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Abstract—Among deep learning-based hyperspectral image
(HSI) classification models, convolutional neural networks (CNNs),
transformers, Mamba, and large kernel CNNs (LKCNNs) models
have been widely explored for HSI classification (HSIC). Nonethe-
less, these models suffer from several challenges: for example,
1) CNNs have a weak learning ability in capturing global informa-
tion between land covers, due to their limited receptive field derived
from small kernel convolutions; 2) transformers face quadratic
computational complexity introduced by their self-attention mech-
anisms; and 3) LKCNNs require further enhancement in extracting
global features, owing to the insufficient size of their receptive
fields. To tackle these limitations, we propose a novel multiscale
large kernel vertical–horizontal attention network (LKVHAN) for
HSIC. The proposed LKVHAN consists of a 1 × 1 convolution
module and a multiscale large kernel vertical–horizontal attention-
based convolution (MSLKVHAC). The 1 × 1 convolution module
is designed to facilitate band reduction, noise suppression, and
spectral feature learning. Furthermore, the MSLKVHAC, lever-
aging a large vertical kernel size of 17 × 1 and a large horizontal
kernel size of 1 × 17, extracts both local and global spatial features
by incorporating a vertical attention-based convolution module
and a horizontal attention-based convolution module. Extensive
experimental results demonstrate that the proposed LKVHAN
significantly outperforms ten state-of-the-art approaches across
four widely used HSI datasets.

Index Terms—Hyperspectral image (HSI) classification, multis-
cale large kernel convolution, vertical–horizontal attention.
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I. INTRODUCTION

W ITH the development of remote sensing techniques, hy-
perspectral image (HSI) can be extensively acquired [1],

[2]. Unlike RGB images that contain only three channels, HSI
typically comprises hundreds or even thousands of contiguous
spectral bands [3], carrying substantially richer spectral–spatial
information. This abundant information enables HSI to accu-
rately identify land cover types. Benefiting from these advan-
tages, HSI has been widely applied to various applications, such
as mineral exploration [4], environmental monitoring [5], [6],
and atmospheric sciences [7]. HSI classification (HSIC) pro-
vides the fundamental technical support for these applications.

Early HSIC methods can be categorized into two types:
feature extraction methods and classifier methods. Feature ex-
traction approaches, such as principal component analysis [8]
and manifold learning [9], are used to capture spectral infor-
mation. To extract spectral–spatial features, researchers pro-
pose spectral–spatial feature extraction models, including sparse
representation [10], morphological profiles [11], and Gabor
filters [12]. In addition, classifier models, such as linear re-
gression [13] and support vector machines [14], have been
utilized to classify HSI. Nonetheless, these models belong to
the domain of traditional machine learning (ML) techniques
and rely on manual and careful design, thereby limiting their
learning capability in the extraction of high-level features [15].

Compared with traditional ML approaches, deep learning
(DL) approaches are widely applied in HSIC tasks due to
their ability to automatically extract more discriminative fea-
tures. Typical DL-based approaches can be roughly divided into
two types: spectral feature-based models and spatial–spectral
feature-based models. Spectral feature-based models [16] learn
vectorized spectral features along the 1-D spectral bands. How-
ever, these models overlook the significance of spatial informa-
tion. To address the limitation, researchers focus on spatial–
spectral feature-based models [17], [18], [19]. Among these
spatial–spectral models, convolutional neural networks (CNNs)
have gained more attention for HSIC. Makantasis et al. [20] and
Ma et al. [21] introduced a 2D-CNN to capture local spatial–
spectral features. Yang et al. [22] presented a two-branch CNN
architecture to extract joint spatial–spectral information. Subse-
quently, Chen et al. [23] proposed a 3D-CNN framework to learn
deep high-level features, overcoming the imbalance problem

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
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between high dimensionality and limited training samples. To
construct deeper model, Zhong et al. [24] incorporated residual
connections [25] into their CNN to enhance the capability of
learning discriminative features. Although these models excel
at capturing local information, they face a challenge in mod-
eling long-range and global information due to their inherent
local connections and the restricted receptive field derived from
small-kernel convolutions.

Compared to CNNs that tend to extract local features, trans-
formers have demonstrated proficiency in learning long-range
dependencies and capturing global spatial information. Owing
to these advantages, transformer-based models have been used in
HSIC. Hong et al. [26] introduced a transformer-based network
termed SpectralFormer, which extracts sequence information
from neighboring bands. To capture spatial and spectral features,
Sun et al. [27] designed a spectral–spatial feature tokenization
transformer (SSFTT). Subsequently, Peng et al. [28] proposed
a spatial–spectral transformer with cross-attention, enhancing
classification performance with efficient spatial–spectral feature
utilization. Mei et al. [29] developed a group-aware hierarchical
transformer, which introduces a grouped pixel embedding block
to improve the learning ability of local relationships along
spectral bands. HybridFormer [30], DBCTNet [31], and GSC-
ViT [32] combine convolution with transformer to capture local
and global information. Furthermore, Feng et al. [33] utilized
superpixel sampling instead of square patch sampling to prevent
the mix of heterogeneous pixels at category boundaries. Jiang
et al. [34] introduced absolute positional encoding into a trans-
former model for obtaining the absolute positional sequences of
pixels. Nevertheless, these transformer architectures introduce
a quadratic computational complexity [35], thereby leading to a
high computational overhead, especially on large HSI datasets.

Recently, state–space models [36] and structured state–space
sequence models (S4) [37] have been proposed, achieving su-
perior performance in long-sequence data analysis [37], [38]
compared to CNNs and transformers. Mamba [39] develops
the S4 via a selective mechanism, addressing the quadratic
computational complexity of transformer frameworks. In ad-
dition, Mamba shows strong long-range modeling capabilities,
and have been successfully applied in these fields, such as
time series [40], [41], speech [42], [43], medical image seg-
mentation [44], [45], and point clouds [46], [47]. Due to these
advantages, researchers have explored the potential of Mamba
for HSIC tasks [35], [48], [49], [50]. For instance, Yao et al. [48]
first applied Mamba to classify land cover types, addressing the
computational inefficiency of transformer-based models. Huang
et al. [49] and He et al. [51] leveraged stacked spectral–spatial
Mamba blocks to establish long-range dependencies with linear
computational complexity. Li et al. [35] developed a novel
pure-Mamba-based model termed MambaHSI, which extracts
discriminative spatial and spectral features via a spatial and
spectral Mamba block and residual learning. However, the
aforementioned architectures primarily focus on global feature
extraction, which may result in the neglect of important local
feature learning.

In addition to transformers and Mamba, which are well-
known for their capability to model long-range dependencies,

large kernel CNNs (LKCNNs) [52], [53], [54], [55], [56] have
also proven effective in capturing long-range information by
enlarging the size of convolution kernel. The convolution in
LKCNNs is characterized by large kernel convolution, which
offers a larger receptive field compared to the small kernel con-
volution used in traditional CNNs, thereby demonstrating signif-
icant advantages in natural visual applications. These advantages
have motivated a limited number of studies [57], [58], [59], [60],
[61], [62] to explore the potential of LKCNNs for HSIC. Lu
et al. [59] designed a new large kernel attention (LKA) com-
bined with an enhanced transformer to extract global features.
Wu et al. [60] presented spectral–spatial large kernel attention
network (SSLKA), which builds upon the classical LKA [63].
The LKA decomposes a k × k large kernel convolution into
three convolutions: a (2d− 1)× (2d− 1) depthwise convolu-
tion (DC) [64], a k

d × k
d depthwise dilation convolution (DDC)

with a dilation factor of d, and a 1× 1 convolution. Furthermore,
Sun et al. [61] proposed a multiscale efficient attention with
enhanced feature transformer to enhance spectral–spatial feature
extraction. Liu et al. [62] presented a multiscale large kernel
asymmetric CNN for capturing both local and global features.
Although several studies such as SSLKA have demonstrated
success in learning global features through the LKA, they suffer
from two challenges: 1) the LKA struggles to capture sufficient
long-range dependencies when the value of k is relatively small;
2) Conversely, when k is large, the LKA incurs a substantial
increase in both the number of parameters and computational
complexity. Therefore, their receptive fields are not sufficiently
expansive, resulting in a need for further enhancement in global
feature extraction capabilities.

To address these issues of CNN-, transformer-, Mamba-,
LKCNN-based approaches, we introduce a multiscale large ker-
nel vertical–horizontal attention network (LKVHAN) for HSIC.
In LKVHAN, we scale up the large vertical kernel size to 17 × 1
and the large horizontal kernel size to 1 × 17, respectively,
as depicted in Fig. 1. Specifically, we first construct a 1 × 1
convolution module for band reduction, noise suppression, and
spectral feature learning. Subsequently, we propose a novel mul-
tiscale large kernel vertical–horizontal attention-based convolu-
tion (MSLKVHAC), which utilizes a vertical attention-based
convolution module (VACM) and a horizontal attention-based
convolution module (HACM) to capture local-to-global spatial
features. The main contributions of this article are summarized
as follows:

1) To capture both local and global spatial information along
the vertical axis, we propose the VACM based on a mul-
tiscale vertical large kernel 1-D depthwise convolution
(MSVLK1DDC) module. To learn both local and global
spatial features along the horizontal axis, we present the
HACM via a multiscale horizontal large kernel 1-D depth-
wise convolution (MSHLK1DDC) module.

2) By utilizing the proposed VACM and HACM, we intro-
duce a novel MSLKVHAC, which enhances the both local
and global feature extraction capabilities of the classical
LKA, frequently applied in HSIC models.

3) Based on our MSLKVHAC, we propose the LKVHAN to
extract both spectral and spatial local-to-global features,
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Fig. 1. Overview illustration of the proposed LKVHAN, which consists of two primary modules: the 1 × 1 convolution module and the MSLKVHAC.

tackling the challenges of traditional CNNs in modeling
long-range dependencies and compensating for the short-
comings of transformer and Mamba models in capturing
local features.

The rest of this article is organized as follows. In Section II,
we introduce the proposed LKVHAN. The classification results
of LKVHAN are evaluated and analyzed in Section III. Finally,
Section IV concludes this article.

II. PROPOSED METHOD

The flowchart of the proposed LKVHAN framework is pre-
sented in Fig. 1. LKVHAN primarily comprises a 1× 1 convolu-
tion module and the MSLKVHAC. The 1 × 1 convolution mod-
ule is first used to suppress noise, reduce the number of bands,
and capture spectral information. Subsequently, MSLKVHAC
employs the VACM, followed by the HACM, to extract both
local and global features along the vertical and horizontal axes
of the HSI.

A. 1 × 1 Convolution Module

The raw HSI contains redundant spectral information and
noise. To address the issues, we introduce the 1 × 1 convolution
module using two consecutive 1×1 convolution blocks, offering
three advantages: band reduction, noise suppression, and the

ability to learn spectral features. Each block consists of a 1 × 1
convolution with a limited number of filters, followed by batch
normalization (BN) and a ReLU6 activation function.

Let X l
i(·) denote the input feature map of the lth 1 × 1

convolutional layer in the ith spectral channel. The output feature
map of this convolutional layer, denoted as X l+1

i (p1), can be
formulated as follows:

X l+1
i (p1) = ReLU6(BN((W l

i ·X l
i(p1) + bli))) (1)

where p1 = (x, y) represents the spatial location of the pixel
in HSI, W l

i is the trainable weight of the ith kernel in the lth
convolutional layer, and bli denotes the bias of the ith kernel in
the lth convolutional layer.

B. MSLKVHAC

Compared to standard convolutions, DCs achieve a substantial
reduction in the number of parameters and computational cost.
Leveraging these advantages, many studies such as MSRN [65]
explore DCs for HSIC. To capture long-range dependencies, Sun
et al. [58] and Wu et al. [60] applied the LKA [63], which is com-
monly used in HSIC models based on large kernel convolution.
As shown in Fig. 2(a), the LKA decomposes a k × k large kernel
convolution into three convolutions: a (2d− 1)× (2d− 1) DC,
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Fig. 2. Various large kernel convolutions. (a) LKA. (b) Proposed MSVLK1DDC module. (c) Proposed MSHLK1DDC. (d) Proposed MSLKVHAC.

a k
d × k

d DDC with dilation d, and a 1 × 1 convolution. This de-
composition enables LKA to effectively capture long-range re-
lationships while mitigating the quadratic increase in parameters
and computational complexity that would otherwise result from
applying a large kernel DC alone. However, LKA suffers from
a significant number of parameters and computations when the
kernel size k becomes large. To tackle the limitations, we replace
the standard square kernels in LKA with vertical and horizontal
kernels, and design the MSVLK1DDC module [see Fig. 2(b)]
and the MSHLK1DDC module [see Fig. 2(c)] based on these re-
spective kernels. By leveraging the proposed MSVLK1DDC and
MSHLK1DDC modules, we present the novel MSLKVHAC,
as illustrated in Fig. 2(d). The MSLKVHAC consists of two
attention-based convolution modules and a fusion operation as
follows:

1) The VACM, which learns local-to-global spatial features
across pixels along the vertical axis.

2) The HACM, which extracts local-to-global spatial infor-
mation along the horizontal axis.

3) An average fusion (AF) that integrates the features learned
by the two attention-based convolution modules.

1) VACM: To extract local–global spatial features along
the horizontal axis, we introduce the VACM by developing
the MSVLK1DDC module. As illustrated in Fig. 2(b), the
MSVLK1DDC module consists of n parallel V1DDC blocks,
ranging from a vertical 1-D DC (V1DDC) block equipped with
a 3 × 1 kernel to a V1DDC block with a (2n+ 1)× 1 kernel.
Each V1DDC block first extracts spatial features along the
vertical axis through a sequence of three convolutions: a DC
with a vertical kernel, a 3 × 1 DDC with dilation 2, and another
DC with the same kernel size as the first DC. Then, a ReLU6
activation function is applied to model nonlinear features. In
these V1DDC blocks, we maintain a consistent topology and
follow two rules: 1) the hyperparameters, such as filter numbers
and strides, remain uniform across all V1DDC blocks, except
for their kernel sizes and 2) the kernel sizes follow an arithmetic
progression with a common difference of 2. Based on these two

rules, we only need to design the first V1DDC block and set
the scale numbers, and hence the design complexity is signifi-
cantly reduced. This streamlined approach allows us to focus on
fine-tuning a small number of hyperparameters, simplifying the
design process while maintaining performance efficiency.

For the proposed VACM, we take the feature mapXc captured
by the 1× 1 convolution module as input, then the output feature
map HVACM of the VACM can be expressed as follows:

HMSVLK1DDC = MSVLK1DDC(Xc) = AF(V3, V5, . . . , V2n+1)

=
1

n
(V3 + V5 + · · ·+ V2n+1) (2)

Hva = Softmax(HMSVLK1DDC) (3)

Hva = Hva �Xc (4)

HVACM = ReLU6(DC3×3(ReLU6(DC3×3(Hva)))) (5)

where V2n+1 denotes the extracted features from Xc through
a (2n+ 1)× 1 V1DDC block. AF and � denote the opera-
tors of AF and elementwise multiplication, respectively. n is
the number of scales in the proposed MSVLK1DDC module.
HMSVLK1DDC in (2) represents the output feature map of the
MSVLK1DDC module which learns the local-to-global spatial
information along the vertical axis. Hva in (3) is the vertical
attention map obtained by applying the Softmax function. The
output features Hva in (4) denotes elementwise multiplication
of the Hva and Xc. DC3×3 represents a DC with a 3 × 3 kernel.
As shown in (5), we utilize two identical DC3×3 blocks (in-
cluding DC3×3 and ReLU6) to perform feature transformation,
enhancing the model’s expressive capability.

2) HACM: To capture local–global spatial features along
the horizontal axis, we propose the HACM through design-
ing the MSHLK1DDC module. As shown in Fig. 2(c), the
MSHLK1DDC module is equipped with n parallel H1DDC
blocks, ranging from a horizontal 1-D DC (H1DDC) block with
a 1 × 3 kernel to an H1DDC block with a 1 × (2n+ 1) kernel.
Each H1DDC block first learns spatial information along the
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horizontal axis using a sequence of three convolutions: a DC with
a vertical kernel, a 1× 3 DDC with dilation factor 2, and another
DC with the same kernel size as the first DC. Subsequently, it
applies a ReLU6 activation function to establish the nonlinear
information. For these H1DDC blocks, we preserve a uniform
structure and adhere to two rules: 1) apart from varying kernel
sizes, the other hyperparameters are set to be the same and 2)
the kernel sizes are arranged in an arithmetic progression with
a common difference of 2. Analogous to the MSVLK1DDC
module, following these two rules, the MSHLK1DDC module
can avoid complicated design.

In the proposed HACM, the output feature map HHACM can
be defined as follows:

HMSHLK1DDC = MSHLK1DDC(HMSVLK1DDC)

= AF(H3, H5, . . . , H2n+1)

=
1

n
(H3 +H5 + · · ·+H2n+1) (6)

Hha = Softmax(HMSHLK1DDC) (7)

Hha = Hha �Hva (8)

HHACM = ReLU6(DC3×3(ReLU6(DC3×3(Hha)))) (9)

where H2n+1 represents the learned features from HMSVLK1DDC

using a 1 × (2n+ 1) H1DDC block that consists of a sequence
of a DC with a 1 × (2n+ 1) kernel, a 1 × 3 DDC with dilation
factor 2, another DC with a 1 × (2n+ 1) kernel, and a ReLU6
activation function. HMSHLK1DDC in (6) is the output feature map
of the MSHLK1DDC module, extracting the local-to-global
spatial features along the horizontal axis. Hha in (7) denotes
the horizontal attention map. The output features Hha in (8) is
the elementwise multiplication of Hha and Hva. Similar to (5),
two identical DC3×3 blocks are used to improve the model’s
learning ability.

3) AF: In the proposed MSLKVHAC, we employ the VACM
and HACM to extract local-to-global spatial features along the
vertical and horizontal axes, respectively. We introduce the AF
to combine these features extracted by the VACM, HACM,
MSVLK1DDC module, and MSHLK1DDC module. The pro-
cess can be defined as follows:

HMSLKVHAC = AF(HVACM;HHACM;HMSVLK1DDC;HMSHLK1DDC)

=
1

4
(HVACM +HHACM

+HMSVLK1DDC +HMSHLK1DDC (10)

where HMSLKVHAC is the output features of the MSLKVHAC.
Analysis of parameters and complexity: In this section, we

compute the number of parameters and floating point operations
per second (FLOPS) of the LKA, the proposed MSVLK1DDC
module, MSHLK1DDC module, and MSLKVHAC, as illus-
trated in Fig. 2. We assume that the number of input channels and
output channels of the four modules areC. Then, the parameters

of the four modules can be calculated as

ParamLKA =

(
(2d− 1)2 × C +

(
k

d

)2
)

× C + C × C

(11)

ParamMSVLK1DDC = C ×
n∑

i=1

(4i+ 5) = C × (2n2 + 7n)

(12)

ParamMSHLK1DDC = C ×
n∑

i=1

(4i+ 5) = C × (2n2 + 7n)

(13)

ParamMSLKVHAC = 2C ×
n∑

i=1

(4i+ 5) + 3× 3× 4× C

= C × (4n2 + 14n+ 36) (14)

where ParamLKA, ParamMSVLK1DDC, ParamMSHLK1DDC, and
ParamMSLKVHAC denote the number of parameters of the LKA,
the proposed MSVLK1DDC module, MSHLK1DDC module,
and MSLKVHAC, respectively. The FLOPS are directly propor-
tional to the number of parameters in their respective modules.
In our experiments, we set n to 8 and C to 64. With these
settings, the proposed MSLKVHAC has 25 858 parameters and
proportional FLOPS. For (11), we set k to 41 and d to 2 to match
the receptive field of the proposed MSLKVHAC. Based on
these settings, the LKA has 32 896 parameters and proportional
FLOPS. These results demonstrate the advantages of the pro-
posed MSLKVHAC in terms of parameters and computational
complexity.

C. Softmax Classification

In this section, we apply a fully connected layer followed by a
Softmax function to classify the fused feature map HMSLKVHAC,
which can be expressed as

Y =
e(WiHMSLKVHAC+bi)∑c
i=1 e

(WiHMSLKVHAC+bi)
(15)

where c denotes the number of land cover categories, and Wi

and bi are the trainable parameter and bias, respectively.
The cross-entropy loss function is adopted to train the pro-

posed model, namely

ζ = −
∑

z∈Olabel

c∑
j=1

Ozj lnYzj (16)

where O represents the label matrix, and Yzj denotes the prob-
ability of the zth pixel belonging to the jth category.

III. EXPERIMENT

In this study, considering the high acquisition costs of labeled
HSI samples, we focus on classification under small training
sample conditions.
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TABLE I
SUMMARY OF INDIAN PINES AND LONGKOU DATASETSSUMMARY OF INDIAN PINES AND LONGKOU DATASETS

TABLE II
SUMMARY OF HONGHU AND HANCHUAN DATASETS

A. Dataset Description

To evaluate the proposed LKVHAN, we adopted four
benchmark HSI datasets, including Indian Pines, WHU-
Hi-LongKou (LongKou), WHU-Hi-HongHu (HongHu), and
WHU-Hi-HanChuan (HanChuan). Tables I and II summarize
the details of these four datasets.

1) Indian Pines: The Indian Pines dataset was captured
by using the airborne visible infrared imaging spectrometer
(AVIRIS) sensor. The whole image comprises 145 × 145 pixels
in the wavelength range from 0.4 to 2.5 μm, with 16 land cover
categories and 10 249 labeled pixels. We retain 200 spectral
bands by removing these noisy and water absorption bands of
104–108, 150–163, and 220.
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TABLE III
QUANTITATIVE COMPARISON OF ALL METHODS ON THE INDIAN PINES DATASET USING FOUR LABELLED SAMPLES PER CLASS FOR TRAINING

2) WHU-Hi-LongKou (LongKou): The LongKou dataset
was provided by using an 8 mm focal length Headwall Nano-
Hyperspec imaging sensor over the town of LongKou, Hubei
Province, China, in 2018 [66]. It contains 550 × 400 pixels with
nine ground-truth classes, ranging from 0.4 to 1.0 μm.

3) WHU-Hi-HongHu (HongHu): The HongHu dataset was
acquired by the 17 mm focal length Headwall Nano-Hyperspec
imaging sensor over the town of Honghu, Hubei Province, China
in 2017 [66]. The dataset contains 22 land cover categories,
comprising 940 × 475 pixels with 270 spectral bands ranging
from 0.4 to 1.0 μm.

4) WHU-Hi-HanChuan (HanChuan): The HanChuan
dataset was captured by using the same imaging sensor as that
used for the LongKou dataset. The dataset was collected over
the town of HanChuan, Hubei Province, China in 2016 [66].
It comprises 1217 × 303 pixels with 16 land cover classes and
274 spectral bands in the wavelength range from 0.4 to 1.0 μm.

B. Experimental Setup

1) Comparison Methods: To demonstrate the effectiveness
of the proposed LKVHAN, we compared LKVHAN with ten
baseline methods as follows:

1) Three CNN-based methods: the spectral–spatial residual
network (SSRN) [24], the double-branch dual-attention
(DBDA) network [67], and the attention-based adaptive
spectral–spatial kernel ResNet (A2S2 K-Res) [68].

2) Four transformer-based methods: the SSFTT [27], the
morphological transformer (morphFormer) [69], the
groupwise separable convolutional vision transformer
(GSC-ViT) [32], and the double branch convolution-
transformer network (DBCTNet) [31].

3) Mamba-based method: the spatial–spectral Mamba
(MambaHSI) [35].

4) Two LKCNN-based methods: the enhanced transformer
with large kernel attention (ETLKA) [59] and the SS-
LKA [60].

2) Evaluation Metrics: To evaluate the classification perfor-
mance of various methods, we introduced four evaluation met-
rics: per-class accuracy, overall accuracy (OA), average accuracy
(AA), and kappa coefficient (KAPPA).

3) Implementation Details: All experiments were imple-
mented on a Silver 4210 CPU, Python 3.10, and a GTX-3090
GPU. We trained our model using Adam optimizer with a
learning rate of 0.001 on Pytorch platform. In the proposed
LKVHAN, we set the number of filters for each convolution
layer to 64, the scale number n–8, and the number of training
epochs to 250, for all datasets. For different methods on each
dataset, we reported the average performance across these four
evaluation metrics by running the experiments twenty times with
diverse random initializations.

C. Comparison With State-of-The-Art Methods

Tables III–VI summarize the evaluation metrics for different
methods on the Indian Pines, LongKou, HongHu, and HanChuan
datasets. The corresponding visualization maps are presented in
Figs. 3–6.

1) Results on Indian Pines: Table III reports the quantitative
results of the proposed LKVHAN and ten comparison methods
on the Indian Pines dataset. From these results, we can observe
that DBDA outperforms other baselines in terms of OA and
AA, demonstrating the superiority of DBDA in enhancing local
feature extraction through its double-branch and dual-attention
mechanisms. It is worth noting that all methods achieve low
and unstable accuracy for several challenging classes, such as
classes 2 and 3. This may be attributed to overfitting caused by
the limited number of training samples, as well as the significant
impact of randomly selected training samples on these classes.
In addition, our LKVHAN utilizes the VACM and HACM to
extract both local and global features, which surpasses almost all
comparison methods in terms of OA, AA, and KAPPA, as well as
achieving higher accuracy in nine out of sixteen classes, with the
exception of MambaHSI in KAPPA. These results demonstrate
the effectiveness of LKVHAN.

Fig. 3 presents a qualitative evaluation by visualizing
classification maps generated by diverse methods on the
Indian Pines dataset. As evidenced by the figure, the proposed
LKVHAN achieves the clearest and smoothest classifications
across most classes, such as “Corn-notill,” “Corn-mintill,” and
“Soybean-notill.”

2) Results on LongKou: The comparative results of different
methods on the LongKou dataset are showed in Table IV. As
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Fig. 3. False-color image, ground truth, and classification maps on the Indian Pines dataset. (a) False-color image. (b) Ground truth. (c) SSRN (OA = 62.71%).
(d) DBDA (OA = 71.69%). (e) A2S2 K-Res (OA = 67.05%). (f) SSFTT (OA = 67.57%). (g) morphFormer (OA = 61.31%). (h) GSC-ViT (OA = 64.95%).
(j) DBCTNet (OA = 60.67%). (k) MambaHSI (OA = 65.35%). (l) ETLKA (OA = 69.24%). (m) SSLKA (OA = 68.09%). (i) LKVHAN (OA = 78.04%).

TABLE IV
QUANTITATIVE COMPARISON OF ALL METHODS ON THE LONGKOU DATASET USING FOUR LABELLED SAMPLES PER CLASS FOR TRAINING

can be observed, the proposed LKVHAN achieves the first-
best performance in terms of OA, AA, and KAPPA across all
methods. Specifically, LKVHAN improves over CNN-based
approaches by at least 3.11%, 5.86%, and 4.09%, improves
over Transformer-based approaches by at least 4.38%, 6.41%,
and 5.69%, improves over MambaHSI by 9.32%, 7.77%, and
12.04%, and improves over LKCNN-based approaches by
2.68%, 1.17%, and 3.47% in terms of OA, AA, and KAPPA,
respectively. We observe that most methods exhibit instability
under small training sample sizes for several challenging classes,
such as class 8, indicating that more samples are needed for these
classes to achieve stable results. Furthermore, the correspond-
ing classification maps of various approaches are visualized in
Fig. 4. Along these all approaches, our LKVHAN exhibits a
superior classification map across most regions. These results
demonstrate the advantages of LKVHAN.

3) Results on HongHu: Table V summarizes the clas-
sification accuracies achieved by diverse methods on the
HongHu dataset. From the table, we can observe that the
proposed LKVHAN consistently outperforms all CNN-based,
transformer-based, Mamba-based, and LKCNN-based meth-
ods. Specifically, LKVHAN gains 6.46%, 6.73%, and 7.64%
improvements over the best CNN-based method (DBDA),
gains 8.89%, 8.96%, and 10.25% improvements over the best
transformer-based method (DBCTNet), gains 12.45%, 10.32%,
and 12.11% improvements over MambaHSI, and gains 10.62%,

13.50%, and 12.44% improvements over the best LKCNN-based
method (SSLKA) in terms of OA, AA, and KAPPA, respectively.
For certain challenging classes such as classes 7 and 8, all
methods achieve limited performance in terms of accuracy and
stability with small training data sizes, suggesting that these
methods are prone to overfitting and instability when dealing
with small training samples. In addition, the visualization maps
for all methods on the HongHu dataset are shown in Fig. 5.
Based on the figure, we can observe that the proposed LKVHAN
has less misclassification across all methods. These significant
improvements highlight the effectiveness of LKVHAN in cap-
turing both local and global information through the proposed
large kernel convolution.

4) Results on HanChuan: Table VI reports the classification
results of various approaches on the HanChuan dataset. From
these results, the proposed LKVHAN still achieves promising
performance, exceeding other approaches by a substantial mar-
gin. Among the sixteen categories, LKVHAN obtains the state-
of-the-art performance in seven of them. Similar to the Indian
Pines and HongHu datasets, the limited number of training sam-
ples and their random selection lead to unstable and suboptimal
classification results for all methods in certain classes, such as
classes 13 and 14. In addition, the corresponding classification
maps generated by different approaches are illustrated in Fig. 6.
According to the classification maps, we can observe that in
most classes, our LKVHAN achieves the most precise prediction
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Fig. 4. False-color image, ground truth, and classification maps on the LongKou dataset. (a) False-color image. (b) Ground truth. (c) SSRN (OA = 84.19%).
(d) DBDA (OA = 91.10%). (e) A2S2 K-Res (OA = 90.52%). (f) SSFTT (OA = 87.95%). (g) morphFormer (OA = 86.09%). (h) GSC-ViT (OA = 89.99%).
(j) DBCTNet (OA = 88.31%). (k) MambaHSI (OA = 85.92%). (l) ETLKA (OA = 86.70%). (m) SSLKA (OA = 91.48%). (i) LKVHAN (OA = 93.93%).

TABLE V
QUANTITATIVE COMPARISON OF ALL METHODS ON THE HONGHU DATASET USING FOUR LABELED SAMPLES PER CLASS FOR TRAINING

TABLE VI
QUANTITATIVE COMPARISON OF ALL METHODS ON THE HANCHUAN DATASET USING FOUR LABELLED SAMPLES PER CLASS FOR TRAINING
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Fig. 5. False-color image, ground truth, and classification maps on the HongHu dataset. (a) False-color image. (b) Ground truth. (c) SSRN (OA = 59.12%).
(d) DBDA (OA = 78.09%). (e) A2S2 K-Res (OA = 64.77%). (f) SSFTT (OA = 72.58%). (g) morphFormer (OA = 72.43%). (h) GSC-ViT (OA = 74.67%).
(j) DBCTNet (OA = 75.66%). (k) MambaHSI (OA = 72.10%). (l) ETLKA (OA = 73.39%). (m) SSLKA (OA = 73.93%). (i) LKVHAN (OA = 84.55%).

details. These significant improvements further demonstrate the
potential of LKVHAN for HSIC.

D. Analysis of Different Methods Under Various Training
Sample Sizes

To evaluate the robustness of the proposed LKVHAN, we
compared the OA results obtained by different methods using
training sample sizes of 2, 4, 6, 8, and 10 for each category
across the Indian Pines, LongKou, HongHu, and HanChuan
datasets. The results are depicted in Fig. 7. From these results,
we can observe that the OA results of most approaches show
a steady enhancement trend as the number of training samples
increases. However, for a few comparison approaches, such as
GSC-ViT and SSLKA, there are instances where the OA results
decrease unexpectedly with an increase in training sample size.
These anomalous results may be attributed to the extra noise
caused by the increased training sample size. Notably, our
proposed LKVHAN employs its 1 × 1 convolution module for
noise suppression, exhibiting a notable increase in OA as the
number of training samples increases. In addition, the proposed
LKVHAN significantly outperforms other competitive methods
across all datasets, which further demonstrates its robustness and
strength.

E. Analysis of LKA and Our MSLKVHAC

As illustrated in Fig. 2, we introduced two large kernel con-
volutions: the classical LKA and the proposed MSLKVHAC.
For the proposed LKVHAN, we replaced the MSLKVHAC
with the LKA, followed by the two identical DC3×3 blocks, as
introduced in (5). The resulting model is termed LKVHANLKA.
To evaluate our MSLKVHAC, we compared the classification
results of the LKVHANLKA and LKVHAN in terms of OA,
AA, and KAPPA coefficient. As presented in Table VII, our
LKVHAN significantly outperforms the LKVHANLKA across
the four datasets. These significant improvements validate the
superiority of our MSLKVHAC in extracting both local and
global features.

F. Analysis of Computational Complexity

Table VIII presents the performance metrics, including pa-
rameters, FLOPS, training time, and testing time, generated by
various methods across all datasets. From the table, we made
the following observations.

1) In terms of parameters, LKVHAN, along with DBCTNet
and MambaHSI, achieves the best performance, signifi-
cantly surpassing other methods.

2) LKVHAN and MambaHSI exhibit the highest FLOPS
across all methods, which is attributed to the fact that
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Fig. 6. False-color image, ground truth, and classification maps on the HanChuan dataset. (a) False-color image. (b) Ground truth. (c) SSRN (OA = 60.30%).
(d) DBDA (OA = 66.31%). (e) A2S2 K-Res (OA = 63.44%). (f) SSFTT (OA = 70.97%). (g) morphFormer (OA = 65.25%). (h) GSC-ViT (OA = 67.62%).
(j) DBCTNet (OA = 69.78%). (k) MambaHSI (OA = 67.40%). (l) ETLKA (OA = 74.75%). (m) SSLKA (OA = 72.89%). (i) LKVHAN (OA = 78.81%).

TABLE VII
CLASSIFICATION RESULTS OF LKVHANLKA AND LKVHAN
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Fig. 7. OA results of different methods using various training sample sizes per class across the Indian Pines, LongKou, HongHu, and HanChuan datasets.

TABLE VIII
ANALYSIS OF DIFFERENT METHODS IN TERMS OF PARAMETERS, FLOPS, TRAIN TIME, AND TEST TIME ON THE INDIAN PINES, LONGKOU, HONGHU, AND

HANCHUAN DATASETS

TABLE IX
CLASSIFICATION RESULTS OF DIFFERENT MODULES IN LKVHAN

these two methods take the entire HSI as input, while other
methods use small HSI cubes for input.

3) SSFTT exhibits the fastest training speeds across each
method on all datasets, due to its limited number of
convolutional layers.

4) MambaHSI and the proposed LKVHAN replace small
HSI cubes with the whole HSI for input, thereby per-
forming better on each dataset. Notably, LKVHAN out-
performs baseline methods by substantial margins. These
observations demonstrate the significant advantages of
our LKVHAN in balancing computational efficiency and
classification performance.

G. Ablation Study

1) Effects of Different Modules: Our LKVHAN consists of
two core modules: the 1 × 1 convolution module and the
MSLKVHAC. To assess the individual effects of the two mod-
ules, we compared the classification results generated by the

full LKVHAN with those modified versions of LKVHAN that
remove one of the two modules. The results are presented in
Table IX. To maintain consistency between the number of bands
in the original HSI and the number of filters in the convolutional
layers, we retained a 1 × 1 convolution block after removing the
1 × 1 convolution module. As shown in Table IX, LKVHAN
without the MSLKVHAC module exhibits a significant inferi-
ority to other approaches on the four datasets, implying that the
MSLKVHAC plays an extremely important role on enhancing
performance. Furthermore, LKVHAN outperforms its modified
versions across each dataset. These observations show the ef-
fectiveness of the two modules to performance improvement.

2) Effects of Various Scales: As shown in Fig. 2, we utilize
the scale number n of the proposed MSLKVHAC to control
its kernel size. Therefore, the optimal scale number directly
determines the optimal kernel size. To evaluate the effects of
the number of scales, we compared the OA results obtained by
the proposed LKVHAN using various scales across the four
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TABLE X
COMPARISON RESULTS OF NUMBER OF VARIOUS SCALES IN MSLKVHAC IN TERMS OF PARAMETERS, FLOPS,

AND OA ON THE HONGHU DATASET

TABLE XI
OA COMPARISON OF LKVHAN AND THE REDUCED LKVHAN METHODS THAT EXCLUDE ONE OF THE TWO ATTENTION MODULES ACROSS THE INDIAN PINES,

LONGKOU, HONGHU, AND HANCHUAN DATASETS

TABLE XII
COMPARISON RESULTS OF NUMBER OF DIFFERENT CHANNELS IN TERMS OF PARAMETERS, FLOPS, AND OA ACROSS THE INDIAN PINES,

LONGKOU, HONGHU, AND HANCHUAN DATASETS

Fig. 8. OA Results of number of various scales in MSLKVHAC across the
Indian Pines, LongKou, HongHu, and HanChuan datasets.

datasets. The results are depicted in Fig. 8. We can observe that
the OA results exhibit an increasing trend with the increase of
number of scales (n), reaching a peak at n = 8. Nevertheless,
further increasingn leads to a decrease in OA results. In addition,
taking the HongHu dataset as an example, we compared the
parameters, FLOPS, and OA of our proposed LKVHAN at
different scales. The results are reported in Table X. From the
table, it can be observed that when n = 8, the OA reaches
its highest value while maintaining acceptable parameters and
computational complexity. Based on these comparisons, we
determine the optimal scale number to be 8, corresponding to an

optimal vertical kernel size of 17 × 1 and an optimal horizontal
kernel size of 1 × 17.

3) Effects of LKA Module: For the proposed MSLKVHAC,
we designed two LKA modules: the VACM and HACM. To
verify the effects of the two LKA modules, we compared the
OA results of LKVHAN with those of LKVHAN removed
versions that exclude one of the two attention modules across
each dataset. These results are reported in Table XI. From
these results, we can observe that LKVHAN exhibits superior
performance compared to its removed versions, which supports
the design for the two LKA modules.

4) Effects of Different Channels: To evaluate the effects of
the number of channels (C), we compared the parameters,
FLOPS, and OA of the proposed LKVHAN across different
channel configurations (C = 32 to 128) on all four datasets. As
shown in Table XII, both the parameters and FLOPS show a
monotonic increase with increasing C values, while the OA in
most datasets peaks atC = 64 before declining. Considering the
balance between computational complexity and classification
performance, we determined C = 64 to be the optimal hyper-
parameter configuration.

IV. CONCLUSION

In this article, we presented a novel attention architecture,
termed LKVHAN, for HSIC. This architecture explores two new
mechanisms: the large kernel vertical attention mechanism and
the large kernel horizontal attention mechanism. The LKVHAN
architecture comprises two modules: 1) the 1 × 1 convolution
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module is responsible for band reduction, noise suppression,
and spectral feature learning and 2) the MSLKVHAC module is
designed to capture short-range, middle-range, and long-range
spatial features along vertical and horizontal axes through the
VACM and the HACM, respectively. The experimental results
demonstrate that LKVHAN outperforms CNN-, transformer-
, Mamba-, and LKCNN-based approaches by a significant
margin, highlighting its effectiveness in HSIC. Future research
will focus on integrating the LKVHAN with a Mamba model
for further enhancing global feature extraction capabilities.
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