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Abstract: Deep learning-based hyperspectral image (HSI) classification methods, such
as Transformers and Mambas, have attracted considerable attention. However, several
challenges persist, e.g., (1) Transformers suffer from quadratic computational complexity
due to the self-attention mechanism; and (2) both the local and global feature extraction
capabilities of large kernel convolutional neural networks (LKCNNs) need to be enhanced.
To address these limitations, we introduce a multi-scale large kernel asymmetric CNN
(MSLKACNN) with the large kernel sizes as large as 1× 17 and 17× 1 for HSI classification.
MSLKACNN comprises a spectral feature extraction module (SFEM) and a multi-scale
large kernel asymmetric convolution (MSLKAC). Specifically, the SFEM is first utilized to
suppress noise, reduce spectral bands, and capture spectral features. Then, MSLKAC, with
a large receptive field, joins two parallel multi-scale asymmetric convolution components
to extract both local and global spatial features: (C1) a multi-scale large kernel asymmetric
depthwise convolution (MLKADC) is designed to capture short-range, middle-range,
and long-range spatial features; and (C2) a multi-scale asymmetric dilated depthwise
convolution (MADDC) is proposed to aggregate the spatial features between pixels across
diverse distances. Extensive experimental results on four widely used HSI datasets show
that the proposed MSLKACNN significantly outperforms ten state-of-the-art methods,
with overall accuracy (OA) gains ranging from 4.93% to 17.80% on Indian Pines, 2.09% to
15.86% on Botswana, 0.67% to 13.33% on Houston 2013, and 2.20% to 24.33% on LongKou.
These results validate the effectiveness of the proposed MSLKACNN.

Keywords: hyperspectral image (HSI) classification; convolutional neural network (CNN);
multi-scale convolution; large kernel convolution; asymmetric convolution

1. Introduction
Hyperspectral images (HSI) consist of hundreds of narrow spectral bands captured

by hyperspectral remote sensors, containing rich spectral–spatial information. Compared
with RGB and multispectral images, HSI provides more advantages in classifying land
cover types. Therefore, hyperspectral image classification (HSIC) offers crucial technical
support for extensive application in domains such as urban planning [1], agriculture [2],
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mineral exploration [3], atmospheric sciences [4], environmental monitoring [5], and object
tracking [6].

A multitude of HSI classification methods primarily focus on traditional machine
learning (ML) models [7] and deep learning (DL) models [8–10]. Compared with traditional
ML methods that depend on handcrafted feature engineering [11], DL approaches have
shown significantly more potential in dealing with various fields, such as HSI classification,
due to their ability to automatically learn features in an end-to-end manner. Typical DL ap-
proaches include stacked autoencoders (SAEs) [12], recurrent neural networks (RNNs) [13],
convolutional neural networks (CNNs) [14,15], capsule networks (CapsNets) [16], graph
convolutional networks (GCNs) [17,18], Transformers [10,19], and Mamba [20]. Among
these models, CNN-, GCN-, Transformer-, and Mamba-based models have gained more
interest. CNN-based models [14,21] utilize shape-fixed small kernel convolutions to extract
local contextual information from fixed-size image patches. Subsequently, researchers
explore multi-scale CNN architectures [22,23] and attention-based CNN models [8,24,25]
to enhance the ability of capturing local spatial–spectral features, thereby improving HSI
classification performance. However, owing to the limited receptive field of their small
kernels, they encounter challenges in identifying the relationships between land covers
over medium and long distances.

Compared to CNNs with shape-fixed kernels, graph convolutional networks (GCNs) [26]
and their variant methods can perform flexible convolutions across irregular land cover
regions. Consequently, many works introduce superpixel-based GCNs to classify HSI
data [9,27–29]. These superpixel GCNs are capable of establishing long-range spatial
dependencies and capture global information by leveraging superpixels as graph nodes.
While the aforementioned superpixel-based GCN models enhance the classification ca-
pabilities of HSI, they suffer from two limitations: (1) the construction of their adjacency
matrices necessitates significant computational resources, thereby diminishing classifica-
tion efficiency; and (2) these adjacency matrices solely aim to model spatial relationships
between pixels, overlooking the crucial spectral correlations.

Recently, driven by the outstanding achievements of vision Transformers (ViTs) [30] in
natural image processing, Transformer-based models [10,19,31–33] have been proposed for
identifying land cover types. These models have demonstrated remarkable classification
outcomes, attributed to their robust capability in capturing and modeling remote depen-
dencies among pixels. Nevertheless, they suffer from computational inefficiency due to the
quadratic computational complexity driven by the self-attention mechanism in the Trans-
former. This complexity poses challenges when dealing with large HSI datasets containing
numerous labeled pixels. To address these limitations, several studies [20,34] are devoted
to developing Mamba [35] frameworks for HSI classification. Although these Mamba-
based models show strong long-range modeling ability and achieve linear computational
complexity, their local feature extraction capabilities need to be enhanced.

In recent years, large kernel CNNs (LKCNNs) [36–38] have garnered considerable
attention. Unlike traditional CNNs, which stack a series of small-kernel layers to enlarge
the receptive field, LKCNNs employ a few large spatial convolutions to increase the size
of the receptive field, demonstrating a promising capability in natural visual tasks. This
capability inspires the limited number of studies [39–41] that leverage LKCNNs for HSI
classification. These studies, such as SSLKA [41], typically employ the classical large kernel
attention (LKA) [37] (decomposing k × k large kernel convolution into a (2d − 1)× (2d − 1)
depthwise convolution (DWC) [42], a k

d × k
d depthwise dilation convolution (DDC) with

a dilation factor of d, and a 1 × 1 convolution) to capture global features. However, they
face three issues: (1) The LKA primarily focuses on modeling long-range dependencies
while overlooking the extraction of local features. (2) Their number of parameters and
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computational complexity significantly increase when the value of k is large, thus increasing
the risk of overfitting. (3) Their capability to learn global features needs to be enhanced
when the value of k is not large.

To tackle these limitations of CNN-, GCN-, Transformer-, Mamba-, and LKCNN-
based models, we propose a multi-scale large kernel asymmetric CNN (MSLKACNN)
for HSI classification. This architecture scales up the large kernel sizes to 1 × 17 and
17 × 1 as illustrated in Figure 1. Specifically, we first develop a spectral feature extraction
module (SFEM) to eliminate noise, reduce spectral bands, and extract spectral features.
Subsequently, to capture the spatial features of different scales, we construct a novel multi-
scale large kernel asymmetric convolution (MSLKAC) comprising two parallel multi-scale
asymmetric convolution components: a multi-scale large kernel asymmetric depthwise
convolution (MLKADC) and a multi-scale asymmetric dilated depthwise convolution
(MADDC). MLKADC consists of parallel DWCs with kernels ranging from 1 × 3 and 3 × 1
to 1 × m and m × 1, which is designed to learn short-range (small local), medium-range
(larger local), and long-range (global) spatial features. Since these depthwise kernels are
non-square and the m is set to a large value of 17, we refer to our MLKADC as large
kernel asymmetric depthwise convolution (ADC). MADDC captures spatial relationships
among pixels at varying distances through an integration of multi-scale learning, dilated
convolutions [43], DWCs, and asymmetric convolutions. Lastly, an average fusion pooling
(AFP) is introduced to fuse these spatial features extracted by various components. The
main contributions of this article are summarized as follows.

Figure 1. Overview illustration of the proposed MSLKACNN, which consists of two primary
blocks, i.e., a spectral feature extraction module (SFEM) and a multi-scale large kernel asymmetric
convolution (MSLKAC) block. MSLKAC includes three key components: MLKADC, MADDC, and
an average fusion pooling (AFP).

(1) We introduce a novel MLKADC to extract local-to-global spatial features. The
MLKADC utilizes a series of asymmetric DWCs with small to large kernels, addressing
the limitations of existing DL models. Notably, it extends the non-square kernel sizes to
1 × 17 and 17 × 1, thus enhancing the global feature extraction capabilities while reducing
the number of parameters compared to SSLKA, which relies on standard square kernels.

(2) We propose a new MADDC to model the spatial relationships between land covers
at different distances by combining ADC with dilated convolution.

(3) By combining the proposed MLKADC and MADDC in parallel, we develop a novel
MSLKAC for improving the ability to extract spatial features across small to large ranges.
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Based on our MSLKAC, we introduce an architecture termed MSLKACNN to jointly learn
both spectral and spatial features through the SFEM and MSLKAC.

The rest of the paper is organized as follows. In Section 2, we present the related
works of HSI classification models. The proposed MSLKACNN is introduced in Section 3.
In Section 4, we evaluate and discuss the performance of MSLKACNN. We summarize the
paper in Section 5.

2. Related Work
HSI classification methods are typically categorized into traditional ML-based ap-

proaches and DL-based approaches. DL-based approaches mainly comprise five types
of models: CNN-based models, GCN-based models, Transformer-based models, Mamba-
based models, and LKCNN-based models.

(1) ML-based models: In early studies, traditional ML methods, such as Markov random
fields [7] and morphological profiles [44], tend to be applied in HSI classification. These
models heavily rely on manual design and exhibit limited learning ability in extracting
deep semantic features from HSI [31].

(2) CNN-based models: Many CNN-based models, ranging from 1D-CNN [45] to
2D-CNN [46] and 3D-CNN [14], have been applied to capture features from HSI in an end-
to-end manner. Additionally, channel-based CNN frameworks, including single-channel
CNN [46], dual-channel CNN [47], and multi-channel CNN [48], have been employed to
learn spatial–spectral features. Zhong et al. [49] and Wang et al. [21] respectively introduce
residual connections [50] and dense connections [51] into their CNNs to significantly deepen
their models, addressing the degradation [50] of deep CNNs. Nevertheless, the majority
of these models are limited to extracting features at a single scale from fixed-size image
patches, resulting in suboptimal and unstable results under complex HSI with limited
training samples [52,53]. To tackle these issues, numerous works establish multi-scale
CNN architectures to capture multi-scale features. For instance, Gong et al. [54] design a
novel multi-scale CNN to more effectively learn features compared with single-scale CNN
methods. MMFN [22] combines the complementary and related features at different scales
to achieve optimal results. To boost the learning capability for extracting spatial–spectral
features, attention-based CNN models have been explored. Li et al. [8] introduce a new
double-branch dual-attention approach termed DBDA, which designs a channel attention
block and a spatial attention block to enhance classification performance. Roy et al. [24]
introduce efficient feature recalibration (EFR) into improved 3D residual blocks to adjust
the size of the receptive field and enhance cross-channel relationships. Furthermore, Wang
et al. [23] develop a novel attention-based multi-scale CNN architecture to better capture
pixel-level discriminative features. These CNN-based models typically contain multiple
small convolutional kernels, thus excelling at extracting local spatial–spectral features.
However, they have difficulty in modeling the long-range dependencies between land
covers because of the inherent locality of their small kernel convolutions.

(3) GCN-based models: Leveraging the capability of GCNs to capture spatial relation-
ships ranging from short range to long range, they have been extensively utilized in HSI
classification tasks. Qin et al. [17] present a spectral–spatial GCN by establishing each pixel
of HSI as a graph node. Subsequently, Bai et al. [18] propose attention GCN frameworks to
capture the non-Euclidean features of HSI. The aforementioned GCN models treat each
pixel in HSI as a graph node, leading to tremendous computations. To overcome the limita-
tion, many works explore superpixel-based GCNs that use superpixels instead of pixels as
graph nodes [55,56]. For example, Wang et al. [56] significantly reduce the computational
complexity by constructing a superpixel graph, which facilitates GCNs to deal with large
HSI data. Nevertheless, for these superpixel-based networks, the features of pixels are
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shared among each superpixel, thereby inevitably overlooking the individual characteris-
tics of these pixels. This neglects the results with limited classification accuracy. To address
these limitations, CNN and GCN fusion-based frameworks have been introduced [28,29,57].
These fusion models fully leverage the advantages of their CNNs and GCNs, jointly mining
features at both the pixel level and superpixel level to achieve complementary feature
extraction. However, these models struggle with classifying large-scale HSI data, due to
the complex computations and memory costs incurred by graph construction.

(4) Transformer-based models: Researchers have successfully applied Transformer to HSI
classification. For instance, He et al. [58] and Hong et al. [19] propose Transformer-based
approaches, employing the multi-head self-attention (MHSA) [59] mechanism to model
long-range relationships across different land cover types. In addition to these single
Transformer structures, several fusion architectures have been developed. SSFTT [10] cap-
tures low-level and high-level features through two convolutional layers and a Gaussian
weighted feature tokenizer, respectively, before establishing global information with a
Transformer. Subsequently, Zhao et al. [32] present a lightweight groupwise separable
convolutional vision Transformer network (GSCViT), utilizing groupwise separable convo-
lutions and groupwise separable MHSA blocks to extract both local and global features.
Furthermore, several works, such as MVAHN [60] and GTFN [31], explore the fusion of
Transformers with GCNs to leverage the strengths of both models, thereby enhancing clas-
sification performance. Although these models effectively model long-term dependencies,
they suffer from challenges in terms of speed and memory usage in large-scale HSI, owing
to the quadratic computational complexity of Transformer.

(5) Mamba-based models: Recently, several Mamba models [20,34,61] have been ex-
plored for HSI classification. SpectralMamba [34] adopts Mamba to capture global informa-
tion and model long-range relationships, achieving linear computational complexity. Zhou
et al. [61] present Mamba-in-Mamba architecture to extract global features, which is more
efficient in computation than Transformer-based models. Furthermore, Li et al. [20] design
spatial and spectral Mamba blocks to extract spatial and spectral features. Although these
models excel in long-range modeling and maintain linear computational complexity, they
necessitate enhanced local feature extraction capabilities.

(6) LKCNN-based models: Motivated by the success of LKCNN models in natural visual
tasks, several works utilize LKCNNs to extract the long-range features of HSI [39–41].
LiteCCLKNet [39] employs the criss-cross large kernel module to learn global information.
LKSSAN [40] and SSLKA [41] apply large kernel attention (LKA) [37], which consists of
depthwise convolution (DWC), depthwise dilation convolution (DDC), and pointwise
convolution (PWC), to extract long-range features. To enhance the both local and global
feature extraction capabilities of these large kernel networks while significantly reducing
their parameter size and computational complexity, we design a new multi-scale large
kernel asymmetric CNN (MSLKACNN). Unlike LKSSAN and SSLKA that use a sequence
of DWC, DDC, and PWC to capture global features, our MSLKACNN captures both local
and global spatial features while improving computational efficiency and reducing the
number of parameters by employing two parallel multi-scale asymmetric convolution
components: (1) the proposed MLKADC that constructs asymmetric DWCs ranging from
a sequence of two DWCs with 1 × 3 and 3 × 1 kernels to a sequence of two DWCs with
1 × m and m × 1 kernels, for extracting small local, larger local, and global spatial features;
and (2) the proposed MADDC, which extracts spatial information among pixels at varying
distances via multi-scale learning and asymmetric dilated DWCs.
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3. Proposed Method
The flowchart of the proposed MSLKACNN architecture is depicted in Figure 1,

comprising two blocks and a classifier: (1) a spectral feature extraction module (SFEM),
designed to eliminate noise, reduce the dimensionality of bands, and learn spectral features
in raw HSI data; (2) a multi-scale large kernel asymmetric convolution (MSLKAC), which
utilizes two parallel multi-scale asymmetric convolutions with small to large kernels to
capture both local and global spatial features; and (3) a Softmax classifier that assigns labels
to individual pixels.

3.1. SFEM

The original HSI data incorporate superfluous spectral information and are prone
to being influenced by noise. To circumvent these issues and extract spectral features,
we design the SFEM. Unlike principal component analysis (PCA), which applies linear
transformations to hyperspectral data for dimensionality reduction, our SFEM automat-
ically performs nonlinear operations to reduce the dimensionality of HSI through three
consecutive identical convolutional blocks equipped with a limited number of filters, sup-
pressing noise and learning the spectral features of the hyperspectral data. Each block
in the proposed SFEM consists of a 1 × 1 convolution, a batch normalization (BN), and a
ReLU6 function.

Let Xl be the input feature map of the l-th convolutional layer, and the output feature
map of the convolutional layer, denoted as Xl+1, can be expressed as

Xl+1 = ReLU6(BN(Conv1l(Xl))) , (1)

where Conv1l represents the l-th convolutional layer with a 1 × 1 kernel.

3.2. MSLKAC

In this section, we introduce the innovative MSLKAC, which enlarges the large ker-
nel sizes to 1 × 17 and 17 × 1 as illustrated in Figure 1. The MSLKAC consists of two
convolutions and a fusion operation: (1) a multi-scale large kernel asymmetric depthwise
convolution (MLKADC), which employs techniques such as multi-scale learning and asym-
metric depthwise convolutions with small to large kernels, to extract spatial features from
HSI data across various ranges; (2) a multi-scale asymmetric dilated depthwise convolu-
tion (MADDC) that captures spatial information among pixels at varying distances by
combining these techniques, including multi-scale learning, dilated convolutions, depth-
wise convolutions, and asymmetric convolutions; and (3) an average fusion pooling (AFP)
that integrates the features learned by the two convolutions. The details of these three
components will be described in the following sections.

(1) Multi-Scale Large Kernel Asymmetric Depthwise Convolution (MLKADC): Compared
with an ordinary convolution, DWC considerably reduces the computational complexity
and the number of parameters by convolving each channel of the input feature map
separately. Due to these advantages of DWC, Gao et al. [62] use DWCs instead of ordinary
convolutions to learn spectral features from HSI. For the further reduction in the number of
computations and parameters, we design a new asymmetric depthwise convolution (ADC)
as illustrated in Figure 2b. In the proposed ADC, we decompose a 3× 3 DWC (with a kernel
size of 3 × 3, as shown in Figure 2a) into a 1 × 3 DWC and a 3 × 1 DWC, with the goal of
improving the computational efficiency and reducing the number of parameters. To extract
small local, larger local, and global spatial features from HSI, we present a novel MLKADC
by constructing ADCs ranging from a sequence of two DWCs with 1 × 3 and 3 × 1 kernels
to a sequence of two DWCs with 1 × m and m × 1 kernels as depicted in Figure 2c. The
proposed MLKADC comprises (m − 1)/2 parallel ADCs. These ADCs take the same input
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information as captured by SFEM, perform convolution operations in an equal-width
manner, maintain a consistent topology, and adhere to two rules: (i) these hyperparameters
(filter numbers, strides) remain the same across these ADCs, except for their varying kernel
sizes; and (ii) the kernel sizes are distributed in an arithmetic progression with a common
difference of 2. Following these two rules, we merely need to design the first template
ADC and establish the scale numbers, and our MLKADC can be determined accordingly.
Consequently, these two rules significantly streamline the design space, allowing us to
concentrate on optimizing a few hyperparameters.

Figure 2. Different depthwise convolutions. (a) Depthwise convolution. (b) Proposed asymmetric
depthwise convolution. (c) Proposed multi-scale large kernel asymmetric depthwise convolution
(MLKADC).

For the proposed MLKADC, we utilize DWCs with various kernels ranging from 1× 3
to 1 × m to extract spatial features along the width of HSI, followed by DWCs and ReLU6
functions with diverse kernels ranging from 3 × 1 to m × 1 to learn spatial features along
the height of HSI, where 1 × m and m × 1 represent the largest kernel sizes in the width
and height directions, respectively. As m is set to a large value of 17 in our experiments, we
refer to our MLKADC as a large kernel convolution. We take the feature map Xp learned
by our SFEM as the input, then its output feature map HMLKADC can be defined as

HMLKADC = MLKADC(Xp) = {H̃3, H̃5, . . . , H̃m} , (2)

where H̃m represents the extracted features from Xp through a sequence consisting of a
DWC with a 1 × m kernel, a DWC with an m × 1 kernel, and a ReLU6 activation function.

In our MLKADC, we employ a sequence of asymmetric convolutions with small
kernels (e.g., 1× 3 and 3× 1) to learn local spatial features, utilize asymmetric convolutions
with medium-sized kernels (such as 1 × 7 and 7 × 1) for the extraction of larger local spatial
features, and use a sequence of asymmetric convolutions with large kernels (like 1 × 17
and 17 × 1) to capture global spatial features.

(2) Multi-Scale Asymmetric Dilated Depthwise Convolution (MADDC): Dilated convolu-
tion can effectively enlarge the receptive field of ordinary convolutions while avoiding the
introduction of additional parameters. Owing to these advantages, dilated convolution has
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been explored and achieved competitive classification performance in HSI classification [63].
This inspires us to introduce dilated convolution into our model. To simultaneously employ
the benefits of dilated convolution and DWC, we construct a 3× 3 dilated depthwise convo-
lution (DDC) with a dilation factor d = 2 by combining these two convolutions (Figure 3a).
To improve the computational efficiency and achieve reduction in the parameters, we de-
sign an asymmetric dilated depthwise convolution (ADDC) comprising three consecutive
components: a 1 × 3 DDC with d = 2, a 3 × 1 DDC with d = 2, and a ReLU6 function as
shown in Figure 3b. To enhance the capability of spatial feature extraction, we propose a
novel MADDC by utilizing (k − 1)/2 ADDCs with kernels ranging from 1 × 3 and 3 × 1 to
1 × k and k × 1 as depicted in Figure 3c. These ADDCs carry out convolution operations in
an equal-width manner, maintaining a similar structure. They are simplified by two rules:
(i) apart from varying kernel sizes and dilation factors, the other hyperparameters (filter
numbers and strides) are set to be the same; and (ii) the spatial sizes and dilation factors
are arranged in arithmetic progressions with common differences of 2 and 1, respectively.
Analogous to our MLKADC, according to the two rules, we only need to design the first
template ADDC and set the scale numbers, and they can be determined accordingly. Hence,
our MADDC avoids complicated design.

Figure 3. Various dilated depthwise convolutions. (a) Proposed dilated depthwise convolution.
(b) Proposed asymmetric dilated depthwise convolution. (c) Proposed multi-scale asymmetric dilated
depthwise convolution (MADDC).

As illustrated in Figure 3c, these DDCs with different kernels ranging from 1 × 3 to
1 × k, are used to learn spatial information across the width of HSI. Then, these DDCs with
diverse kernels ranging from 3 × 1 to k × 1, combined with ReLU6 functions, are designed
to capture spatial features along the height of HSI, where 1 × k and k × 1 denote the largest



Remote Sens. 2025, 17, 1461 9 of 26

kernel sizes in the width and height directions for the proposed MADDC, respectively. Let
HMADDC denote the output features of MADDC, then we have

HMADDC = MADDC(Xp) = {Ĥ3, Ĥ5, . . . , Ĥk} , (3)

where Ĥk represents the learned features from Xp through a sequence of three operations:
a 1 × k DDC with d = (k + 1)/2, a k × 1 DDC with d = (k + 1)/2, and a ReLU6 function.

In our MADDC, we employ parallel ADDCs with various kernels and dilation factors
to capture spatial features and model the relationships between pixels at diverse distances.

(3) Average Fusion Pooling (AFP): The proposed MSLKAC consists of two parallel
asymmetric convolutions: (1) MLKADC that is utilized to learn small local, larger local,
and global spatial features; and (2) MADDC that is used to extract spatial information at
various distances. To integrate these features learned by the two convolutions, we explore
a fusion scheme named average fusion pooling (AFP). Let HMSLKAC represent the output
features of AFP. With Equations (2) and (3), the AFP can be expressed as

H f = AFP(HMLKADC; HMADDC)

=
1
s
(

H̃3 + H̃5 + · · ·+ H̃m + Ĥ3 + Ĥ5 + · · ·+ Ĥk
)

,
(4)

where s = (m + k − 2)/2 is the total number of scales in the proposed MSLKAC. In HSI
classification tasks, common fusion schemes typically include column concatenation [9] and
sum [60]. Under the large value s, our AFP offers the following advantages: (1) In contrast
to column concatenation fusion, the number of parameters in AFP is significantly reduced,
thus mitigating the risk of overfitting; and (2) AFP effectively addresses the potential
issue of large features resulting from sum operation, thereby preventing the concern of
gradient explosion.

3.3. Softmax Classification

After AFP, to determine the label of each pixel, we utilize a Softmax classifier to classify
the fused feature map HMSLKAC. We have

Y =
eWi HMSLKAC+bi

∑c
i eWi HMSLKAC+bi

, (5)

where c represents the number of land cover categories, and Wi and bi denote the trainable
parameter and bias. We adopt a cross-entropy error as the loss function to train our
model, namely,

L = − ∑
Z∈Olabel

c

∑
j=1

Ozj ln Yzj , (6)

where O represents the label matrix, and Yzj denotes the probability of the z-th pixel
belonging to the j-th category.

4. Experiment
In this section, we first describe four publicly available benchmark HSI datasets. Then,

we introduce the evaluation metrics, compared methods, and implementation details. Next,
we qualitatively and quantitatively assess the performance of the proposed MSLKACNN and
state-of-the-art methods. Subsequently, we compare different training samples and fusion
schemes, as well as training and testing times across various methods. Finally, we conduct
several ablation studies to analyze the impacts of key components and hyperparameters.
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4.1. Dataset Description

In our experiments, the four HSI datasets are Indian Pines, Botswana, Houston
2013, and WHU-Hi-LongKou (LongKou), respectively. We summarize the details of these
datasets in Tables 1 and 2.

(1) Indian Pines: The Indian Pines dataset was acquired by the Airborne Visible
Infrared Imaging Spectrometer sensor in 1992. It contains 10,249 labeled pixels with 16
ground-truth classes, consisting of 145 × 145 pixels in the wavelength range from 0.4 to
2.5 µm. After removing these noisy and water absorption bands of 104–108, 150–163, and
220, 200 spectral bands are retained.

(2) Botswana: The Botswana dataset was captured by using the NASA EO-1 satellite
over the Okavango Delta region in Botswana. The whole image comprises 1476 × 256 pixels
with 242 spectral bands, 14 land cover categories, and wavelengths ranging from 0.4 to
2.5 µm. We retain 145 spectral bands by removing 97 noise bands.

(3) Houston 2013: The Houston 2013 dataset was provided by the National Center for
Airborne Laser Mapping (NCALM) over the University of Houston in 2013 [64]. The dataset
contains 15,029 labeled pixels with 16 land cover categories, comprising 349 × 1905 pixels
with 144 spectral bands ranging from 0.38 to 1.05 µm.

(4) WHU-Hi-LongKou (LongKou): The LongKou dataset was gathered by using an
8 mm focal length Headwall Nano-Hyperspec imaging sensor over the town of LongKou,
Hubei Province, China in 2018 [65]. The HSI consists of 550 × 400 pixels with 9 land cover
classes and 240 spectral bands in the wavelength range from 0.4 to 1.0 µm.

Table 1. Summary of Indian Pines and Botswana datasets. No. denotes number. Train., Val., and Test.
represent the number of training samples, validation samples, and test samples, respectively.

Dataset Indian Pines Botswana

Wavelength 0.4–2.5 µm 0.4–2.5 µm
Data Size 145 × 145 × 200 1476 × 256 × 145

Time 1992 2001

Class No. Class Name Train. Val. Test. Class Name Train. Val. Test.

C1 Alfalfa 2 5 39 Water 2 5 263
C2 Corn-notill 2 5 1421 Hippo Grass 2 5 94
C3 Corn-mintill 2 5 823 Floodplain Grasses 1 2 5 244
C4 Corn 2 5 230 Floodplain Grasses 2 2 5 208
C5 Grass-pasture 2 5 476 Reeds 2 5 262
C6 Grass-trees 2 5 723 Riparian 2 5 262
C7 Grass-pasture-mowed 2 5 21 Fires Car 2 5 252
C8 Hay-windrowed 2 5 471 Island Interior 2 5 196
C9 Oats 2 5 13 Acacia Woodlands 2 5 307

C10 Soybean-notill 2 5 965 Acacia Shrub Lands 2 5 241
C11 Soybean-mintill 2 5 2448 Acacia Grasslands 2 5 298
C12 Soybean-clean 2 5 589 Short Mopane 2 5 174
C13 Wheat 2 5 198 Mixed Mopane 2 5 261
C14 Woods 2 5 1258 Exposes Soils 2 5 88
C15 Buildings-Grass-Trees-Drives 2 5 379 - - - -
C16 Stone-Steel-Towers 2 5 86 - - - -

Total - 32 80 10,137 - 28 70 3150
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Table 2. Summary of Houston 2013 and LongKou datasets. No. denotes number. Train., Val., and
Test. represent the number of training samples, validation samples, and test samples, respectively.

Dataset Houston 2013 LongKou

Wavelength 0.38–1.05 µm 0.4–1.0 µm
Data Size 349 × 1905 × 144 550 × 400 × 270

Time 2013 2018

Class No. Class Name Train. Val. Test. Class Name Train. Val. Test.

C1 Healthy Grass 2 5 1244 Corn 2 5 34,504
C2 Stressed Grass 2 5 1247 Cotton 2 5 8367
C3 Synthetic Grass 2 5 690 Sesame 2 5 3024
C4 Tree 2 5 1239 Broad-Leaf Soybean 2 5 63,205
C5 Soil 2 5 1235 Narrow-Leaf Soybean 2 5 4144
C6 Water 2 5 318 Rice 2 5 11,847
C7 Residential 2 5 1261 Water 2 5 67,049
C8 Commercial 2 5 1237 Roads and Houses 2 5 7117
C9 Road 2 5 1245 Mixed Weed 2 5 5222

C10 Highway 2 5 1220 - - - -
C11 Railway 2 5 1228 - - - -
C12 Parking Lot 1 2 5 1226 - - - -
C13 Parking Lot 2 2 5 462 - - - -
C14 Tennis Court 2 5 421 - - - -
C15 Running Track 2 5 653 - - - -

Total - 30 75 14,924 - 18 45 204,479

4.2. Experimental Setup

(1) Evaluation Metrics: To quantitatively analyze the effectiveness of the proposed
MSLKACNN, four evaluation metrics are introduced: per-class accuracy, overall accuracy
(OA), average accuracy (AA), and Kappa coefficient (KAPPA). Furthermore, the classifica-
tion maps produced by various models are visualized to enable a qualitative assessment.

(2) Comparison Methods: To demonstrate the strengths of the proposed MSLKACNN,
ten comparison methods are selected and evaluated. These comparison methods are
divided into four categories, including (a) CNN-based methods: the double-branch dual-
attention network (DBDA) [8], and the attention-based adaptive spectral–spatial kernel
ResNet (A2S2K-Res) [24]; (b) GCN-based methods: the CNN-enhanced GCN (CEGCN) [9],
the fast dynamic graph convolutional network and CNN parallel network (FDGC) [27],
and the GCN and transformer fusion network (GTFN) [31]; (c) Transformer-based methods:
the spectral–spatial feature tokenization transformer (SSFTT) [10], the groupwise separable
convolutional vision Transformer (GSC-ViT) [32], and the double branch convolution-
transformer network (DBCTNet) [33]; (d) Mamba-based method: the spatial–spectral
Mamba (MambaHSI) [20]; and (e) LKCNN-based method: the spectral–spatial large kernel
attention network (SSLKA) [41].

(3) Implementation Details: All experiments are implemented on a Silver 4210 CPU,
Python 3.10, and a GTX-3090 GPU. We adopt the Adam optimizer with a learning rate
of 0.001 on the Pytorch platform. In the proposed MSLKACNN, the number of filters for
all convolutional layers is set to 64. For our MSLKAC, we set the large kernel size m in
MLKADC to 17 while setting the kernel size k in MADDC to 5. We train our model for
200 epochs on the Botswana, for 120 epochs on the Houston 2013, and for 150 epochs on
the other datasets. All experiments of our MSLKACNN and the comparison methods are
repeated twenty times with various random initializations, and the average results are
reported across each evaluation metric.

4.3. Comparison with State-of-the-Art Methods

In this section, we conduct a quantitative and qualitative evaluation between the pro-
posed MSLKACNN and existing state-of-the-art baselines on the Indian Pines, Botswana,
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Houston 2013, and LongKou datasets. These baselines are implemented using the optimal
parameters as described in their respective references.

(1) Results on Indian Pines: Table 3 shows the quantitative comparison of all methods
on the Indian Pines dataset. From the table, we observe that our MSLKACNN outperforms
almost all baselines (except for MambaHSI in KAPPA) in terms of OA, AA, and KAPPA,
as well as seven out of sixteen land cover categories. Specifically, MSLKACNN improves
over CNN approaches by at least 7.92%, improves over GCN approaches by at least 24.06%,
improves over Transformer approaches by at least 21.15%, improves over the Mamba
approach by 24.56%, and improves over the LKCNN approach by 15.84% in terms of OA,
respectively. These improvements highlight the superiority of the proposed MSLKACNN.

Figure 4 illustrates a qualitative evaluation through the visualization of classification
maps obtained by various methods on the Indian Pines dataset. These maps clearly show
that the proposed MSLKACNN exhibits fewer misclassifications in many classes, such as
“Corn-notill” and “Soybean-notill”, in comparison to other methods.

Figure 4. False-color image, ground truth, and classification maps on the Indian Pines dataset.
(a) False-color image. (b) Ground truth. (c) DBDA (OA = 62.21%). (d) A2S2K-Res (OA = 49.75%).
(e) CEGCN (OA = 49.34%). (f) FDGC (OA = 52.52%). (g) GTFN (OA = 54.12%). (h) SSFTT
(OA = 55.42%). (j) GSC-ViT (OA = 52.98%). (k) DBCTNet (OA = 50.87%). (l) MambaHSI
(OA = 53.90%). (m) SSLKA (OA = 57.96%). (i) MSLKACNN (OA = 67.14%).

(2) Results on Botswana: The comparative results of various approaches on the
Botswana dataset are summarized in Table 4. The results reveal two key findings:
(a) Among all methods, the GSC-ViT, MambaHSI, SSLKA, and CEGCN models achieve
the third-best, fourth-best, fifth-best, and sixth-best performance in terms of OA and AA,
respectively. This is mainly due to the fact that these models can effectively establish
long-range dependencies within the HSI data by utilizing Transformer, Mamba, LKCNN,
and GCN, respectively. (b) Our MSLKACNN, which employs multi-scale asymmetric
convolutions with kernels ranging from small to large, excels in capturing global features
that are neglected by traditional CNNs, performing better than baseline methods in eval-
uation metrics, including OA, AA, and KAPPA. Specifically, in terms of OA, AA, and
KAPPA, MSLKACNN outperforms GTFN by 15.79%, 15.13%, and 17.11%, respectively;
outperforms DBCTNet by 6.99%, 6.39%, and 7.57%, respectively; outperforms MambaHSI
by 4.41%, 4.15%, and 6.76%, respectively; and outperforms SSLKA by 4.75%, 5.66%, and
5.16%, respectively. These findings further validate the effectiveness of MSLKACNN.

The classification maps of various methods on the Botswana dataset are displayed
in Figure 5. Given the significant uneven distribution of various land covers within the
highly sparse dataset, we zoom in on the two red boxed areas in the classification maps to
facilitate a more accurate qualitative assessment. According to these enlarged maps, we
observe that the proposed MSLKACNN achieves a superior classification map compared
to the comparison methods.
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Figure 5. False-color image, ground truth, and classification maps on the Botswana dataset. (a) False-
color image. (b) Ground truth. (c) DBDA (OA = 90.52%). (d) A2S2K-Res (OA = 82.57%). (e) CEGCN
(OA = 86.57%). (f) FDGC (OA = 76.75%). (g) GTFN (OA = 76.82%). (h) SSFTT (OA = 80.93%).
(j) GSC-ViT (OA = 90.00%). (k) DBCTNet (OA = 85.62%). (l) MambaHSI (OA = 88.20%). (m) SSLKA
(OA = 87.86%). (i) MSLKACNN (OA = 92.61%).

(3) Results on Houston 2013: Table 5 presents the quantitative results achieved by
different methods on the Houston 2013 dataset. From these results, it is evident that
DBCTNet and GSC-ViT, which integrate convolution and Transformer, rank third and
fourth, respectively, among the eleven methods. This indicates their strengths in capturing
local features through the convolution and establishing long-range dependencies among
pixels via the Transformer. Additionally, MSLKACNN outperforms other methods by a
substantial margin in terms of OA, AA, and KAPPA, which demonstrates the superiority of
our model in learning local-to-global information through asymmetric convolutions with
small-to-large kernels.

The qualitative classification maps of diverse methods are depicted in Figure 6. To
aid a visual evaluation, we zoom in on the two red boxed areas in the classification maps.
From these enlarged maps, we see that MSLKACNN exhibits a superior classification map
in the classes of “Residential” and “Road” compared to comparison baselines.

(4) Results on LongKou: Table 6 displays the numerical outcomes obtained by diverse
algorithms on the LongKou dataset. Consistent with the findings from other datasets,
our proposed MSLKACNN demonstrates a notable enhancement across all benchmark
methods, exceeding the second place (CEGCN) by 2.20%, 6.20%, and 2.77% in terms
of OA, AA, and KAPPA, respectively. This enhancement again shows the strength of
our MSLKACNN.
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Figure 6. False-color image, ground truth, and classification maps on the Houston 2013 dataset.
(a) False-color image. (b) Ground truth. (c) DBDA (OA = 65.87%). (d) A2S2K-Res (OA = 62.46%).
(e) CEGCN (OA = 64.02%). (f) FDGC (OA = 54.30%). (g) GTFN (OA = 60.16%). (h) SSFTT
(OA = 62.30%). (j) GSC-ViT (OA = 65.93%). (k) DBCTNet (OA = 66.20%). (l) MambaHSI (OA
= 61.83%). (m) SSLKA (OA = 66.96%). (i) MSLKACNN (OA = 67.63%).

As illustrated in Figure 7, a visual examination indicates that the classification map
of MSLKACNN is closer to the ground truth compared to other methods, especially in
distinguishing the category of “Broad-Leaf Soybean”.

Figure 7. False-color image, ground truth, and classification maps on the LongKou dataset. (a) False-
color image. (b) Ground truth. (c) DBDA (OA = 80.13%). (d) A2S2K-Res (OA = 80.89%). (e) CEGCN
(OA = 85.99%). (f) FDGC (OA = 70.94%). (g) GTFN (OA = 63.86%). (h) SSFTT (OA = 82.78%).
(j) GSC-ViT (OA = 84.16%). (k) DBCTNet (OA = 83.96%). (l) MambaHSI (OA = 79.15%). (m) SSLKA
(OA = 79.05%). (i) MSLKACNN (OA = 88.19%).
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Table 3. Quantitative comparison of all methods on the Indian Pines dataset using two labeled samples per class for training.

Class
CNNs GCNs Transformers Mamba LKCNN

DBDA A2S2K-Res CEGCN FDGC GTFN SSFTT GSC-ViT DBCTNet MambaHSI SSLKA MSLKACNN
RS 2020 TGRS 2021 TGRS 2021 TGRS 2022 TGRS 2023 TGRS 2022 TGRS 2024 TGRS 2024 TGRS 2024 TGRS 2024 Ours

1 98.46 ± 2.05 96.67 ± 4.14 68.21 ± 19.30 95.38 ± 8.79 90.91 ± 9.14 100.0 ± 0.00 78.72 ± 21.24 87.18 ± 13.37 93.59 ± 3.85 95.38 ± 3.20 98.97 ± 2.35
2 38.99 ± 16.71 30.61 ± 15.52 36.74 ± 17.84 29.58 ± 12.94 40.86 ± 9.80 32.78 ± 2.93 27.34 ± 13.12 27.97 ± 12.00 33.53 ± 11.29 25.38 ± 4.92 51.97 ± 10.84
3 37.40 ± 13.27 25.82 ± 12.87 38.31 ± 20.29 35.39 ± 8.48 35.58 ± 12.17 54.46 ± 6.46 42.24 ± 13.92 31.19 ± 9.49 41.04 ± 16.68 30.52 ± 8.23 43.24 ± 16.59
4 88.13 ± 11.79 59.87 ± 22.14 37.61 ± 16.95 83.83 ± 17.19 73.49 ± 20.01 82.70 ± 3.67 64.43 ± 16.30 65.70 ± 19.72 67.87 ± 21.62 90.17 ± 8.96 85.78 ± 9.92
5 53.24 ± 23.30 61.87 ± 21.49 56.24 ± 15.79 59.79 ± 12.01 52.37 ± 23.34 13.51 ± 3.95 60.29 ± 19.49 53.38 ± 15.82 50.74 ± 26.73 60.27 ± 3.57 64.37 ± 16.78
6 95.44 ± 2.64 90.22 ± 10.40 78.42 ± 24.16 74.27 ± 12.94 82.18 ± 9.98 93.13 ± 2.49 82.70 ± 9.54 83.42 ± 9.86 81.42 ± 13.89 98.70 ± 1.16 95.39 ± 3.52
7 100.0 ± 0.00 100.0 ± 0.00 87.14 ± 11.08 100.0 ± 0.00 99.23 ± 1.54 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 97.62 ± 4.39 100.0 ± 0.00 100.0 ± 0.00
8 73.14 ± 24.93 53.50 ± 20.03 59.34 ± 20.98 83.29 ± 8.50 80.86 ± 12.69 96.41 ± 2.50 74.48 ± 26.43 65.50 ± 18.60 77.88 ± 16.75 55.56 ± 14.88 91.66 ± 15.30
9 100.0 ± 0.00 93.85 ± 9.61 82.31 ± 17.22 96.92 ± 7.05 93.89 ± 5.24 100.0 ± 0.00 99.23 ± 2.31 98.46 ± 4.62 99.23 ± 2.31 100.0 ± 0.00 100.0 ± 0.00
10 45.23 ± 22.16 30.60 ± 22.23 60.52 ± 22.12 48.41 ± 17.60 49.87 ± 11.87 53.14 ± 7.20 48.41 ± 15.12 43.23 ± 19.43 50.39 ± 14.95 47.84 ± 5.56 70.15 ± 9.87
11 57.99 ± 12.34 49.24 ± 15.66 35.97 ± 20.93 40.69 ± 17.78 39.32 ± 13.68 38.74 ± 7.85 48.30 ± 14.92 40.11 ± 18.04 39.87 ± 18.54 51.56 ± 7.04 55.35 ± 13.16
12 48.40 ± 10.22 41.14 ± 20.58 26.55 ± 13.50 34.78 ± 13.61 42.74 ± 15.98 40.44 ± 4.29 31.38 ± 4.68 25.67 ± 6.40 32.80 ± 8.55 60.60 ± 5.63 52.95 ± 12.02
13 99.90 ± 0.30 89.90 ± 24.37 97.93 ± 5.07 97.02 ± 3.80 94.93 ± 2.86 96.21 ± 2.27 99.39 ± 0.87 96.36 ± 5.42 98.69 ± 3.13 97.88 ± 2.81 99.75 ± 0.61
14 93.24 ± 4.90 63.80 ± 17.90 69.27 ± 20.21 76.45 ± 11.01 74.20 ± 11.66 79.89 ± 5.39 70.36 ± 10.35 82.98 ± 9.96 80.78 ± 9.62 91.34 ± 2.36 83.37 ± 10.49
15 75.20 ± 17.41 47.92 ± 13.91 36.52 ± 15.49 61.08 ± 16.07 63.15 ± 19.46 71.13 ± 4.97 48.89 ± 15.77 65.59 ± 14.67 73.03 ± 21.86 56.73 ± 7.67 89.60 ± 12.70
16 100.0 ± 0.00 97.67 ± 4.85 98.26 ± 2.81 95.93 ± 8.16 96.70 ± 5.96 100.0 ± 0.00 99.19 ± 2.08 98.95 ± 1.51 97.79 ± 3.47 100.0 ± 0.00 99.88 ± 0.35

OA 62.21 ± 5.90 49.75 ± 3.02 49.34 ± 4.72 52.52 ± 5.77 54.12 ± 4.28 55.42 ± 2.27 52.98 ± 5.22 50.87 ± 4.05 53.90 ± 4.61 57.96 ± 1.50 67.14 ± 2.50
AA 75.30 ± 4.19 64.54 ± 3.96 60.58 ± 3.64 69.55 ± 2.62 69.39 ± 4.18 72.03 ± 1.06 67.21 ± 2.72 66.61 ± 2.45 69.77 ± 4.08 72.62 ± 1.44 80.15 ± 1.70

KAPPA 57.47 ± 6.52 43.78 ± 3.85 43.64 ± 4.70 47.78 ± 5.92 49.33 ± 4.52 50.58 ± 2.31 47.57 ± 5.29 45.44 ± 3.86 68.13 ± 5.25 52.90 ± 1.15 63.30 ± 2.64
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Table 4. Quantitative comparison of all methods on the Botswana dataset using two labeled samples per class for training.

Class
CNNs GCNs Transformers Mamba LKCNN

DBDA A2S2K-Res CEGCN FDGC GTFN SSFTT GSC-ViT DBCTNet MambaHSI SSLKA MSLKACNN
RS 2020 TGRS 2021 TGRS 2021 TGRS 2022 TGRS 2023 TGRS 2022 TGRS 2024 TGRS 2024 TGRS 2024 TGRS 2024 Ours

1 99.92 ± 0.23 94.45 ± 10.01 96.46 ± 6.10 71.83 ± 18.94 84.85 ± 11.80 35.02 ± 12.13 99.47 ± 1.24 98.17 ± 3.74 100.0 ± 0.00 100.0 ± 0.00 95.13 ± 6.33
2 100.0 ± 0.00 95.85 ± 11.10 99.36 ± 0.98 91.91 ± 13.00 89.60 ± 16.17 100.0 ± 0.00 98.72 ± 3.18 99.15 ± 1.95 89.15 ± 17.97 99.04 ± 1.93 100.0 ± 0.00
3 98.69 ± 3.67 83.03 ± 14.51 84.06 ± 21.00 72.46 ± 19.32 80.76 ± 9.38 79.26 ± 3.78 88.48 ± 9.94 81.68 ± 16.64 98.61 ± 1.29 98.93 ± 1.46 93.89 ± 8.64
4 97.98 ± 5.74 90.34 ± 20.20 96.97 ± 8.93 80.38 ± 24.90 85.92 ± 16.11 100.0 ± 0.00 97.60 ± 3.04 96.97 ± 5.16 97.98 ± 3.89 97.45 ± 5.31 95.19 ± 10.65
5 65.11 ± 23.17 73.40 ± 17.44 50.80 ± 19.73 66.56 ± 16.44 58.69 ± 12.34 65.38 ± 7.27 75.50 ± 13.56 66.95 ± 15.70 66.34 ± 14.80 96.76 ± 2.80 85.69 ± 10.70
6 81.11 ± 15.00 63.59 ± 19.80 52.86 ± 10.67 59.47 ± 16.87 40.22 ± 13.37 51.60 ± 5.40 66.07 ± 24.54 56.91 ± 20.20 61.11 ± 16.57 40.15 ± 6.94 86.95 ± 10.52
7 99.92 ± 0.24 99.60 ± 1.19 96.15 ± 6.29 94.13 ± 6.34 93.50 ± 7.46 97.82 ± 4.45 99.29 ± 1.30 99.84 ± 0.19 98.13 ± 4.47 100.0 ± 0.00 98.53 ± 3.68
8 77.45 ± 16.06 66.73 ± 23.63 88.11 ± 21.69 66.99 ± 28.17 76.67 ± 18.03 99.90 ± 0.31 90.46 ± 13.00 75.26 ± 19.41 91.28 ± 9.64 62.04 ± 4.84 86.58 ± 12.00
9 84.17 ± 28.12 87.62 ± 12.60 95.15 ± 13.61 83.52 ± 18.97 81.57 ± 12.54 93.88 ± 6.73 89.67 ± 8.68 90.49 ± 16.93 82.28 ± 14.72 100.0 ± 0.00 95.57 ± 6.50
10 89.21 ± 13.40 77.05 ± 23.88 94.19 ± 13.59 82.16 ± 22.18 77.32 ± 19.61 74.90 ± 11.27 89.63 ± 19.40 79.75 ± 19.49 97.22 ± 4.23 99.21 ± 1.04 90.33 ± 18.43
11 94.60 ± 6.63 79.09 ± 20.62 90.20 ± 8.89 72.89 ± 17.94 70.53 ± 23.92 96.71 ± 3.96 89.77 ± 12.56 87.48 ± 11.56 79.93 ± 20.01 68.52 ± 3.55 86.21 ± 10.09
12 96.72 ± 4.71 71.26 ± 22.98 97.99 ± 4.09 63.85 ± 17.91 79.78 ± 18.54 79.60 ± 4.26 99.20 ± 0.90 85.11 ± 14.68 96.21 ± 4.96 97.47 ± 1.24 95.98 ± 8.28
13 99.39 ± 1.36 92.87 ± 13.92 99.12 ± 2.00 93.68 ± 7.66 90.30 ± 18.94 98.93 ± 1.85 98.70 ± 1.36 99.50 ± 0.97 99.66 ± 1.03 100.0 ± 0.00 100.0 ± 0.00
14 91.25 ± 6.67 84.55 ± 11.50 78.86 ± 19.68 82.27 ± 7.42 78.92 ± 20.48 67.50 ± 12.81 84.55 ± 18.98 93.75 ± 7.01 84.55 ± 18.27 61.59 ± 33.71 90.45 ± 7.66

OA 90.52 ± 3.29 82.57 ± 5.13 86.57 ± 3.87 76.75 ± 5.94 76.82 ± 4.17 80.93 ± 2.15 90.00 ± 4.01 85.62 ± 3.80 88.20 ± 2.82 87.86 ± 1.22 92.61 ± 2.71
AA 91.11 ± 2.53 82.82 ± 5.07 87.16 ± 3.23 77.29 ± 5.71 77.76 ± 4.59 81.46 ± 2.07 90.51 ± 4.00 86.50 ± 3.53 88.74 ± 2.39 87.23 ± 2.61 92.89 ± 2.34

KAPPA 89.74 ± 3.55 81.10 ± 5.56 85.47 ± 4.17 74.79 ± 6.44 74.88 ± 4.52 79.33 ± 2.32 89.17 ± 4.34 84.42 ± 4.11 85.23 ± 6.28 86.83 ± 1.33 91.99 ± 2.94
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Table 5. Quantitative comparison of all methods on the Houston 2013 dataset using two labeled samples per class for training.

Class
CNNs GCNs Transformers Mamba LKCNN

DBDA A2S2K-Res CEGCN FDGC GTFN SSFTT GSC-ViT DBCTNet MambaHSI SSLKA MSLKACNN
RS 2020 TGRS 2021 TGRS 2021 TGRS 2022 TGRS 2023 TGRS 2022 TGRS 2024 TGRS 2024 TGRS 2024 TGRS 2024 Ours

1 87.27 ± 7.09 59.97 ± 21.66 79.28 ± 11.84 57.73 ± 15.54 68.87 ± 11.42 82.11 ± 9.91 89.99 ± 8.08 74.76 ± 20.92 79.45 ± 13.09 84.94 ± 0.63 79.83 ± 8.95
2 61.56 ± 12.96 67.68 ± 20.05 42.37 ± 18.29 53.04 ± 12.73 52.88 ± 15.16 75.23 ± 5.74 59.10 ± 25.72 62.62 ± 15.70 70.30 ± 16.03 65.18 ± 11.33 67.57 ± 19.63
3 98.32 ± 1.48 99.70 ± 0.31 98.57 ± 2.10 93.81 ± 6.13 98.22 ± 2.14 98.71 ± 1.54 96.51 ± 1.85 98.83 ± 1.13 79.33 ± 27.66 99.97 ± 0.06 99.01 ± 1.33
4 85.86 ± 9.73 79.96 ± 9.86 76.44 ± 20.10 46.86 ± 13.77 66.43 ± 14.02 78.61 ± 6.80 91.62 ± 0.73 87.58 ± 3.65 83.95 ± 9.85 90.86 ± 1.14 72.74 ± 19.35
5 90.46 ± 9.11 87.15 ± 21.55 92.57 ± 8.34 84.87 ± 9.01 78.73 ± 16.04 99.54 ± 0.68 87.84 ± 12.62 93.47 ± 9.09 95.08 ± 4.50 99.95 ± 0.04 97.23 ± 6.95
6 80.82 ± 3.81 84.40 ± 3.88 83.46 ± 6.21 80.00 ± 6.18 81.64 ± 6.15 98.81 ± 0.83 82.80 ± 7.40 82.26 ± 8.96 75.82 ± 10.14 83.05 ± 2.71 87.52 ± 4.32
7 62.89 ± 17.38 43.35 ± 25.66 56.32 ± 12.08 31.79 ± 18.70 44.68 ± 15.35 31.32 ± 12.05 55.83 ± 23.05 57.26 ± 14.69 46.99 ± 17.37 53.66 ± 7.34 76.51 ± 10.81
8 24.25 ± 7.25 22.07 ± 14.74 20.93 ± 11.68 26.56 ± 11.11 28.36 ± 14.38 18.99 ± 7.36 31.65 ± 12.83 28.84 ± 12.53 16.69 ± 5.64 26.64 ± 2.85 25.46 ± 5.23
9 59.06 ± 19.85 40.52 ± 20.32 57.82 ± 16.01 36.78 ± 10.01 57.32 ± 9.49 29.17 ± 11.73 62.66 ± 16.10 64.65 ± 15.76 60.41 ± 16.18 49.20 ± 7.77 71.59 ± 12.83
10 39.82 ± 9.64 48.66 ± 20.20 46.61 ± 13.93 46.61 ± 9.70 52.89 ± 12.25 33.02 ± 7.42 42.93 ± 11.88 45.74 ± 12.85 35.68 ± 12.27 33.65 ± 0.46 37.05 ± 16.89
11 45.86 ± 12.59 62.44 ± 20.70 59.80 ± 15.27 49.89 ± 17.64 55.27 ± 13.34 58.58 ± 7.37 50.34 ± 22.84 50.86 ± 19.35 45.11 ± 15.54 77.89 ± 9.00 59.84 ± 10.61
12 42.02 ± 13.47 45.23 ± 20.61 59.85 ± 13.04 41.54 ± 17.16 33.60 ± 12.88 46.04 ± 19.37 33.35 ± 8.83 39.21 ± 13.00 43.97 ± 9.35 29.57 ± 4.18 39.32 ± 10.03
13 86.56 ± 9.74 86.67 ± 16.02 47.81 ± 28.90 71.82 ± 19.52 70.81 ± 12.57 84.37 ± 5.71 79.72 ± 17.72 86.43 ± 6.38 75.91 ± 9.98 84.98 ± 5.88 61.80 ± 34.31
14 99.64 ± 0.86 99.12 ± 1.23 99.69 ± 0.60 98.93 ± 1.61 98.83 ± 0.83 100.0 ± 0.00 93.52 ± 9.89 95.96 ± 5.24 99.03 ± 1.19 99.26 ± 1.05 100.0 ± 0.00
15 99.71 ± 0.64 99.94 ± 0.14 97.76 ± 1.87 87.03 ± 13.64 94.85 ± 6.71 99.54 ± 1.23 99.14 ± 1.58 97.58 ± 4.57 78.85 ± 14.95 100.0 ± 0.00 99.28 ± 1.39

OA 65.87 ± 2.52 62.46 ± 3.97 64.02 ± 3.08 54.30 ± 3.85 60.16 ± 3.09 62.30 ± 1.78 65.93 ± 3.44 66.20 ± 3.30 61.83 ± 4.46 66.96 ± 0.68 67.63 ± 4.55
AA 70.94 ± 2.05 68.46 ± 3.17 67.95 ± 3.23 60.48 ± 3.35 65.56 ± 2.57 68.94 ± 1.50 70.47 ± 3.45 71.07 ± 3.07 65.77 ± 4.27 71.52 ± 0.57 71.65 ± 4.25

KAPPA 63.26 ± 2.69 59.55 ± 4.27 61.08 ± 3.36 50.70 ± 4.14 57.07 ± 3.29 59.31 ± 1.92 63.24 ± 3.72 63.56 ± 3.54 64.00 ± 4.69 64.35 ± 0.73 65.08 ± 4.90
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Table 6. Quantitative comparison of all methods on the LongKou dataset using two labeled samples per class for training.

Class
CNNs GCNs Transformers Mamba LKCNN

DBDA A2S2K-Res CEGCN FDGC GTFN SSFTT GSC-ViT DBCTNet MambaHSI SSLKA MSLKACNN
RS 2020 TGRS 2021 TGRS 2021 TGRS 2022 TGRS 2023 TGRS 2022 TGRS 2024 TGRS 2024 TGRS 2024 TGRS 2024 Ours

1 82.01 ± 29.90 88.09 ± 7.21 89.29 ± 6.92 80.54 ± 14.33 63.60 ± 13.24 93.43 ± 1.83 94.75 ± 7.52 91.12 ± 10.46 98.42 ± 1.78 96.86 ± 1.91 91.20 ± 6.39
2 62.76 ± 28.91 77.95 ± 19.07 76.07 ± 22.61 68.75 ± 15.72 67.22 ± 19.50 57.65 ± 8.74 67.68 ± 16.15 66.49 ± 24.65 62.65 ± 17.90 87.79 ± 6.60 83.34 ± 13.64
3 89.83 ± 7.52 92.18 ± 8.45 97.90 ± 2.59 93.68 ± 7.50 91.51 ± 6.79 99.37 ± 0.98 78.98 ± 11.75 89.03 ± 8.61 82.20 ± 10.11 99.51 ± 0.58 95.43 ± 3.86
4 67.47 ± 12.26 78.42 ± 13.72 77.49 ± 10.25 52.49 ± 19.03 43.16 ± 10.89 66.08 ± 6.05 68.50 ± 17.79 69.98 ± 21.20 55.07 ± 12.35 43.49 ± 3.22 84.57 ± 5.75
5 75.49 ± 27.95 78.25 ± 10.41 80.12 ± 20.94 81.02 ± 18.16 68.00 ± 19.48 77.11 ± 5.14 71.27 ± 17.80 60.18 ± 17.11 64.27 ± 19.96 94.72 ± 3.74 95.07 ± 7.29
6 82.74 ± 5.88 60.32 ± 12.69 91.02 ± 6.79 75.73 ± 15.26 64.85 ± 12.74 90.64 ± 0.48 85.84 ± 9.05 87.43 ± 12.83 80.38 ± 21.05 90.68 ± 6.75 82.41 ± 8.68
7 100.0 ± 0.00 87.55 ± 19.07 98.69 ± 2.61 85.18 ± 8.69 84.29 ± 19.03 97.42 ± 1.25 99.94 ± 0.07 99.54 ± 0.35 97.25 ± 5.15 99.98 ± 0.02 93.93 ± 5.97
8 55.59 ± 15.57 57.24 ± 15.63 53.25 ± 20.13 39.45 ± 15.96 44.08 ± 20.34 67.87 ± 5.71 72.60 ± 16.30 69.59 ± 21.24 56.91 ± 19.81 68.55 ± 2.81 69.20 ± 16.94
9 19.08 ± 14.12 56.68 ± 16.46 51.03 ± 14.14 62.50 ± 25.96 53.77 ± 9.77 64.14 ± 3.39 52.70 ± 14.50 61.47 ± 10.56 74.78 ± 10.66 72.74 ± 3.17 75.56 ± 6.57

OA 80.13 ± 6.08 80.89 ± 7.32 85.99 ± 4.12 70.94 ± 5.86 63.86 ± 6.55 82.78 ± 1.87 84.16 ± 5.40 83.96 ± 6.62 79.15 ± 4.35 79.05 ± 1.03 88.19 ± 3.17
AA 70.55 ± 6.96 75.19 ± 4.83 79.43 ± 4.10 71.04 ± 3.95 64.50 ± 5.65 79.30 ± 1.42 76.92 ± 3.78 77.20 ± 4.55 74.66 ± 3.21 83.81 ± 1.03 85.63 ± 2.57

KAPPA 74.84 ± 7.42 75.85 ± 8.72 82.11 ± 5.02 64.07 ± 6.68 55.83 ± 7.08 77.92 ± 2.34 79.97 ± 6.26 79.76 ± 7.77 66.75 ± 6.90 74.18 ± 1.19 84.88 ± 3.87
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4.4. Analysis of All Methods Under Various Numbers of Training Samples

In this section, we conduct a comparative analysis of the OA achieved by diverse
methods using different numbers of training samples per class. Specifically, we utilize
2, 4, 6, 8, and 10 training samples for each dataset. A uniform number of five validation
samples is maintained for all methods across all datasets. As shown in Figure 8, the
OA results of most methods demonstrate an upward trend as the number of training
samples increases. However, in a minority of cases, we observe that the OA results of a few
competitive methods, such as GSC-ViT, decrease unexpectedly with more training samples.
These anomalous results may potentially stem from the additional noise introduced by
the increased training data. Conversely, the OA results of CEGCN and our proposed
MSLKACNN exhibit a notable improvement with the increase in training samples. This
enhancement can be credited to the noise suppression modules in their architectures.
Furthermore, in most cases, our MSLKACNN consistently surpasses the comparison
methods across various datasets, especially under small training sample sizes, thereby
further reinforcing its robustness and superiority for HSI classification tasks.

Figure 8. OA performance of various methods using different numbers of training samples per class
across each dataset.

4.5. Analysis of Diverse Fusion Schemes

As described in Section 3.2, we introduce two widely used fusion schemes: column
concatenation fusion (concatenate) and sum fusion (sum). In Equation (4), the number
of feature maps obtained by the proposed MLKADC and MADDC is substantial. The
applications of concatenate and sum for combining these feature maps have individually
resulted in an increase in the number of parameters and the generation of large feature
values, respectively, which may potentially lead to overfitting and gradient explosion issues.
To address these challenges, we investigate the AFP fusion scheme. To evaluate our AFP,
we compare the OA results achieved by AFP and the two fusion schemes. Figure 9 displays
the results. From the figure, it is evident that our AFP significantly outperforms other
fusion schemes. This validates the superiority of our AFP in fusing multiple feature maps.

Figure 9. OA results of diverse fusion schemes on each dataset.
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4.6. Analysis of Computational Complexity

Table 7 provides an extensive evaluation in terms of the training time, testing time,
parameters, and FLOPS across all methods. The analysis yields the following insights:
(1) SSFTT demonstrates faster training speeds compared to other baseline methods, which
can be attributed to its use of a limited number of convolutional layers. (2) CEGCN
and MambaHSI operate on the whole HSI as input instead of using small HSI cubes,
leading to quicker prediction speeds than most other methods. (3) Like CEGCN and
MambaHSI, the proposed MSLKACNN also processes the entire HSI as input, achieving
the fastest prediction time across all datasets. (4) LKVHAN outperforms most methods in
terms of parameters, due to its replacement of square kernels with vertical and horizontal
kernels. (5) Since CEGCN, MambaHSI, and MSLKACNN take the entire HSI as input,
they require significantly more FLOPS compared to other approaches that use small HSI
cubes. Additionally, MSLKACNN significantly outperforms other methods in terms of the
classification results. These findings highlight the benefits of incorporating small-to-large
kernel asymmetric convolutions in MSLKACNN for industrial applications.

Table 7. Analysis of different methods in terms of training time, testing time, parameters, and FLOPS
on the Indian Pines, Botswana, Houston 2013, and LongKou datasets. CEGCN, MambaHSI, and our
proposed MSLKACNN process the entire HSI as input, while other models utilize small HSI cubes.
The FLOPS results for these other models are calculated with a batch size of 1. s, ms, K, and G, denote
second, millisecond, kilo, and giga, respectively.

Dataset Metrics
CNNs GCNs Transformers Mamba LKCNN

DBDA A2S2K-Res CEGCN FDGC GTFN SSFTT GSC-ViT DBCTNet MambaHSI SSLKA MSLKACNN
RS 2020 TGRS 2021 TGRS 2021 TGRS 2022 TGRS 2023 TGRS 2022 TGRS 2024 TGRS 2024 TGRS 2024 TGRS 2024 Ours

Indian Pines

Train time (s) 6.80 2.51 14.86 4.60 15.56 1.96 9.06 24.24 32.33 9.40 1.28
Test time (s) 6.27 2.03 9.95 ms 1.05 6.28 0.53 1.88 1.14 6.52 ms 0.95 1.77 ms

Parameters (K) 382.3 370.8 166.4 2445.4 169.3 148.5 563.7 30.3 44.3 136.9 33.9
FLOPS (G) 0.108 0.104 1.610 0.015 0.012 0.011 0.021 0.012 0.563 0.007 0.716

Botswana

Train time (s) 4.70 2.34 1418.43 3.28 15.32 1.82 7.78 15.30 459.14 8.89 20.03
Test time (s) 1.29 0.56 0.94 0.31 1.97 0.14 30.60 0.27 27.49 ms 0.29 13.28 ms

Parameters (K) 280.0 80.5 159.0 2313.4 169.2 148.4 103.1 22.5 37.0 134.1 30.2
FLOPS (G) 0.098 0.005 26.131 0.015 0.012 0.011 0.007 0.009 7.457 0.007 11.487

Houston 2013

Train time (s) 4.57 2.60 709.95 3.46 15.47 1.83 9.01 22.82 892.93 8.60 21.03
Test time (s) 5.96 2.67 2.53 1.31 9.71 0.73 64.40 1.08 240.26 ms 1.35 16.67 ms

Parameters (K) 280.1 83.6 159.1 2379.4 169.2 148.4 88.8 22.2 37.0 134.1 30.2
FLOPS (G) 0.077 0.007 45.964 0.015 0.012 0.011 0.006 0.009 13.039 0.007 20.211

LongKou

Train time (s) 4.05 2.40 459.79 2.85 14.81 1.35 7.87 23.15 272.31 6.85 10.36
Test time (s) 155.81 35.92 0.35 17.95 127.29 9.08 21.30 32.48 22.15 ms 19.58 2.41 ms

Parameters (K) 509.2 74.0 174.6 1983.3 168.8 148.0 173.1 40.3 52.4 140.0 37.9
FLOPS (G) 0.146 0.003 18.700 0.014 0.012 0.011 0.010 0.017 7.852 0.007 8.378

4.7. Ablation Study

The proposed MSLKACNN comprises three primary components, the SFEM, the
MLKADC, and the MADDC, as well as two critical hyperparameters, the large kernel size
in MLKADC and the large kernel size in MADDC. In this section, we perform ablation
studies to assess the individual contributions and impact of the three components and the
two hyperparameters.

(1) Contributions of Each Component: To assess the individual contributions of these
components, we perform a quantitative analysis by selectively removing one of the three
components. The results are summarized in Table 8. To ensure consistency between
the number of bands in the original HSI and the number of filters in the convolutional
layers, we retain one of the 1 × 1 convolution blocks from the SFEM component after its
removal. From the table, we observe that the MSLKACNN model without the MLKADC
component exhibits suboptimal performance in comparison to other models across most
datasets. This indicates that the component plays a more significant role compared to the
other components. Moreover, our MSLKACNN consistently surpasses the performance
of its modified versions on all datasets. These findings reinforce the effectiveness of the
integrated components.
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Table 8. Classification results of each component in MSLKACNN.

SFEM MLKADC MADDC
Indian Pines Botswana Houston 2013 LongKou

OA AA KAPPA OA AA KAPPA OA AA KAPPA OA AA KAPPA
✕ ✓ ✓ 59.06 76.25 54.57 90.20 90.56 89.38 62.79 67.28 59.91 87.45 83.99 84.00
✓ ✕ ✓ 50.29 63.78 44.96 86.31 87.42 85.18 64.89 69.19 62.11 79.09 80.43 73.83
✓ ✓ ✕ 64.22 79.43 60.35 90.39 91.18 89.59 64.47 69.65 61.73 82.15 81.19 77.61
✓ ✓ ✓ 67.14 80.15 63.30 92.61 92.89 91.99 67.63 71.65 65.08 88.19 85.63 84.88

(2) Analysis of Various Large Kernel Sizes in MLKADC: To verify the effect of different
large kernel sizes in MLKADC, we conduct a comparative analysis of OA using varying
large kernel sizes across four benchmark datasets: Indian Pines, Botswana, Houston 2013,
and LongKou. The results are visually depicted in Figure 10. The figure illustrates a
significant trend: the OA tends to increase with the enlargement of kernel sizes in most
cases, reaching its peak at kernel sizes of 1 × 17 and 17 × 1. Nevertheless, a further increase
in kernel sizes leads to a decline in OA. This discovery is vital for determining the optimal
large kernel sizes for MLKADC.

(3) Analysis of Different Kernel Sizes in MADDC: To evaluate the influence of various
kernel sizes in MADDC, we compare the OA results achieved by diverse kernel sizes on the
Indian Pines, Botswana, Houston 2013, and LongKou datasets. These results are illustrated
in Figure 11. We observe that the MSLKACNN model equipped with the kernel sizes of
1 × 5 and 5 × 1 exhibits superior performance compared to its variant models utilizing
alternative kernel sizes, thereby determining the optimal kernel sizes for MADDC.

Figure 10. OA results of various large kernel sizes in MLKADC on each dataset.

Figure 11. OA results of different kernel sizes in MADDC on each dataset.
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5. Conclusions
In this paper, we propose MSLKACNN, a novel multi-scale large kernel asymmetric

CNN architecture for HSI classification. The key breakthrough of our MSLKACNN lies in
successfully scaling up convolutional kernels to 1 × 17 and 17 × 1 sizes while maintaining
computational efficiency. The core innovation of the proposed MSLKACNN is the MSLKAC
component, which combines asymmetric depthwise convolutions with small to large
kernels and asymmetric dilated depthwise convolutions, effectively extracting both local
and global features. Our MSLKACNN achieves the best performance in terms of OA,
AA, and KAPPA, compared to baseline methods, demonstrating its effectiveness and
superiority. In the future, we will explore replacing a large kernel asymmetric convolution
with multiple small kernel asymmetric convolutions to maintain a large receptive field
while reducing the number of parameters and computational costs.

6. Further Discussion
As shown in Tables 3–6, the proposed MSLKACNN demonstrates superior perfor-

mance compared to those of five major categories of deep learning approaches: (1) CNNs,
(2) GCNs, (3) Transformers, (4) Mamba, and (5) LKCNN. From these results, we observe
that the LKCNN method SSLKA exhibits significantly lower classification performance
than most benchmark methods on the high-density dataset (LongKou), while outperform-
ing most comparative methods on the remaining datasets (Indian Pines, Botswana, and
Houston 2013). This implies that SSLKA may be unsuitable for processing dense HSI
data. Notably, compared to the most related method, SSLKA, the proposed MSLKACNN
shows significant performance improvement across all datasets, with OA improvements
of 9.18%, 4.75%, 0.67%, and 9.14% on the Indian Pines, Botswana, Houston 2013, and
LongKou datasets, respectively. These performance gains can be attributed to the enhanced
capabilities of MSLKACNN to extract and integrate both local and global features through
asymmetric convolutions with small-to-large kernels. In addition, as shown in Table 7, our
MSLKACNN outperforms SSLKA by a large margin in terms of parameters and testing
time, demonstrating the advantages of replacing square kernels with vertical and horizontal
kernels in MSLKACNN.

Although the proposed MSLKACNN demonstrates significant advantages in classifi-
cation performance, inference speed, and parameters, the use of entire HSI rather than its
small cubes as input leads to higher computational complexity, posing challenges when
dealing with extremely large-scale datasets. Furthermore, while our parallel asymmetric
convolutions with small-to-large kernels effectively capture local-to-global features, the
absence of an attention mechanism may limit the model’s ability to focus on critical spatial
features, which could affect discriminative feature learning in complex scenarios.
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Abbreviations
The following abbreviations are used in this manuscript:

HSI Hyperspectral image
LKCNN Large kernel convolutional neural network
LKA Large kernal attention
OA Overall accuracy
AA Average Accuracy
KAPPA Kappa coefficient
GCN Graph convolutional network
CNN Convolutional neural network
ViT Vision Transformer
MSLKACNN Multi-scale large kernel asymmetric CNN
SFEM Spectral feature extraction module
MSLKAC Multi-scale large kernel asymmetric convolution
MADDC Multi-scale asymmetric dilated depthwise convolution
ML Machine learning
DL Deep learning
SAEs Stacked autoencoders
RNNs Recurrent neural networks
CapsNets Capsule networks
DWC Depthwise convolution
DDC Depthwise dilation convolution
MLKADC Multi-scale large kernel asymmetric depthwise convolution
ADC Asymmetric depthwise convolution
AFP Average fusion pooling
BN Batch normalization
ADDC Asymmetric dilated depthwise convolution
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