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ABSTRACT
IoT systems face vulnerabilities due to their data processing requirements and resource constraints. 
With 13 billion connected devices globally, this research investigates the economic viability of AI-based 
intrusion detection systems (IDSs), specifically analyzing the automation costs of implementing 
a Convolutional Neural Network (CNN) with Long Short-Term Memory (LSTM) for classifying malicious 
sensor traffic. This study introduces an innovative framework that evaluates six distinct architectural 
components of CNN and LSTM: image input processing, convolutional layer operations, max pooling 
layer functionality, fully connected layer characteristics, softmax output activation, and class determina
tion mechanisms. The framework employs six metrics: matrix size, feature vector number, input vector 
size, output vector size, and number of runs for dual data points. Experiments on the IoT-23 dataset 
showed our proposed CNN model outperformed LSTM, achieving 93% accuracy for binary classification 
and 96% for multi-class classification. The trained CNN demonstrated predictable resource utilization 
with increasing classification complexity, providing a framework for quantifying IoT IDS costs. The 
proposed framework provides a systematic methodology for evaluating machine learning classifiers in 
IoT environments, using quantitative metrics to assess implementation and operational costs, enabling 
data-driven selection of optimal security solutions based on specific deployment constraints.
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1. Introduction

The widespread deployment of resource-constrained 
IoT devices across various economic sectors necessi
tates the development of lightweight, high- 
performance intrusion detection models (Wang 
et al., 2024). In this regard, organizations consistently 
evaluate cost economies for both direct and indirect 
cybersecurity implementation initiatives (Rodrigues 
et al., 2019). Hence, the application of cost-benefit 
analysis for security system selection and manage
ment has become critical as security breaches increas
ingly result in monetary damage, litigation costs, and 
loss of credibility (Cavusoglu et al., 2004). Moreover, 
the proliferation of smart devices has expanded the 
attack surface, creating more opportunities for system 
breaches and unauthorized control of IoT devices 
(Alam & Khan, 2022).

Security and privacy are major concerns for IoT 
devices worldwide (Mohanta et al., 2020), particu
larly critical across all IoT applications (Hassija 

et al., 2019). The exponential growth of IoT in 
commercial and individual spheres has led to 
increased successful cyber-attacks (Kuzlu et al.,  
2021). Furthermore, IoT faces significant chal
lenges in managing traffic loads and models due 
to the rapid surge in internet-connected devices 
generating unprecedented data volumes 
(Čolaković & Hadžialić, 2018). Hence, security per
sonnel must balance the management of extensive 
logs and events against implementation costs. 
While previous intrusion detection research has 
prioritized accuracy, the computational efficiency 
of machine learning (ML) classifiers remains 
understudied (Baig et al., 2021).

1.1. Optimizing IoT infrastructure: balancing data 
volume with computing costs

The IoT refers to sensor-based physical devices 
with processing power that communicate data 
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over networks for intelligent purposes, such as 
home or vehicle automation (Neshenko et al.,  
2019) with limited computational power and het
erogeneous properties (Mohanta et al., 2020). To 
address IoT security concerns, machine learning 
(ML) and deep learning (DL) techniques can be 
leveraged to handle the heterogeneity and resource 
constraints of IoT network nodes, manage the mas
sive real-time data generated by IoT devices, and 
adapt to the networks’ extensively dynamic beha
vior (Hussain et al., 2020). However, research on 
the processing costs of employing ML methods for 
IoT intrusion detection is scarce. Therefore, this 
research represents a pioneering effort in the field 
of IoT intrusion detection by investigating the cost 
dynamics associated with using ML. The five-layer 
IoT design adds perception, transport, processing, 
application, and business layers to the basic foun
dation of sensing (layer 1), processing (layer 2), and 
applications (layer 3) that the three-layer architec
ture offers (Baziyad et al., 2022). In this expanded 
architecture, the perception (physical) and applica
tion layers serve functions corresponding to those 
in the three-layer architecture (Al-Awami et al.,  
2023).

IoT devices operate in an information-rich 
environment with intelligent human-machine 
interactions, making them vulnerable to diverse 
cyberattacks that demand innovative information 
security solutions (Sengupta et al., 2020). While the 
IoT literature has produced multiple reference 
architectures to provide an overview of various 
applications or focus on specific implementations 
(Ghirardello et al., 2018), there is no universal 
consensus on the most suitable IoT architecture 
(Sethi & Sarangi, 2017a, 2017b). This lack of stan
dardization creates challenges for the information 
security sector in defining IoT entities, specifying 
their vulnerabilities, and developing standardized 
security measures that effectively balance proces
sing effort, time, and costs across the ecosystem.

The IoT is a computing work system used for 
critical information processing and control actua
lization in automated and semi-automated envir
onments (Serror et al., 2020). While IoT has 
improved company productivity and enhanced 
quality of life through automation, its widespread 
implementation across business and personal 
domains has significantly expanded the attack 

surface available to hackers (Lee & Lee, 2015), 
increasing the effort and cost required for network 
and systems security. The relationship between 
information security and user costs follows 
a security cost function, where higher security 
levels require greater user effort, directly impacting 
the user-friendliness of IoT devices and ecosystems 
(Shetty et al., 2010). Given the convenience and 
exponential growth of IoT devices, combined with 
the lack of architectural consensus and their broad 
application across various ecosystems (including 
personal area networks, smart homes, LANs, and 
SCADA networks), evaluating the cost-benefit tra
deoff of IoT security implementation has become 
critical.

1.2. ML for IoT sensor security: addressing attack 
attribution challenges

Research has shown that sensors represent the 
weakest link in the IoT information chain, from 
data collection to application layer and servers, due 
to their large data volumes, limited computing 
power, and inadequate security features (Alladi 
et al., 2020). Figure 1 illustrates these vulnerabilities 
and maps the security problem area from a sensor 
classification perspective.

Recent research proposes addressing IoT secur
ity vulnerabilities through deep learning (DL) 
models and autonomous intrusion detection sys
tems (IDS) (Chaabouni et al., 2019; Cui et al., 2018; 
Hemalatha et al., 2021; Liu et al., 2017; Tahsien 
et al., 2020; Zoppi et al., 2021). While these tools 
effectively classify large volumes of sensor data, 
they struggle to construct comprehensive feature 
sets needed for training autonomous agents. 
Mijalkovic and Spognardi (Mijalkovic & 
Spognardi, 2022) identified performance issues in 
current DL and automated IoT IDSs, highlighting 
inadequate accuracy rates for critical security 
threats like spoofing and data leakage attacks, and 
recommended further research to reduce false 
negative rates.

Although DL and conventional ML models have 
improved intrusion detection accuracy, their 
implementation demands significant effort, pro
cessing power, and cost. This challenge is amplified 
by the expanding attack surface, making intrusion 
detection scaling more complex since each ML 
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model has different capabilities and costs. 
Additionally, assigning an optimal mix of cost- 
effective classifiers for each data sample presents 
significant challenges (Birman et al., 2022). Various 
approaches to IoT traffic packet classification 
include probabilistic, regression, and computa
tional methods, with recent research emphasizing 
computational methods to achieve autonomous 
intrusion detection (Gibert et al., 2019). Studies 
have demonstrated successful binary classification 
results, with some extending to multiclass classifi
cation (Gibert et al., 2020). Specifically, network 
security requires a costing of protection against 
the potential benefits of any security proposal 
(Gordon & Loeb, 2006).

Considering the increased deployment of IoT 
sensors and their ecosystem communications, 
there is a critical need to optimize intrusion 
detection while minimizing associated costs. 
Despite the growing adoption of machine learn
ing (ML) for IoT security, significant research 
gaps exist in: quantifying detection effort and 
resource requirements; understanding cost- 
performance tradeoffs across ML algorithms; 
and analyzing real-time processing needs in het
erogeneous networks. The lack of standardized 
metrics for evaluating cost economies in ML- 
based detection, combined with insufficient 
research on scalability impacts, creates substantial 
challenges, particularly in multiclass computa
tional classification for IoT intrusion detection. 
Therefore, this research aims to develop and vali
date quantitative metrics to assess the efficiency 
and cost-effectiveness of ML-based multiclass 
intrusion detection in IoT environments, with 
specific focus on network security implementa
tion costs.

Multiclass classification enhances intrusion 
detection by enabling sequential analysis, first 
separating malicious from benign packets, then 
performing detailed classification of either cate
gory. This approach provides dual benefits: benign 
traffic classification reduces false positives while 
improving feature selection, and malicious traffic 
classification reveals attack patterns, sources, and 
characteristics. The resulting traffic profiles also 
generate performance metrics crucial for predict
ing computational risks and optimizing algorithm 
training.

1.3. Research contribution

Given the limited research on the economic viabi
lity of ML approaches in IoT intrusion detection, 
this study makes the following key contributions:

(1) The research introduces a pioneering quan
titative framework using six metrics (matrix 
size, feature vector number, input vector 
size, output vector size, and dual data point 
runs) to evaluate neural network architec
tures. Our analysis of CNN architectural 
components (input processing, convolu
tional operations, max pooling, fully con
nected layers, softmax activation, and class 
determination) provides both a systematic 
industry approach and a replicable research 
methodology for evaluating ML classifiers.

(2) It provides a standardized framework to 
assess implementation costs against benefits 
for IoT intrusion detection systems, evaluat
ing both binary and multiclass classification 
capabilities to determine the economic effi
ciency of automated IoT IDSs.

(3) The cost economy model provides 
a comprehensive performance and efficiency 
comparisons between CNN and LSTM mod
els, examining classification metrics, 
resource utilization, and cost-effectiveness 
in binary and multiclass classification tasks 
to guide ML architecture selection.

(4) The research provides evidence-based gui
dance for IoT security investments through 
practical cost estimation models and imple
mentation guidelines, helping decision- 
makers optimize protection levels based on 
organizational risk tolerance and resources.

The rest of the paper is structured as follows. After 
introducing the research topic, the introduction 
section identifies the research problem, gap, 
novelty, and contribution in Section 1. Section 2 
reviews the literature on ML applications in intru
sion detection, exploring the cost – benefit tradeoff 
of ML classifiers. Section 3 outlines the research 
methodology, Section 4 presents the results, fol
lowed by a discussion of the findings in Section 5, 
and Section 6 provides the conclusion along with 
limitations and areas for future research.

4 M. NICHO ET AL.



2. Literature review

IoT intrusion detection research addresses the 
complex challenge of differentiating between mal
icious and benign network traffic in real-time. 
A fundamental challenge in this domain is proces
sing, classifying, and responding to massive data 
volumes efficiently. Within IoT ecosystems, data 
volume is determined by multiple factors: the 
quantity of connected sensors, data transmission 
frequencies, and stimulus management parameters 
(Alladi et al., 2020). A significant research gap 
exists in the systematic identification and analysis 
of variables affecting computational costs in IoT 
intrusion detection systems. This gap, combined 
with the challenges of data volume management, 
has driven research toward automated classifica
tion systems and autonomous security risk man
agement solutions. The following subsections 
examine the current literature regarding IoT secur
ity vulnerabilities, IDS automation approaches, and 
security investment decision frameworks

2.1. Application of machine learning for IDS in IoT: 
the rising trend and challenges

Since the turn of the twenty-first century, sensor- 
based IoT devices have experienced exponential 
growth across industry sectors and private homes 
(Schiller et al., 2022). However, insufficient security 
vetting of IoT devices has led to a proliferation of 
IoT-related vulnerabilities (Najar-Pacheco et al.,  
2019), making IDSs essential for preventing, 
detecting, and mitigating threats that exploit secur
ity weaknesses in IoT devices and their broader 
ecosystem (Elrawy et al., 2018). Therefore, design
ing an IDS that effectively detects intrusions while 
maintaining IoT network scalability, reliability, and 
defense against targeted threats poses significant 
challenges (Asharf et al., 2020).

Machine learning classifiers have emerged as an 
effective solution (Thamilarasu & Chawla, 2019) 
for intrusion detection in computer systems 
(Musleh et al., 2023), requiring fewer computa
tional resources for data processing and classifica
tion (Baraneetharan, 2020). Deep learning methods 
can process massive datasets with minimal prepro
cessing time (Ashiku & Dagli, 2021), though they 
demand substantial memory and computing power 

(H. Zhang et al., 2018). Recent experimental results 
using Tree-CNN classifiers, which integrate hier
archical tree structures into neural network archi
tecture, have demonstrated reduced complexity 
and resource requirements (Mendonça et al.,  
2021). CNNs offer rapid training due to their archi
tecture (Kim & Aminanto, 2017) and have shown 
exceptional performance across diverse applica
tions including image classification, pattern recog
nition, and multimedia compression, while 
reducing parameters and improving processing 
speed in both training and inference phases (Q. 
Zhang et al., 2019). Consequently, evaluating 
appropriate classifiers for IoT-based IDS automa
tion while considering cost-benefit factors can sig
nificantly advance detection techniques and IDS 
applications within deep learning.

The ability of LSTM models to efficiently pro
cess and analyze sequential data from connected 
devices makes them essential for IoT systems (Yu 
et al., 2021). LSTMs excel at handling time-series 
data from IoT sensors by preserving long-term 
relationships in sequential patterns. Their capacity 
to record temporal patterns makes them particu
larly effective for anomaly detection, network traf
fic forecasting, and predictive maintenance in IoT 
environments (Liu et al., 2019). We selected LSTM 
for comparison due to its superior performance in 
detecting sophisticated attacks like Advanced 
Persistent Threats (APT), compared to alternative 
approaches such as GRU (Dey et al., 2021; Eke et 
al., 2019).

2.2. Automating intrusion detection systems

The automation of intrusion detection systems 
requires real-time classification algorithms and 
intelligent processing of large-scale data for critical 
decision-making (Alhowaide et al., 2021). These 
automated IDSs employ classification algorithms 
that categorize IoT traffic as either malicious or 
benign. While binary classifiers provide basic sys
tem protection, more complex multi-class classi
fiers enable detailed traffic analysis for enhanced 
intelligence gathering (Hemalatha et al., 2021). 
Even when binary classification successfully pro
tects the system, analyzing rejected traffic provides 
valuable insights for predicting future attack 
patterns.

INFORMATION SECURITY JOURNAL: A GLOBAL PERSPECTIVE 5



Numerous researchers have pursued automated 
IoT intrusion detection solutions (Chaabouni et al.,  
2019; Cui et al., 2018; Tahsien et al., 2020; C. Zhang 
et al., 2022; Zoppi et al., 2021). Current research 
focuses on developing unsupervised deep-learning 
systems capable of continuously learning IoT traf
fic features while autonomously managing large 
packet volume (C. Zhang et al., 2022). While 
these solutions demonstrate success under con
trolled conditions with specific training datasets, 
comprehensive general-purpose solutions remain 
under development.

Deep learning solutions for IoT intrusion detec
tion have been investigated through different ML 
algorithms (Liu et al., 2017; Ye et al., 2018). 
Artificial neural networks (ANNs) are versatile 
machine learning models that can be used for 
both supervised and unsupervised learning tasks, 
including pattern recognition and classification 
problems. While statistical clustering is an unsu
pervised ML technique that relies on data associa
tions and characteristics, multiple regression is 
a supervised learning approach. Clustering identi
fies natural groupings in data, whereas ANNs rely 
on representing patterns in networks inspired by 
biological neural networks (Dong et al., 2021).

ANNs are designed so that each artificial neuron 
connects to many other neurons, and multiple 
neurons work together to process information. 
The output layer is where an ANN produces its 
final output, which could be a classification deci
sion, regression value, or other solution depending 
on the task. However, the limitation of ANNs’ 
application in IoT intrusion detection implementa
tion is cost (Tahsien et al., 2020), as ANNs require 
large feature sets for training, which are limited by 
the resource budget for capturing the feature set 
scope. ANNs’ structure also requires direct neuron 
connections that become more resource expensive 
as the size of an ANN increases to satisfy increasing 
problem complexity. IoT intrusion detection com
putation costs escalate with loading and can poten
tially overload an ANN. The computational cost of 
an ANN’s multi-layered connected structures is 
reduced when the number of neural connections 
is reduced (C. Zhang et al., 2022). Hence, CNNs are 
a specialized class of ANNs that reduce the number 
of neural network connections required for IoT 
intrusion detection through parameter sharing 

and are more computationally efficient than fully- 
connected ANNs.

CNNs retain the ANNs’ input, hidden, and out
put layers structure while creating computational 
cost efficiencies by reducing the number of con
nections between neurons (Zoppi et al., 2021). For 
example, a 16 × 16× 1-pixel input to a CNN has 
a 250% computational cost reduction advantage 
over an ANN with the same input in the first 
layer. In an ANN, each neuron is directly con
nected. Hence, each image input would have 16 ×  
16× 1 pixels, based on grayscale weightings from 0 
to 255 plus 1 for the bias, which equals 257 con
nections per neuron. However, the CNN is more 
cost-effective, and each convolution layer forward 
feeds 3 × 3× 1 weightings plus 1 for the bias, for 
a total of 10 connections, hence allowing significant 
cost savings in each layer for computation. Each 
image data array is fed into the convolution func
tion to reduce the amount of data going to the 
neurons in the fully connected layers. 
Normalization and pooling further reduce the 
data size, and the rectified linear unit (ReLU) and 
SoftMax functions are selected as cost-effective 
choices in CNN design (Ni et al., 2018). Hence, 
CNNs are supported in IoT IDSs research as a cost- 
effective solution to the challenges posed by IoT big 
data.

Recurrent neural networks (RNNs) are a type of 
neural network that process data sequentially by 
retaining information from earlier inputs through 
feedback loops (Sherstinsky, 2020). However, pro
blems like the vanishing gradient problem make it 
difficult for ordinary RNNs to maintain long-term 
dependencies. This limitation is addressed by 
LSTMs, a specific type of RNN that can successfully 
recognize and maintain long-range patterns in 
sequence data by incorporating memory cells 
(Dey et al., 2021; Eke et al., 2019). Hence, LSTMs 
are widely used in IoT IDS research as a cost- 
effective solution to the challenges posed by IoT 
big data.

Recent studies have focused on employing DL 
methods such as CNN to create effective IDS for 
IoT scenarios. Hairab et al. (2022) proposed 
a CNN-based approach with regularization techni
ques to identify zero-day attacks in IoT networks 
(Chen et al., 2025). introduced a novel and impact
ful synaptic CNN to effectively detect intrusions 
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within dynamic IoT environments. Another hybrid 
CNN-LSTM architecture achieved high accuracy 
for both binary (93%) and multi-class (92%) classi
fication on the UNSW-NB15 dataset, with even 
better performance on the X-IIoTID dataset 
(Altunay & Albayrak, 2023). Salih and Ibrahim 
(2023) demonstrated the application of deep learn
ing in IoT forensics, emphasizing the superior per
formance of LSTM and RNN in effectively 
classifying IoT data for improved digital investiga
tions (Deshmukh & Ravulakollu, 2024). presented 
a deep learning-based system that was optimized 
by utilizing CNN to detect and categorize threats 
effectively. They achieved an exceptional 95% accu
racy rate while drastically reducing training time. 
These experiments demonstrate how several deep 
learning techniques can improve IoT intrusion 
detection systems while striking a balance between 
security and accuracy.

However, a significant limitation of existing stu
dies is their insufficient evaluation of computa
tional costs and resource constraints typical in 
IoT environments. Many proposed solutions, 
while effective in controlled settings, may prove 
impractical when deployed in real-world IoT sys
tems with limited computational resources, mem
ory, and power. This research addresses these gaps 
by conducting a comprehensive assessment of 
computational overhead and resource utilization 
for IoT intrusion detection implementation, while 
analyzing the associated security benefits. By expli
citly considering the trade-off between security 
effectiveness and resource consumption, the pro
posed approach aims to develop solutions that are 
adaptable across diverse IoT deployments with 
varying resource constraints. Table 1 presents 

a comparative analysis between this research and 
existing studies.

2.3. Security cost–benefit decisions

A cost-benefit analysis supports the evaluation of 
security implementation options to determine 
optimal resource investment strategies. Selecting 
appropriate artificial intelligence solutions for sys
tem automation and protection requires complex 
evaluation criteria (Chaabouni et al., 2019). IoT 
system threat impacts are typically characterized 
through probabilistic risk assessments. Research 
complexity arises from multiple uncertainties 
including adversarial behavior adaptation, IoT sen
sor interaction patterns, incomplete feature repre
sentation, and evolving attack vectors. IoT 
networks face both known and unknown vulner
abilities in network traffic. Given the broad scope 
of IoT network intrusion detection challenges, this 
research focuses specifically on analyzing the rela
tionship between computational costs and detec
tion accuracy metrics. While other researchers 
have examined different aspects of IoT security 
risk quantification (Hemalatha et al., 2021) this 
work concentrates on measurable parameters of 
CNN implementations for IoT intrusion detection, 
including computational overhead and detection 
performance metrics.

Decision-makers require reliable quantitative 
data to evaluate implementation and adoption stra
tegies (Street & Olajide, 2021). Security mechan
isms impact an organization’s financial position 
through capital expenditure (CAPEX), operational 
expenses (OPEX), and potential reputational 
effects. Security features must undergo systematic 

Table 1. Comparative analysis of existing works.

Reference Method Accuracy

Cost and 
benefit 
analysis Limitations

Hairab et al. (2022) CNN 91% for mulit-classification No Did  
not assess the computational costs.

Chen et al., (2025) CNN 88% for multi-classification No Less efficient in dynamic intrusion detection scenarios 
and limited computing resources environment.

Salih and Ibrahim 
(2023)

LSTM and RNN 84% for multi-class classification No Did not consider the limited resources constraints.

Deshmukh and 
Ravulakollu 
(2024)

CNN 95% for multi-class classification No Did not assess the computational costs.

Altunay and 
Albayrak (2023)

hybrid CNN +  
LSTM model

93% for binary classification and 92% for 
multi-class classification

No Did not consider the limited resources constraints.

Proposed Method CNN 93% for binary classification and 96% 
for multi-class classification

Yes -
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analysis including component breakdown, impact 
assessment, and evaluation of expected versus 
actual benefits. This analysis supports evidence- 
based decision-making for security investments. 
The conventional approach to security investment 
evaluation involves calculating the difference 
between the annualized loss expectancy (ALE) 
before and after implementing a security control, 
then subtracting the annual cost of the control 
implementation and maintenance (Gordon et al.,  
2020). For IoT network security, decision-makers 
need performance metrics that capture both the 
accuracy of traffic classification (benign versus 
malicious) and the false classification rates. 
Classification errors occur either through misiden
tification of traffic types or when the computa
tional overhead of the classification algorithm 
exceeds practical resource constraints. The 
research challenge lies in developing algorithms 
that achieve an optimal balance between classifica
tion accuracy, resource efficiency, and system pro
tection while meeting organizational risk tolerance 
levels.

A cost-benefit analysis requires a structured fra
mework for quantification (Bojanc & Jerman- 
Blažič, 2008) that defines the scope of financial 
assessment and establishes measurable categories 
for costs and benefits. This research focuses speci
fically on evaluating CNN algorithms for intrusion 
detection, measuring both computational resource 
utilization and detection performance metrics. The 
analysis encompasses implementation overhead, 
training costs, and runtime resource consumption. 
The operational costs were calculated per packet 
processed by the CNN in both binary and multi
class classification modes (Table 3). Additional 
security mechanism costs and benefits fell outside 
this research scope.

The CNN’s performance can be evaluated 
through four classification outcomes: true positives 
(correctly identified malicious packets), true nega
tives (correctly identified benign packets), false 
positives (benign packets misclassified as mali
cious), and false negatives (malicious packets mis
classified as benign). These outcomes are 
quantified using standardized performance metrics 
detailed in Section 3.2. The metrics include opera
tional resource consumption and computational 
overhead at both function and code block levels. 

This comprehensive analysis of computational 
costs versus detection performance provides deci
sion-makers with quantitative data to evaluate dif
ferent CNN configurations for IoT intrusion 
detection implementations. The limitations of this 
analytical framework are addressed in Section 5.

A systematic review of literature regarding cost 
evaluation of machine learning applications in IoT 
intrusion detection systems (IDS) reveals that 
existing research predominantly focuses on max
imizing detection accuracy and optimizing classi
fier combinations. While these studies have 
advanced detection capabilities, limited attention 
has been paid to analyzing the computational 
costs of different classifiers in resource- 
constrained IoT environments. Furthermore, 
there is a notable absence of research that provides 
comprehensive design metrics and evaluation fra
meworks for assessing both the efficiency and cost- 
effectiveness of machine learning-based multiclass 
intrusion detection systems in IoT contexts. This 
gap is particularly significant given the resource 
limitations inherent in IoT deployments. Based 
on the identified research gap, the following section 
presents a novel framework that evaluates CNN/ 
LSTM performance through six core architectural 
components (input processing, convolutional 
layers, max pooling layers, fully connected layers, 
softmax activation, and classification output layer) 
using quantitative metrics including matrix dimen
sionality, feature vector cardinality, input/output 
vector sizes, and computational iterations for 
paired data points

3. Methodology

We focused on developing and evaluating CNN 
and LSTM architectures to analyze their computa
tional costs and performance trade-offs for IoT 
intrusion detection using the IoT-23 dataset. The 
analysis proceeded in two phases: first assessing the 
CNN’s performance for binary classification 
(benign vs. malicious), then evaluating its multi
class classification capabilities. The Aposemat IoT- 
23 dataset, collected at the Stratosphere Laboratory, 
AIC group, FEL, CTU University, Czech Republic, 
was selected for its comprehensive collection of 
labeled IoT network traffic containing both benign 
traffic and real malware infections (Parmisano 
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et al., 2022). The dataset has been widely adopted in 
machine learning research for IoT security applica
tions (Ahli et al., 2023) s it satisfies key criteria for 
IoT malware and intrusion detection research 
(Strecker et al., 2021). The following subsections 
detail the neural network architectures, perfor
mance metrics, experimental methodology, and 
data pre-processing techniques.

3.1. CNN architecture

A CNN architecture consists of essential core com
ponents and configurable design elements that 
together determine the network’s capabilities 
(Figure 2). While binary classification represents 
a simpler architectural design with a single decision 
boundary, multiclass classification requires more 
complex architectures that can distinguish between 
multiple categories. The network’s depth and com
plexity can be adjusted through additional layers to 
achieve the desired classification performance. The 
essential components of a minimalistic CNN are:

● Image input array
● Convolution function for feature selection
● ReLU activation function and pooling
● A connected layer
● SoftMax output function
● Determination algorithm

These six components constitute the fundamental 
building blocks of a CNN architecture designed to 
classify IoT network traffic as malicious or benign. 
CNNs optimize computational efficiency through 
parameter sharing and selective feature extraction, 
with convolution kernels playing a critical role in 
both detection accuracy and resource utilization. In 
multiclass classification implementations, the 

network’s depth is increased through additional 
hidden layers until sufficient discriminative capa
city is achieved. Each additional layer introduces 
computational overhead, creating a direct relation
ship between classification complexity and 
resource costs.

The selection of feature sets representing the 
target patterns is critical in CNN architecture for 
computational efficiency. The convolution kernels 
must effectively process these features at the pixel 
level, where more precise feature definitions can 
lead to lower computational overhead. The feature 
set definition directly impacts both the algorithm’s 
detection accuracy and its operational efficiency. 
A compact yet discriminative feature set typically 
provides better cost-effectiveness than larger or less 
precise alternatives.

In this research, we implemented a minimal 
CNN architecture utilizing each core component 
for binary classification of IoT traffic, then 
extended it with an additional hidden layer for 
multiclass classification. The algorithm’s efficiency 
is evaluated based on its convergence speed in 
optimizing feature weights during training, with 
these learned parameters then applied to subse
quent classifications. Detection performance is 
quantified through the ratio of correct classifica
tions to misclassifications (Equation 1). Using 
these architectural elements, we developed a CNN 
capable of both intrusion detection and multiclass 
categorization of IoT traffic.

Since IoT networks operate under resource con
straints with limited computational and energy 
resources, the CNN architecture was optimized to 
balance detection performance and resource utili
zation. The initial CNN design for binary classifi
cation (malicious vs. benign traffic) employed 
a single convolutional layer to minimize 

•Image
•Matrix

Input

•Features
•Kernals

Convolution
•ReLu
•Max Pool

Pooling

•SoftMax
•Nurons

Connected
•Classification
•Determination

Output

Figure 2. CNN algorithm design.
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computational overhead. This layer processes the 
input features to extract discriminative character
istics such as packet size and connection state pat
terns. Pooling layers reduce the spatial dimensions 
of feature maps, decreasing both computational 
complexity and memory requirements. For binary 
classification tasks with well-defined feature sets, 
this shallow architecture proves sufficient for cap
turing relevant patterns while maintaining effi
ciency, as the decision boundary between two 
classes can be learned with fewer parameters com
pared to multiclass problem (Sengupta et al., 2020). 
Convolutional kernels extract discriminative fea
tures, while ReLU activation functions introduce 
nonlinearity into the network. Pooling layers 
reduce spatial dimensions and help prevent over
fitting by providing translation invariance. For 
multiclass classification, the CNN architecture 
was expanded with an additional hidden layer to 
capture more complex feature hierarchies. This 
deeper architecture enables the model to learn 
sophisticated decision boundaries necessary for 
distinguishing between multiple traffic categories, 
as multiclass separation requires more complex 
feature representations than binary classification 
(Ruff et al., 2021).

The feature selections occurred as follows: Using 
the IoT-23 dataset, the following features were 
chosen to train the CNN model in this study: 
[“duration,” “orig_bytes,” “resp_bytes,” “missed_
bytes,” “orig_pkts,” “orig_ip_bytes,” “resp_pkts,” 
“resp_ip_bytes,” “proto_icmp,” “proto_tcp,” “pro
to_udp,” “conn_state_OTH,” “conn_state_REJ,” 
“conn_state_RSTO,” “conn_state_RSTOS0,” 
“conn_state_RSTR,” “conn_state_RSTRH,” 
“conn_state_S0,” “conn_state_S1,” “conn_state_ 
S2,” “conn_state_S3,” “conn_state_SF,” 
“conn_state_SH,” “conn_state_SHR”]. The selec
tion of these architectural components was opti
mized for identifying network traffic patterns 
critical to anomaly detection in IoT environments. 
These components were specifically chosen based 
on their effectiveness in processing and classifying 
IoT network traffic characteristics. The size and 
frequency of packet transfers are related to key 
features such as duration, orig_bytes, resp_bytes, 
orig_pkts, and resp_pkts. These features can reveal 
anomalous activity, such as data exfiltration, 
denial-of-service (DoS) attacks, or abnormal 

usage patterns. Other useful features in differen
tiating between malicious and benign communica
tions are proto_icmp, proto_tcp, and proto_udp, 
which correspond to various protocols. 
Furthermore, the different connection states (i.e., 
conn_state_* characteristics) offer information 
about how network sessions end or are terminated, 
which might help detect activity related to scanning 
or session-hijacking. After identifying them using 
domain expertise, we carried out several empirical 
tests to confirm the relevance of these features. We 
ensured that every feature was chosen with purpose 
and made a meaningful contribution to the classi
fication task using correlation analysis (Omuya 
et al., 2021) and feature importance metrics. 
Weakly correlated features with traffic type were 
either eliminated or had their weights changed 
during the model tuning phase.

3.2. LSTM design

A balance between computational efficiency and 
model complexity was essential for the LSTM 
binary classification implementation. The design 
was simplified for time-series and session-based 
IoT intrusion detection to ensure consistent 
performance while maintaining sequential data 
processing capabilities. To optimize training 
efficiency and operational costs, the LSTM was 
configured with minimal hidden units. The 
LSTM architecture comprises an input layer, 
multiple hidden LSTM layers, and an output 
layer. Each LSTM layer contains memory cells 
with gates (input, forget, and output) that reg
ulate information flow, enabling selective data 
retention or removal over time. This architec
ture allows LSTMs to identify long-term depen
dencies and patterns in sequential data, making 
them suitable for time-series prediction and 
sequence analysis tasks. The input data under
went sequential pre-processing, and a minimal 
hidden layer configuration was implemented for 
initial model training. The primary computa
tional overhead in this LSTM design stems 
from the sequential nature of data processing 
and LSTM unit operations. Like the CNN 
model, the LSTM demonstrated reliable intru
sion detection performance after training on 
10,000 .pcap samples. LSTMs typically demand 
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more computational resources than CNNs due 
to their recurrent structure. The training process 
involved 7,500 iterations with a batch size of 
256, followed by 2,500 test iterations. The 
SoftMax function was applied at the output 
layer for final predictions.

3.3. Cost–benefit analysis metrics

Classification algorithms rarely achieve perfect 
accuracy due to various factors including incom
plete feature representations and inherent uncer
tainties in IoT network traffic patterns. To 
evaluate classification performance, we utilized 
metrics derived from the confusion matrix, 
which quantifies the relationship between pre
dicted and actual classifications (Equations 1–4) 
(Hossin & Sulaiman, 2015). When multiclass clas
sification was required, we used Equation 5 to 
report the statistical accuracy of classifications 
across all classes (MCC). We expanded 
Equation 5 by K = 3 for the three classes required 
for our multiclassification. Accuracy, defined as 
the ratio of correctly classified instances (both 
true positives and true negatives) to the total 
number of instances, serves as a primary metric 
for evaluating the algorithm’s classification per
formance. The F1 measure assessed the sample 
spread, and the MCC measured how closely the 
multiclass variations related. A score close to 1 
for the F1 and MCC are ideal results (equation 
legend: TP = true positive correct malicious clas
sification; TN = true negative correct benign clas
sification; FP = false positive = incorrect malicious 
classification; FN = incorrect benign 
classification): 

The algorithm’s precision was computed as the 
ratio of correct malicious classifications and the 
sum of correct and incorrect malicious 
classifications: 

The recall or true positive rate was computed as the 
ratio of correct malicious classifications and the 

sum of correct malicious classifications and incor
rect benign classifications: 

The F1 score is a measure of an ML technique’s test 
accuracy. It calculates accuracy by combining the 
precision and recall scores computed in 
Equation 4. The value of the F1 score is to acknowl
edge extreme values in a data set and moderate 
excessive theoretical normalization (p = precision; 
R = recall): 

The Mathews Coefficient (Chicco & Jurman, 2020) 
[44] was used to compare the variables in multi- 
classes for statistical accuracy, and (5) was com
puted for each class added: 

k = classes from 1 to K (K = 3in the experiment)
s = number of samples (2,500 in a run)
c = number of samples correctly predicted (2,390 in 
a run)
tk = number of times class k truly occurred (328, 
492, 1680)
pk = number of times class k was predicted (297, 
466, 1627).

3.4. Experimental design

We run two tests on the computational costs and 
benefits of the CNN algorithm described in 
Figure 2. The evaluation proceeded in two phases: 
initial binary classification of IoT traffic (malicious 
vs. benign), followed by multiclass classification 
with three categories using an additional hidden 
layer. Performance metrics and computational 
costs were evaluated using the formulas defined 
in Equations 1-5. The analysis utilized labeled IoT 
network traffic data from the Aposemat IoT-23 
dataset (Garcia et al., 2020). Specifically, the data 
sets consisted of IoT network traffic captured in. 
pcap files and labeled malicious, benign, and with 
seven multiclassification classes for traffic proto
cols. To use the data sets, we selected two scenarios 
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for training and testing based on the closest match 
in packet numbers: benign and malicious scenar
ios. The former had 21,000 packets, and the latter 
had 23,000 packets. The literature suggests that 
75% of the data should be used for training and 
25% for testing (Cui et al., 2018). The experimental 
design utilized a dataset of 10,000 randomly 
selected packets, partitioned into 7,500 packets for 
training and 2,500 for testing. Both CNN and 
LSTM models were trained on labeled.pcap packets 
containing benign and malicious traffic samples. 
For multiclass classification, we selected three pro
tocol categories based on their prevalence in the 
traffic captures, maintaining the same training- 
testing split ratio and methodology.

3.5. Data preprocessing and augmentation

The IoT-23 dataset underwent systematic pre- 
processing to optimize data quality for model train
ing and evaluation. The pre-processing pipeline 
consisted of several steps: duplicate record removal 
to prevent bias, filtering of invalid duration values 
to ensure data integrity, and categorical variable 
encoding using Label Encoder for machine learn
ing compatibility. The preprocessed dataset was 
then partitioned using an 80:20 training-testing 
split ratio, followed by feature normalization 
using MinMaxScaler to standardize the input dis
tributions (Abd Halim et al., 2020). Preprocessing 
operations improved the model’s overall perfor
mance and evaluation accuracy by ensuring that 
the training data was relevant, clean, and in 
a format that could be used for model 
development.

We applied two key data augmentation techni
ques to the IoT-23 dataset to enhance model per
formance and reduce overfitting. First, we 
normalized skewed feature distributions using log 
scaling transformations, which stabilizes variance 
and improves learning by creating more uniform 
feature distributions (Singh et al., 2022). This 
transformation enhances model accuracy by ensur
ing comparable feature scales, enabling more effec
tive training. Second, we implemented the MixUp 
technique, which creates synthetic training exam
ples by linearly interpolating between pairs of sam
ples and their labels (Zou et al., 2023). This 
approach smooths decision boundaries and 

increases training data diversity. These augmenta
tion strategies together improved the model’s 
robustness and generalization capabilities while 
reducing overfitting risks. The MixUp technique 
specifically helps prevent memorization of training 
instances and promotes better generalization to 
novel data patterns.

3.6. Impact of hyperparameter tuning on costs

Model performance and computational costs are 
significantly influenced by hyperparameter selec
tion, including learning rate, batch size, and num
ber of epochs. We employed the Adam optimizer 
with a learning rate of 0.001 for model training. 
Lower learning rates typically provide more stable 
convergence but require longer training times, 
while higher rates can accelerate training at the 
risk of less stable convergence. A batch size of 256 
was selected to balance computational efficiency 
and model performance. Larger batch sizes gener
ally enable faster computation per epoch due to 
hardware acceleration but require more memory, 
while smaller batches are more memory-efficient 
but may need additional epochs for convergence. 
The selected batch size of 256 optimizes this trade- 
off between performance and resource utilization. 
Batch size variations impact both memory usage 
and training duration, affecting overall computa
tional costs. While increasing the number of 
epochs can improve model performance through 
more thorough training, it also extends training 
time and increases computational overhead. Ten 
epochs were chosen as an optimal balance between 
training adequacy and computational efficiency. 
Our hyperparameter selection reflects a careful 
consideration of accuracy, training duration, com
putational cost, and resource utilization 
requirements.

4. Results

Both binary and multiclass classifiers were 
designed with minimal complexity to evaluate the 
fundamental costs and benefits of a baseline CNN 
architecture. The analysis granularity extended to 
the code level, with the six core architectural com
ponents detailed in Section 3. While additional 
layers and code complexity could be introduced 
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to enhance specific capabilities and performance 
metrics, this minimalistic design approach allows 
clear visibility of the fundamental components and 
their contributions. This transparency enables 
identification of both the baseline benefits for IoT 
intrusion detection and potential optimization 
opportunities for future implementations. The fol
lowing subsections present the experimental results 
analyzing the computational costs and detection 
performance of the CNN architecture.

4.1. Binary classification

The CNN binary classification algorithm was 
designed and trained with emphasis on computa
tional efficiency. We implemented a minimal archi
tecture using optimized computational 
formulations. This simplified CNN design satisfied 
performance requirements while maintaining stabi
lity, establishing a baseline for evaluating potential 
architectural enhancements and their associated 
costs. The input data preprocessing was streamlined 
by configuring a 3D image format with single- 
channel depth and grayscale values normalized to 
the range [0,255]. The array texture obtained was 
a unique gray scale image representing each.pcap 
file. Consequently, the minimalistic CNN had 
a normalized matrix input to the convolution func
tion that identified characteristic features from each 
matrix. A pooling layer was implemented to reduce 

computational overhead, while ReLU activation was 
selected for its efficient computation. The fully con
nected layer was optimized with minimal neurons, 
and classification was performed using the compu
tationally efficient SoftMax function, with results 
collected for performance analysis. The model was 
trained and evaluated using 10,000 .pcap files as 
described in Section 3.3, producing stable results 
that enabled reliable assessment of computational 
costs and detection performance. Table 2 presents 
the computational resource utilization metrics of the 
binary CNN implementation, including per-packet 
processing costs. The CNN processes data through 
six sequential architectural components: input layer, 
convolutional layers, max-pooling layers, fully con
nected layers, softmax activation, and classification 
output. Computational costs are determined by 
multiple factors including training iterations, matrix 
dimensions, feature map cardinality, and input/out
put vector sizes. Figures 3 and 4 show the binary 
CNN design performance benefits during training 
and testing, respectively, whereas Table 3 reports the 
costs and benefits metrics.

4.2. Multiclassification

Extending the binary CNN architecture (detailed in 
Table 2) to support multiclass classification 
requires additional computational components: 
an extra convolutional layer, two ReLU activation 

Table 2. CNN binary design costs.
Six architectural components Cost Determinant Call Function Computational Steps (MatLab Code Lines)

CNN  
Operate

1. Image input Matrix size GreyScale() 
OpenFile() 
ReadLabels()

9 
14 
8

2. Convolution layer Feature vector number Conv(x,y) 
(For Loop) 
ReLU()

9 
4 × kernel number 

2
3. MaxPooling Layer Input vector size Pool() 

(for loop) 
ReLU()

7 
4 × kernel number 

2
4. Connected layer Output vector size Connx() 6
5. Output SoftMax Output vector size SoftMax() 3
6. Class determination Two data points Class() 3

6.1 Training Number of runs 
(N = 7,500)

Train() 
Cost per packet

21  +  12(N) + 6 = 27  +  12(N) 
39

6.2 Test run Number of runs (N = 2,500) Test() 
Cost per packet

21  +  12(N) + 6 = 27  +  12(N) 
39

Table 3. Comparison of CNN and LSTM in terms of binary metrics.
Method Accuracy Precision Recall F1 Score

CNN 93% 95% 98% .96
LSTM 91% 92% 95% .94

INFORMATION SECURITY JOURNAL: A GLOBAL PERSPECTIVE 13



functions, a pooling layer, 12N packet processing 
operations, and three metric calculation routines. 
This architectural expansion increases the per- 
packet code complexity to 63 lines, representing 

a 62% increase in computational overhead com
pared to the binary classification model. Figures 5 
and 6 illustrate the multiclass classification perfor
mance during training and testing phases 

Figure 3. Comparison of binary CNN training benefit rates with LSTM per.Pcap file.

Figure 4. Comparison of binary CNN testing benefit rates with LSTM per.Pcap file.
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respectively, with comprehensive cost-benefit 
metrics from the evaluation presented in Table 4.

The following data were used from the run data 
to compute the MCC value:

● k = classes from 1 to K = 3 in run
● s = number of samples, 2,500 in run
● c = number of samples correctly predicted is 

2,390 in run

Figure 5. Comparison of multi-class CNN training benefit rates with LSTM per.Pcap file.

Figure 6. Comparison of multi-class CNN testing benefit rates with LSTM per.Pcap file.
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● tk = number of times class k truly occurred, by 
class: 328, 492, 1,680

● pk = number of times class k was predicted, by 
class: 297, 466, 1,627

5. Discussion

Table 3 presents the computational costs of the 
optimized binary classifier, while Figures 3 and 4 
demonstrate its performance during training and 
operational testing, specifically its accuracy in iden
tifying malicious IoT traffic packets. Figure 3 illus
trates the training progression, showing initial 
convergence followed by accelerated optimization 
of feature weights for binary classification. After 
processing 7,000 .pcap files, the model achieves 
autonomous detection with 94% classification 
accuracy. Figure 4 shows the model achieving 
93% classification accuracy after processing 1,500 
test packets during operational evaluation. Post- 
training, the model demonstrates robust adapta
tion to new patterns while maintaining consistent 
classification performance. These results validate 
the technical feasibility of autonomous IoT intru
sion detection when misclassification rates remain 
within acceptable operational risk thresholds. 
Furthermore, they suggest the CNN’s potential as 
a primary filtering mechanism for high-volume 
traffic, with flagged packets being redirected to 
more specialized security mechanisms optimized 
for lower throughput analysis.

Figure 5 demonstrates that the multiclass CNN 
architecture with dual convolution layers exhibits 
slower initial training convergence due to increased 
classification complexity, but ultimately achieves 
higher detection accuracy post-training. Figure 6 
shows operational performance with slightly 
delayed convergence compared to the binary clas
sifier (Figure 4), but maintains superior classifica
tion capabilities. Table 3 and per-packet cost 
metrics quantify the computational overhead asso
ciated with detection performance. While the bin
ary CNN classifier offers computational efficiency 
with moderate detection capabilities, the multiclass 

architecture provides enhanced threat detection at 
increased computational cost. This presents a key 
decision point regarding the required security cov
erage level. Although the binary classifier operates 
autonomously with minimal overhead, it may not 
satisfy comprehensive security requirements. The 
security implementation thus becomes a resource 
allocation challenge, balancing detection capabil
ities against computational costs within opera
tional risk tolerances. The 62% computational 
overhead increase per additional layer for multi
class classification, while providing valuable attack 
pattern insights and security resource forecasting 
capabilities, may exceed available computational 
resources.

The performance metrics (ACC, F1-Score, and 
MCC) presented in Tables 3 and 4 demonstrate 
dataset consistency, with CNN performance exhi
biting sufficient stability for analytical purposes. 
Metrics exceeding 0.9 indicate reliable and predict
able detection performance suitable for resource 
planning. Table 3 illustrates that binary classifica
tion computational costs, measured in code execu
tion units, scale linearly with packet volume. The 
CNN’s resource utilization demonstrates consis
tent correlation with architectural complexity and 
security objectives, following a linear progression. 
Building upon the binary classification model, the 
multiclass results in Table 4 suggest that computa
tional costs follow either a step function with each 
architectural layer addition or an exponential curve 
as classification complexity increases.

Risk appetite defines an organization’s accepta
ble risk threshold before mitigation measures are 
required. In IoT security contexts, this threshold is 
determined by operational requirements and sta
keholders’ risk tolerance levels, encompassing both 
operational and financial impact considerations. 
Risk management frameworks establish specific 
metrics and tolerance ranges around target risk 
levels. Table 2 presents 17 IoT sensor types and 
their vulnerabilities, illustrating how risk context 
influences tolerance thresholds. For example, smart 
home lighting sensors have different criticality 

Table 4. Comparison of CNN and LSTM in terms of multiclass metrics.
Method Accuracy Precision Recall MCC

CNN 96% 99% 99% .91
LSTM 93% 95% 96% .87
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levels compared to aircraft pressure sensors or 
transportation system optical sensors. The CNN 
implementation achieved accuracy rates of 93% 
for binary and 96% for multiclass classification, 
but the significance of these error rates (7% and 
4% respectively) must be evaluated within specific 
operational contexts. Some scenarios may find 
these error rates unacceptable due to potential 
attack impacts or recovery costs. For instance, 
while a DDoS attack on a smoke detector network 
might be tolerable if the system can alert and 
recover through software restart, tampering with 
smart transportation sensors or optical manipula
tion may pose unacceptable risks. Thus, the suit
ability of CNN-based IoT intrusion detection 
systems depends on specific operational contexts 
and organizational risk management decisions.

The primary advantage of CNN-based IoT 
intrusion detection, as supported by literature and 
our findings, is automated processing of large-scale 
data. Our results demonstrate that once CNN 
training stabilizes, resource utilization and detec
tion performance become predictable, enabling 
effective budget modeling. Given the resource con
straints at the IoT sensor layer, CNN implementa
tions typically leverage application layer resources. 
Optimal IoT security implementation therefore 
requires integration with complementary security 
mechanisms like lightweight encryption and data 
masking. Resource assessment is crucial for CNN 
deployment in IoT environments. This research 
provides quantitative models and estimates for 
evaluating individual IoT sensors and systems, as 
illustrated in Figure 1, supporting informed deci
sion-making regarding CNN implementation. 
While optimal security configurations may exceed 
available resource constraints, rational trade-offs 
can lead to feasible solutions. Realizing CNN ben
efits in IoT security requires alignment between 
performance metrics, cost models, potential loss 
scenarios, and system-specific resource and opera
tional constraints.

Scalability is critical for maintaining compu
tational efficiency as CNN models process 
increasing data volumes. While larger datasets 
typically demand greater computational 
resources and training time, potentially strain
ing hardware and operational costs, various 
optimization techniques can address these 

challenges. Model pruning reduces parameter 
count, while quantization decreases computa
tional precision, both enhancing scalability 
without significantly impacting detection accu
racy. Hardware acceleration through Graphics 
Processing Units (GPUs) can substantially 
improve training efficiency and throughput. 
Implementing these optimization strategies in 
combination enables the model to scale effec
tively with growing data volumes while main
taining resource efficiency.

Implementation of CNN models in IoT environ
ments requires consideration of several critical fac
tors. The model must be optimized for real-time 
processing through specialized hardware acceleration 
or model compression techniques to minimize infer
ence latency. Resource constraints of IoT edge devices 
necessitate model optimization through pruning, 
quantization, or lightweight architectures. 
Additionally, the model must adapt to evolving attack 
patterns, requiring regular updates and retraining 
mechanisms to maintain detection effectiveness.

5.1. Comparison with the LSTM model

Comparative analysis revealed that the CNN 
architecture demonstrated superior performance 
and computational efficiency compared to the 
LSTM model. The CNN achieved higher accu
racy, recall, and precision metrics in both binary 
and multiclass classification tasks. Its ability to 
process spatial hierarchies in parallel contributed 
to improved performance metrics while reducing 
computational overhead. Although the LSTM 
model is designed for sequential pattern recogni
tion, its recurrent architecture requires greater 
computational resources, resulting in extended 
training and inference times. Despite optimizing 
the LSTM through minimal hidden units and 
efficient input representation, the CNN main
tained better resource efficiency. The LSTM’s 
sequential processing nature introduced addi
tional computational overhead, reducing its effec
tiveness compared to the CNN architecture. For 
this specific intrusion detection application, the 
CNN proved more suitable due to its superior 
detection performance and lower computational 
requirements.
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6. Conclusion

The implementation of artificial intelligence for 
IoT network security requires careful evaluation 
of resource costs against security benefits. The 
rapid proliferation of IoT devices necessitates cost- 
effective security solutions that balance protection 
against resource constraints, minimizing potential 
vulnerabilities and associated losses. Addressing 
the research gap in IoT security resource evalua
tion, we developed and analyzed simplified CNN 
architectures for binary and multiclass intrusion 
detection. The research introduces a novel frame
work evaluating six core architectural components 
(input processing, convolutional layers, max pool
ing layers, fully connected layers, softmax activa
tion, and classification output) using quantitative 
metrics (matrix dimensionality, feature vector car
dinality, input/output vector sizes, computational 
iterations, and per-packet processing costs). 
Results demonstrate that trained CNNs can effi
ciently process high-volume IoT traffic within pre
dictable resource constraints, though detection 
accuracy requirements must align with applica
tion-specific risk tolerances.

While this research advances understanding of 
cost-benefit trade-offs in AI-based intrusion detec
tion, several limitations warrant consideration. The 
evaluation’s scope, limited to a single dataset and two 
classifier architectures, may not fully represent the 
heterogeneous IoT ecosystem. Future research should 
expand along three critical dimensions: diverse ML 
classifiers beyond CNN and LSTM, heterogeneous 
IoT environments with varying resource constraints, 
and comprehensive attack vectors including emer
ging threats. This expanded scope would enable 
more robust validation of the resource evaluation 
framework, particularly in large-scale industrial 
deployments. Additionally, the proposed metrics 
and evaluation methodology can be extended to 
assess classifier performance and resource utilization 
across different IoT contexts, enabling systematic 
comparison of security solutions while considering 
computational overhead and detection efficacy.
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