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Abstract—Deep learning-based hyperspectral image (HSI)
classification models typically utilize multiple feature extraction
layers to learn the features of land covers. Nevertheless, they
encounter challenges, e.g., 1) Transformers require substantial
computational resources, and 2) these layers are carefully
assembled and designed. Recently, large kernel convolutional
neural networks (LKCNNs) show excellent performance in
natural visual tasks. To tackle these limitations and explore
the capability of LKCNNs for HSI classification, we present a
novel simple and powerful multi-scale large kernel convolutional
neural network architecture (MSLKCNN) with the largest kernel
size as large as 15× 15, in contrast to commonly used 3× 3, for
HSI classification. MSLKCNN avoids these specialized designs,
comprising a noise suppression module (NSM) and a multi-scale
large kernel convolution (MSLKC). Specifically, NSM is first
used to suppress the noise and reduce the number of the bands
before extracting the features. Then, MSLKC, as the only feature
extraction layer of MSLKCNN, joints three parallel convolutions
to capture the features of various types (i.e. spectral, spectral-
spatial) and ranges (i.e., small local, larger local, and global) from
the dimension of scale: (C1) convolution with a kernel size of
1× 1 is used to extract spectral features; (C2) multi-scale large
kernel depthwise separable convolution (MLKDC) is proposed to
learn the spectral-spatial features of different ranges including
short-range, middle-range, and long-range; and (C3) multi-scale
dilated depthwise separable convolution (MDDC) is designed to
aggregate the spectral-spatial features between land covers at
various distances. Extensive experimental results on three public
HSI datasets demonstrate the competitiveness of the proposed
MSLKCNN compared with several state-of-the-art methods.

Index Terms—Hyperspectral image (HSI) classification, con-
volutional neural network (CNN), multi-scale convolution, large
kernel convolution.
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I. INTRODUCTION

HYPERSPECTRAL image (HSI) consists of hundreds of
spectral bands obtained by hyperspectral remote sensors.

It contains abundant spectral-spatial information, and is more
effective and accurate in classifying land cover types than RGB
images. Because of these advantages, HSI has been widely
applied to various applications, ranging from environmental
monitoring to geological exploration, medical diagnosis, and
object tracking [1]–[5]. HSI classification, which classifies
each pixel into a certain label, plays a deterministic role in the
applications [6]–[9].

Over the last few decades, a variety of methods have
been explored and proposed for HSI classification, which
can be summarized as traditional machine learning methods
and deep learning methods. The traditional methods such as
decision tree [10], K-nearest neighbor classifier [11], linear
regression (LR) [12], random forest [13], support vector
machine (SVM) [14], sparse representation [15], wavelets [16],
and morphological profiles [17] are utilized to extract the
spectral–spatial features contained in HSI. However, these
methods are based on the handcrafted features that heavily
depend on professional expertise and are empirical [18], so
they are difficult to learn the robust deep feature representations
of HSI.

Recently, inspired by the promising results of deep learning
(DL) in various fields, DL models have been applied to HSI
classification. Unlike the traditional methods, DL models can
learn robust deep feature representations automatically without
handcrafted feature engineering [8]. DL methods, such as
stacked autoencoders (SAEs) [19], recurrent neural networks
(RNNs) [6], [20], convolutional neural networks (CNNs) [21]–
[25], capsule networks (CapsNets) [26], graph convolutional
networks (GCNs) [27]–[29], and Transformer [7], [30] have
been explored for HSI classification. Among them, CNN-,
GCN-, and Transformer-based models have received more
attention.

CNN-based Models: 1D-CNN-based model [31] is designed
to learn the spectral information. SSFC [32], utilizing 2D-
CNN, is employed to extract the spatial-spectral features.
Compared to several DL models, Li et al. [23] better ex-
ploit the discrimination information via 3D-CNN with fewer
parameters. Besides, channel-based CNN methods including
single-channel CNN [32], dual-channel CNN [24], and multi-
channel CNN [33], have been designed to learn the hierarchical

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2025.3566616

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Robert Gordon University. Downloaded on May 08,2025 at 14:43:09 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2024 2

high-level features. To overcome the degradation [34] in deeper
CNNs, SSRN [35] and FDSSC [36] introduce residual connec-
tion [34] and dense connection [37] to CNNs for classifying
hyperspectral data, respectively. However, most of these models
only extract single-scale features from the fixed-size image
patches. In complex HSI with limited training samples, the
classification results of these single-scale models may be
suboptimal and unstable [38], [39]. To address these limitations,
several multi-scale CNN models have been proposed to extract
multi-scale features by using multi-scale filter banks. Lee et
al. [40] present a multi-scale filter bank in the first layer
of their network, which is constructed using three parallel
convolutions with different kernel sizes to extract multi-scale
features. Gong et al. [41] explore three multi-scale CNN (MS-
CNNs) to enhance the learning ability of single-scale CNNs for
HSI classification. To consider the complementary and related
information among features of various scales, Li et al. [42]
develop a multi-scale deep CNN with residual blocks to extract
multi-scale spatial-spectral features from input image patches of
diverse scales. To learn more pixel-level discriminative features,
attention-based multi-scale CNN methods such as DBMA [43]
and DBDA [44] have been introduced. Ma et al. [43] propose
a double-branch multi-attention network (DBMA) that captures
more discriminative spatial-spectral features through the designs
of two branches and an attention mechanism. To enhance the
performance of several networks such as DBMA, Li et al. [44]
present a double-branch dual-attention network (DBDA) by
developing an attention mechanism. In DBDA, two branches
are constructed to optimize spatial-spectral features: a channel
attention block and a spatial attention block. Additionally,
Wang et al. [45] introduce an attention-based multi-scale
CNN framework utilizing two designs: a multi-scale spatial-
channel attention mechanism and a shuffle block. Although
these CNN-based models have advantages in extracting local
spatial-spectral features, they struggle to directly capture
the relationships of land covers at medium- and long-term
distances [30], [54], [65], due to their limited receptive fields.

GCN-based Models: Compared to CNNs that tend to capture
local features, graph convolutional networks (GCNs) [46]
and their variant models are capable of modeling remote
dependencies among various nodes in space, overcoming the
problems of these CNN-based models. Therefore, GCNs have
become a hot topic and have been applied to learn the features
of HSI. Qin et al. [27] propose spectral–spatial GCNs (S2GCNs)
to extract spatial-spectral features, modeling each pixel of
HSI as a graph node. However, S2GCNs suffer from the
concerns of high complexity. To assign appropriate weights
to neighboring nodes, Sha et al. [28] design graph attention
networks (GATs) via the spatial-spectral similarity of pixels.
By utilizing the technologies such as dense connections [37]
and dilated convolutions [47], Bai et al. [29] develop an
attention framework termed DAGCN, which constructs deep
graph convolutional networks (DeepGCNs) to consider the
non-Euclidean features of HSI. These graph networks regard
each pixel in HSI as a graph node, which requires significant
computing and time resources. To avoid these limitations, many
superpixel-based GCNs [9], [48]–[53] have been explored.
For instance, Wan et al. [48] and Ding et al. [49] reduce

the number of nodes by constructing superpixels instead of
using individual pixels as graph nodes. Nevertheless, in these
superpixel-based models, the features of each superpixel are
assumed to be uniform, ignoring the individual characteristics of
pixels. Consequently, the classification performance is limited.
To tackle these issues, several fusion networks that integrate
CNNs and GCNs have been proposed, aiming to supplement
the shortcomings of their respective networks while leveraging
their advantages [54]–[57]. However, these fusion models may
necessitate several elaborate designs, including the number of
layers, the number of filters for each layer, and the fusion
scheme of different networks.

Transformer-based Models: Recently, inspired by the re-
markable performance of vision Transformers (ViTs) [58]
in natural image processing, Transformer-based models [7],
[30], [59]–[61] have been investigated for HSI classification,
achieving excellent classification results due to their powerful
ability to model global contextual information. He et al. [59]
introduce a Transformer-based method called HSI-BERT, which
utilizes the multihead self-attention (MHSA) [62] mechanism
to capture the relationships between land covers at long-
term distances. Hong et al. [30] develop a Transformer-
based model, SpectralFormer, that extracts locally spectral
features from multiple neighboring bands and conveys memory-
like components from shallow to deep layers. Subsequently,
SSFTT [7] employs a Gaussian weighted feature tokenizer
and transformer encoder module to extract spatial-spectral
features. While these models effectively establish long-term
dependencies in HSI by utilizing Transformers instead of
traditional convolutions with shape-fixed kernel, they may still
face two limitations: 1) they may overlook the contribution of
local neighboring bands to object classification [63] owing to
the abundant spectral bands contained in HSI; and 2) these
models may struggle to extract local features effectively. To
address these limitations, several fusion architectures have been
explored. For instance, MVAHN [64] and GTFN [65] combine
the strengths of GCN and Transformer, utilizing GCN to learn
the contextual information of classified pixels, while leveraging
Transformer to model long-term dependencies among these
pixels. Subsequently, Zhao et al. [66] propose a hybrid approach
that integrates CNN with Transformer to capture both local
and global features. Nevertheless, these Transformer-based
models suffer from a quadratic computational complexity of
Transformer, making them impractical when dealing with large
HSI with numerous labelled pixels. Furthermore, similar to
these GCN-based fusion networks, these Transformer-based
models also require customized designs.

In summary, most CNN, GCN, and Transformer models
typically increase the size of their receptive fields by stacking
layers from their respective networks. To further enlarge the
size of the receptive field and improve learning ability, a
range of techniques such as residual connections and attention
mechanisms are used to facilitate deeper structures and better
adjust the contribution of pixel features. However, each network
type typically encounters its own specific limitations: 1) CNN-
based networks have difficulties in extracting the relationships
between land covers at medium- and long-term distances, owing
to the local connectivity of these CNN models; 2) many GCN-
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Fig. 1: Architecture of the proposed MSLKCNN, which consists of two mainly components: a noise suppression module (NSM)
to reduce the noise and bands, and a multi-scale large kernel convolution (MSLKC) to capture the features of different types
(i.e. spectral, spectral-spatial) and ranges (i.e. small local, larger local, and global). MSLKC includes a 1×1 convolution block,
MLKDC, MDDC, and average fusion pooling (AFP).

based networks tend to overlook the individual features of pixels
by operating on superpixel-based nodes; and 3) Transformer-
based networks often suffer from computational inefficiency.
Moreover, these models necessitate a series of customized and
intricate designs such as the number of layers, the filter numbers
and sizes for each layer, the way of residual connections, and
the implementation of attention mechanisms. These designs
heavily rely on the expertise, experience, and time of the
researcher.

Recently, large kernel CNNs (LKCNNs) [67]–[71] have
come into focus. These LKCNNs leverage their large kernel
convolutions to expand the receptive field, thereby demon-
strating a superior capability in extracting long-term (global)
features compared to traditional CNNs. Although these LKC-
NNs have achieved promising performance in natural visual
tasks, their potential for high-dimensional visual domains such
as HSI classification has not been fully explored.

To address these limitations that exist in the CNN-, GCN-,
and Transformer-based models and explore the potential of
LKCNNs in HSI classification, we introduce a novel end-
to-end multi-scale large kernel CNN (MSLKCNN) for HSI
classification (Fig. 1). MSLKCNN circumvents these elaborate
designs described in the aforementioned models while scaling
up the largest kernel size to 15 × 15. Specifically, we first
develop a noise suppression module (NSM) to suppress the
noise and reduce the bands in raw HSI. Subsequently, a new
multi-scale large kernel convolution (MSLKC), consisting of
three parallel convolution components, is introduced to extract
comprehensive features of various types and scales. Among
the three components, the 1 × 1 convolution is employed to
extract spectral features, the multi-scale large kernel depthwise
separable convolution (MLKDC) is utilized to learn short-
range (small local), medium-range (larger local), and long-
range (global) spectral-spatial features, and the multi-scale
dilated depthwise separable convolution (MDDC) focuses

on capturing spectral-spatial features between land covers
at diverse distances. Finally, we introduce an average fusion
pooling (AFP) to fuse the comprehensive features extracted by
the three components. The main contributions of this article
are summarized as follows:

1) We design a novel MLKDC composed of a series of
arithmetic depthwise separable convolutions (DSCs) [72] with
a similar topology in a parallel manner to capture the features
in regions of different sizes.

2) We develop a new type of convolution, MDDC, by
combining DSC with dilated convolution [47], to establish
the relationships between land covers at various distances.

3) Based on our MLKDC and MDDC, we propose a novel
MSLKC capable of extracting discriminative features across
diverse types and ranges. Leveraging the proposed MSLKC,
we introduce MSLKCNN, a simple and powerful architecture
designed to effectively learn spectral-spatial features and
circumvent the need for the carefully and customized designs
of existing networks.

The rest of the paper is organized as follows. Section
II introduces the proposed MSLKCNN. We evaluate the
performance of MSLKCNN in Section III. In Section IV, we
summarize the paper.

II. PROPOSED METHOD

An overview of the proposed MSLKCNN is illustrated in
Fig. 1, which includes three modules: 1) NSM that eliminates
noise and reduce the number of bands in raw HSI; 2)
MSLKC that leverages three parallel convolutions to extract
comprehensive features of different types and scales; and 3) a
Softmax classification module that predicts the label for each
pixel. In the following sections, we will describe the details of
each module.
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A. Noise Suppression Module (NSM)

Original HSI contains redundant band information and is
subject to noise. To address these limitations, we present a
new noise suppression module (NSM). In our NSM, we deal
with the HSI using three successive 1× 1 convolutions with a
few filters, batch normalization (BN) techniques, and ReLU
functions to suppress noise and reduce the number of bands.

Let X l be the input feature map of the l-th convolutional
layer, for the spatial location p1 = (x, y), the output feature
map of the l-th 1× 1 convolutional layer in the i-th spectral
channel, denoted as X l+1

i (p1), can be written as

X l+1
i (p1) = ReLU(BN(W l

i ·X l
i(p1) + bli)) , (1)

where X l
i(p1) denotes the value of the l-th 1×1 convolutional

layer in the i-th input spectral channel at the location p1, W l
i

denotes the trainable weight of the i-th kernel with a size of
1× 1 in the l-th convolutional layer, and bli is the bias of the
i-th kernel in the l-th convolutional layer.

B. Multi-scale Large Kernel Convolution (MSLKC)

In this section, we propose a novel multi-scale large kernel
convolution (MSLKC) that scales up the largest kernel size
to 15 × 15, as depicted in Fig. 1. MSLKC comprises three
convolutions and one fusion pooling operation: 1) a 1 × 1
convolution block, which is used to capture spectral features;
2) a multi-scale large kernel depthwise separable convolution
(MLKDC) that extracts local and global spectral-spatial features
of HSI in parallel; 3) a multi-scale dilated depthwise separable
convolution (MDDC) that can learn the spatial relationships
between pixels at different distances without additional param-
eters and the reduction of image resolution; and 4) an average
fusion pooling (AFP) that fuses the features extracted by the
three convolutions. In the subsequent sections, we will describe
the four components in detail.

1) 1× 1 Convolution Block: Our 1× 1 convolution block,
as one of the components of MSLKC, consisting of a 1 × 1
convolution, a BN, and an activation function CELU [73],
is applied to learn spectral features. Let XN be the features
transferred by NSM, then the 1× 1 convolution block can be
expressed as

H1 = ReLU(BN(Conv1(XN ))) , (2)

where Conv1 denotes the 1 × 1 convolution, and H1 is the
output features of the 1× 1 convolution block.

2) Multi-scale Large Kernel Depthwise Separable Con-
volution (MLKDC): Since depthwise separable convolution
(DSC) [72] significantly reduces the number of computations
and parameters compared to ordinary convolution, DSC is
preferred over ordinary convolution for extracting features
from HSI [74]. Fig. 2 illustrates the diagrams of an ordinary
3 × 3 convolution, DSC, and the proposed MLKDC. DSC
decomposes the 3× 3 convolution into a 3× 3 depthwise con-
volution (DWC) [72] and a pointwise convolution (PWC) [72],
aiming to significantly reduce the number of parameters and
calculations. The DWC convolves each channel of input
feature map separately, which is equivalent to a 3× 3 group
convolution [75] with the number of groups equal to the number

of input channels. The PWC is a 1× 1 convolution that learns
the channel correlations among all feature maps extracted by
the DWC operation. The advantages of this DSC motivate us
to introduce it into our model for efficient computation.

To achieve the multi-scale feature extraction of HSI, we
propose a novel MLKDC by designing arithmetic DSCs (DSCs
with various kernel sizes in an arithmetic progression), as
illustrated in Fig. 2 (c). The proposed MLKDC consists of
m+1
2 parallel DSCs. These convolutions share the same input

features learned by NSM, perform convolution operations in
an equal-width manner, maintain a similar topology, and are
constrained by two simple rules: (i) apart from the different
spatial sizes of these DWCs, all other hyperparameters (filter
numbers, strides) remain the same; and (ii) the spatial sizes are
distributed in an arithmetic progression with common difference
of 2. The equal-width manner and the first rule ensure that the
sizes of the output and input feature maps are the same for
each parallel DSC. Based on these two rules, we only need
to design the first template DSC and set the scale numbers,
and the proposed MLKDC can be determined accordingly.
Consequently, these two rules greatly simplify the design space,
enabling us to focus on a limited number of hyperparameters.

In every DSC, we utilize PWC (i.e., 1 × 1 convolution)
for spectral feature extraction, followed by the extraction of
spatial features through DWC. For the designed DWCs, the
spatial sizes are evenly distributed, ranging from 3 × 3 to
(m+ 2)× (m+ 2), where m+ 2 represents the largest kernel
size within MLKDC. Since we set m+ 2 to a large value of
15 (i.e., m = 13) in our experiments, the proposed MLKDC
is a large kernel convolution. We take XN as input, then its
output feature map HMLKDC can be computed as:

HMLKDC = MLKDC(XN ) = {H̃3, H̃5, . . . , H̃m+2} , (3)

where H̃m+2 denotes the extracted features from XN by (m+
2)× (m+ 2) DSC.

In the proposed MLKDC, we use small kernel convolutions
(3×3 and 5×5) to extract local features, convolutions with
medium-sized kernels (e.g., 7×7) to capture larger local
features, and large kernel convolutions (e.g., 15×15) to learn
global features.

3) Multi-scale Dilated Depthwise Separable Convolution
(MDDC): In images, dilated convolution [47] expands the
receptive field without adding extra parameters by sampling
pixels in the neighborhood at intervals compared with ordinary
convolution, and has been successfully applied to HSI [76].
This motivates us to leverage the benefits of dilated convolution
in designing our model. To extract features at different scales
in HSI, we design a new MDDC that consists of k+1

2 parallel
dilated depthwise separable convolution (DDSC) modules
(Fig. 3). All modules carry out convolution operations in an
equal-width convolutional way, maintain a similar structure, and
are subject to two simple rules: (i) except for the various spatial
sizes and dilation factors of these DDSCs, the hyperparameters
(filter numbers, strides) are shared among these DDSCs; and
(ii) spatial sizes and dilation factors are arranged in arithmetic
progressions with common differences of 2 and 1, respectively.
The equal-width way and the first rule ensure that the sizes
of the output and input feature maps are the same for each
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Fig. 2: Various convolutions. (a) Ordinary convolution. (b) Depthwise separable convolution. (c) Proposed multi-scale large
kernel depthwise separable convolution (MLKDC).

parallel module. Similar to the proposed MLKDC, with the
two rules, we only need to design the first template module
and set the scale numbers, and the proposed MDDC can be
determined accordingly. Therefore, the design of MDDC is
quite straightforward.

As depicted in Fig. 3, DDSC represents a modified dilated
convolution that combines DSC with dilated convolution, and
can also be viewed as a new DSC with a dilation factor d. In
every DDSC, PWC and DDC are utilized to learn the spectral
and spatial features, respectively. For the proposed MDDC,
the spatial sizes are evenly distributed, ranging from 3× 3 to
(k + 2)× (k + 2), where k + 2 denotes the largest kernel size
in MDDC. Let HMDDC be the output features of the proposed
MDDC, then we have

HMDDC = MDDC(XN ) = {Ĥ3, Ĥ5, . . . , Ĥk+2} , (4)

where Ĥk+2 is the learned features from XN by (k+2)×(k+2)
DDSC.

In our MDDC, we use parallel DDSCs with various kernel
sizes and dilation factors to learn the multi-scale features of HSI
in parallel and build relationships between pixels at different
distances.

4) Average Fusion Pooling (AFP): In the proposed MSLKC,
we design three convolutions to extract the features of HSI in
parallel: a 1× 1 convolution block, MLKDC, and MDDC. By
fusing these features extracted by the three convolutions, the
strengths of the three various convolutions can be effectively
combined. In HSI classification task, feature fusion schemes
commonly include column concatenation fusion [55] and sum
fusion [64]. We explore a new fusion scheme for this task,
termed average fusion pooling (AFP), which aims to integrate
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Fig. 3: Proposed multi-scale dilated depthwise separable convolution (MDDC).

these features. Let Hf be the output features of AFP, based
on Equations (2) to (4), the AFP is defined as

Hf = AFP(H1;HMLKDC;HMDDC)

=
1

N

(
H1+H̃3+H̃5+· · ·+H̃m+2+Ĥ3+Ĥ5+· · ·+Ĥk+2

)
,

(5)

where N = 2 + m+k
2 denotes the total number of scales in

MSLKC.
Analysis of Parameters and Complexity: Let the number of

input channels and output channels in the ordinary convolution
with a 3×3 kernel be ci and co, respectively. Then the ordinary
convolution has ci × 3× 3× co parameters and proportional
floating point operations per second (FLOPS). Assuming that
DSC in Fig. 2 (b) and MSLKC have the same number of input
and output channels as the ordinary convolution. Then, the DSC
has ci × 3× 3 + ci × co parameters and proportional FLOPS.
The number of parameters for the proposed MLKDC (Fig. 2
(c)), MDDC (Fig. 3), and MSLKC modules are m+1

2 ×ci×co+

co×
∑m+1

2
j=1 (2j+1)2, k+1

2 ×ci×co+co×
∑ k+1

2
i=1 (2i+1)2, and

ci × co +
m+1
2 × ci × co + co ×

∑m+1
2

j=1 (2j+1)2 + k+1
2 × ci ×

co + co ×
∑ k+1

2
i=1 (2i + 1)2, respectively. The computational

complexity of the three proposed modules is proportional
to their respective parameters. In our experiments, we set

m = 13, k = 3, and ci = co = 64. With these settings,
the receptive field of the proposed MSLKC is equivalent to
that of the 7-layer 3 × 3 ordinary convolution (stacking the
ordinary convolution seven times). The number of parameters
of MSLKC and the 7-layer ordinary convolution are 86,592
and 258,048, respectively. The computational complexity of
these two models is proportional to the number of parameters
in their respective models. Therefore, with the same receptive
field, our MSLKC outperforms multiple stacked convolutions
in terms of parameters and computational complexity.

C. Softmax Classification

After AFP, we use a Softmax classifier to classify the
combined feature map Hf . We have

Y =
ePiHf+bi∑C
i ePiHf+bi

, (6)

where C denotes the number of land cover categories, and
Pi and bi are the trainable parameter and bias. To train the
proposed model, we select a cross-entropy error as the loss
function, namely

L = −
∑

Z∈Olabel

C∑
j=1

Ozj lnYzj , (7)
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TABLE I: SUMMARY OF BOTSWANA, HOUSTON 2013, AND LONGKOU DATASETS

Dataset Botswana Houston 2013 LongKou

Wavelength 0.4 um - 2.5 um 0.38 um - 1.05 um 0.4 um - 1.0 um
Data Size 1476 × 256 × 145 349 × 1905 × 144 550 × 400 × 270

Ratio Per Class 1%, 1%, and 98% for Train., Val., and Test. 0.5%, 1%, and 98.5% for Train., Val., and Test. 0.025%, 1%, and 98.975% for Train., Val., and Test.
Time 2001 2013 2018

Class No. Class Name Train. Val. Test. Class Name Train. Val. Test. Class Name Train. Val. Test.

1 Water 3 3 264 Healthy Grass 6 13 1232 Corn 8 345 34158
2 Hippo Grass 1 1 99 Stressed Grass 6 13 1235 Cotton 2 84 8288
3 Floodplain Grasses 1 2 2 247 Synthetic Grass 4 7 686 Sesame 1 30 3000
4 Floodplain Grasses 2 2 2 211 Tree 6 12 1226 Broad-Leaf Soybean 16 632 62564
5 Reeds 3 3 263 Soil 6 12 1224 Narrow-Leaf Soybean 1 42 4108
6 Riparian 3 3 263 Water 2 3 320 Rice 3 119 11732
7 Fires Car 2 2 255 Residential 7 13 1248 Water 17 670 66369
8 Island Interior 2 2 199 Commercial 6 12 1226 Roads and Houses 2 71 7051
9 Acacia Woodlands 3 3 308 Road 6 13 1233 Mixed Weed 1 52 5176
10 Acacia Shrub Lands 2 2 244 Highway 6 12 1209 - - - -
11 Acacia Grasslands 3 3 299 Railway 6 12 1217 - - - -
12 Short Mopane 2 2 177 Parking Lot 1 6 12 1215 - - - -
13 Mixed Mopane 3 3 262 Parking Lot 2 3 5 461 - - - -
14 Exposes Soils 1 1 93 Tennis Court 2 4 422 - - - -
15 - - - - Running Track 3 7 650 - - - -

Total - 32 32 3184 - 75 150 14804 - 51 2045 202446

where O denotes the label matrix, and Yzj represents the
probability of the z-th pixel belonging to the j-th category.

III. EXPERIMENT

In this section, we conduct comprehensive experiments to as-
sess the strengths and effectiveness of our MSLKCNN. Firstly,
we benchmark MSLKCNN against nine HSI classification meth-
ods, employing three widely utilized HSI datasets, with metrics
including per-class accuracy, overall accuracy (OA), average
accuracy (AA), and kappa coefficient (KAPPA). Subsequently,
we compare MSLKCNN with different comparative methods
under various training samples. Then, we analyze OA results
using diverse fusion schemes. Furthermore, we compare the
training and testing time of different methods to demonstrate
the efficiency of MSLKCNN. Lastly, we perform several
ablation studies to validate the impacts of key components
and hyperparameters.

A. Dataset

In this section, we introduce three publicly available bench-
mark HSI datasets, i.e., Botswana, Houston 2013, and WHU-
Hi-LongKou (LongKou), to evaluate the performance of the
proposed MSLKCNN. The details of the three datasets are
summarized in Table I.

1) Botswana: The first dataset, Botswana, was acquired by
the NASA EO-1 satellite in the Okavango Delta region of
Botswana. It contains 242 spectral bands with a spatial size
of 1476× 256 and 14 land cover categories in the wavelength
range from 0.4 to 2.5 um. After removing noise bands of
1-9, 56-81, 98-101,120-133, and 165-186, 145 spectral bands
are retained. Moreover, 1%, 1%, and 98% of samples per
class are randomly selected for training, validation, and testing,
respectively.

2) Houston 2013: The second dataset, Houston 2013, was
collected by the National Center for Airborne Laser Mapping
(NCALM) over the University of Houston for the 2013 IEEE
GRSS Data Fusion Contest [77]. The dataset contains 144
spectral bands with a spatial size of 349× 1905 and 15 land

cover categories ranging from 0.38 to 1.05 um. In addition,
we randomly select 0.5%, 1%, and 98.5% of samples per class
for training, validation, and testing, respectively.

3) WHU-Hi-LongKou: The third dataset, WHU-Hi-LongKou
(LongKou), was captured by an 8-mm focal length Headwall
Nano-Hyperspec imaging sensor in the town of LongKou,
Hubei Province, China in 2018 [78]. We use the image with
a spatial size of 550 × 400, 9 land cover classes, and 240
spectral bands in the wavelength range from 0.4 to 1.0 um.
Then, 0.025%, 1%, and 98.975% of samples per class are
randomly selected as the training, validation, and testing sets,
respectively.

B. Experimental Settings
We conduct all experiments using Adam optimizer with

a learning rate of 0.0005 in Pytorch. In NSM, we set the
number of filters per convolutional layer to 64. For the proposed
MSLKC, the number of filters per convolution is set to 64, the
largest kernel size (m + 2) in MLKDC is 15 (i.e., m = 13),
and the largest kernel size (k + 2) in MDDC is 5 (i.e., k = 3).
The number of training epochs is set to 200 for Houston 2013
and 800 for other datasets, respectively. All experiments of our
MSLKCNN and baselines are repeated ten times with varying
random initializations. The experimental environment consists
of an i9-7980XE CPU, Python 3.7, and a GTX-2080Ti GPU.

To demonstrate the proposed MSLKCNN, we compare
it against nine state-of-the-art HSI classification baselines:
(1) three CNN-based methods: the deeper with contextual
CNN (CDCNN) [40], the attention-based adaptive spectral-
spatial kernel ResNet (A2S2K-Res) [79], and the central vector
oriented self-similarity network (CVSSN) [80]; (2) three GCN-
based methods: the CNN-enhanced GCN (CEGCN) [55], the
fast dynamic graph convolutional network and CNN parallel
network (FDGC) [81], and the attention multi-hop graph and
multiscale convolutional fusion network (AMGCFN) [82];
and (3) three Transformer-based methods: the spectral-spatial
feature tokenization transformer (SSFTT) [7], the GCN and
transformer fusion network (GTFN) [65], and the groupwise
separable convolutional vision Transformer (GSC-ViT) [66].

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2025.3566616

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Robert Gordon University. Downloaded on May 08,2025 at 14:43:09 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2024 8

TABLE II: COMPARISON OF ALL METHODS ON THE BOTSWANA DATASET USING 1% LABELLED SAMPLES PER
CLASS FOR TRAINING. LKCNet DENOTES LARGE KERNEL CONVOLUTIONAL NETWORK.

Class CNN-based methods GCN-based methods Transformer-based methods LKCNet
CDCNN A2S2K-Res CVSSN CEGCN FDGC AMGCFN SSFTT GTFN GSC-ViT MSLKCNN

1 100.0±0.00 77.35±14.69 90.36±3.82 98.79±1.65 75.68±14.09 98.48±1.93 96.74±2.29 74.46±11.77 98.56±0.77 100.0±0.00
2 17.98±12.51 74.55±20.14 79.08±15.22 87.07±19.43 85.45±12.20 97.37±4.76 100.0±0.00 74.40±15.78 99.19±1.62 94.65±7.17
3 35.06±37.07 83.00±15.01 91.66±9.93 84.13±10.24 82.12±10.25 94.49±3.67 78.62±8.50 79.92±11.74 80.65±11.72 95.10±4.90
4 10.24±18.14 99.62±0.76 75.47±11.71 87.58±16.78 73.65±24.33 87.77±14.43 100.0±0.00 88.08±18.40 96.59±6.36 100.0±0.00
5 67.83±8.28 84.41±6.90 77.02±6.23 56.35±18.50 77.26±13.92 86.24±4.03 77.87±6.23 71.65±7.31 84.71±10.37 95.74±1.49
6 45.93±22.56 73.54±17.97 74.38±11.97 72.02±6.26 65.93±11.13 67.30±0.76 55.89±0.42 69.70±5.35 79.92±5.19 67.91±6.84
7 88.47±5.43 94.35±5.07 95.20±3.56 95.14±6.23 93.44±8.04 99.61±0.50 99.84±0.31 94.22±6.49 99.84±0.31 98.82±2.90
8 24.62±23.16 68.04±15.52 74.24±14.04 65.93±5.61 57.79±16.79 66.73±4.49 97.99±2.93 60.00±7.45 96.28±2.67 71.36±0.00
9 71.49±17.68 93.83±6.43 68.80±14.89 100.0±0.00 87.01±15.68 100.0±0.00 78.38±7.63 71.58±15.89 89.55±4.87 100.0±0.00

10 47.30±34.75 75.74±25.30 92.97±5.67 100.0±0.00 69.43±15.29 91.15±14.97 100.0±0.00 62.03±21.85 98.69±2.03 93.81±10.09
11 98.06±3.71 84.41±12.77 88.54±9.17 98.13±2.14 79.80±29.80 96.99±3.42 76.52±0.54 95.23±4.59 89.77±4.21 99.13±1.11
12 90.40±8.33 81.36±21.52 66.24±6.97 95.59±7.99 94.12±11.19 100.0±0.00 70.51±0.23 75.87±25.01 99.66±0.45 100.0±0.00
13 80.84±22.70 92.75±10.81 90.57±8.49 100.0±0.00 92.67±13.15 100.0±0.00 98.78±1.40 89.06±8.28 99.62±0.76 100.0±0.00
14 23.87±29.00 65.16±17.70 97.93±4.14 48.39±21.71 56.77±19.68 16.13±0.00 50.97±18.76 29.57±14.55 48.39±19.32 90.75±10.77
OA 62.39±9.25 83.49±1.94 81.71±2.1 87.08±1.15 78.84±3.89 89.20±1.43 84.99±0.78 76.52±2.50 91.33±1.75 93.74±1.23
AA 57.29±9.72 82.01±2.38 83.03±1.39 84.94±0.92 77.94±4.07 85.88±1.59 84.44±1.04 73.98±2.10 90.10±2.20 93.38±1.40

KAPPA 59.03±10.11 82.09±2.11 80.17±2.29 85.97±1.25 77.06±4.22 88.27±1.56 83.74±0.84 74.50±2.71 90.61±1.90 93.21±1.34

Fig. 4: False-color image, ground truth, and classification maps on the Botswana dataset. (a) False-color image. (b) Ground truth.
(c) CDCNN (OA=62.39%). (d) A2S2K-Res (OA=83.49%). (e) CVSSN (OA=81.71%). (f) CEGCN (OA=87.08%). (g) FDGC
(OA=78.84%). (h) AMGCFN (OA=89.20%). (j) SSFTT (OA=84.99%). (k) GTFN (OA=76.52%). (l) GSC-ViT (OA=91.33%).
(i) MSLKCNN (OA=93.74%).

C. Comparison of Classification Performance

In this section, we assess the performance of the proposed
MSLKCNN quantitatively and qualitatively against the base-
lines on the Botswana, Houston 2013, and LongKou datasets.

1) Results on Botswana: The quantitative results of all
methods on the Botswana dataset are reported in Table II.
From the table, we make the following observations: a)
Compared to CDCNN that lacks these techniques such as
residual connections, attention mechanisms, and multi-branch
learning, other baselines that incorporate at least one of these
techniques perform significantly better in terms of OA, AA,

and KAPPA. This demonstrates that these techniques can
enhance the performance of HSI classification. b) Most GCN-
based (e.g., AMGCFN) and Transformer-based (e.g., GSC-ViT)
methods outperform CNN-based methods. This superiority is
primarily attributed to the ability of GCNs and Transformers
to establish long-range dependencies among pixels. c) By
leveraging large kernel convolutions, our MSLKCNN is capable
of capturing global features that are often overlooked by
traditional CNNs, achieving top-level performance among all
competing methods in terms of OA, AA, and KAPPA. This
validates the effectiveness of MSLKCNN. The classification
maps of different methods on the dataset are shown in Fig. 4.
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TABLE III: COMPARISON OF ALL METHODS ON THE HOUSTON 2013 DATASET USING 0.5% LABELLED SAMPLES
PER CLASS FOR TRAINING. LKCNet DENOTES LARGE KERNEL CONVOLUTIONAL NETWORK.

Class CNN-based methods GCN-based methods Transformer-based methods LKCNet
CDCNN A2S2K-Res CVSSN CEGCN FDGC AMGCFN SSFTT GTFN GSC-ViT MSLKCNN

1 84.24±1.25 88.81±6.87 85.77±8.70 93.93±2.97 86.01±5.28 90.89±2.76 91.61±1.80 84.50±1.96 98.23±0.52 96.69±2.30
2 34.56±21.86 94.95±6.11 84.47±8.11 81.31±5.55 74.57±10.31 68.70±5.18 83.53±9.79 82.60±7.18 81.28±6.42 85.78±0.79
3 86.65±4.58 99.77±0.07 77.49±10.96 99.91±0.12 95.78±3.20 99.10±0.63 97.70±1.46 98.90±0.67 95.19±1.99 98.54±0.60
4 91.21±6.74 95.20±3.08 89.57±5.38 92.95±1.68 72.04±6.29 77.59±4.43 88.52±7.21 85.98±8.88 92.92±1.95 94.13±0.25
5 93.22±3.63 99.22±0.97 85.87±6.63 100.0±0.00 98.24±1.99 97.79±1.19 99.40±0.58 97.17±2.19 99.31±0.40 99.40±0.51
6 32.81±12.87 72.69±31.04 83.43±14.91 79.00±3.08 80.50±5.24 63.13±16.47 88.00±5.97 81.61±6.92 89.06±3.94 79.25±2.51
7 61.47±13.52 85.35±4.20 76.19±6.16 85.16±3.81 53.56±11.57 65.00±2.49 65.77±10.63 58.91±9.78 86.51±5.95 83.29±3.16
8 33.00±3.82 52.06±4.89 76.31±6.21 48.43±1.91 48.76±9.21 40.28±4.62 48.65±10.33 50.55±11.85 51.24±2.36 46.46±8.19
9 65.37±9.43 63.29±9.70 79.56±7.40 86.36±4.17 51.71±15.97 56.25±7.31 49.46±8.95 57.35±8.91 76.66±2.75 85.52±3.92

10 21.59±11.08 68.90±10.09 57.66±7.56 73.27±0.40 81.60±10.15 73.10±0.43 56.29±7.41 68.52±14.16 62.03±0.52 71.99±1.11
11 35.76±19.15 84.08±3.51 59.88±11.49 82.09±1.31 79.90±8.63 78.72±4.19 67.54±3.51 84.07±11.13 63.16±8.09 87.90±1.33
12 32.02±20.83 74.06±10.24 65.25±10.62 87.16±4.71 77.79±10.63 79.72±12.76 75.98±4.10 62.92±18.51 50.72±5.05 73.33±8.37
13 64.77±14.69 80.56±9.47 75.34±15.02 38.18±18.59 66.41±20.42 88.72±3.13 76.75±14.30 52.55±12.99 78.96±5.75 76.10±8.21
14 51.04±28.33 98.96±1.75 68.76±7.14 98.77±1.19 97.91±2.53 93.89±4.88 99.95±0.09 96.95±1.84 91.52±6.68 100.0±0.00
15 89.82±8.10 99.94±0.12 78.07±10.62 98.43±0.81 92.89±4.65 94.34±4.74 93.97±7.04 98.78±1.33 99.60±0.49 99.91±0.12
OA 57.98±3.55 82.71±0.66 74.83±1.77 83.50±0.42 75.06±2.92 75.83±2.69 76.01±2.67 75.76±1.45 78.98±1.01 84.22±1.24
AA 58.50±3.57 83.86±1.29 76.24±1.26 83.00±1.04 77.18±3.30 77.81±2.82 78.87±2.32 77.42±1.18 81.09±0.75 85.22±1.21

KAPPA 54.68±3.85 81.31±0.72 72.80±1.93 82.14±0.46 73.05±3.16 73.91±2.88 74.08±2.87 73.79±1.56 77.27±1.09 82.93±1.34

Fig. 5: False-color image, ground truth, and classification maps on the Houston 2013 dataset. (a) False-color image. (b)
Ground truth. (c) CDCNN (OA=57.98%). (d) A2S2K-Res (OA=82.71%). (e) CVSSN (OA=74.83%). (f) CEGCN (OA=83.50%).
(g) FDGC (OA=75.06%). (h) AMGCFN (OA=75.83%). (j) SSFTT (OA=76.01%). (k) GTFN (OA=75.76%). (l) GSC-ViT
(OA=78.98%). (i) MSLKCNN (OA=84.22%).

From these maps, we observe that the proposed MSLKCNN
achieves fewer misclassifications than the comparison methods.

2) Results on Houston 2013: Table III presents the quan-
titative results of the proposed MSLKCNN in comparison
with the state-of-the-art methods on the Houston 2013 dataset.
From these results, it is evident that our MSLKCNN achieves
the best performance, surpassing all other methods in terms
of OA, AA, and KAPPA. Specifically, MSLKCNN improves
over CNN-based methods by at least 1.83%, 1.62%, and
1.99%, improves over GCN-based methods by at least 0.86%,
2.67%, and 0.96%, and improves over Transformer-based
methods by at least 6.63%, 5.09%, and 7.32% in terms of
OA, AA, and KAPPA, respectively. These results demonstrate

the strengths of the proposed MSLKCNN. As shown in Fig. 5,
MSLKCNN achieves superior classification map compared to
other methods, which further validates that our large kernel
convolution contributes significantly to enhancing performance.

3) Results on LongKou 2013: Table IV shows the quantitative
results achieved by various methods on the LongKou dataset.
Similar to these observations for other datasets, the proposed
MSLKCNN exhibits a substantial improvement over all base-
lines, again demonstrating the superiority of MSLKCNN. The
visual inspection in Fig. 6 reveals that MSLKCNN achieves
fewer misclassifications than the comparison methods, such as
the class of Roads and Houses (masked in green).
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TABLE IV: COMPARISON OF ALL METHODS ON THE LONGKOU DATASET USING 0.025% LABELLED SAMPLES
PER CLASS FOR TRAINING. LKCNet DENOTES LARGE KERNEL CONVOLUTIONAL NETWORK.

Class CNN-based methods GCN-based methods Transformer-based methods LKCNet
CDCNN A2S2K-Res CVSSN CEGCN FDGC AMGCFN SSFTT GTFN GSC-ViT MSLKCNN

1 96.48±1.15 99.89±0.08 88.01±6.81 99.07±0.33 97.88±2.17 99.35±0.28 98.55±0.92 97.44±1.91 99.11±0.49 99.58±0.32
2 54.13±31.60 64.04±23.11 55.72±8.34 52.25±1.90 81.38±14.11 72.93±6.84 70.74±13.34 60.67±19.75 86.19±7.09 65.03±3.74
3 0.51±1.01 66.84±34.34 45.63±38.32 51.81±15.88 88.67±6.57 92.93±1.43 95.71±4.54 63.94±30.20 82.63±4.66 81.06±1.20
4 91.14±3.77 98.62±0.75 91.05±2.15 99.49±0.23 96.70±2.62 96.60±0.34 94.06±3.43 94.23±6.58 97.45±0.95 99.45±0.16
5 0.01±0.02 33.95±23.10 40.88±28.90 28.04±3.84 59.44±8.37 56.58±13.33 30.96±3.21 38.73±14.96 22.30±5.76 54.69±12.05
6 80.36±4.38 82.11±7.26 83.27±5.45 93.56±2.74 88.20±2.87 84.17±4.32 97.55±1.13 85.42±7.96 77.38±7.05 97.00±1.43
7 99.99±0.00 99.86±0.15 98.94±0.66 99.99±0.01 98.43±1.69 99.81±0.11 97.95±0.58 98.22±1.12 99.88±0.14 99.99±0.01
8 52.71±35.51 47.08±18.07 61.31±21.69 43.63±13.61 39.55±12.82 68.28±5.23 67.17±3.30 54.63±22.72 83.36±6.50 88.37±4.78
9 1.49±2.98 35.11±8.98 71.08±31.19 2.45±1.46 27.48±16.13 39.51±20.19 21.22±4.99 24.86±14.02 19.54±5.70 21.86±6.89

OA 85.98±1.36 91.66±1.64 87.92±0.84 90.72±0.60 91.71±0.53 93.12±0.39 91.29±1.28 89.47±1.13 92.68±0.44 94.55±0.36
bAA 52.98±2.84 69.72±7.34 70.65±5.13 63.37±2.29 75.30±3.52 78.91±1.56 74.88±1.61 68.68±9.28 74.21±1.37 78.56±1.92

KAPPA 81.35±1.78 88.88±2.22 84.01±1.11 87.45±0.84 89.00±69.07 90.87±0.52 88.50±1.69 85.97±1.64 90.29±0.60 92.76±0.48

Fig. 6: False-color image, ground truth, and classification maps on the LongKou dataset. (a) False-color image. (b) Ground truth.
(c) CDCNN (OA=85.98%). (d) A2S2K-Res (OA=91.66%). (e) CVSSN (OA=87.92%). (f) CEGCN (OA=90.72%). (g) FDGC
(OA=91.71%). (h) AMGCFN (OA=93.12%). (j) SSFTT (OA=91.29%). (k) GTFN (OA=89.47%). (l) GSC-ViT (OA=92.68%).
(i) MSLKCNN (OA=94.55%).

D. Analysis of All methods with Different Numbers of Training
Samples

In this section, we compare the OA performance of various
methods under varying percentages of training samples per
class, i.e., 0.5%, 1%, 2.5%, 5%, and 10% for the Botswana
dataset, 0.125%, 0.25%, 0.5%, 1%, and 1.5% for the Houston
2013 dataset, and 0.01%, 0.025%, 0.05%, 0.1%, and 0.2% for
the LongKou dataset. The percentage of validation samples is
set to 1% for these methods across each dataset. As depicted
in Fig. 7, the OA results of the ten methods typically improve
with an increase in the percentage of training samples. We
observe that in a few cases, the OA outcomes with more
training samples decrease for several comparative methods
(such as GSC-ViT). These abnormal results may be due to
the additional noise introduced by the increase in the number
of training samples. In addition, the OA results of CEGCN,

AMGCFN, and the proposed MSLKCNN show an improvement
as the number of training samples increases, which is attributed
to the noise suppression module in their models. Furthermore,
our MSLKCNN outperforms the comparison methods across
different datasets, further demonstrating the strengths of
MSLKCNN.

E. Analysis of Different Fusion Schemes

As described in Section II-B, the number of feature maps
of the proposed MLKDC and MDDC is substantial. Using
column concatenation fusion (concatenate) and sum fusion
(sum) to combine these features may respectively lead to an
increase in the number of parameters and the generation of
large feature values. This may potentially lead to overfitting
and gradient explosion problems, respectively. To avoid these
potential problems, we introduce the AFP fusion scheme. To
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Fig. 7: OA performance of diverse methods under varying percentages of training samples per class for the Botswana, Houston
2013, and LongKou datasets.

Fig. 8: Results of various fusion schemes on the Botswana,
Houston 2013, and LongKou datasets.

assess the proposed AFP, we compare the OA of AFP with
the two commonly fusion schemes, i.e., concatenate and sum.
The results are illustrated in Fig. 8. The results show that AFP
performs better OA compared to other fusion schemes, which
verifies the advantages of designing AFP.

F. Comparison of Running Time

Table V reports the results of diverse methods in both
training and testing time on GPU and CPU devices for all
datasets. From the results, we make the following observations:
1) CDCNN, CVSSN, and SSFTT perform faster in most cases
compared to other baselines. This is attributed to the fact that
the three models incorporate a small number of convolutional
layers with kernel sizes larger than 1 × 1. 2) CEGCN and
AMGCFN, which incorporate GCN modules, utilize the entire
HSI instead of small HSI cubes as input, which results in faster
prediction speed than most comparative methods. However,
when dealing with the large datasets such as Botswana and
Houston 2013, they require considerable memory resources,
leading to the memory overflow on GPU. 3) Similar to CEGCN
and AMGCFN, the proposed MSLKCNN also leverages the
whole HSI as input, achieving very short prediction time
on GPU for all datasets, especially on the LongKou dataset.

In addition, MSLKCNN outperforms all compared methods
by a significant margin. These observations demonstrate the
superiority of MSLKCNN with large kernel convolution for
applications in the industrial world.

G. Ablation Study

In this section, we conduct ablation experiments to verify
the contributions and effects of various components and the
two key hyperparameters within the proposed MSLKCNN:
different largest kernel sizes in MLKDC and diverse largest
kernel sizes in MDDC.

1) Contributions of Various Components: As shown in Fig. 1,
our MSLKCNN is mainly composed of four components, i.e.,
the NSM, the 1× 1 convolution block, MLKDC, and MDDC.
To evaluate the individual contributions of these components,
we make a quantitative comparison by removing one of the
four components. The results are summarized in Table VI. We
observe that MSLKCNN without NSM performs significantly
lower than other methods on Houston 2013 dataset, suggesting
that the dataset may contain considerable noise. Additionally,
we find that MSLKCNN without MLKDC performs worse com-
pared to other models on other datasets, which demonstrates
that the large kernel convolutions in MLKDC enhance the
capability of extracting features. Furthermore, we see that our
MSLKCNN outperforms each modified method of MSLKCNN
across all datasets. These results validate the effectiveness of
these components.

2) Analysis of Different Largest Kernel Sizes in MLKDC: To
investigate the impact of varying the number of largest kernel
sizes in MLKDC, we compare the OA results achieved with
different largest kernel sizes (in MLKDC) on the Botswana,
Houston 2013, and LongKou datasets. Fig. 9 presents the
quantitative results. We observe that, in MSLKCNN, the OA
generally improves as the kernel size increases until its value of
15×15. By further increasing the value, however, the OA begins
to decrease. This is instrumental in determining the optimal
largest kernel size for MLKDC. The optimal largest kernel
size of MLKDC is the best largest kernel size for MSLKC.

3) Analysis of Diverse Largest Kernel Sizes in MDDC: To
verify the impact of varying the number of largest kernel sizes
in MDDC, we compare the OA results using diverse largest
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TABLE V: RUNNING TIME OF VARIOUS METHODS ON THE BOTSWANA, HOUSTON 2013, AND LONGKOU
DATASETS. OOM: OUT OF MEMORY. LKCNet DENOTES LARGE KERNEL CONVOLUTIONAL NETWORK. ms
DENOTES MILLISECOND.

Dataset Time (second) CNN-based methods GCN-based methods Transformer-based methods LKCNet
CDCNN A2S2K-Res CVSSN CEGCN FDGC AMGCFN SSFTT GTFN GSC-ViT MSLKCNN

Botswana

Train. (GPU) 2.95 5.03 5.06 OOM 4.89 OOM 1.82 30.73 11.12 337.47
Test. (GPU) 3.44 0.82 7.72 ms OOM 0.33 OOM 0.18 3.65 49.52 0.02
Train. (CPU) 5.48 10.52 16.12 1246.43 9.93 6584.85 4.20 48.69 30.38 8037.40
Test. (CPU) 1.73 2.84 0.01 0.75 1.54 4.60 0.99 7.80 381.39 3.09

Houston 2013

Train. (GPU) 8.12 8.99 8.74 OOM 5.24 OOM 4.37 64.40 17.96 439.14
Test. (GPU) 3.42 4.07 3.74 ms OOM 1.58 OOM 0.83 1.57 79.82 1.19
Train. (CPU) 10.52 17.97 37.90 1597.37 14.04 2493.61 12.11 107.66 71.89 4375.00
Test. (CPU) 7.74 13.36 0.02 5.71 7.20 9.01 4.67 35.76 630.68 8.92

LongKou

Train. (GPU) 23.63 38.53 OOM 360.58 4.44 186.22 13.72 OOM 169.64 204.02
Test. (GPU) 47.79 50.13 OOM 0.29 17.67 0.04 10.30 OOM 46.60 0.02
Train. (CPU) 59.51 121.51 277.66 1726.91 10.87 3810.58 70.30 67.70 507.01 4632.91
Test. (CPU) 142.63 188.65 58.99 ms 1.27 90.51 2.67 63.49 497.74 288.18 1.89

TABLE VI: CLASSIFICATION RESULTS OF EACH COMPONENT IN MSLKCNN

NSM 1× 1 Conv. block MLKDC MDDC Botswana Houston 2013 LongKou
OA AA KAPPA OA AA KAPPA OA AA KAPPA

✕ ✓ ✓ ✓ 87.54 84.41 86.46 78.40 79.14 76.63 94.17 78.15 92.23
✓ ✕ ✓ ✓ 93.46 92.90 92.91 83.20 83.98 81.82 94.09 76.49 92.14
✓ ✓ ✕ ✓ 83.91 82.54 82.54 82.52 82.43 81.08 89.49 66.44 85.97
✓ ✓ ✓ ✕ 92.92 92.54 92.32 83.47 84.64 82.13 94.27 77.23 92.38
✓ ✓ ✓ ✓ 93.74 93.38 93.21 84.22 85.22 82.93 94.55 78.56 92.76

Fig. 9: Results of different largest kernel sizes in MLKDC on
the Botswana, Houston 2013, and LongKou datasets.

kernel sizes (in MDDC) on the Botswana, Houston 2013, and
LongKou datasets. The quantitative results are reported in
Fig. 10. We find that, in MSLKCNN, the OA achieves an
improvement as the kernel size increases from 3× 3 to 5× 5.
However, further enlargement of the size leads to a decrease
in OA. This finding is crucial in identifying the optimal largest
kernel size for MDDC.

IV. CONCLUSION

In this work, we introduce a novel approach to HSI
classification by designing large kernel CNN architecture.
The proposed model employs NSM and MSLKC components
to suppress noise and extract robust spectral-spatial features,
respectively. Among these components, MSLKC, as the single-
layer feature extraction layer, is the main highlight. It consists
of three parallel convolution operations: 1) a 1× 1 convolution

Fig. 10: Results of diverse largest kernel sizes in MDDC on
the Botswana, Houston 2013, and LongKou datasets.

block for extracting spectral features, 2) MLKDC that is
used to capture spectral-spatial features across diverse ranges
(short-range, medium-range, and long-range), and 3) MDDC
designed to aggregate spectral-spatial features between land
covers at various distances. Our large kernel model, with its
simple structure, utilizes multi-scale large kernel structure,
DSCs, and dilated convolutions to effectively extract both
local and global features. Employing DSCs instead of standard
convolutions significantly reduces the number of parameters
and computational requirements. Consequently, the proposed
MSLKCNN is adaptable to the Botswana, Houston 2013, and
Longkou datasets, as well as other HSI datasets with varying
spectral and spatial characteristics. Extensive experiments
conducted on these three datasets demonstrate the effectiveness
and strengths of the proposed model. Additionally, these
advantages should facilitate its extension to other types of
remote sensing data, such as multispectral and synthetic
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aperture radar (SAR) images, with minimal modifications.
SAR data, in particular, presents unique challenges due to its
sensitivity to surface texture and structure rather than spectral
information, which often leads to speckle noise. The multi-scale
large kernel structure in MSLKCNN could be beneficial for
capturing spatial patterns at different scales, and the DSCs may
help in managing computational complexity when processing
SAR data. For future work, an interesting direction is to design
parameter sharing among different convolutional kernels to
reduce memory resources. Furthermore, we plan to expand the
proposed MSLKCNN to more HSI datasets.
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