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Abstract— Unsupervised domain adaptation for remote sensing
semantic segmentation (UDA-RSSeg) is to adapt a model trained
on the source-domain data to the target-domain samples, thereby
minimizing the need for annotated data across diverse remote
sensing (RS) scenes. In urban planning and monitoring, the
task of UDA-RSSeg on very-high-resolution (VHR) images has
garnered significant research interest. While recent deep learning
techniques have demonstrated huge success in tackling the
UDA-RSSeg task for VHR urban scenes, a persistent challenge
in addressing the domain shift issue remains. Specifically, there
are two primary problems: 1) severe inconsistencies in feature
representation across diverse domains, characterized by notably
differing data distributions; and 2) the domain gap problem due
to the representation bias of the source-domain patterns when
translating features to predictive logits. To solve these problems,
we propose a prompted foundation model-based hybrid training
joint-optimized network (PFM-JONet) for UDA-RSSeg on the
VHR urban scene. Our approach integrates the notable “seg-
ment anything model” (SAM) as a prompted foundation model
to leverage its robust generalized representation capabilities,
thereby alleviating feature inconsistencies. Based on the feature
extracted by the SAM-Encoder, we introduce a mapping decoder
(MD) designed to convert SAM-Encoder features into predictive
logits. Additionally, a prompted segmentor (PS) is employed
to generate class-agnostic maps, which guide the MD’s feature
representations. To efficiently optimize the entire network in an
end-to-end manner, we design a hybrid training scheme that inte-
grates feature-level and logits-level adversarial training strategies
alongside a self-training mechanism. This scheme enhances the
model from diverse, compatible perspectives. To evaluate the
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performance of our proposed PFM-JONet, we conduct extensive
experiments on urban scene benchmark datasets, including
ISPRS (Potsdam/Vaihingen) and CITY-OSM (Paris/Chicago).
On the ISPRS dataset, PFM-JONet surpasses previous SOTA
methods by 1.60% in mean IoU value across four adaptation
tasks. For CITY-OSM’s adaptation task, it outperforms SOTA
by 4.84% in the mean IoU value. These results demonstrate
the effectiveness of our method. Furthermore, visualization and
analysis reinforce the method’s interpretability. The code of
this article is available at https://github.com/CV-ShuchangLyu/
PFM-JONet

Index Terms— Hybrid training, prompted foundation model,
semantic segmentation, unsupervised domain adaptation (UDA),
urban scene, very-high-resolution (VHR) images.

I. INTRODUCTION

REMOTE sensing semantic segmentation (RSSeg) has
extensive application across a range of real-world scenar-

ios, including land mapping [1], [2], [3], [4], urban planning
and monitoring [5], [6], [7], [8], disaster evaluation [9], [10],
[11], and various other applications. A variety of advanced
methods [12], [13], [14], [15] have been developed to enhance
its performance. However, despite these advances, the effi-
cacy of RSSeg remains highly dependent on the similarity
between the training (source) and testing (target) datasets.
Significant discrepancies between these datasets can markedly
degrade performance. To address this challenge and facilitate
knowledge transfer across domains, the unsupervised domain
adaptation for remote sensing semantic segmentation (UDA-
RSSeg) task has emerged as a critical task.

In the UDA-RSSeg task on the urban scene, domain
shift in very-high-resolution (VHR) images primarily arises
from differences in ground sampling distance, variations in
remote sensing (RS) sensors, and diverse geographical land-
scapes [16]. To address these challenges, several methods [17],
[18], [19], [20] employ adversarial learning to align the source
and target features. Additionally, other methods [21], [22],
[23], [24] leverage self-training mechanisms to generate high-
quality pseudo-labels for target annotations. Despite significant
advancements, two critical problems shown in Fig. 1 persist:
1) the first problem is the severe inconsistencies in fea-
ture representation across diverse domains, characterized by
notably differing data distributions. While adversarial learning
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aids in feature alignment, it does not fundamentally enhance
generalized feature representation; and 2) the second problem
lies in the bias in “feature-to-prediction” mapping. Even when
the feature representations appear consistent, biases can still
emerge during transferring this class-agnostic generalization
knowledge to a specific class-aware downstream task. This
highlights the need to maintain consistency not only in the
feature space but also throughout the process of adapting these
features to predictive logits.

To address these two issues, we propose PFM-JONet,
a prompted foundation model-based hybrid training joint-
optimized network built on the prompted foundation model.
In this article, we adopt the segment anything model
(SAM) [25] as the prompted foundation model. For the first
problem, we integrate SAM into our architecture to lever-
age its generalized representation capabilities and mitigate
feature inconsistency. Due to its extensive training on the
large-scale dataset “SA-1B,” SAM demonstrates exceptional
proficiency in representing images from a wide range of
domains. Since “SA-1B” primarily comprises natural images,
we apply SAM to generate predictions for VHR urban
scene images captured using different imaging modes, thereby
showcasing its remarkable generalization capabilities for RS
scenes. As shown in Fig. 2, it becomes intuitively evident
that SAM has robust generalization representation capabilities
and remarkable object localization abilities when applied to
RS VHR images, even though it is trained on a large nat-
ural image corpus. Therefore, SAM is proved to be reliable
and generalized to represent RS VHR images from different
domains.

To solve the second problem, we design a hybrid training
joint-optimization mechanism. First, we incorporate a mapping
decoder (MD) to map the features extracted from the SAM
encoder to predictions of a specific downstream task. How-
ever, directly fine-tuning the decoder using source-annotated
samples will also encounter a significant domain shift issue.
To mitigate this, we further utilize a logits-level adversarial
discriminator to enhance the optimization of the MD. Sec-
ond, we incorporate feature-level adversarial learning into the
prompted segmentor (PS) to generate the prompted masks.
This enables the SAM to automatically produce class-agnostic
maps. With the guidance of this map, MD becomes more
sensitive and adept at distinguishing between different cate-
gories in target images. Third, on predictions of MD and PS,
we both design the self-training mechanism. This mechanism
utilizes high-quality pseudo-labels of target-domain samples to
guide the model, thereby mitigating the representation bias of
source-trained networks. Finally, we freeze SAM and jointly
optimize the architecture with hybrid training in an end-to-end
manner.

Fig. 3 compares paradigms for the UDA-RSSeg task. Exist-
ing methods primarily use the “Segmentor Optimization”
paradigm [Fig. 3(a)], where the encoder and the decoder
of the segmentor are optimized end-to-end using various
learning strategies (e.g., adversarial learning and self-training).
Fig. 3(b) illustrates the “PFM-based Fine-tuning” paradigm,
which utilizes SAM to generate more generalized features
for target images. By optimizing the MD, these generalized

Fig. 1. Illustration of the two main problems addressed in our paper.

features are mapped to predictive logits. In this article,
we introduce the “PFM-based Joint Optimization” paradigm
[Fig. 3(c)], where SAM provides generalized feature repre-
sentation, and the PS offers class-agnostic prompted guidance.
By jointly optimizing the PS and MD, our paradigm signifi-
cantly enhances segmentation performance on target images.
Compared to the “Segmentor Optimization” paradigm, our
approach harnesses SAM’s generalization capability to reduce
feature inconsistency between source and target features. Com-
pared to the “PFM-based Fine-tuning” paradigm, our method
incorporates prompted guidance to address the domain gap
between features and predictive logits.

We conduct extensive experiments on prominent bench-
mark datasets, including ISPRS (Potsdam/Vaihingen) [26]
and CITY-OSM (Paris/Chicago) [27]. Comparative anal-
yses demonstrate that PFM-JONet outperforms previous
state-of-the-art methods. Our visualization and analysis fur-
ther highlight the interpretability of PFM-JONet. The key
contributions of this work are summarized as follows.

1) We propose a PFM-JONet to tackle UDA-RSSeg on the
urban scene. To the best of our knowledge, we are the
first to introduce the “PFM-based Joint Optimization”
paradigm in the realm of UDA-RSSeg.

2) Our proposed hybrid training scheme incorporates multi-
level adversarial learning and self-training mechanisms,
enhancing the model from diverse and compatible
perspectives.

3) We propose a prompted guidance mechanism that inte-
grates the optimization of a PS with an MD, which
effectively bridges the gap between class-agnostic maps
and class-aware predictions.

4) Our proposed PFM-JONet demonstrates superior per-
formance compared to existing methods across multi-
ple UDA-RSSeg tasks, utilizing prominent benchmark
datasets for urban scenes.

The structure of this article is organized as follows.
Section II presents a comprehensive review of recent rele-
vant studies and their connections to our proposed method.
In Section III, we elaborate on the technical details and
implementation of our method. Section IV demonstrates the
experimental results, including performance comparison, visu-
alization outcomes analysis, and in-depth discussions. Finally,
Section V concludes the article by summarizing our main
contributions.
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Fig. 2. Visualization of SAM’s predictions on RS VHR images of the urban
scene. The leftmost two cases are captured using the IR-R-G imaging mode,
whereas the rightmost two cases utilize the R-G-B imaging mode. In each
pair of images, the left and right images, respectively, represent the original
image and segmentation predictions generated by SAM.

Fig. 3. Paradigm comparison on the UDA-RSSeg task. {xS, xT }
and {PS, PT }, respectively, denote the source/target images and predic-
tions. {P md−S, P md−T } and {P ps−S, P ps−T }, respectively, denote the
source/target predictions of MD and PS. (a) “Segmentor Optimization”
paradigm for UDA-RSSeg. (b) “PFM-based Fine-tuning” paradigm for
UDA-RSSeg. (c) “PFM-based Joint Optimization” paradigm for UDA-RSSeg.

II. RELATED WORK

A. Remote Sensing Semantic Segmentation

The semantic segmentation task aims to categorize tar-
get objects at the pixel level. Fully convolutional networks
(FCNs) [28] is a pioneer deep learning-based method on
this task. Following FCNs, many notable methods [29], [30],

[31], [32] are proposed, which significantly promote the
development of this task.

On RSSeg is widely applied to geographical element anal-
ysis, urban/rural planning, disaster assessment, and so on.
Semantic segmentation on the RS scene mainly faces the
challenge of complex landscapes on large geographical regions
and large intraclass variance by different grounding sampling
distances. To address these issues, many notable methods
are proposed. Some methods [33], [34], [35], [36] utilize
the abundant information from multiple hierarchy features
to achieve strong segmentation performance. DPFANet [37]
and BSNet [12] integrate the adaptive feature fusion network
and the edge optimization block to enhance the representation
ability from local to global features. With the development of
Transformers, many methods [38], [39], [40], [41], [42] design
effective Transformer-based networks to exploit self-attention
information for the RSSeg task.

B. UDA Semantic Segmentation for RS

Unsupervised domain adaptation (UDA) aims to adapt the
knowledge of source-trained models to target samples. In the
natural scene UDA semantic segmentation task, some methods
have made huge progress. Adversarial learning is frequently
adopted in many excellent methods. Some methods utilize
image generalization techniques to align image appearance
between source and target images. Chen et al. [43], Yang and
Soatto [44], and Guo et al. [45] employed image-level adaption
in the first step and then trained the segmentation networks
with cross-domain synthetic data. The authors [46], [47],
[48], [49] insert discriminators into networks for consistency
alignment on intermediate feature maps or output entropy
maps. As another typical nonadversarial UDA paradigm, self-
training has attracted much attention in cross-domain semantic
segmentation tasks. Pan et al. [50], Zou et al. [51], and
Hoyer et al. [52] promoted the adaption ability by gener-
ating reliable, consistent, and class-balanced pseudo-labels.
Domain-generalized semantic segmentation presents a more
challenging task compared to conventional UDA semantic
segmentation, as it emphasizes the model’s ability to gener-
alize across multiple unseen target domains. Bi et al. [53],
Yi et al. [54], and Ding et al. [55] developed robust models
that can adapt to diverse and potentially heterogeneous data
distributions without prior knowledge of the target domain.
It is noteworthy that FADA [56] pushes the boundaries
by integrating vision foundation models (VFMs) through a
fine-tuning mechanism, significantly advancing the field of
domain-generalized semantic segmentation.

For UDA-RSSeg, many excellent works have been proposed
in recent years. UDA-GAN [57] first introduces a GAN-based
segmentation network to tackle the UDA-RSSeg task. Follow-
ing this pioneering work, numerous methods have emerged,
leveraging adversarial learning for domain alignment. Among
these, some methods [58], [59], [60], [61] apply image-level
adversarial learning between source and target images. Con-
versely, other methods [18], [19], [62], [63], [64] utilize
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feature-level adversarial learning to improve the feature consis-
tency. Although adversarial learning can mitigate domain shift
issues, it often fails to prevent the tendency of source-trained
models to favor source image characteristics. To address
this limitation, the focus has shifted toward nonadversarial
paradigms using self-training mechanisms. Self-training meth-
ods [16], [21], [22], [23] typically rely on the exponential
moving average (EMA) technique to generate pseudo-labels
for target images. By training on pseudo-labels, source-trained
models can better adapt to target domains.

C. Prompted Foundation Models for RS

Large foundation models, including large language mod-
els (LLMs) [65], [66], [67] and vision–language models
(VLMs) [68], [69], [70], have significantly transformed
and advanced the field of artificial intelligence. The intro-
duction of the SAM [25] has revolutionized the field of
semantic segmentation. Leveraging prompted learning for
guidance, SAM-based networks demonstrate remarkable gen-
eralization across diverse scenarios. In RS, several innovative
methods have been developed using the SAM framework.
MAF-SAM [71] harnesses SAM’s generalized capabilities
to effectively process multispectral images. SCD-SAM [72]
utilizes SAM’s robust generalization to enhance perfor-
mance in semantic change detection tasks. Based on SAM,
RingMo-SAM [15] enhances its functionality by designing the
CDMDecoder and integrating a prompt encoder. This allows
RingMo-SAM to achieve the ability to segment any object
in both optical and SAR remote-sensing data. MeSAM [73]
proposes an innovative fine-tuning model that is well-suited
for adapting models to the requirements of semantic seg-
mentation tasks involving RS images. The method presented
in [74] leverages class-agnostic predictions that incorporate
SAM-generated objects (SGOs) and SAM-generated bound-
aries (SGBs). By designing a boundary preservation loss and
an object consistency loss, these methods improve the perfor-
mance of semantic segmentation in RS scenes. On autonomous
driving tasks in the natural scenario, SAM-EDA [75] integrates
SAM into a UDA network for semantic segmentation under
adverse weather conditions. However, the UDA-Seg task in the
RS scene remains unexplored. This article introduces a new
paradigm that leverages the generalized capabilities of SAM
to ease the domain shift in UDA-RSSeg.

III. PROPOSED METHOD

As shown in Fig. 4, our proposed PFM-JONet primarily
comprises three key modules: the PS, the prompted foundation
model, and the MD. The source- and target-domain images
are initially processed by the PS, which generates coarse
predictions. These predictions are then utilized as prompt
information and fed into the prompted encoder to produce
prompted features. In the prompted foundation model (SAM),
the source- and target-domain images pass through the SAM
encoder to generate generalized feature maps. These feature
maps, combined with the prompted features, are processed
by the mask decoder to yield class-agnostic prompted maps.
During the process of mapping generalized features to the

class-aware downstream task, the generalized feature maps
from both source- and target-domain images are fed into
the “MD Neck” of the MD. The resulting feature maps are
then guided by the class-agnostic prompted maps in the “MD
Head,” ultimately generating refined predictions.

A. Prompted Segmentor

As shown in Fig. 4, PS is designed to provide a prompted
mask for SAM to generate the class-agnostic map. To generate
the prompted mask, both source and target images (xS, xT ) are
processed sequentially through the “PS Encoder” ( f ps−e) and
the “PS Decoder” ( f ps−d ), which can be formulated in the
following equations:

F ps−S = f ps−e(xS), F ps−T = f ps−e(xT ) (1)

P ps−S = f ps−d
(
F ps−S

)
, P ps−T = f ps−d

(
F ps−T

)
(2)

where F ps−S and F ps−T represent the extracted feature maps
for source- and target-domain images, respectively. P ps−S and
P ps−T correspond to the output logits for source and target
predictions.

P ps−S and P ps−T undergo a channel-wise argmax opera-
tion, as detailed in (3), to generate the prompted masks PS
and PT . These source- and target-prompted masks are then
used as inputs for the prompted encoder

PS = arg max
c

(
P ps−S

)
, PT = arg max

c

(
P ps−T

)
. (3)

B. Prompted Foundation Model

To consistently represent the source and target images,
we leverage the generalization capability of SAM. As shown in
Fig. 4, the “SAM Encoder” ( fsam−e) is used to extract features
for source and target images

Fs−S = fsam−e(xS), Fs−T = fsam−e(xT ) (4)

where Fs−S and Fs−T denote the output features from the
“SAM Encoder.” These features will serve as input for MD.
Moreover, these features together with the features output
from the “Prompt Encoder” ( fsam−pe) served as the input of
the “Mask Decoder” ( fsam−md ) to generate the class-agnostic
maps, denoted as MS and MT . This process can be formulated
in the following equation:{

MS = fsam−md(Fs−S, fsam−pe(PS))

MT = fsam−md(Fs−T , fsam−pe(PT )).
(5)

C. Mapping Decoder

As shown in Fig. 4, MD is designed to map the features of
the “SAM Encoder” to predictive logits with the guidance of
SAM’s class-agnostic maps. MD contains “MD Neck” ( fmd−n)
and “MD Head” ( fmd−h). As shown in (6), output features
from the “SAM Encoder” [see (4)] first pass through “MD
Neck” to map multiscale features into single-scale features

Fmd−S = fmd−n(Fs−S), Fmd−T = fmd−n(Fs−T ) (6)

where {Fmd−S, Fmd−T } ∈ RC×H×W denote the output fea-
tures from the “MD Neck.”
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Fig. 4. The overview of PFM-JONet. The architecture contains three modules, which are PS, Prompted Foundation Model (SAM), and MD. Adversarial
learning and self-training are applied for joint optimization.

Then, these features are guided by class-agnostic maps
through the attention mechanism. As shown in Fig. 5, features
are fed into a “conv block” and conducted matrix multiplica-
tion with {MS, MT } ∈ RH×W to generate channel-weighted
vectors, denoted as {vmd−S, vmd−T } ∈ RC . This process is
shown in the following equations:

vc
md−S =

exp
(∑H,W

h,w=1( fc(Fmd−S))
c,h,w

× M c,h,w
S

)
∑C

c=1 exp
(∑H,W

h,w=1( fc(Fmd−S))
c,h,w

× M c,h,w
S

)
(7)

vc
md−T =

exp
(∑H,W

h,w=1( fc(Fmd−T ))c,h,w
× M c,h,w

T

)
∑C

c=1 exp
(∑H,W

h,w=1( fc(Fmd−T ))c,h,w
× M c,h,w

T

)
(8)

where vmd−S = [v1
md−S, . . . , v

C
md−S] and vmd−T =

[v1
md−T , . . . , vC

md−T ]. These vectors set the ratio of features’
channel, which can guide the features in a channel-selection
manner

F′

md−S = Fmd−S × vmd−S, F′

md−T = Fmd−T × vmd−T .

(9)

Finally, attention guided features, {F′

md−S, F′

md−T } ∈

RC×H×W are mapped into predictive logits, denoted as
{P md−S, P md−T } by the “MD Head,” formulated as follows:

P md−S = fmd−h
(
F′

md−S
)
, P md−T = fmd−h

(
F′

md−T
)
. (10)

Fig. 5. Prompted SAM map attention guidance block. Here, the “conv block”
indicates the [Conv-BN-ReLU] block.

D. Hybrid Training Joint-Optimized Mechanism

To jointly optimize PFM-JONet, we integrate adversar-
ial learning and self-training strategies to build connections
between generalized features and predictive logits.

1) Optimizing MD: To optimize MD, we involve a
logits-level adversarial learning strategy to enhance the con-
sistent feature representation of the “MD Neck” and “MD
Head.” Toward source and target predictive logits, we design a
logits-level discriminator (Dl) for alignment. The adversarial
loss (Lmd

adv) is calculated in (11). Here, θmd and θdl denote the
trainable parameters of the MD and the logits-level discrimi-
nator, respectively

Lmd
adv(θmd, θdl) = Ex s∼X s

[
log(Dl(P md−S))

]
+ Ex t ∼X t

[
log(1 − Dl(P md−T ))

]
. (11)

In the MD, the focus shifts toward ensuring the consistency
of feature mappings and prediction results as they are trans-
ferred to downstream tasks. Here, the emphasis is on refining
the generalization of features and controlling any deviations
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toward the source domain. By applying adversarial learning at
the logits level, the decoder is encouraged to produce outputs
that are more robust and less biased toward the source domain.

To further alleviate the representation tendency on source
annotated samples, we embed a self-training mechanism into
PFM-JONet to enhance the optimization effect on MD. The
first step is to update “EMA-MD” ( fema-md) by using the EMA
technique. This process can be formulated in the following
equation:

θ t
ema-md = αθ t−1

ema-md + (1 − α)θ t
md (12)

where α denotes the decay factors controlling the updating
rate. θ t

ema-md refers to trainable parameters of “EMA-MD”
(including “EMA-MD Neck” and “EMA-MD Head”) at the
t th step.

The second step is to generate target pseudo-labels, denoted
as P̂ md , which is shown in the following equation:

P̂ md = arg max
c

fema-md(Fs−T , MT ). (13)

The third step is to construct a self-training loss function to
optimize MD, which is formulated in the following equation:

Lmd
EMA(θmd) = −

H,W∑
h,w=1

C∑
c=1

P̂ (h,w,c)
md log

(
P (h,w,c)

md−T

)
. (14)

2) Optimizing PS: A high-performance PS is crucial for
providing a high-quality prompted mask and thus, enhancing
its performance is also important. To achieve this, we imple-
ment feature-level adversarial learning to align the features
of the “PS Encoder” shown in (15). Given that the “PS
Encoder” lacks generalized feature representation capabilities,
it is essential to improve the feature consistency between
source and target images

Lps
adv

(
θps−e, θd f

)
= Ex s∼X s

[
log

(
D f

(
F ps−S

))]
+ Ex t ∼X t

[
log

(
1 − D f

(
F ps−T

))]
(15)

where Lps
adv denotes the adversarial loss. θps−e and θd f , respec-

tively, denote the trainable parameters of the “PS Encoder” and
the feature-level discriminator (D f ).

The PS aims to provide initial informative prompts to the
prompted foundation model. However, its encoder may lack
the ability to generalize across multiple domains in terms of
feature representation. Therefore, aligning features between
the source and target domains becomes crucial. Introducing
a prediction-level adversarial loss in the PS is avoided due to
potential uncontrollable optimization directions in adversarial
training. These directions could negatively impact the positive
effects of ensuring feature mapping consistency, leading to
unstable training or degraded performance.

Similar to the optimization of MD [see (13) and (14)],
we also apply self-training strategy on PS. The “EMA PS”
( fema-ps) updating, pseudo-label generation, and loss func-
tion construction are, respectively, shown in the following
equations:

θ t
ema-ps = αθ t−1

ema-ps + (1 − α)θ t
ps (16)

P̂ ps = arg max
c

fema-ps(xT ) (17)

Algorithm 1 Joint-Optimized Paradigm on PFM-JONet
Input: Source and target images, xS and xT . Source-label

yS. Trainable parameters, θps and θmd . Frozen parameters
of PFM-JONet. The training iteration is set as K .

Output: Updated trainable parameters, θ ′
ps and θ ′

md .
for k = 1, . . . , K do

1st Stage Optimization on Prompted Segmentor:
1: Get feature maps, F ps−S and F ps−T using Eq. (1).
2: Get predictive logits, P ps−S and P ps−T using
Eq. (2).
3: Get prompted masks, PS and PT using Eq. (3).
4: Calculate the segmentation cross-entropy loss, L ps

seg
with source-label.
5: Calculate the feature-level adversarial loss, L ps

adv

using Eq. (15). Use “min − max” criterion to optimize.
6: Calculate the self-training loss, L ps

E M A using Eq. (16)
∼ Eq. (18).
7: Compute gradients by backward operation with com-
bined loss, L ps

= L ps
seg + γ1L ps

adv + γ2L ps
E M A.

8: Update trainable parameters, θps by step.
9: Frozen prompted segmentor.
2nd Stage Optimization on Mapping Decoder:
10: Get generalized feature maps from SAM, Fs−S and
Fs−T using Eq. (4).
11: Get class-agnostic maps, MS and MT using Eq. (5).

12: Get feature maps, Fmd−S and Fmd−T using Eq. (6).

13: Get attention guided feature maps, F′

md−S and
F′

md−T using Eq. (7) ∼ Eq. (9).
14: Get predictions, P md−S and P md−T using Eq. (10).
15: Calculate the segmentation cross-entropy loss, Lmd

seg
with source-label.
16: Calculate the logits-level adversarial loss, Lmd

adv

using Eq. (11). Use “min − max” criterion to optimize.
17: Calculate the self-training loss, Lmd

E M A using
Eq. (12) ∼ Eq. (14).
18: Compute gradients by backward operation with
combined loss, Lmd

= Lmd
seg + γ3Lmd

adv + γ4Lmd
E M A.

19: Update trainable parameters, θmd by step.
20: Frozen Mapping Decoder.

end for

Lps
EMA

(
θps

)
= −

H,W∑
h,w=1

C∑
c=1

P̂ (h,w,c)
ps log

(
P (h,w,c)

ps−T

)
(18)

where θema-ps and θps denote the trainable parameters
of “EMA-PS” and “PS,” respectively. P̂ ps denotes the
pseudo-label of target image.

3) Two-Stage Jointly Optimization With Combined Loss:
To optimize PFM-JONet, we propose a two-stage jointly opti-
mizing paradigm. In each iteration, the first stage is dedicated
to optimizing the PS, where trainable parameters are updated
through the backward propagation process. The second stage
involves optimizing the MD. Notably, our proposed two-stage
optimization framework operates seamlessly within an
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end-to-end learning system. The whole optimization process
is shown in Algorithm 1.

IV. EXPERIMENTS AND ANALYSIS

A. Datasets and Metrics

1) Datasets: To evaluate PFM-JONet on the UDA-
RSSeg task of the urban scene, we select two benchmark
datasets containing cross-city VHR images: ISPRS [26] and
CITY-OSM [27].

ISPRS [26] provides a rich collection of image samples
for diverse tasks within the field of RS. Each image in this
dataset is meticulously annotated at the pixel level across six
categories: “Clutter,” “Impervious Surfaces,” “Car,” “Tree,”
“Low Vegetation,” and “Building.” ISPRS contains two main
subsets: Potsdam and Vaihingen. The Potsdam dataset consists
of 38 VHR true orthophotos (VHR TOPs), each with dimen-
sions of 6000 × 6000 pixels. This dataset includes images
in three imaging modes: IR-R-G, R-G-B, and R-G-B-IR. The
IR-R-G and R-G-B images are composed of three channels,
whereas the R-G-B-IR images include four channels. For our
experiments, we focus on the IR-R-G and R-G-B images. The
Vaihingen dataset comprises 33 VHR TOPs, approximately
sized at 2000 × 2000 pixels, and exclusively utilizes the IR-
R-G imaging mode.

To ensure a fair comparison with previous methodolo-
gies [16], [17], [76], [77], we follow their data preprocessing
technique, which involves cropping VHR images into smaller
patches. These patches are standardized at a size of 512 ×

512 pixels. For the cropping process, we apply strides of
512 for the Potsdam dataset and 256 for the Vaihingen dataset,
resulting in totals of 4598 and 1696 patches, respectively.
Additionally, we utilize the same strategy for the division
of datasets, separating each into training and testing subsets.
Consequently, the training subsets for Potsdam and Vaihingen
include 2904 and 1296 images, respectively, while the testing
subsets comprise 1694 and 440 images, respectively.

In this article, we design four UDA-RSSeg tasks, which are
listed as follows.

1) Adapt Potsdam IR-R-G to Vaihingen IR-R-G (Potsdam
IR-R-G → Vaihingen IR-R-G).

2) Adapt Vaihingen IR-R-G to Potsdam IR-R-G (Vaihingen
IR-R-G → Potsdam IR-R-G).

3) Adapt Potsdam R-G-B to Vaihingen IR-R-G (Potsdam
R-G-B → Vaihingen IR-R-G).

4) Adapt Vaihingen IR-R-G to Potsdam R-G-B (Vaihingen
IR-R-G → Potsdam R-G-B).

CITY-OSM focuses exclusively on urban areas, capturing
the intricate details of cities, including streets, buildings,
parks, and other urban features. CITY-OSM [27] comprises
several subsets, Berlin, Chicago, Zurich, Paris, and Tokyo. All
images are annotated at the pixel level with three categories
including “Background,” “Road” and “Building.” Following
previous methods [16], [78], we select Paris and Chicago
subsets to conduct experiments on the UDA-RSSeg task. Paris
and Chicago datasets, respectively, have 725 and 457 images.
Similar to the data-preprocessing approach on ISPRS, we also
adopt cropping on CITY-OSM, where the stride and patch size

TABLE I
OPTIMIZATION HYPERPARAMETERS FOR HYBRID TRAINING

are, respectively, set as 512 and 512 × 512. After cropping,
Paris and Chicago datasets, respectively, have 22 500 and
13 710 images, where 70% are randomly selected as training
images and the remaining 30% are selected as testing images.

In this article, we follow [16], [78] and conduct one UDA-
RSSeg task, which is listed as follows.

1) Adapt Paris to Chicago (Paris → Chicago).
2) Metrics: To evaluate the model’s performance, we adopt

IoU/mIoU and F1-score/m F-score as metrics. Specifically,
for a class i , IoU is formulated as IoUi = tpi/(tpi + fpi +

fni ), where tpi , fpi , and fni denote true positive, false positive,
and false negative, respectively. The mIoU is the mean value
of all categories’ IoU. Additionally, F1-score is defined as
F1-score = (2 × precision × recall)/(precision+recall). The
m F-score is the mean value of all categories’ F1-score.

B. Implementation Details

1) Architecture Details: PFM-JONet consists of three key
modules, which are PS, prompted foundation model (SAM),
and MD. For the PS, we select SegFormer-b5 [32]. The “PS
Encoder” and “PS Decoder” indicate “mit-b5” and “ALL-
MLP,” respectively. For SAM, there are three main architecture
types, “base,” “large,” and “huge.” Each type indicates a spe-
cific ViT-based [79] “SAM Encoder.” In this article, we select
the “base” type for efficient training. For the MD, we select
multilevel neck as “MD Neck” and select UperNet [80] as
“MD Head.” For the logits-level and feature-level discrimina-
tors, we select PatchGAN [81] to conduct adversarial learning.
Specifically, two discriminators have four convolutional blocks
with kernels of size 4 × 4. The stride settings are 2 for the
first two blocks and 1 for the last two. The output channels for
these blocks are set to 64, 128, 256, and 1, respectively. For the
logits-level discriminator and the feature-level discriminator,
the input channel is equal to the category’s number and the
output channel of the “PS Encoder,” respectively.

2) Optimization Details: To implement the joint-optimized
mechanism in PFM-JONet, we have developed separate mul-
tioptimizers for each critical component. For the “PS” and
“MD,” we employ AdamW [82] as the optimizer. The ini-
tial learning rate is set at 0.00006, with a weight decay
of 0.01. For the two discriminators, we use Adam [83] as
the optimizer, with an initial learning rate of 0.0001 and a
weight decay of 0.01. As outlined in Algorithm 1, we use
γ as optimization hyperparameters to adjust the intensity of
different loss functions. As illustrated in Table I, for the first
stage optimization on PS, γ1 and γ2 are set to 0.005 and
0.75, respectively, to achieve an optimal balance between
the feature-level adversarial loss and the self-training loss.
For the second-stage optimization on MD, γ3 and γ4 are,
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TABLE II
UDA-RSSEG COMPARISON RESULTS (%) ON “POTSDAM IR-R-G → VAIHINGEN IR-R-G” TASK

TABLE III
UDA-RSSEG COMPARISON RESULTS (%) ON “VAIHINGEN IR-R-G → POTSDAM IR-R-G” TASK

respectively, set as 0.001 and 0.75 to balance the logits-level
adversarial loss and the self-training loss. For further details on
the optimization process, refer to our implementation available
at https://github.com/CV-ShuchangLyu/PFM-JONet/

3) Experimental Environment: All experiments are con-
ducted using the mmsegmentation framework [87], a leading
open-source platform designed to advance research and
development in semantic segmentation. Built on PyTorch,
mmsegmentation offers a comprehensive suite of cutting-edge
algorithms, pretrained models, and robust tools for researchers.
For implementing adversarial learning and self-training within
PFM-JONet, we also utilize resources from Mmagic [88]. All
experiments are performed on two NVIDIA RTX 4090 GPUs,
with a batch size of 3 per GPU. For more implemen-
tation details, refer to https://github.com/CV-ShuchangLyu/
PFM-JONet/

C. Experimental Results

1) Comparison Experiments on the ISPRS Dataset: As
shown in Tables II–V, we compare the PFM-JONet’s per-
formance with previous methods on the aforementioned four
UDA-RSSeg task.

For the “Potsdam IR-R-G → Vaihingen IR-R-G” task, the
model is trained using 2904 annotated training images from
the Potsdam IR-R-G subset and 1296 unannotated training
images from the Vaihingen IR-R-G subset. Evaluation is
performed on 440 testing images from the Vaihingen IR-R-
G subset. This task presents a significant domain gap due

to the distinct geographical landscapes between the source
(Potsdam) and target (Vaihingen) domains. The comparison
results are shown in Table II. Compared to ST-DASegNet [16],
PFM-JONet, respectively, achieves 2.53% and 2.31% improve-
ment on mIoU and m F-score. Particularly in the “Clutter”
category, PFM-JONet surpasses all previous methods. When
distinguishing between the “Tree” and “Low vegetation” cat-
egories, PFM-JONet achieves second best, only outperformed
by DAFormer.

For the “Vaihingen IR-R-G → Potsdam IR-R-G” task,
the model is trained using 1296 annotated training images
from the Vaihingen IR-R-G subset and 2904 unannotated
training images from the Potsdam IR-R-G subset. Evaluation
is conducted on 1694 testing images from the Potsdam IR-R-
G subset. This task exhibits a domain-shift challenge similar
to the first task. As shown in Table III, PFM-JONet sur-
passes previous SOTA method, ST-DASegNet [16] by 1.56%
on the mIoU value and 1.72% on m F-score. In the “Car”
category, PFM-JONet shows obvious superiority over previous
methods. In the “Impervious surfaces” and “Building” cate-
gories, PFM-JOANet achieves performance close to that of
the top-performing ST-DASegNet. For the “Tree” and “Low
vegetation” categories, PFM-JOANet yields slightly lower
results compared to DAFormer.

In the “Potsdam R-G-B → Vaihingen IR-R-G” task, the
model is trained using 2904 annotated training images from
the Potsdam R-G-B subset and 1296 unannotated training
images from the Vaihingen IR-R-G subset. The evaluation
is conducted on 440 testing images from the Vaihingen

https://github.com/CV-ShuchangLyu/PFM-JONet/
https://github.com/CV-ShuchangLyu/PFM-JONet/
https://github.com/CV-ShuchangLyu/PFM-JONet/
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TABLE IV
UDA-RSSEG COMPARISON RESULTS (%) ON “POTSDAM R-G-B → VAIHINGEN IR-R-G”

TABLE V
UDA-RSSEG COMPARISON RESULTS (%) ON “ VAIHINGEN IR-R-G → POTSDAM R-G-B”

IR-R-G subset. This task is particularly challenging due to
sensor variations and landscape discrepancies between the two
datasets, making it more complex than the aforementioned
tasks. Specifically, “Tree” is hard to distinguish, because the
color of “Tree” is green in R-G-B images while red in IR-
R-G images. In Table IV, we find that PFM-JONet achieves
the best IoU value and the second best F1-score in this
category. For overall performance, PFM-JONet also ranks
top-1, which proves the generalized performance in more
challenging situations.

In the “Vaihingen IR-R-G → Potsdam R-G-B” task, the
model is trained using 1296 annotated training images from
the Vaihingen IR-R-G subset and 2904 unannotated train-
ing images from Potsdam R-G-B subset. The evaluation is
performed on 1694 testing images from the Potsdam R-
G-B subset. This task encounters similar challenges as the
third task, primarily due to sensor variations and landscape
discrepancies between the datasets. In Table V, we find
that PFM-JONet gains 0.74% and 0.28% on mIoU value
and m F-score when compared to ST-DASegNet. Especially
in the “Impervious surfaces” and “Low vegetation” cate-
gories, PFM-JONet surpasses previous methods by a large
margin.

Overall, PFM-JONet demonstrates impressive performance
across various UDA-RSSeg tasks in the ISPRS datasets.
By leveraging generalized features extracted from SAM, the
hybrid training mechanism of our proposed PFM-JONet is
both logical and effective. When compared to various adver-
sarial learning and self-training methods, PFM-JONet stands
out as a superior option.

TABLE VI
UDA-RSSEG COMPARISON RESULTS (%) ON THE

“PARIS → CHICAGO” TASK

2) Comparison Experiments on the CITY-OSM Dataset:
As shown in Table VI, we make a comparison between our
proposed PFM-JONet with previous SOTA methods on the
“Paris → Chicago” task. Obviously, PFM-JONet outperforms
all previous methods. Specifically, PFM-JONet surpasses
ST-DASegNet [16] by 4.84% in the mIoU value, thereby
achieving new SOTA results. On three categories, PFM-JONet
all show stronger performance. For the “Background” and
“Building” categories, PFM-JONet significantly outperforms
the second-best method by a considerable margin.

3) Ablation Study: To separately show the performance
of each key component of PFM-JONet, we conduct ablation
study on “Potsdam IR-R-G → Vaihingen IR-R-G” and “Pots-
dam R-G-B → Vaihingen IR-R-G” adaptation tasks. As shown
in Table VII, we will analyze the following aspects.
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TABLE VII
ABLATION STUDY WITH CATEGORY-LEVEL SEGMENTATION RESULTS ON “POTSDAM IR-R-G → VAIHINGEN IR-R-G” AND “VAIHINGEN IR-R-G →

POTSDAM IR-R-G” (%). “PS” AND “ST,” RESPECTIVELY, INDICATE PROMPTED SEGMENTOR AND SELF-TRAINING. “F-ADV” AND “L-ADV,”
RESPECTIVELY, INDICATE FEATURE-LEVEL AND LOGITS-LEVEL ADVERSARIAL LEARNING. F1 AND m F , RESPECTIVELY, DENOTE F1-

SCORE AND m F -SCORE

1) Baseline Versus PFM-JONet: In this article, the base-
line model is designed as “PFM-based Fine-tuning”
paradigm [Fig. 3(b)]. Compared to baseline models on
two tasks, the PFM-JONet, respectively, improves by
23.02% and 19.65% on mIoU value and 20.93% and
15.24% on m F-score.

2) Effectiveness of PS: As shown in Table VII, the baseline
model with a PS shows significant improvement, indi-
cating that the MD benefits from the guidance of the
prompted class-agnostic map.

3) Effectiveness of Adversarial Learning: In PFM-JONet,
we integrate feature-level adversarial learning into the
PS. Comparative results demonstrate that feature-level
adversarial learning enhances the segmentor. Logits-
level adversarial learning, embedded in the MD, also
contributes to performance gains by reducing the dis-
crepancy between features and predictive logits.

4) Effectiveness of Self-Training: Results in Table VII
reveal that models employing self-training achieve fur-
ther enhancements. This confirms that the self-training
mechanism corrects the representation bias and stabilizes
optimization during adversarial training, resulting in
improved segmentation performance.

As shown in Table VII, we further provide the following
specific analysis.

1) When integrating feature-level adversarial learning into
the “Baseline + PS,” the model exhibits signifi-
cant improvement. This enhancement occurs because
feature-level adversarial learning boosts the predictive
capabilities of the PS. In turn, this enhanced prediction
contributes to the refinement of the MD by supplying a
high-quality prompted map.

2) From Table II, it is evident that feature-level and
logits-level adversarial learning affect various cate-
gories differently. Feature-level adversarial learning is

particularly beneficial for categories with fewer samples,
enhancing their performance. Conversely, logit-level
adversarial learning shows improved effectiveness in
categories with a larger number of samples. Conse-
quently, combining these two approaches results in a
complementary and compatible two-scheme adversarial
learning strategy that performs exceptionally well.

3) The self-training mechanism also demonstrates strong
compatibility with adversarial learning, straightfor-
wardly enhancing the model. Essentially, it helps correct
representation bias and stabilizes the optimization pro-
cess during adversarial training.

4) In the “Vaihingen IR-R-G → Potsdam IR-R-G” task,
we observe that our proposed key components consis-
tently struggle with the “Clutter” category. This issue
stems from the scarcity of training samples featuring
“Clutter.” This scarcity exemplifies how the few-shot
problem adversely affects the performance in the UDA-
RSSeg task.

4) Sensitivity Analysis on Optimization Hyperparameters:
As shown in Table I, we provide detailed information on
the optimization hyperparameters (γ ) used in hybrid training.
Here, we conduct sensitivity analysis experiments to system-
atically evaluate the impact of different combinations of γ .

a) Rules of optimization hyperparameter configuration:
1) We follow the design principles of AdapSegNet [46] for
the adversarial loss weighting factor (γ1, γ3), avoiding exces-
sively large values to mitigate potential training instability.
Specifically, γ1 is set larger than γ3. The reason is that the
logits-level adversarial loss (for the MD) demonstrates greater
training instability than its feature-level counterpart (for the
PS), owing to its closer coupling with the segmentation objec-
tive; and 2) the weight factors for self-training (γ2, γ4) should
not exceed those of the segmentation loss, as while target-
domain pseudo-label supervision helps mitigate representation
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TABLE VIII
SENSITIVITY ANALYSIS ON OPTIMIZATION HYPERPARAMETERS.

WE CONDUCT UDA-RSSEG EXPERIMENTS ON THE “POTSDAM
IR-R-G → VAIHINGEN IR-R-G” TASK

tendency toward source domain, it inevitably introduces some
noisy signals.

b) Sensitivity analysis of optimization hyperparameters:

1) As shown in Algorithm 1, the PS and MD operate
in different optimization loops. Notably, performance
improvements in PS can enhance prompt information for
MD. Accordingly, our experiments begin with a baseline
implementation excluding both adversarial learning and
self-training components and first evaluate the weight
factors (γ1, γ3) of PS.

2) As shown in Table VIII, when γ1 is lower, the adversarial
effect becomes negligible, yielding results comparable
to the nonadversarial baseline. Higher γ1 will introduce
training instability, degrading the segmentation accu-
racy of target domains. The self-training mechanism
further enhances PS optimization when combined with
feature-level adversarial learning. Performance scales
with γ2 (0.25 → 0.75 → 1.0 yields 55.68% → 57.66%
→ 57.37% in mIoU), indicating PS’s robustness to
pseudo-label noise. The slight drop at γ2 = 1.0 suggests
marginal overfitting.

3) Building upon the optimal performance of the PS,
we conduct a comprehensive evaluation of the MD’s
optimization hyperparameters (γ3, γ4). As shown in
Table VIII, the incorporation of both logits-level
adversarial loss and self-training into the MD yields
significant performance improvements. However, when
these losses are jointly optimized with the segmentation
loss, the model exhibits heightened sensitivity to varia-
tions in γ3 and γ4.

4) While the current implementation demonstrates promis-
ing results through coarse parameter tuning, compre-
hensive fine-grained optimization and deeper analy-
sis of interloss tradeoffs warrant further systematic
investigation.

5) Visualization and Analysis: To intuitively show the
performance and interpretability of PFM-JONet, we con-
duct visualization experiments on the ISPRS and CITY-OSM
datasets.

a) Qualitative visualization results on ISPRS: As shown
in Fig. 6, we provide qualitative visualization results on all four
tasks. The abundant visualization on segmentation prediction
intuitively proves the effectiveness of PFM-JONet. With the
guidance of a high-quality class-agnostic map, PFM-JONet
shows a strong overall performance. In some specific cate-
gories, PFM-JONet can sometimes provide surprising results.
Moreover, visualization results coincide with the segmentation
results shown in Tables II–V.

b) Qualitative visualization results on CITY-OSM: To
intuitively show the performance of PFM-JONet on the “Paris
→ Chicago” UDA-RSSeg task, we provide visualization
results shown in Fig. 6. From the results, we analyze the
following points: 1) compared to baseline models, PFM-JONet
shows obvious overall superiority, especially in the “Road”
category, which coincides with the results shown in Table V
of the main manuscript; 2) it is clear that the prompted map
shows clear boundary and accurate attention, which provides
PFM-JONet with important guidance; and 3) from the results
of the baseline model (“PFM-based Fine-tuning” paradigm),
we find that even with generalized feature representation
ability, it is still hard to fill the domain gap when mapping
feature to predictive logits. In this article, we address this
issue and propose PFM-JONet, which provides insights for
UDA-RSSeg tasks in the urban scene.

c) Visualization analysis on prompted maps: As shown
in Fig. 7, we provide detailed visualization analysis on
prompted maps. Here, we will analyze the following aspects:
1) when guided by a mask, SAM can provide three prompted
maps with different guidance. In Fig. 7, the images in
“left-top,” “right-top,” and “left-bottom” are three prompted
maps; 2) obviously, three prompted maps have different
attention tendencies. Different prompted maps may focus
on different categories or different instances. To maximally
utilize the attention information of three prompted maps,
we adopt channel-wise mean operation to generate an inte-
grated prompted map for guidance. The image in “left-bottom”
indicates the integrated prompted map, and 3) the segmenta-
tion results coincide with the attention tendency of prompted
maps.

D. Discussion

1) Model Complexity Analysis: Table IX presents a com-
prehensive comparison of model complexity metrics between
our method and two notable methods: ST-DASegNet [16]
and AdapSegNet [46], utilizing SegFormer-b5 as the base-
line segmentor. Our analysis reveals two key findings:
1) our proposed PFM-JONet demonstrates a characteristic
performance-complexity tradeoff: while the incorporation of
SAM leads to elevated parameter counts, computational costs
(FLOPs), and reduced inference speed (FPS) compared to
ST-DASegNet and AdapSegNet, it simultaneously achieves
enhanced segmentation performance; and 2) our method
achieves enhanced segmentation performance while main-
taining training efficiency, as only approximately 60% of
parameters require optimization during training due to SAM’s
frozen parameters. In contrast, ST-DASegNet, AdapSegNet,
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Fig. 6. Qualitative visualization results of the UDA-RSSeg task in the urban scene.

TABLE IX
MODEL COMPLEXITY ANALYSIS ON PFM-JONET. ALL MEASURE-

MENTS ARE CONDUCTED UNDER STANDARD CONDITIONS USING AN
NVIDIA GEFORCE RTX 4090 GPU, WITH THE INPUT SIZE FIXED

AT 512 × 512

and the majority of existing methods employ full-model opti-
mization strategies to tackle the UDA-RSSeg task.

2) Analysis on Training Instability Issue: PFM-JONet is
optimized with multiple optimization objectives. This design
inevitably introduces training instability, which is a fundamen-
tal challenge inherent to UDA-RSSeg tasks. Indeed, among
existing methods addressing domain shift, training instability
remains a persistent issue. Here, we will provide an analysis
of the following aspects.

1) Different optimization objectives operate through
complementary mechanisms that collectively enhance
model performance. The segmentation loss on
source-domain annotations establishes fundamental
representation learning for the entire framework.
Adversarial learning operates at both the feature level
and logit level to achieve cross-domain alignment.
The self-training mechanism affects balancing the
representation tendency between source- and target-
domain images. Our ablation studies validate this
synergistic interaction: domain-invariant features
generated through adversarial learning enhance
pseudo-label reliability, which subsequently improves
target-domain representation through iterative self-
training refinement. The integrated loss functions
demonstrate strong compatibility with partially
orthogonal relationships, collectively enhancing
PFM-JONet’s performance.

2) As shown in Algorithm 1, the PS and MD operate in dif-
ferent optimization loops. It means that the optimization
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Fig. 7. Visualization analysis on prompted maps. The prompted maps without red doted boxes indicate the three prompted maps generated by SAM. The
prompted maps with red dotted boxes indicate the integrated prompted map with channel-wise mean operation, which is used for guidance.

processes of these two key modules do not interfere
with each other, which, to a certain extent, renders the
PFM-JONet less prone to training instability than it
might appear.

3) We introduce “pseudo_threshold” to filter out unreliable
pseudo-labels. This design results in zero self-training
loss during initial phases (first ∼2k/40k iterations)
when the model cannot generate sufficiently confi-
dent pseudo-labels. This delayed activation ensures that
self-training does not interfere with early-stage conver-
gence. As training progresses, the gradual involvement
of self-training effectively stabilizes the adaptation
process.

4) In this task, empirical parameter-tuning skills also play
a crucial role. In our released code, we provide detailed
hyperparameters for each optimization objective.

3) Frozen SAM Versus LoRA Fine-Tuning: SAM is trained
with natural corpus, and its feature extraction ability on
RS images may still depend on certain fine-tuning strate-
gies. To evaluate the fine-tuning performance, we insert
low-rank adaptation (LoRA) [97] fine-tuning layer in PFM-
JONet. In our implementations, LoRA is typically applied
to query/key/value projections in self-attention and interme-
diate dense layers in the feed-forward network (FFN) blocks
of the “Transformer Encoder” of the “SAM Encoder.” The
comparison of these two structures is shown in Fig. 8.

As shown in Table X, we conduct UDA-RSSeg experi-
ments to evaluate the performance on “Potsdam IR-R-G →

Fig. 8. Structure of (a) “original SAM” and (b) “SAM-LoRA” within
PFM-JONet.

Vaihingen IR-R-G” and “Vaihingen IR-R-G → Potsdam IR-
R-G” tasks. Overall, we find that these two models achieve
comparable results, whereas the original model with SAM
frozen shows a slight advantage. The analysis of the results can
be presented as follows: 1) the results in Fig. 2 demonstrate
that SAM’s strong performance in natural image segmentation
can be effectively extended to RS image segmentation tasks.
This suggests that keeping the entire SAM model frozen may
yield more stable and superior results; and 2) for downstream
tasks with a small number of training samples in specialized
datasets, the domain shifts disrupt the alignment between SAM
modules, ultimately diminishing the benefits of RS features’
informational advantages.

4) Limitations and Future Works: While the proposed
method demonstrates promising results, it still has certain
limitations that warrant further exploration. First, our proposed
method mainly focuses on the UDA-RSSeg task configured
as single-source and single-target data, which may restrict
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TABLE X
“SAM VERSUS SAM-LORA.” COMPARISON RESULTS (%) ON “POTS-

DAM IR-R-G → VAIHINGEN IR-R-G” AND “VAIHINGEN IR-R-G →

POTSDAM IR-R-G” TASKS

its ability to fully leverage complementary information from
diverse data domains. Second, the image representation uti-
lized in this method may not fully capture the complexities
of diverse scenarios, limiting its generalization capabilities
across multiple target domains. Third, this article does not
explicitly model complex relationships within the data. Fourth,
the reliance on labeled data remains a challenge. Although our
method effectively mitigates the issue of scarce target anno-
tations, its performance remains dependent on the availability
of a sufficient amount of labeled source-domain data.

In future work, we aim to expand our research in several
promising directions. First, beyond the current “single-source
and single-target” paradigm in UDA-RSSeg tasks, we will
explore more complex scenarios, such as “multisource” set-
tings. This will involve leveraging multimodality fusion
techniques, as discussed in [98], to integrate additional modal-
ities and further enhance model performance. Second, we will
also focus on “multitarget” settings in UDA-RSSeg tasks.
As highlighted in [99], the adoption of advanced represen-
tation methods could significantly improve the model’s ability
to generalize across diverse target-domain datasets. Third,
we will exploit the use of latent features and graph neural
networks, as proposed in [100], to further enhance feature
consistency and representation capabilities. Fourth, we will we
will conduct in-depth research on self-paced semi-supervised
learning mechanisms, as proposed in [101]. This could miti-
gate this issue by effectively utilizing limited labeled data and
improving segmentation accuracy.

V. CONCLUSION

In this article, we propose a PFM-JONet to tackle the
UDA-RSSeg task in the urban scene. To essentially improve
the feature consistency representation, we integrate SAM into
our architecture to leverage its generalized representation
capabilities. To bridge the domain gaps between features
and predictive logits, we employ a feature-level adversarial
PS for SAM to generate a prompted class-agnostic map as
guidance. We also involve the logits-level adversarial learning
and self-training mechanism for MD to maximally boost the
optimization effectiveness. Compared to previous paradigms,
we first propose a “PFM-based Joint Optimization” paradigm
and provide insights into a hybrid training scheme on the
UDA-RSSeg task. Extensive experiments on multiple urban
scene VHR benchmark datasets and visualization analysis

show that PFM-JONet outperforms existing methods in an
interpretable manner.

The proposed method still has limitations: it focuses
on single-source and single-target UDA-RSSeg tasks, limits
multidomain and multitarget data utilization, and does not
explicitly model complex data relationships. Additionally,
it relies on labeled source-domain data despite addressing
scarce target annotations. Future work will explore multi-
source and multitarget settings using multimodality fusion and
advanced representation methods, investigate latent features
and graph neural networks for feature consistency, and adopt
self-paced semi-supervised learning to enhance segmentation
accuracy with limited labeled data.
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