcoding sensitive
credentials are essential for safeguarding information [20],
[11].

Effective error and exception handling should avoid expos-
ing sensitive system details to users, while code reviews and
automated tools ensure early detection of vulnerabilities [21],
[18].

This study addresses several critical research gaps in the
field of DevSecOps implementation for financial trading ap-
plications by measuring the overall security and resilience
of these applications, examining the impact of collaboration
between teams, secure coding practices, security frameworks,
and threat modeling and risk assessment, along with the effects
of trading software/project complexity and team experience
and skill level.

III. PROPOSED MODEL

Despite the growing adoption of DevSecOps in software
development, critical gaps persist, particularly within the con-
text of financial trading applications. Existing frameworks
are often generalized and fail to address the unique security
requirements of trading platforms, which operate in high-
stakes environments with sensitive data and stringent regu-
latory demands. Furthermore, there is insufficient focus on
equipping developers with the secure coding skills necessary to
meet the specialized needs of financial software. Additionally,
gaps in automating compliance checks and integrating threat
modeling into CI/CD pipelines hinder the ability to proactively
manage vulnerabilities. Addressing these challenges, this study
proposes a comprehensive DevSecOps model tailored to trad-
ing platforms, bridging these gaps and contributing to both the-
oretical understanding and practical advancements in financial
cybersecurity.

TABLE I
ISSRM CONCEPTUAL AREAS, VARIABLES, AND INDICATORS

ISSRM Conceptual Area Variable Indicators
Asset-Related Concepts Trading Software/Project Complexity - Size of the codebase

- Number of microservices/components
- Number of external dependencies
- Level of integration complexity
- Types and volumes of transactions handled by the trading system

Team Experience and Skill Level - Years of experience in secure coding and DevSecOps
- Number of security certifications held by team members
- Past performance on similar projects
- Training hours completed on security practices
- Rate of compliance with secure coding practices

Risk-Related Concepts Threat Modeling and Risk Assessment - Accuracy of threat modeling
- Documentation of risks and mitigations
- Effectiveness of risk mitigation strategies

Risk Treatment-Related Concepts Collaboration Between Teams - Frequency of cross-functional meetings between development, secu-
rity, and operations teams
- Quality of communication tools
- Involvement of security personnel in all stages of the SDLC
- Level of integration of security tasks in DevOps pipelines
- Perceived cooperation and trust between teams

Secure Coding Practices - Adherence to secure coding guidelines
- Number of vulnerabilities detected during code reviews or scans
- Developer training on secure coding (hours or certification levels)

Security Frameworks - Integration of security frameworks into CI/CD pipelines
- Number of security tests and checkpoints within the framework
- Effectiveness of framework implementation

- Overall Security and Resilience of Financial
Trading Applications (Dependent Variable)

- Mean time to detect/respond to incidents
- Compliance with security standards
- Frequency of successful attacks
- Adoption of security best practices
- User data protection rates
- Resilience to emerging threats

A. Overview of the Conceptual Framework of the Model

The conceptual framework for this study provides a struc-
tured approach to understanding the factors that influence
the security and resilience of financial trading applications.
Grounded in the Information Systems Security Risk Manage-
ment (ISSRM) framework, it integrates theoretical and practi-
cal elements to comprehensively address asset protection, risk

identification, and risk management. The framework bridges
critical components such as team collaboration, secure coding
practices, and the adoption of security frameworks with risk
analysis and mitigation strategies.

This framework emphasizes the interplay between indepen-
dent variables, moderator variables, and their collective impact
on the dependent variable—the overall security and resilience
of financial trading applications.

By categorizing variables according to ISSRM’s asset-
related, risk-related, and risk treatment-related concepts, it
ensures alignment with established risk management principles
while tailoring its application to the unique challenges of finan-
cial trading systems. The inclusion of trading software/project
complexity and team experience as moderating variables re-
flects the dynamic nature of security risk management, high-
lighting the need to consider project-specific complexities and
team expertise in achieving robust security outcomes.

B. Model Validation

1) Data Collection: The study used a combination of pri-
mary and secondary data collection methods to investigate the
subject matter and validate the proposed DevSecOps model.

• Primary Data Collection- Surveys were conducted to
gather quantitative data from relevant stakeholders in

Authorized licensed use limited to: Robert Gordon University. Downloaded on April 24,2025 at 14:47:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Conceptual Framework Structure

financial trading software development. The target partici-
pants included software developers, IT managers, DevOps
engineers, and security professionals. A structured ques-
tionnaire comprising demographic questions and items
mapped to the conceptual framework was used, employ-
ing Likert scales to quantify perceptions and practices.

• Secondary Data Collection- An extensive literature re-
view provided foundational insights, identifying current
trends, security gaps, and best practices in DevSecOps
implementation for trading applications. Sources included
peer-reviewed journal articles, conference proceedings,
and industry reports.

• Pilot Testing- Prior to distribution, the survey underwent
pilot testing with four software engineering professionals,
including two from trading software development firms,
to improve question clarity and response usability.

2) Data Analysis: The data analysis was performed using
Partial Least Squares Structural Equation Modeling (PLS-
SEM) with SmartPLS 4.0.

• Preliminary Data Analysis Before conducting detailed
statistical tests, the dataset was analyzed using SPSS
software, and the following steps were performed:

– All survey questions were made mandatory, mini-
mizing the occurrence of missing data. Outliers were
identified and addressed to mitigate their impact on
the dataset and prevent skewed results. Normality
assessments were conducted to confirm that the data
distributions met the assumptions required for PLS-
SEM analysis. Additionally, a demographic analysis
was performed, providing descriptive statistics to
profile respondents, including their roles, experience
levels and education levels.

3) Measurement Model Assessment:
• Formative Variables - The formative constructs in this

study were Collaboration Between Teams (CBT), Project
Complexity (PC), and Overall Security and Resilience
(OSR). These constructs were evaluated for collinearity
using Variance Inflation Factor (VIF), with all values
below 5, confirming no multicollinearity. The significance
and relevance of indicators were assessed through boot-
strapping, with significant weights indicating meaningful
contributions. Convergent validity was confirmed, as cor-
relations between the constructs and their global measures
exceeded 0.7.

• Reflective Variables The reflective constructs were Team
Expertise and Skills (TES) and Threat Modeling and Risk
Assessment (TMR). Internal consistency reliability was
assessed using Cronbach’s Alpha and Composite Relia-
bility (CR), both exceeding 0.7. Convergent validity was
confirmed, with all outer loadings above 0.7 and Average
Variance Extracted (AVE) values above 0.5. Discriminant
validity was ensured through cross-loadings, the Fornell-
Larcker Criterion, and the Heterotrait-Monotrait Ratio
(HTMT), which was below 0.85 for all constructs.

4) Moderation Assessment:

• The moderation assessment examined how moderator
variables influenced the relationships between indepen-
dent and dependent variables. Interaction terms, combin-
ing independent and moderator variables, were incorpo-
rated into the structural model to evaluate moderation
effects. Path coefficients, derived through bootstrapping,
provided p-values and coefficients to quantify the signifi-
cance and strength of these interactions, while effect sizes
(f²) measured their impact.
Additionally, simple slope analysis was performed to in-
vestigate how the relationships varied at different levels of
the moderators. By analyzing effects at low, medium, and
high levels of moderator variables, the analysis offered
detailed insights into how these factors influenced the
strength and direction of the relationships.

5) Structural Model Assessment: The structural model un-
derwent several tests to evaluate the relationships between
variables. Path coefficients were analyzed for strength and
significance, revealing key influences. The R² value indicated
moderate explanatory power, while Q² values confirmed the
model’s predictive capability. Additionally, effect size (f²)
assessments highlighted the relative impact of each variable.

The overall model evaluation involved validating the con-
ceptual framework through the ISSRM framework, identifying
and operationalizing key variables into measurable indicators.
A structured questionnaire collected quantitative data, refined
through pilot testing for clarity and reliability. PLS-SEM was
used for hypothesis testing, with assessments of reliability, va-
lidity, and structural relationships ensuring robustness. A sta-
tistically significant dataset of 139 responses (60.43% response
rate) supported the analysis, meeting sampling requirements.
Practical feedback from pilot testing the model with industry
professionals guided refinements, while cross-referencing with
literature confirmed alignment with best practices in secure

TABLE II
RESULTS AND IMPACT OF HYPOTHESES

Hypothesis Result Impact
H1 - CBT positively impacts OSR in
trading software.

Accepted Positive

H2 - SCP positively impacts OSR in
trading software.

Accepted Positive

H3 - SF positively impacts OSR in
trading software.

Rejected -

H4 - TMR positively impacts OSR in
trading software.

Rejected -

H5 - PC moderates the relationship
between CBT and OSR.

Rejected -

H6 - PC moderates the relationship
between SCP and OSR.

Rejected -

H7 - PC moderates the relationship
between SF and OSR.

Accepted Positive

H8 - PC moderates the relationship
between TMR and OSR.

Accepted Negative

H9 - TES moderates the relationship
between TMR and OSR.

Rejected -

H10 - TES moderates the relationship
between SF and OSR.

Accepted Negative

H11 - TES moderates the relationship
between SCP and OSR.

Rejected -

H12 - TES moderates the relationship
between CBT and OSR.

Rejected -

software development for financial trading systems.

IV. RESULTS AND DISCUSSION

The adoption of DevSecOps practices is integral to enhanc-
ing the security and resilience of financial trading systems, as
it seamlessly integrates the key factors discussed in this study
into a cohesive model. This research explored the interplay
between various factors influencing software security through
primary data and a thorough literature review. The findings
provide insights into how collaborative efforts, secure coding
practices, security frameworks, threat modeling and risk as-
sessment, project complexity, and team expertise contribute to
building secure and resilient trading applications.

Collaboration among teams, a fundamental aspect of De-
vSecOps, which is mainly falls under development, plays a
crucial role in improving security outcomes. Effective com-
munication and cooperation between developers, security pro-
fessionals, and operations teams enhance the overall resilience
of financial trading systems. By fostering shared responsi-
bilities, collaborative environments enable teams to identify
and address vulnerabilities promptly while ensuring consis-
tent application of security measures. This reflects the core
philosophy of DevSecOps, where cross-functional integration
leads to better security outcomes.

Secure coding practices are a critical component of the
development phase in DevSecOps, emerged as essential for
strengthening the security of trading systems. Practices such as
input validation, secure authentication, error handling, and data
encryption are major instrumental components in reducing
vulnerabilities. The study underscores that adherence to these
practices significantly enhances the resilience of software,

as developers proactively mitigate risks and ensure system
reliability. Such practices provide a robust foundation for ad-
dressing common cybersecurity threats in the financial sector.

Moreover, the integration of security frameworks did not
demonstrate a strong positive impact on system resilience.
While security frameworks serve as a foundation for provide
structure and founda- tional protocols in security measures,
their effectiveness depends on adaptation and consistent appli-
cation tailored to the specific demands of fast-paced trading
environments. This finding suggests that rigidly following
frameworks without customization may fail to address the
unique challenges posed by financial trading systems.

Threat modeling and risk assessment is a major strategy
of ensuring security in DevSecOps, while its valuable for
identifying potential risks, showed limited direct impact on
security resilience in this context. The rapidly evolving nature
of cybersecurity threats in financial systems often outpaces
traditional threat modeling approaches. This highlights the
importance of real-time insights and continuous updates to
ensure such methodologies remain effective in safeguarding
trading platforms.

The study also examined how project complexity and team
expertise influence the effectiveness of security practices. High
project complexity was found to negatively impact the benefits
of threat modeling, suggesting that traditional methods may
struggle in complex environments unless adapted. However,
complexity positively influenced the integration of structured
security frameworks, which can act as stabilizing anchors in
intricate systems. Team expertise showed mixed results; while
experienced teams might rely less on formal frameworks, this
can sometimes lead to overconfidence or biases, emphasizing
the need for balanced approaches that combine expertise with
structured security measures.

V. CONCLUSION

This research explores how DevSecOps practices enhance
the security and resilience of financial trading software by
emphasizing collaboration, secure coding, tailored security
frameworks, and threat modeling. It introduces a novel De-
vSecOps model specifically designed for trading applications,
exploring unique cybersecurity threats and regulatory compli-
ance requirements. Collaborative efforts between development,
security, and operations teams are highlighted as critical for
identifying vulnerabilities early and ensuring consistent secu-
rity measures. Secure coding practices, alongside adaptable
security frameworks and threat modeling, address the complex
demands of trading platforms. Validation through literature and
survey data underscores the model’s effectiveness, offering a
specialized solution distinct from generic security approaches
in financial systems.

VI. LIMITATIONS AND FUTURE WORKS

While this study provides valuable insights, several lim-
itations must be acknowledged. The reliance on purposive
sampling and a modest sample size may limit the accuracy
of findings to the broader financial software industry. The

exclusive use of quantitative methods, while effective for
statistical analysis, may not fully capture team dynamics and
organizational challenges, which qualitative approaches could
explore in greater depth. Model validation based on participant
sentiment or ratings may not be sufficient to fully assess the
overall security of financial trading applications, the indicators
are derived from a thorough literature review, forming the
foundation for the development of the questionnaire. However,
subjective interpretations of these indicators might arise due
to varying individual experiences or biases during the ques-
tionnaire phase. This highlights the need to incorporate more
robust and objective measurement techniques to ensure the
reliability and validity of the assessment outcomes.

Future research should address these limitations by using
larger and more diverse samples to improve generalization
and incorporating qualitative methods, such as interviews or
case studies, to explore team dynamics and organizational
challenges. Longitudinal studies could examine the evolution
and sustained impact of DevSecOps practices, while objective
security measurement techniques, like automated breach simu-
lations or vulnerability scanning, could provide more accurate
assessments. Future studies could incorporate more objective
methods for model validation and evaluation. Additionally, in-
tegrating AI and machine learning into the DevSecOps model
could automate secure coding practices and enhance threat
detection accuracy, advancing security in trading applications.

REFERENCES

[1] R. Kumar and R. Goyal, “Modeling continuous security: A conceptual
model for automated devsecops using open-source software over cloud
(adoc),” Computers & Security, vol. 97, p. 101967, 2020.

[2] Z. A. Maher, A. Shah, S. Chan-dio, H. M. Mohadis, and N. Rahim,
“Challenges and limitations in secure software development adoption-
a qualitative analysis in malaysian software industry prospect,” Indian
Journal of Science and Technology, vol. 13, no. 26, pp. 2601–2608,
2020.

[3] L. Singleton, R. Zhao, M. Song, and H. Siy, “Cryptotutor: Teaching se-
cure coding practices through misuse pattern detection,” in Proceedings
of the 21st Annual Conference on Information Technology Education,
pp. 403–408, 2020.

[4] J. Mitts and E. Talley, “Informed trading and cybersecurity breaches,”
Harv. Bus. L. Rev., vol. 9, p. 1, 2019.

[5] K. Oosthoek and C. Doerr, “Cyber security threats to bitcoin exchanges:
Adversary exploitation and laundering techniques,” IEEE Transactions
on Network and Service Management, vol. 18, no. 2, pp. 1616–1628,
2020.

[6] O. O. Mwambe, “Syntactic and semantic extensions of malicious ac-
tivity diagrams to support issrm,” International Journal of Computer
Applications, vol. 67, no. 4, pp. 33–39, 2013.

[7] J. N. Kotey, “A functioning code may not be a secure code: A
preliminary study on the students’ complacency with secure coding,”
2023.

[8] V. Pikulin, D. Kubo, K. Nissanka, S. Bandara, M. A. Shamsiemon,
A. Yasmin, A. Jayatilaka, A. Madugalla, and T. Kanij, “Towards
developer-centered secure coding training,” in 2023 38th IEEE/ACM In-
ternational Conference on Automated Software Engineering Workshops
(ASEW), pp. 24–31, IEEE, 2023.

[9] K. Huang, S. Madnick, N. Choucri, and F. Zhang, “A systematic
framework to understand transnational governance for cybersecurity
risks from digital trade,” Global Policy, vol. 12, no. 5, pp. 625–638,
2021.

[10] P. Kariuki, L. O. Ofusori, and P. R. Subramaniam, “Cybersecurity threats
and vulnerabilities experienced by small-scale african migrant traders in
southern africa,” Security Journal, pp. 1–30, 2023.

[11] Q. Liu, W. Zhang, S. Ding, H. Li, and Y. Wang, “Novel secure group data
exchange protocol in smart home with physical layer network coding,”
Sensors, vol. 20, no. 4, p. 1138, 2020.

[12] O. Kayode-Ajala, “Applications of cyber threat intelligence (cti) in
financial institutions and challenges in its adoption,” Applied Research
in Artificial Intelligence and Cloud Computing, vol. 6, no. 8, pp. 1–21,
2023.

[13] K. M. Hogan, G. T. Olson, J. D. Mills, and P. A. Zaleski, “An analysis of
cyber breaches and effects on shareholder wealth,” International Journal
of the Economics of Business, vol. 30, no. 1, pp. 51–78, 2023.

[14] G. Gagliani, “Cybersecurity, technological neutrality, and international
trade law,” Journal of International Economic Law, vol. 23, no. 3,
pp. 723–745, 2020.

[15] U. Cali, M. Kuzlu, D. J. Sebastian-Cardenas, O. Elma, M. Pipattana-
somporn, and R. Reddi, “Cybersecure and scalable, token-based re-
newable energy certificate framework using blockchain-enabled trading
platform,” Electrical Engineering, vol. 106, no. 2, pp. 1841–1852, 2024.

[16] K. Shalabi, M. Al-Fayoumi, and Q. A. Al-Haija, “Enhancing financial
system resilience against cyber threats via swift customer security frame-
work,” in 2023 International Conference on Information Technology
(ICIT), pp. 260–265, IEEE, 2023.

[17] V. Tan, C. Cheh, and B. Chen, “From application security verification
standard (asvs) to regulation compliance: A case study in financial
services sector,” in 2021 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), pp. 69–76, IEEE, 2021.

[18] N. Niinivirta, “Software developers’ secure coding needs in the financial
sector: a case study,” 2023.

[19] I. Ryan, U. Roedig, and K.-J. Stol, “Measuring secure coding practice
and culture: A finger pointing at the moon is not the moon,” in 2023
IEEE/ACM 45th International Conference on Software Engineering
(ICSE), pp. 1622–1634, IEEE, 2023.

[20] M. Hayashi, “Secure physical layer network coding versus secure
network coding,” Entropy, vol. 24, no. 1, p. 47, 2021.

[21] J. Pruemmer, T. van Steen, and B. van den Berg, “A systematic review
of current cybersecurity training methods,” Computers & Security,
p. 103585, 2023.

	coversheet_template
	DASANAYAKE 2025 DevSecOps (AAM)

