
BASHARU, M.B. 2006. Modifying landscapes with penalties in iterative improvement for solving distributed constraint
satisfaction problems. Robert Gordon University, PhD thesis. Hosted on OpenAIR [online]. Available from:

https://doi.org/10.48526/rgu-wt-2807293

The author of this thesis retains the right to be identified as such on any occasion in which content from this
thesis is referenced or re-used. The licence under which this thesis is distributed applies to the text and any
original images only – re-use of any third-party content must still be cleared with the original copyright holder.

This document was downloaded from
https://openair.rgu.ac.uk

Modifying landscapes with penalties in iterative
improvement for solving distributed constraint

satisfaction problems.

BASHARU, M.B.

2006

https://doi.org/10.48526/rgu-wt-2807293

MODIFYING LANDSCAPES WITH PENALTIES IN
ITERATIVE IMPROVEMENT FOR SOLVING

DISTRIBUTED CONSTRAINT SATISFACTION
PROBLEMS

MUHAMMED BASHIRU BASHARU

A thesis submitted in partial fulfilment of the
requirements of

The Robert Gordon University
for the degree of Doctor of Philosophy

Supervised by Dr. Ines Arana and Dr. Hatem Ahriz

September, 2006

ETHOS
Boston Spa, Wetherby
West Yorkshire, LS23 7BQ
www.bl.uk

BEST COPY AVAILABLE

VARIABLE PRINT QUALITY

Abstract

The process
first step in
Satisfaction

the problem

The recent growth of the internet and distributed computing facilitated by the internet has
created more opportunities for collaboration between individuals and organisations. These
new forms of collaborative activity put groups of participants in situations where there is
a shared objective but at the same time there is also a competition for resources by the
participants. Hence, there is a need for participants to make compromises in order to reach
agreement. Examples of such situations include collaborative scheduling in supply chain
management or even individuals trying to agree on a schedule of meetings,
of reaching agreement on any of such situations can be automated and the
such automation may be to model the situations as Distributed Constraint
Problems (DisCSPs).

DisCSPs formally describe distributed problems where each participant in
is represented by an agent, and the collection of agents have to collaborate in order to
reach a satisfactory agreement (or find a solution) for a problem. Yokoo’s seminal work
on distributed constraint solving introduced the idea of distributed approaches to solving
such problems. And following that, research in the new field has come up with a variety
of techniques, including combinatorial search and other forms of inference, for solving
DisCSPs. In this study, we investigate an iterative improvement search approach for
solving DisCSPS.

Iterative improvement search has the advantage, over constructive search, of being
able to converge quicker on large problems. But, it also has a propensity to converge to
local optima in the process. Previous work on iterative improvement search (in centralised
and distributed forms) has considered a variety of techniques for dealing with the problem
of convergence on local optima. Prominent amongst these include introducing forms of
randomisation or modifying the shapes of objective landscapes to guide a search out
of plateaus. We present a new approach for dealing with local optima in distributed
iterative improvement by modifying the cost landscape with two forms of penalties which
are attached to individual domain values. We use one type of penalty to perturb solutions
and the other to help agents learn about (and avoid) domain values frequently associated
with local optima. We argue that, compared to other forms of landscape modification, our
approach has a more dramatic effect on cost landscapes and hence, it is a more effective
strategy for solving DisCSPs by iterative improvement search.

Based on the idea of using two forms of penalties for dealing with local optima, we
introduce three new distributed algorithms for solving DisCSPs where the objective is to
find the first solution that satisfies all constraints simultaneously. First, we introduce the
Distributed Penalty Driven Search (DisPeL) which is built around a two phased strategy
of using penalties. We also introduced a stochastic variation of that algorithm (Stoch-
DisPeL), which reduces some of DisPeL’s complexities and allows agents to randomly

i

ii

decide which of the two penalties to use when dealing with local optima. These two
algorithms are specifically designed for scenarios where each agent represents a variable
in a DisCSP, unlike our third algorithm (Multi-DisPeL) which extends some of the ideas
from the earlier algorithms to DisCSPs where each agent represents multiple variables.

We evaluated all three algorithms on a number of distributed constraint satisfaction
problems including distributed graph colouring, distributed Boolean satisfiability, and ran
dom DisCSPs. We also compared them to state-of-the-art distributed iterative improve
ment algorithms. The results of the evaluations show that the penalty driven algorithms
are effective alternatives; they solved more problems and typically incurred lower costs in
the process.

Acknowledgements

I am deeply indebted to my supervisors Dr. Ines Arana and Dr. Hatem Ahriz for their
guidance and support during my PhD study. I was very fortunate to have them both
as supervisors. I thank them for giving me the opportunity to work with them, for their
patience, and for all the interesting discussions we had over the three years of my research.
Without them, this thesis would be unreadable. I also thank my examiners. Dr. Christian
Bessiere and Dr. Roger McDermott, for their time and advice.

The staff at the School of Computing have been marvellous during my time there. I would
like to thank Colin and Caroline for always allowing me use all the processors in my vicinity
to perform my experiments. Thank you to Kathy, Ann, Diane, and Marie for their con
stant and cheerful assistance. I especially want to thank Prof. Susan Craw for her support.

I have to say thank you to all my colleagues at the CTC/Smartweb, who all made the
time at Aberdeen an enjoyable and memorable one. I especially like to thank Zia, Murat,
Siddartha, Dietrich, Ratiba, Fiona, Ralf, Bhavani, Daniel, Stewart, Ivan, Nirmalie, Rah
man, Stella, Selpi, Bayo, Sunny, and Kefang for their friendship.

The most important thank yous are reserved for my parents (i.e. mum and dad), who
have always supported and encouraged me to pursue my whims and aspirations. I don’t
think I can ever thank them enough. I also want to thank my sister, Halima, who always
had a nice motivating comment to cheer me up during the write up. And, to my brothers,
Ibrahim and Yusuf, for their continuing support and encouragement.

This study was fully funded by a research studentship from the School of Computing, The
Robert Gordon University, Aberdeen.

iii

Declarations

This thesis has been compiled by myself and describes my own work. All mention of other
work have been duly cited in the bibliography.

Some parts of the work presented in this thesis have appeared in the following publications:

Chapter 5
Muhammed Basharu, Ines Arana, and Hatem Ahriz. Escaping local optima with penal
ties in distributed iterative improvement search. In Amnon Meisel, editor. Proceedings of
DCR 05 - the Sixth International Workshop on Distributed Constraint Reasoning, pages
192-206, 2005.

Muhammed Basharu, Ines Arana, and Hatem Ahriz. Solving DisCSPs with penalty-driven
search. In Proceedings of AAAI 2005 - the Twentieth National Conference of Artificial
Intelligence, pages 47-52. AAAI, 2005.

Muhammed Basharu, Ines Arana, and Hatem Ahriz. Distributed Guided Local Search
for Solving Binary DisCSPs. In Ingrid Russell and Zdravko Markov, editors. Proceedings
of FLAIRS 2005 - the Eighteenth International Florida Artificial Intelligence Research
Society Conference, pages 660-665, 2005.

Chapter 6

Muhammed Basharu, Ines Arana, and Hatem Ahriz. Stoch-DisPeL: Exploiting randomi
sation in DisPeL. In Proceedings of DCR 06 - the Seventh International Workshop on
Distributed Constraint Reasoning, 2006.

Muhammed Basharu

iv

Contents

Abstract i

Acknowledgements iii

Declarations iv

List of Figures ix

List of Tables xii

List of Abbreviations xiv

1 Introduction 1

1.1 Research objective 3

1.2 Key contributions 5

1.3 Scope of this study 6

1.4 Thesis outline 6

2 Survey of Related Work 8

2.1 Constraint Satisfaction 8

2.1.1 Search techniques for solving CSPs 9

2.1.2 Constraint propagation and consistency maintenance 17

2.2 Distributed Constraint Satisfaction 18

2.2.1 Distributed backtracking search 19

2.2.2 Asynchronous Weak Commitment Search 23

V J

CONTENTS vi

3

4

5

2.2.3

2.2.4

2.2.5

2.2.6

Distributed consistency maintenance techniques

Distributed iterative improvement

Third party mediators

Anchor agents

Problem Formalisation

3.1

3.2

3.3

24

25

27

28

30

The Distributed Constraint Satisfaction Problem - DisCSP

Privacy requirements and assumptions

3.2.1 Privacy and limited information

3.2.2 Other assumptions in the model

Scope of the model

Penalty-based Strategies for Dealing with Local Optima

4.1

4.2

4.3

4.4

4.5

30

31

31

33

34

35

Introduction 35

Modifying the cost landscape with constraint weights

Modifying cost landscapes with penalties on domain values

Perturbing a search with penalties

Chapter Summary

Distributed Penalty Driven Search

5.1 Introduction

36

38

41

44

46

46

5.2 Distributed Penalty Driven Search (DisPeL) 47

5.3

5.4

5.2.1

5.2.2

5.2.3

5.2.4

Overview 47

Algorithm details

Agent behaviour

An example run

Deadlock detection in DisPeL

Impact of heuristics

5.4.1 DisPeL without the temporary penalty

48

52

56

59

61

61

5.4.2 The penalty reset policy 63

5.4.3 Impact of the number of no-goods held 64

CONTENTS vii

6

7

5.5

5.6

5.7

5.8

Theoretical Properties

5.5.1

5.5.2

5.5.3

5.5.4

5.5.5

68

Soundness

Completeness

Space complexity

Privacy

Termination detection

Empirical Evaluation

5.6.1

5.6.2

5.6.3

5.6.4

68

68

69

69

69

70

Distributed Graph Colouring

Random Distributed Constraint Satisfaction Problems

Car sequencing problems

Discussion of results

Coping with unreliable communications

Chapter Summary

Exploiting Randomisation in DisPeL

6.1

6.2

6.3

6.4

6.5

6.6

71

73

75

80

83

88

90

Introduction 90

Exploiting randomisation in combinatorial search

Stochastic DisPeL

Determining an optimal p value

6.4.1 Impact of p on unstructured problems

6.4.2 Impact of p on structured problems

Empirical Evaluation

6.5.1

6.5.2

6.5.3

6.5.4

91

92

94

94

98

99

Performance

Performance

Performance

Discussion

Chapter Summary

on

on

on

Random DisCSPs

Distributed SAT problems

structured DisCSPs

Solving coarse-grained DisCSPs

7.1 Introduction .

101

103

105

108

109

111

Ill

CONTENTS viii

7.2 Background 112

7.3 Multi-DisPeL: DisPeL for agents with multiple local variables 114

7.4

7.5

7.6

7.7

7.3.1

7.3.2

7 3 3

Algorithm overview

Agent Behaviour

Theoretical Properties

Enhancing Distributed Breakout (DisBO) with weight decay and randomi-

sation .

Empirical Evaluation

7.5.1

7.5.2

7.5.3

7.5.4

7.5.5

114

116

118

123

126

Creating coarse-grained DisCSPs

Distributed graph colouring

Distributed SAT problems

Random distributed constraint satisfaction problems

Summary of results

Algorithm variations

7.6.1 Pre-processing local sub-problems

7.6.2 Heterogeneous agents

Chapter summary

8 Summary and suggestions for future work

8.1 Contributions

Landscape modification with penalties

8.2

8.3

8.4

128

128

132

135

138

138

138

139

140

141

141

141

8.1.2

8.1.3

8.1.4

8.1.5

Distributed Penalty Driven Search

Stochastic Distributed Penalty Driven Search

Distributed Penalty Driven Search for Agents with Multiple Local

Variables

Other contributions

Summary of results

Suggestions for further work

Thesis summary

142

142

142

143

144

145

147

CONTENTS ix

A Determining optimal parameter values for DisBO-wd 148

Bibliography 152

List of Figures

3.1 Privacy of constraints in Distributed Constraint Satisfaction Problems. ... 32

4.1 An Example DisCSP 37

4.2 Cost landscape for the DisCSP in Figure 4.1 38

4.3 Effect of constraint weight modifications on the cost landscape for the

DisCSP in Figure 4.1; (a) cwi = 2 and (b) cwi = 5 38

4.4 Effect of penalty increases on the cost landscape for the DisCSP in Figure

4.1 i.e. increased penalties attached to Dx(S) and Dy(4) from 0 to 1 40

4.5 Schematic illustration of solution perturbations - pl, p2, and p3 41

5.1 Detecting distortions to cost functions by incremental penalties 51

5.2 An example of a distorted cost function 51

5.3 Illustration of deadlock resolution in DisPeL with the temporary penalty. . 57

5.4 Example of deadlock resolution with the temporary penalty (step 2) 57

5.5 Example of deadlock resolution with the temporary penalty (step 3) 58

5.6 Example of deadlock resolution with the temporary penalty (step 4) 58

5.7 Examples of “premature” deadlocks in DisPeL’s framework 60

5.8 Run Length Distributions comparing performance of DisPeL when each

agent holds a maximum of 2, 4, and 2C no-goods, plotted from 200 attempts

on a random DisCSP. 67

5.9 Percentage of distributed graph colouring problems {n = 100, k = 3} solved

by DisPeL and DBA 72

X

LIST OF FIGURES xi

5.10 Median search costs of DisPeL and DBA from attempts on distributed graph

colouring problems 73

5.11 Average search costs of DisPeL and DBA from attempts on distributed

graph colouring problems. 73

5.12 Percentage of problems solved by DisPeL and DBA from runs on problems

with 3-ary constraints {n variables, 2n constraints, d — 10, p2 — 0.55). . . 74

5.13 Median search costs for DisPeL and DBA from the runs in Figure 5.12. . 75

5.14 Average search costs for DisPeL and DBA from the runs in Figure 5.12 . . 75

5.15 A illustration of scope of capacity constraints in the distributed car sequenc-

ing 78

5.16 Percentage of distributed car sequencing problems solved by DisPeL and

DBA 79

5.17 Median search costs for DisPeL and DBA from runs on in Figure 5.16. 79

5.18 Average search costs for DisPeL and DBA from runs on in Figure 5.16. . . 80

5.19 Preventing simultaneous changes in DBA - an illustration. 81

5.20 Number of agents changing values in each iteration from sample runs of

DBA and DisPeL 82

5.21 Number of consistent agents in each iteration from sample runs of DBA

and DisPeL 82

5.22 Distribution of DisPeL’s search costs with message loss probabilities (0.05,

0.1, 0.15) 85

5.23 Distribution of DisPeL’s search costs with message loss probabilities (0.05,

0.2, 0.4) 86

6.1 Run Length Distribution of Stoch-DisPeL on a distributed graph colouring

instance with different values for p. 95

6.2 Run Length Distribution of Stoch-DisPeL on a random DisCSP instance

with different values for p. 96

6.3 Percentage of random DisCSPs solved by Stoch-DisPeL with different values

for p. 97

LIST OF FIGURES xii

6.4 Average search costs from runs in Figure 6.3 98

6.5 Median search costs from runs in Figure 6.3 98

6.6 Percentage of random DisCSPs solved by Stoch-DisPeL, DisPeL, and DSA-

BIN. 101

6.7 Median search costs from runs in Figure 6.6 102

6.8 Average search costs from runs in Figure 6.6 102

6.9 Percentage of problems solved by Stoch-DisPeL, DisPeL, and DSA-BIN

from attempts on benchmark SAT instances 103

6.10 Average costs (iterations) of Stoch-DisPeL, DisPeL, and DSA-BIN used-up

to solve the problems in Figure 6.9 104

6.11 Median costs (iterations) of Stoch-DisPeL, DisPeL, and DSA-BIN used-up

to solve the problems in Figure 6.9 104

6.12 Percentage of quasigroup completion problems (TV x N agents) solved by

Stoch-DisPeL, DisPeL, and DSA-BIN 106

6.13 Average search costs from successful runs on the quasigroup completion

problems 107

6.14 Median search costs from successful runs on the quasigroup completion

problems 107

6.15 Run Length Distribution of Stoch-DisPeL on a problem instance repeatedly

starting “good” and “bad” random initialisations 109

7.1 An illustrative example of a coarse grained DisCSP, with 3 inter-connected

sub-problems / agents 113

7.2 Comparison of success rates of DisBO and DisBO-wd on random distributed

graph colouring problems of various sizes. Each point represents attempts

on 100 problems, 125

7.3 Average cycles required by DisBO and DisBO-wd to solve the problems in

Figure 7.2 126

List of Tables

4.1 Effect of perturbation strategies with the greedy hill climber. Tested with

100 DisCSPs {n ^30,d = 5, pl = 0.3) 43

5.1 Influence of temporary and incremental penalties on DisPeL’s performance. 62

5.2 Comparative evaluation of alternative reset policies in DisPeL on attempts

to solve 100 randomly generated DisCSPs {n = 60, d = 10, pl = 0.1, p2 = 0.5). 63

5.3 Frequency of visits to deadlock states. Average (and standard deviation)

from runs on 50 random DisCSPs in each set 66

5.4 DisPeL’s performance on random DisCSPs ((n = 40, d = 10, pl = 0.15,p2 =

0.5) and {n — 60,d = 10, pl = 0.1, p2 — 0.5)) with different limits {ngMax}

on the number of no-goods agents hold 66

5.5 DisPeL’s performance as the probability of losing messages increases. . . 86

5.6 DisPeL’s performance as the probability of losing important messages in-

crease. 87

5.7 DisPeL’s performance as the probability of cutting of agents with important

messages increase 88

6.1 Average and median search costs in Stoch-DisPeL from RLD analysis in

Figure 6.1, for different values of p. 95

6.2 Average and median search costs in Stoch-DisPeL from RLD analysis in

Figure 6.2, for different values of p. 97

6.3 Average and median search costs in Stoch-DisPeL from runs on quasigroup

completion problems (42% pre-assigned cells) with different values of p. . . 99

xiii

LIST OF TABLES xiv

7.1 Performance of Multi-DisPeL and Stoch-DisPeL on distributed graph colour-

ing problems 130

7.2 Performance of Multi-DisPeL, Multi-AWCS, and DisBO-wd on distributed

graph colouring problems 131

7.3 Performance of Multi-DisPeL, Multi-AWCS, and DisBO-wd on distributed

graph colouring problems with a random number of agents and an uneven

distribution of variables to those agents, rx.x is the average number of

agents in a problem set 132

7.4 Performance of Multi-DisPeL and other algorithms on 1000 random dis-

tributed SAT problems with 100 literals distributed evenly amongst differ-

ent numbers of agents 134

7.5 Performance of Multi-DisPeL and other algorithms on 100 random dis-

tributed 125 literal SAT problems 134

7.6 Performance of Multi-DisPeL and other algorithms on 100 random dis-

tributed 150 literal SAT problems 135

7.7 Performance of Multi-DisPeL and other algorithms on random DisCSPs

137

A.l Performance of DisBO-wd on Distributed SAT problems with different val-

ues for its parameters {Ir and dr) 149

A.2 Performance of DisBO-wd on 100 random DisCSPs (< n = 60, d = 10, pl —

0.1, p2 = 0.5 >) with different values for its parameters (Zr and dr) 150

List of Abbreviations

AWCS Asynchronous Weak Commitment Search

CSP, CSPs Constraint Satisfaction Problem(s)

DBA Distributed Breakout Algorithm

DisBO Distributed Breakout

DisBO-wd Distributed Breakout with Weight Decay

DisCSP, DisCSPs Distributed Constraint Satisfaction Problem(s)

DisPeL Distributed Penalty Driven Search

DSA Distributed Stochastic Algorithm

Multi-AWCS Asynchronous Weak Commitment Search for

Agents with Multiple Local Variables

Multi-DB Distributed Breakout Algorithm for Agents with

Multiple Local Variables

Multi-DisPeL Distributed Penalty Driven Search for Agents

with Multiple Local Variables

RLD Run Length Distribution

SAT

Stoch-DisPeL

Boolean Satisfiability Formulae

Stochastic Distributed Penalty Driven Search

XV

Chapter 1

Introduction

Recent commentaries in the popular press suggest that we are currently in the midst of the

Information Revolution. Just like the printing press, the steam engine, and television, the

spread of the Internet has changed, and it is still expected to change, our lives profoundly

and in unanticipated ways. More than any time in human history, nearly half of the

world’s population has instant access to information on just about any topic under the

sun. Electronic mail and other Internet enabled technologies allow us to communicate

instantly too. Suddenly, the degrees of separation between any two individuals on the

planet have been shortened.

This instant connectivity between individuals is also changing the ways we collaborate

and work together. For example, open source projects like the Linux operating system

or the Wikipedia project have shown us how geographically dispersed individuals can

successfully collaborate on ad hoc basis. And, nowhere is this impact more felt than in

the business environment. The ways companies operate, compete, and collaborate are

constantly being changed. Value chain networks that interconnect internal information

systems via the Internet now provide an end-to-end link between end-users and raw ma

terial suppliers such that companies can respond quicker to changes in the market place.

In fact, it has come to the point that explicit virtual organisations can now exist; where

companies at different levels of a value chain can rapidly form new alliances to exploit spe

cific opportunities for very short periods of time. Unlike hierarchical alliances in existing

1

Introduction 2

supply chain networks, such ad hoc alliances face some quite complex challenges; from de

centralised coordination to trust - since partners in one alliance may become competitors

months after the dissolution of the alliance.

In its broadest sense, this study is about such collaborations. It is interested in the

forms of collaborations where there is a common objective to be achieved by a group of

participants and yet each participant has its own objectives. Furthermore, in these col

laborative situations there is a competition for resources and trust between participants is

not unbounded. Such collaborations permeate different levels of human endeavour, from

individuals trying to schedule meetings to joint multinational projects like the Interna

tional Space Station. In particular, this study is interested in how problems are solved in

such collaborative groupings. We consider problems like scheduling or resource allocation

where group objectives are clearly defined but individual objectives introduce additional

limitations on how solutions are negotiated. We consider how such problems can be solved

automatically by systems of autonomous and homogeneous software agents representing

participants in a group.

Normally, in the absence of individual objectives, such problems already belong to

a class of computationally intractable problems where the difficulty of a problem can

increase exponentially with its size. At present, there are no known algorithms that

guarantee that such problems can be solved in reasonable time. However, over the last

thirty years Constraint Satisfaction has emerged as a successful paradigm for dealing with

these problems. The constraint satisfaction approach uses the constraints implicit in a

problem to rule out parts of a problem that can not be in a solution and as such improve

the efficiency of the problem solving process. As such, in constraint satisfaction, a problem

is first formally represented as a Constraint Satisfaction Problem (CSP) comprising a

finite set of decision variables, each with a set of alternatives it can adopt, and a set

of constraints [23]. The constraints in a problem define relations between variables, and

state which alternatives the decision variables can simultaneously assume. In scheduling

for example, a typical constraint is one that imposes precedence relationships on the order

in which any set of tasks are to be performed. A CSP is solved when all choices for decision

1.1. Research objective 3

variables are consistent with all the constraints between the variables.

In collaborative situations, the problems to be solved can be formally modelled as

Distributed Constraint Satisfaction Problems (DisCSPs) [122], where, in addition to the

CSP components, there is a set of autonomous agents. Each agent represents an individual

participant in the grouping, controlling all decision variables owned by that participant.

In the DisCSP model, it is assumed that participants are physically dispersed and, for

several reasons, information about a problem remains in the hands of its owners and

as such all information can not be collected at a single location. Agents collaborate to

solve a DisCSP by negotiating on possible choices for their decision variables, based on

information available locally, to find a stable state where all choices are consistent with

all the constraints between variables.

Besides the intractability of DisCSPs, the distribution of information creates additional

challenges for the process of solving them. For instance, agents can not appreciate the

impact of their decisions on the grouping since each agent has partial knowledge of the

problem being solved. As such, all decisions are based on the information held within

each agent and the bits of information gathered from local connections with other agents.

There is also a privacy requirement that limits the amount of information each agent is

permitted to reveal to other agents. Therefore, the key research challenge in solving such

problems remains crafting out behavioms and interactions for individual agents so that

the problem solving efficiency of a system of agents is improved.

1.1 Research objective

DisCSPS are mostly solved by search. The techniques for carrying out such search fall

under two major categories; (1) backtracking and (2) iterative improvement. Backtracking

search constructs solutions by sequentially considering possible alternatives and revising

early decisions that rule out all alternatives for later decisions. Backtracking is guaranteed

to be complete as it can determine when a problem is unsolvable with certainty and, when

it is solvable, find all possible solutions. Iterative improvement, on the other hand, starts

its search at a random position in the space of all possible combinations of alternatives.

1.1. Research objective 4

and it proceeds to move from one point to the next in that space making improvements

until a solution is found.

In centralised problems, iterative improvement algorithms offer the key advantage of

converging quicker on large problems than complete backtracking search; although without

similar theoretical guarantees of completeness. Such algorithms have been shown to be

remarkably effective for solving problems with millions of variables. For example, a local

search algorithm has been used to solve the //-queens problem with a million queens in less

than a minute [76], while the practical limit for complete backtracking is a few hundred

queens [23].

The weaknesses of complete algorithms are amplified further when solving problems

in distributed environments with the privacy restrictions of DisCSPs. The added cost

of communications between processes imposes even more severe practical limits on such

algorithms. Such is the effect of these limitations that in the literature on distributed

backtracking most experiments are performed with problems having no more than 60 vari

ables^ , while distributed versions of iterative improvement algorithms have shown promise

on larger problems.

However, iterative improvement in general suffers from the problem of regular con

vergence to local optima i.e. non-optimal solutions or traps in the solution space that

prevent a search from making any improvements and halts its progress. The strategy

for dealing with local optima is thus a crucial component of any iterative improvement

algorithm. Such strategies naturally aim to help a search find the quickest paths out of

locally optimal regions and possibly try to prevent the search from returning to such re

gions. Therefore these strategies also influence the overall effectiveness and efficiency of

the underlying iterative improvement search.

In this study, we focus on distributed iterative improvement search for solving DisC

SPs. Our primary research objective is to improve performance of this form of search by

improving the strategy for dealing with local optima. To do this, we look at cost landscape

modification as a means of enabling a search to find paths out of such optima. We propose

^This was an observation from a personal survey of published literature in the field up to 2005.

1.2. Key contributions 5

a new strategy based on the idea of using penalties attached to individual domain values

and argue that it is a more effective means of landscape modification. This strategy is

used as the basis for three new distributed iterative improvement algorithms.

1.2 Key contributions

The key contributions of this study are:

1. A new mechanism for modifying cost landscapes with penalties on individual domain

values. We argue that modifying cost landscapes with weights on constraints, which

is a popular approach, may not be effective at inducing exploration in landscapes

dominated by plateaus. Therefore, we propose a much finer grained approach where

assignments associated with plateaus are penalised. This is extended further so

that penalties can also be used to perturb searches as another means of encouraging

search exploration.

2. The Distributed Penalty Driven Search (DisPeL) algorithm is introduced built around

the new landscape modification mechanism. DisPeL is a synchronous distributed it

erative improvement algorithm for solving DisCSPs where each agent has only one

variable. In DisPeL, sequential improvements are made to a random initialisation

and a two phased penalty strategy is used by agents to deal with deadlocks occurring

at local optima. Penalties are used to perturb the solution in the first phase and

are used to modify cost landscapes in the second phase. DisPeL is sound and it

has a linear space complexity. Extensive experimentation has been carried out using

different problems, with sizes of up to 200 variables, and the results show DisPeL

provides significant cost savings over the Distributed Breakout algorithm [123]. We

also show that it is robust to communications failures, where it still solves a high

percentage of problems when up to 40% of messages are not received by intended

recipients.

3. DisPeL is extended in form of the Stochastic Distributed Penalty Driven Search

(Stoch-DisPeL) algorithm, in order to reduce the risks of bad initialisations in Dis-

1.3. Scope of this study 6

PeL. Actions to resolve deadlocks in DisPeL are performed in a deterministic manner;

and as such, if a search starts off on a trajectory that does not lead to a solution,

DisPeL is unable to avoid an infinite oscillation between non-solution states. Stoch-

DisPeL makes the choice of what resolution phase to implement a random one and

therefore the search trajectory is no longer exclusively determined by the random

initialisation.

4. Stoch-DisPeL is extended to create Penalty Driven Search for Agents with Multi

ple Local Variables (Multi-DisPeL). As its name implies, Multi-DisPeL is designed

for problems where each agent has multiple variables, constraints between these

variables, as well as constraints with variables owned by other agents. The penalty

mechanism is integrated into the local algorithms used by agents and applied in order

to resolve deadlocks that occur both between local variables and between variables

belonging to different agents.

1.3 Scope of this study

Attention in this study is focused on algorithms for solving DisCSPs where the objective

is to find the first solution that satisfies all constraints simultaneously. As such, we do

not consider Distributed Constraint Optimisation Problems, where the objective is to find

the best solution as determined by a stated objective function. Neither do we consider

distributed problems that require an algorithm to return all possible solutions to it. Fi

nally, we assume that each problem’s specification is fixed in advance and does not change

during the process of attempting to solve it.

1.4 Thesis outline

This thesis is organised as follows. Chapter 2 is a survey of related work on algorithms for

solving Constraint Satisfaction Problems both in centralised and distributed environments.

In Chapter 3, a formal description of the Distributed Constraint Satisfaction Problem is

presented, as well the model of DisCSP used in this study. We also outline our assumptions

1.4. Thesis outline 7

and the scope of the model. New ideas for modifying cost landscapes are presented in

Chapter 4 along with a comparison with the dominant approach. In Chapters 5, 6, and

7 new distributed iterative improvement algorithms, based on the ideas in Chapter 4, are

presented. Results of empirical evaluations are also presented in the respective chapters.

Finally, a summary of thesis and suggestions for further work are presented in Chapter 8.

Chapter 2

Survey of Related Work

2.1 Constraint Satisfaction

Much of the work in Artificial Intelligence (Al) problem solving can directly or indirectly

be placed into one of two categories: representation or search. In areas like machine vision,

natural language, and expert systems, the challenge for Al is to find appropriate represen

tations of the real world in forms that computers can manipulate meaningfully. While in

other areas, such as machine learning, game playing, and planning, the Al challenge is to

find patterns or valid series of actions from extremely large sets of possibilities. Constraint

satisfaction (or constraint reasoning) is an emerging paradigm that brings both these two

categories together, to deal with a wide variety of problems that require some intelligence

to solve. In problems such as scene recognition [118], option trading [64], or resource allo

cation [58, 1, 39], the constraint satisfaction paradigm ties the two Al categories together

by providing formal methods for describing problems as Constraint Satisfaction Problems

(CSPs); a well as providing a host of techniques for solving such problems.

Formally, a CSP is defined as a triple (X, D, C) [23], where X is a set of finite decision

variables, D is a set of finite domains listing possible values for each variable, and C is

the set of constraints that restrict what values can be assigned to sets of variables. The

solution to a CSP is an assignment of a value to each variable, so that all constraints

in the CSP are simultaneously satisfied. CSPs are NP Complete problems that involve

8

2.1. Constraint Satisfaction 9

combinatorial search spaces and are therefore solved by search and/or inference methods.

In the following, we outline the main categories of algorithms for solving CSPs, highlighting

the strengths and any limitations of algorithms in each category along the way.

2.1.1 Search techniques for solving CSPs

Search algorithms for solving CSPs may be classified as either constructive search or

local search. A review of prominent work in these two categories of search algorithms

is presented in this section. Given the direct relevance to this study, we dwell a bit

on landscape modification techniques in the review of literature on local search. We also

include a survey of cooperative search which is another form of distributed problem solving,

but it differs from DisCSP solving in that cooperative approaches focus on integrating

parallel processes to improve efficiency.

Systematic backtracking search

Backtracking search, which is one of the earliest methods used for solving CSPs, is generally

described as an incremental process in which a partial solution is extended until a full

solution is found [24]. The partial solution is a list of labelled variables (i.e. variables

assigned values), that starts off with an empty list. This solution is extended by assigning

a value to an unlabelled variable that satisfies all its constraints with variables in the

partial solution. If a partial solution can not be extended (or a dead-end is reached),

the search tracks backwards to revise earlier decisions to consider other alternatives for

labelled variables. Backtracking search terminates when a solution has been found or it

has determined that all possible combination of values in the smallest partial solution can

not be extended to find a complete solution.

The basic backtracking algorithms (chronological backtracking) extends partial solu

tions in predefined orders; and whenever dead-ends are encountered, the search moves

backwards one step to revise the last variable labelled. But, in doing so, backtracking can

suffer from trashing i.e. where the search continues to revisit the same dead-end without

revising the earliest decisions responsible for the dead-ends. Therefore the search wastes a

2.1. Constraint Satisfaction 10

lot of effort to discover this and for this reason chronological backtracking is rarely used.

In its place a number of modifications have been introduced which change, amongst other

things, how far to backtrack when dead-ends are encountered and the order in which

variables are labelled.

Trashing in backtracking can be dealt with using schemes that control how far the

search backtracks when dead-ends are encountered or with schemes for learning about

the causes of the dead-ends. Backjumping schemes [32, 22, 89] allow a search to jump

over recently labelled variables, unconnected with a dead-end, to the most recent variable

contributing to a domain wipe out i.e. all values in the domain of an unlabelled variable

are ruled out by assignments to variables in the partial solution. On the other hand,

learning schemes such as Ginsberg’s Dynamic Backtracking [33] allow a search to identify

the earliest causes of dead-ends and rectify them without unlabelling variables unrelated

to the dead-end. A detailed review of backtracking algorithms can be found in [24].

The introduction of Forward Checking [46] schemes allow backtracking algorithms

to anticipate the effect of early decisions on the search and propagate these decisions to

unlabelled variables. When a variable is labelled, all values inconsistent with its assignment

are removed from the domains of unlabelled variables. This helps the search identify

potential deadlocks in advance when domains of unlabelled variables become empty. With

Forward Checking there is also an opportunity to dynamically change the order in which

variables are labelled or values are selected. For example, with the popular Smallest

Domain First heuristic [46], the solution is extended with the unlabelled variable with the

smallest remaining domain so that the search can focus on where it is likely to fail first.

Backtracking has the advantage of being complete. Its systematic exploration of the

search space will guarantee that it correctly determines that either a problem has one

or more solutions, or that there are no solutions to it. But, because of its exhaustive

exploration of a space that is exponential to a problem’s size, backtracking can be expensive

and the time required to solve a problem may grow exponentially as well.

2.1. Constraint Satisfaction 11

Local search techniques

Local search (or iterative improvement search) describes a form of search that starts off

at a random point in a search (or state) space with a complete assignment of random

values to all variables (i.e. a candidate solution); and in successive iterations, it explores

different points in the space until a valid solution to a problem is found or the maximum

time allowed has elapsed. It is termed local, in the sense that the search moves to adjacent

points in the search space i.e. moving to candidate solutions reachable by changing the

value of just one variable in the current candidate solution, as it progresses.

The basic local search algorithm is a greedy approach that moves, in each iteration, to

the most improved the solution in the neighbourhood^ of the current candidate solution,

as determined by a given objective/cost function. For example, in CSP solving, a typical

objective function is the number of satisfied constraints and therefore a valid solution (and

the maximum objective) is one in which all constraints are satisfied. Alternatively, a cost

function may be used to drive the search where the cost of a candidate solution is the

number of constraints violated and a valid solution is one with zero cost.

A visual metaphor of rugged landscapes is typically used to describe this form of search

where the space of possible solutions form an uneven landscape and the altitude of each

point in this landscape (i.e. a candidate solution) is determined by its objective value or

cost. The metaphor is extended further to describe the basic greedy algorithm as either

hill-climbing or steepest descent search. Therefore, the greedy search is often described

as improving uphill in the objective landscape (in the case of hill-climbing) or downhill in

the cost landscape (for steepest descent)

A hill-climbing search continues until either a solution is found or a local optimum is

reached. A local optimum is a deadlock (or conflict) state in which some constraints are

violated but the solution can not be improved by changing the value of any single variable

i.e. there is no improvement in the neighbourhood of the current candidate solution.

Visually, local optima are described as points on plateaus in objective/cost landscapes, in

^The neighbourhood of a solution is the set of all adjacent solutions reachable from the current candidate
solution

2prom Chapter 4 onwards, we assume that search is steepest descent in the cost landscape, hence any
reference to improving moves imply downhill moves.

2.1. Constraint Satisfaction 12

which the landscape is flat in all directions from the points.

On encountering a local optimum, the basic hill-climbing algorithm discards the current

candidate solution and the search is restarted from a new location in the search space.

Generally, hill-climbing is considered to be inefficient because of its strategy for dealing

with local optima. Some of the early modifications to hill-climbing, particularly Simulated

Annealing (SA) [60] and Tabu Search (TS)[34, 35], introduce more subtle mechanisms for

avoiding and escaping from local optima so that the search experience gained is not entirely

lost.

Drawing on an analogy with the annealing of metals. Simulated Annealing modifies

the standard hill-climbing algorithm to accept some non-improving moves with a small

probability. These random moves give a search opportunities to leave plateaus and also

promote search space exploration so that regions not necessarily covered by a greedy hill

climber are considered. In addition, the non-improving moves can help a search avoid

local optima in the first place by occasionally knocking it off search paths bound for such

plateaus. The probability of accepting non-improving moves is a function of the annealing

temperature and this temperature decays over time according to a cooling schedule. The

main advantage of SA is that it has been proven to converge on global optima, albeit

with infinite time [12]. Tabu-search, on the other hand, introduces a form of learning to

hill-climbing and like SA, accepts the occasional non-improving move. In addition, TS

tries to overcome the possibility of oscillation i.e. the same set of moves maybe repeatedly

accepted, by maintaining a tabu list of recent moves. Moves listed as tabu may not be

repeated for the duration of their stay on the list. SA and TS are amongst the oldest and

the most widely used hemistics for solving combinatorial problems [12]. Other variations

on the standard hill-climbing consider other forms of randomisation, in addition to new

heuristics to guide the search. Examples include WalkSAT [102], GSAT [103], GRASP

[63], Variable Neighbourhood Search [45], and Iterated Local Search [86].

Dealing with local optima by randomisation has the advantage of giving the search

opportunities to make jumps to distant regions of the search space and expanding its

scope. But, except in the case of tabu search, randomisation strategies are generally

2.1. Constraint Satisfaction 13

memory less and are unable to prevent a search from repeating the same mistakes. Nor,

do they focus adequately on the causes of deadlocks. Landscape modification schemes,

which are popular in local search algorithms for solving boolean satisfiability formulae

(SAT), try to alleviate this last problem by introducing naive learning mechanisms that

aim to allow a search to remember plateaus encountered and to avoid other regions of the

search space where solutions do not exist [13].

In the earliest work along this line, Morris [81] extends local search by introducing

weights which are attached to constraints and are incorporated into a problem’s objective

function in the Breakout algorithm; such that the local search proceeds to minimise the

sum of weighted violations. When the search is stuck at a local minimum, weights on

violated constraints are increased - highlighting these constraints and changing the shape

of the objective/cost landscape. Therefore, the search emphasis is on satisfying constraints

with the highest weights, which are considered to be the most difficult to resolve. But,

Morris admits that the constraint weights can modify the landscape to the extent that

paths to solutions are blocked off, therefore, can leave the search to wander aimlessly in

unprofitable regions. Later works on SAT solving consider other formulations that allow

weights to decay over time. In [29, 30] weights are modified after each move by the search,

so that those on violated constraints are increased and, at the same time, decay to enable

the search forget previous weight increases and to focus on the most recent increases.

Similarly, in the Scaling and Probabilistic Smoothing (SAPS) [57], a smoothing procedure

is introduced that brings all weights towards the mean weight with a certain probability.

Other algorithms for SAT solving like the Discrete Lagrange Multiplier (DLM) [116], the

Smoothed Descent and Flood (SDF) [99], and Exponentiated Sub-Gradient (ESG) [100],

which also use similar but more complicated weighting schemes have been shown to be

very efficient.

It is argued that constraint weighting allows a search to learn or prioritise “important”

constraints, but Tompkins and Hoos in [111] disagree with this and they argue that weights

only serve as an effective diversification mechanism. They also add that weights do not

hold important cues about difficult parts of a problem. They reached this conclusions

2.1. Constraint Satisfaction 14

from an experiment where the terminal constraint weights from successful runs of SAPS

were used as the initial weights for other runs. They found that the information encoded

in the weights did not improve search performance in the second runs and in some cases it

even took longer to solve some problems. They also argue, like Morris [81], that weights

on constraints can have undesirable effects on the objective/cost landscape and as such

there must be mechanisms to undo their impact.

The Guided Local Search (GLS) [113] for combinatorial search adopts a similar philos

ophy to the Breakout algorithm, but its emphasis is on problem features. Problem features

can be subsets of a variable’s domain or constraints. Penalties are attached to each prob

lem feature, and those on features present^ in a candidate solution are augmented in its

cost function. Like the Breakout algorithm, penalties on those features present are in

creased whenever the local search is stuck at local optima. In GLS, penalties are increased

proportional to their costs and the growth of penalties on a feature is controlled by a utility

function which decreases over time. Penalties also change the shape landscape allowing

the search to avoid regions containing “bad” features, but the impact of the penalties

on the landscape is controlled by a lambda parameter which can be tuned to control the

diversification / intensification bias of the search. GLS has been applied to and shown to

be a competitive algorithm for problems in domains such as frequency planning [115], the

travelling salesman problem [113], and function optimisation [114]. However, it still runs

the same risks as the Breakout algorithm i.e. the potential for feature penalties to block

paths to solutions is still present. Extensions to GLS proposed in [75], include an aspira

tion move where feature penalties are completely ignored, if there is a better solution in

the neighbourhood of the current solution with respect to the original cost function. The

extension also includes a probability for accepting random decisions.

In other related work, weights on variables have also been studied. In [88], the effects

of dynamic variable weighing and continuous weight smoothing are investigated for tie-

breaking for the variable selection heuristic in WalkSAT. Weights are associated with the

number of times a variable’s value has changed and where there is a tie for the next

^In the case that constraints are used as features, the constraints are present in a candidate solution if
they are violated.

2.1. Constraint Satisfaction 15

variable to be flipped, the variable with least weight is selected. The introduction of these

schemes was shown to dramatically improve the performance of WalkSAT.

Unlike backtracking, local search algorithms are incomplete. There are no mechanisms

for detecting that problems are unsolvable, nor are there any means to guarantee that

solutions would be found even if they exist. Hence, in practice, local search algorithms are

run with maximum time bounds or limits on the number of iterations. Furthermore, it

has been demonstrated that local search techniques do suffer on structured problems [61]

and are inferior to the inference of backtracking algorithms on such problems. Although,

Hoos [54] argues to the contrary. Nevertheless, on some problem domains local search

algorithms do outperform complete algorithms; they are used to solve larger problems

within practical limits that are impossible with complete algorithms. For example, local

search algorithms have been used to solve SAT problems with several hundred thousand

variables, compared to a maximum of 600 variables for complete search algorithms [23].

Cooperative or parallel search for solving CSPs

According to Clearwater et al [19], the justification for cooperative search has amongst its

many benefits performance speed ups in the time taken to And solutions and improvements

in the quality of solutions generated. It is also argued that cooperative search with multiple

search processes allows for exploration of more areas of the search space, either via different

initial starting points, the use of different parameter settings, or different heuristics in the

search processes. Resulting from these is the added advantage that cooperative search

algorithms are likely to generate more unique solutions to problems.

We consider cooperative search to be generally about the exchange of information

between search processes. With this view, we widen the umbrella of cooperative search

to cover the host of population based heuristics in the literatme. In cooperative search, a

number of search processes run concurrently and periodically exchange information about

profitable areas of the search space to exploit (or unprofitable areas of the search space

to avoid). Information received from other processes may be used to: (i) resolve conflicts

[52], where one process hits a dead-end; (ii) guide the search of multiple processes, each on

2.1. Constraint Satisfaction 16

a different search strategy [74]. Information exchange in search can be explicit as already

noted, or may be implicit in the nature of an algorithm. For example, in the evolutionary

approach with Genetic Algorithms, a parallel search is carried out implicitly. Cooperation

is enforced by selection and cross-over operators which allow the exchange of information

about high fitness regions of the search space.

By viewing cooperative search as information exchange, the key issue with cooperative

algorithms (or systems) will be determining what form of information is exchanged between

search processes [112]. With genetic algorithms, partial solutions are exchanged. In [52]

and [53], the explicit exchange of ‘hints’ between search processes is proposed, although

the hints exchanged in the implementation presented were partial solutions. Agent’s rep

resenting processes in the framework shared a common blackboard for storing and looking

up hints to resolve conflicts in individual searches. In a similar approach, the work in [112]

also proposed the exchange of tabu history in a group of concurrent tabu-search processes.

The idea was to guide the search away from potential deadlocks. Milano and Roll [74] also

proposed the exchange of partial solutions in a cooperative strategy for their framework,

in which search with different heuristics (in some cases different parameters for search

operators) run in parallel. The strategy adopted in the work was to take as input for a set

of processes running population-based algorithms, the output of another set of processes

running local search heuristics and vice versa. In work along similar lines presented in [17],

several algorithms are run in parallel and at periodic intervals the overall best solution

found by one of the algorithms used as new starting points for the other algorithms.

The definition of cooperation adopted in this study covers population based approaches

for the reason that cooperation is implicit in the design and operation of such approaches.

However, explicit cooperation mechanisms may still be incorporated into these approaches.

The multi-population or parallel genetic algorithm [2] is an example of such. In this case,

multiple populations are evolving, each on a separate ‘island’, and there is exchange of

chromosomes between the populations at periodic intervals. Which, amongst other things,

introduces some diversity into each sub-population and points the sub-populations to high

fitness regions of the search space. Other approaches, such as the ant colony optimisation

2.1. Constraint Satisfaction 17

algorithm [14, 109] and the particle swarm optimisation algorithm [59] use explicit markers

from the most successful individuals in the search to guide the rest of the population.

2.1.2 Constraint propagation and consistency maintenance

According to Dechter [23], constraint propagation is perhaps the most fundamental concept

in constraint reasoning. Constraint propagation and consistency maintenance are methods

of inference that use information contained in constraints to rule out parts of a problem

that can not be a part of a valid solution to the problem. These ideas have been explored

in some of the earliest works in constraint reasoning (e.g. [118, 68]) and they still attract

significant interest in the community.

Constraint propagation techniques are used to reduce the size of a problem; either by

inferring new constraints from the combination of existing constraints or by deleting those

values that do not appear in the set of allowed combinations in at least one constraint.

Arc-consistency, which is probably the most popular of the constraint propagation tech

niques, does the latter. Pioneered in early works on constraint solving ([118] and [68]),

arc-consistency works to ensure that each value in a variable’s domain has at least one

supporting value in the domains of other variables that are constrained with the variable.

For example, take a CSP with two variables (x and y), where both variables have the same

domain of 5 values = [1..5], and there is a single constraint x > y. Arc-consistency

will delete 0 in x’s domain since there are no values in y's domain that satisfy the con

straint if X = 0; 5 is also deleted from y's domain in the same regard. This creates an

equivalent problem [23] but with a smaller search space keeping just the values that can

be present in a solution.

Depending on the nature of the constraints involved, arc-consistency techniques can

detect that a problem has no solution when a variable’s domain is completely deleted.

But, doing this requires a complete evaluation of all value combinations in a CSP. This

complete enumeration meant that the early arc-consistency algorithms (e.g. AC-1, AC-2,

and AC-3 in [68]) were rather expensive, though in polynomial time, having worst case

complexities of O(ed^); where e is the number of constraints in the problem and d is the

2.2. Distributed Constraint Satisfaction 18

size of the largest variable domain. Later versions, such as AC3.1 [129], AC-4 [79], AC-6

[7], and AC-2001 [11], introduced measures to eliminate redundant checks and thus reduce

the worst case complexity of to O{edP}.

Arc-consistency ensures that each constraint (or arc) in a CSP has at least one com

bination of values that satisfy it, but that can not in itself determine if the un-deleted

values can be combined for a valid solution for a CSP. To deal with this, path-consistency

[80] strengthens the propagation beyond the variables in the scope of one constraint i.e.

determining if there are supporting values in other constraints for values satisfying an

initial constraint. For example, a CSP with 3 variables {x,y, and z) and the constraints

(x < y,y > z), is considered to be path consistent if for value in y's domain that satisfy

the constraint {x > y) there is a support value in z's domain that satisfies the second

constraint. Path consistency is also known as 3-consistency (for binary CSPs), but con

sistency algorithms that extend consistency propagation to larger sets of variables are

known /c-consistency algorithms, fc-consistency, generalised in [31], determines that a CSP

is ^-consistent if for any consistent instantiations of k-1 variables, there is a value in the

domain of an /cth variable that satisfies all its constraints with the k-l variables.

Despite the strengths of the constraint propagation techniques discussed here, they

are rarely used alone to solve CSPs alone as there are times when search is still necessary

and because the reduced problem space is still large. Therefore, constraint propagation

techniques are often used in a pre-processing stage, or intertwined with search algorithms

to improve search efficiency. For example. Arc-consistency algorithms can be combined

with backtracking to maintain arc-consistency as variables are instantiated [96]; and this

combination has been shown, in [10], to be the most efficient strategy for solving CSPs.

2.2 Distributed Constraint Satisfaction

Distributed problems of interest in this study typically come in the form of a number of de

cisions to be made individually by several participants involved in collaborative situations.

There are a limited set of alternatives each participant can consider for each decision and

there are restrictions on the alternatives that can be simultaneously selected for several

2.2. Distributed Constraint Satisfaction 19

decisions. For example, in a Supply Chain system each company makes its own decisions

on its production schedules and some of the choices made for these decisions are restricted

by agreements and delivery decisions to be made by other participants in the chain. This

example also highlights an important feature of distributed problems - all the information

about the decisions and the alternatives for each decision are inherently distributed and

can not be collected in a single location for problem solving.

In the seminal work for the field, Yokoo et al [122] extended the CSP framework to for

mally describe such distributed problems as Distributed Constraint Satisfaction Problems

(DisCSPs) and introduced the idea of distributed approaches for solving them. In this

formalism, distributed problems are solved by collections of automated software agents -

each acting on behalf of a single participant in a problem. The decisions to made by the

agents become variables in a problem and the alternatives for each decision become its

variable’s domain, while the restrictions on alternatives that can be selected are the con

straints in the problem. In Chapter 3, we give formal definitions of DisCSPs and discuss

some of the underlying assumptions of the formal models. However, in the following, we

discuss algorithms for solving DisCSPs.

Algorithms for solving DisCSPs can be classified along similar lines with those for

solving CSPs. Hence, the following review discusses backtracking, iterative improvement,

and consistency propagation for DisCSPs. In addition, other methods that have no direct

equivalents in centralised CSP solving such as those that use mediators to resolve deadlocks

are also reviewed.

2.2.1 Distributed backtracking search

Just as in problem solving in single processor environments, backtracking search is a pop

ular technique for distributed problem solving. The same theoretical guarantees of com

pleteness and the amenability to analysis make it the most widely form of search studied

in the DisCSP community. Direct extensions of centralised backtracking algorithms have

been proposed for solving DisCSPs (e.g. Synchronous Backtracking [21]), but other such

algorithms allow for asynchronous activity and introduce other measures to take advantage

2.2. Distributed Constraint Satisfaction 20

of some of the peculiarities of problem solving in distributed environments.

In distributed backtracking, constraints are directed and as such agents agree on a

static ordering so that values are proposed from the top to the bottom (via okl mes

sages), and the proposals are evaluated in the reverse direction. This way dead-ends are

easily identifiable, i.e. when a set of proposals wipe out an agent’s domain it can initi

ate backtracking. Synchronous Backtracking (SBT), which is earliest form of distributed

backtracking, is a direct extension of centralised backtracking search and it tries to repli

cate the exact behaviour from that form of search in distributed environments. So just

as in the centralised case, solutions are extended one variable at a time - an agent at a

time, and moving up the agent ordering when backtracking occurs. But this approach is

generally considered to waste resources because agents at the bottom of the ordering are

almost always idle; especially where there is a lot of backtracking in the middle of the

ordering. Asynchronous Backtracking (ABT) [122] tries to overcome this limitation by

allowing all agents to act concurrently and asynchronously, as its name implies.

In ABT, agents still maintain a total and static ordering but they are all active simul

taneously, constantly sending proposals to neighbouring agents lower in the ordering and

at the same time evaluating the proposals they receive. In addition, agents learn, during

the search, about combinations of proposals that can not be part of a solution. When such

combinations are found, they are used to create new constraints in the form of no-goods,

to prevent their recurrence. No-goods are sent by the agents that generate them to the

nearest agent in the no-good higher up in the ordering. Occasionally, the proposals causing

a no-good can involve agents not originally linked in the constraint network. Therefore,

agents receiving such no-goods create new links with those agents they are not connected

to; and hence are able to evaluate the new constraint.

The static ordering of agents in ABT allows the algorithm to avoid infinite processing

loops, despite the concurrent activity by all agents. The advantages of its asynchronous

approach include reduced idle time and earlier detection of deadlocks e.g. where a proposal

from the first agent in the ordering wipes out the domain of the last agent in the ordering.

ABT has been shown to be sound and complete, as well being quicker to solve problems

2.2. Distributed Constraint Satisfaction 21

than SBT.

Several modifications (or new versions) for ABT have been proposed, including for

example [108] and [132] which all present new heuristics to allow agents to change their

ordering asynchronously and dynamically during the search. In particular, Zivan and

Meisels [132] showed that this reduces the runtime of the algorithm and the number of

constraint checks carried out. In another modification to ABT [16], agents are made to

switch back and forth between asynchronous and synchronous activity. The forward phase

of the search is asynchronous and backtracking is synchronous - to reduce the amount of

redundancies in ABT, whenever agents send no-good messages they wait for the responses

to those messages before resuming their search. This was also shown to improve ABT’s

performance.

The Distributed Dynamic Backtracking (DisDB), [9, 8], inspired by dynamic back

tracking [33] improves on ABT, especially reducing the number of messages exchanged

between agents [131]. DisDB is somewhat similar to ABT, it is also asynchronous and

agents also learn from no-goods. But, DisDB’s space complexity is polynomial since no

goods are regularly discarded, and only one no-good is retained for each domain value.

Nevertheless, DisDB is complete. In a detailed study of DisDB in [8], it was found that

performance is not significantly impaired on problems to the left of the complexity peak

if agents do not create new links with unconnected agents when no-goods are received. In

other work, NIeisels and Lavee [72] show how additional information can be included in

no-goods to improve its performance.

A distributed version of Graph-Based Backjumping [22] was introduced as Distributed

Dynamic Backjumping (DDBJ) [83] which also includes dynamic variable and value or

dering. In the algorithm which is semi-asynchronous, agents run the forward solution

extending phase and the backjumping phase concurrently; just as in ABT and DisDB.

But, the forward phase is made sequential by having agents send ok? and Forward Check

messages rather than the lone ok? message in ABT. These synchronise the forward phase

and allow the search to perform forward checking. DDBJ is complete and it has much lower

space requirements than DisDB since agents do not store no-goods. Empirical evaluations

2.2. Distributed Constraint Satisfaction 22

in [83] show that DDBJ outperformed DisDB and the Asynchronous Forward Checking

(AFC) algorithm [73] on random problems.

The Asynchronous Aggregation Search (AAS) [107] is an ABT-like algorithm for a

DisCSP where agents can jointly own variables; this is useful for problems like negotiation

or those that involve joint decision making. Constraints are private to agents in that

model, therefore in AAS rather than propose values agents send all the values for a variable

consistent with their constraints.

Asynchronous activity in backtracking search is exploited further in the Interleaved

Distributed Intelligent Backtracking (IDIBT) [41] where agents are able to run multiple

searches in parallel. The idea is to use what would be agents’ idle time to explore different

regions of the search space simultaneously. In IDIBT, agents create a static ordering that

results in one agent being designated as a Source agent. The source agent partitions

the search space by creating search contexts for disjoint subsets of its domain. Search is

initiated in each context when the source agent sends its first proposal in that context. As

all messages include the context identification, agents are able to maintain information for

the different contexts, permitting them to evaluate proposals and extend different solutions

in parallel using an extension of Graph Based Backjumping. Like ABT and DisDB, IDIBT

is also complete but it has a much lower space complexity. In later work by its author

[42], additional heuristics were introduced to allow agents to maintain partial directional

consistency during in a search with Conflict Directed Backjumping (CBJ) [89]. Similarly,

the effects of Forward Checking and Look Ahead strategies on IDIBT were studied in

[94]. These were found to reduce the number of constraint checks performed and the

local computation efforts of agents. Distributed parallel backtracking search was also

explored in Concurrent Backtracking (ConBT) [131] where agents retain partial solutions

of different searches in parallel.

The idea of concurrent searches was extended further in the Multi-Directional Dis

tributed Search [95] where different search algorithms can be run in parallel and useful

information is shared between the searches. The authors argued that idle time is signifi

cant in distributed backtracking, and as such agents can use that time to solve the same

2.2. Distributed Constraint Satisfaction 23

problem with a second algorithm. In their work, modified versions of ABT and IDIBT

were run in parallel, each with different agent orderings. The experimental evaluation

showed that the combined searches cut idle time significantly and provided a speed up of

one order of magnitude compared to using either algorithm on its own.

2.2.2 Asynchronous Weak Commitment Search

A drawback of asynchronous backtracking is that when the agents highest in the ordering

make bad decisions, agents below them have to exhaustively search all possibilities before

the bad decisions are revised. Asynchronous AVeak Commitment Search (AWCS) [121]

tries to avoid this by allowing agents to dynamically change their positions in the ordering

during the search. In addition, constraints are not directed in AWCS and as such, the

Min-Conflicts [77] heuristic is used for value ordering.

Each agent in AWCS holds a non-negative integer value to represent its priority, and

ties are broken in favour of the agents with the lowest lexicographic IDs. These priority

values are also exchanged when agents communicate with their neighbours. During the

search, each agent finds all values in its domain that satisfy all constraints with higher

priority neighbours, and from these values it selects the value that minimises constraint

violations with lower priority neighbours. Where an agent’s domain has been wiped out

by values of higher priority neighbours, it generates a new constraint in the form an

undirected no-good and it sends the no-good to all higher priority neighbours involved in

it. At the same time, the agent increases its priority to the highest in its neighbourhood.

Storage of no-goods guarantee the algorithm’s completeness, since there is a finite number

of them and AWCS can ascertain that a problem is unsolvable if an empty no-good is

created.
AWCS is efficient in terms of the number of asynchronous cycles performed, but it has

the drawback of possibly creating an exponential number of no-goods during a search [49].

As each no-good is a new constraint, the number of constraint evaluations will increase as

the search progresses. These drawbacks may limit the applicability of AWCS to small or

loosely constrained problems [72].

2.2. Distributed Constraint Satisfaction 24

In modifications to AWCS, Hirayama and Yokoo considered new learning schemes for

generating smaller and more efficient no-goods [47] and Zhou et al have used constraint

violations to determine agent prioritise [130]. AWCS has also been extended for agents

holding multiple local variables in [124].

2.2.3 Distributed consistency maintenance techniques

Consistency maintenance in DisCSP solving is a challenge because of the privacy require-

ments/assumptions in the basic DisCSP model. Agents can not (are not expected to) know

the full domain of variables owned by other agents; as such, the conventional methods for

consistency maintenance or even for achieving arc-consistency can not be directly applied

without relaxing the privacy assumption. Hence, some of the early work in distributed

consistency maintenance more or less ignored the privacy assumption and focused on how

arc-consistency can be achieved on multi-processor environments [90] or on improving the

efficiency of the process [82, 40, 93]. Other work (discussed next) departs from the basic

DisCSP model, highlighting scenarios where the basic model is not sufficient and there

fore introduce new algorithms for achieving arc-consistency without violating the privacy

requirements of the underlying models.

The DisCSP model adopted in [107] considers scenarios like distributed negotiation,

where variables are jointly owned by agents. Therefore domains are public knowledge but

constraints are private. As a result, the Asynchronous Aggregation Search, presented in

that work, allows agents to propagate constraints and exchange partial solutions during a

search. In their work on the Distribute Forward Checking (DFC) [15] algorithm, Brito and

Meseguer consider a DisCSP model where domains and constraints are public knowledge,

but the values agents select for their variables are private. During the search, which is

intertwined with a distributed backtracking algorithm, agents propagate constraints by

pruning domains of un-instantiated neighbours. So rather than sending their labels to

neighbours, agents send a list of domain values available to neighboms.

Also working with a different model in [92], Ringwelski and Wallace introduce con

straint agents in addition to agents representing variables. The constraint agents are

2.2. Distributed Constraint Satisfaction 25

linked to and communicate with ‘variable’ agents. The role of the constraint agents was

to propagate constraints that result from variable instantiations or constraint additions'^.

Like DFC, the consistency maintenance is intertwined with a search algorithm.

The Asynchronous Forward Checking (AFC) algorithm [73] works with the standard

DisCSP model to combine synchronous backtracking search with asynchronous constraint

propagation. Agents take turns to construct a solution sequentially and, at the same time,

the owners of un-instantiated variables perform forward checking tasks notifying owners

of instantiated variables of values that do not propagate.

2.2.4 Distributed iterative improvement

As we have discussed in Section 2.1.1, iterative improvement search (or local search) allows

a search to start off with a complete assignment of values to variables and proceeds to

iteratively move the state towards a valid zero-cost solution. Although methods based

on local search are incomplete, they have the advantage of converging quicker to good

quality solutions (or possibly zero cost solutions) than backtracking algorithms, especially

on large problems. But, with this speed of convergence there is the ever present potential

for such methods to converge to local optima. As such the challenge in the design of new

iterative improvement algorithms is devising strategies for effectively dealing with local

optima, that allow a search leave a plateau in the objective landscape and possibly prevent

it from returning to that region.

In DisCSP solving, strategies considered for dealing with local optima have included

landscape modification with constraint weights and randomisation to perturb solutions

that cause a search to jump to other areas of the search space. The earliest work in the

distributed iterative improvement is the Distributed Breakout Algorithm (DBA) [123, 49]

which was inspired by the Breakout algorithm [81](see Section 2.1.1).

In DBA, agents carry out a distributed steepest descent search by exchanging possible

improvements to a candidate solution and implementing the best improvements that do

not conflict with each other. To do this, agents act concurrently alternating between

the improve and update cycles. In the improve cycle, each agent finds the value in its
^They were working on dynamic DisCSPs that change as the solution process progress.

2.2. Distributed Constraint Satisfaction 26

domain that minimises its weighted constraint violations and computes the improvement

to its current assignment. These improvements are exchanged between the agents, and

the agents with the best improvements are allowed to change their values in the update

cycle. Ties are broken with the agents’ lexicographic IDs in the case that two or more

neighbouring agents have the same possible improvement.

Deadlocks at local optima are dealt with using weights attached to constraints and

those on violated constraints are increased whenever agents are at deadlocks. To minimise

communication costs, DBA’s authors consider the notion of quasi-local-optima which is

much weaker than local optima. It is described as a state in which a subset of connected

agents can not find any improvements to their local evaluations. Agents individually

increase weights, in the update cycle, on the constraints they violate when they detect

that they are at quasi-local-minima. Hirayama and Yokoo [123] also investigated the

effects of increasing weights at real local optima and found that performance in terms

of the number of cycles taken is better. But this comes with the requirement that each

agent is able to communicate with all other agents in the constraint network (even those

it does not share constraints with) and this increases the number of messages exchanged

between agents considerably. Empirical evaluation of DBA showed that it outperformed

Asynchronous Weak Commitment Search on difficult problem instances; DBA solved more

problems and it did so in less time [123].

Originally, it is assumed that each agent in DBA owns just one variable, but newer

versions in [48, 25] extend the breakout method for problems where each agent owns mul

tiple local variables. Other work in [119], introduce some randomisation for tie-breaking

in DBA and extend it for handling distributed constraint optimisation problems.

In the Distributed Stochastic Algorithm (DSA) [27, 28, 128], the authors introduce a

stochastic light-weight strategy for dealing with local optima in their work on distributed

target tracking. Agents act synchronously and in parallel, each selecting a value minimis

ing the number of constraints violated given assignments received from neighbours in the

previous iteration. To reduce incoherency and to avoid local optima, agents have random

activations such that in each iteration an agent decides with a fixed probability to retain

2.2. Distributed Constraint Satisfaction 27

its current assignment. DS A was shown to converge quicker to local optima than DBA on

distributed scan scheduling problems - cast as distributed constraint optimisation prob

lems. But, Hirayama and Yokoo [49] point out that once DSA is stuck at a local optima it

has no means of escaping; and as such it would not be strong in decision problems where

the objective is to satisfy all constraints.

Arshad and Silaghi considered improvements to DSA and extend the framework in

Distributed Simulated Annealing (DSAN) [5], where they introduce additional random

decisions to allow agents to occasionally select values that may not improve their evalua

tions. Inspired by the Simulated Annealing [60], DSAN’s authors introduce an additional

parameter to control the probability of making the non-improving changes and they allow

this parameter to decay over time. Thus, the search is able to explore more regions early

in the process and it increasingly scrutinises good regions later on. DSAN was shown to

outperform DSA in the experiments reported in [5], but like the works on DSA they also

focus on flnding good quality solutions quickly rather than zero cost solutions.

2.2.5 Third party mediators

The common thread in all the work reviewed in this section so far is the notion of agents

acting ‘independently’ to either extend solutions or to resolve conflicts. But given the

limited view each agent has of the problem, they can not fully evaluate the impact of the

decisions they make on other parts of the constraint network. For example, there is the

risk that actions taken to resolve a conflict by one agent in one part of the DisCSP will

cause the appearance of a new conflict in another part of the problem. To overcome this,

a number of approaches in the literature propose the referral of conflicts to third parties

or mediators for resolution.

Mailler introduced a cooperative mediation protocol in the Asynchronous Partial Over

lay (APO) algorithm [70], where agents can opt to mediate conflicts for their neighbours.

In this hybrid of centralised and distributed search, when an agent is mediating a conflict,

it requests for information from its neighbours about the variables and constraints in the

conflict (which is outside its view of the problem) so that it can fully anticipate the impact

2.2. Distributed Constraint Satisfaction 28

of its decisions. A centralised systematic algorithm is used to resolve the conflict with the

collected information. Mediating agents can detect the absence of solutions, and hence

the APO algorithms are certified to be complete. In his empirical evaluations, Mailler

showed that APO outperformed AWCS in distributed graph colouring and distributed

target tracking problems where it typically required fewer iterations to find solutions. A

similar approach for mediation was presented in [120] where virtual agents were constantly

created and used to mediate in conflicts.

Sathi and Fox also present a hybrid of centralised and distributed search in [97] for

their work on resource re-allocation. In their approach, a central mediator has a global

view of the problem and resolves conflicts that depend on multiple resource offerings. A

somewhat related approach in [4] utilises a separate agent acting as a centralised no-good

processor. The algorithm requires that agents regularly check with the no-good processor

before assigning values to their respective variables. While in the broker model presented

in [65], agents routinely send unresolved parts of their local sub-problems to a central

mediator for resolution.

2.2.6 Anchor agents

While third party mediators are used to resolve conflicts during a search, the notion of

an anchor agent is one that is predetermined to be central (or a backbone) of a DisCSP.

Anchor agents propose partial solutions for other agents to extend, or they can act as

mediators when partial solutions are not unanimously consistent.

In their work on job shop scheduling, Liu and Sycara proposed the Anchor and Ascend

algorithm [67], where agents controlling bottleneck resources are designated anchor agents.

Anchor agents will first seek to optimise their local sub-problems and modify the solutions

when they are proven to be infeasible. Two variations on this theme are considered in

[110]. In the first variation, a central agent attempts to And values for all variables in its

sub-problem (with emphasis on variables involved in inter-agent constraints). Following

which, other agents search for consistent sub-solutions. The second variation, is a direct

reversal of roles where the central agent awaits the sub-solutions before attempting to solve

2.2. Distributed Constraint Satisfaction 29

its sub-problem. The second approach was shown to be more efficient, as it eliminates the

amount of wasted search effort by peripheral agents that takes place when a single agent

is not able to find consistency with the initial proposal.

Chapter 3

Problem Formalisation

In this chapter, we present a formal description of the DisCSPs model used for this work

(Section 3.1). We discuss the assumptions made about the nature of the problems in

Section 3.2 and highlight the scope of the formal model (and the study) in Section 3.3.

3.1 The Distributed Constraint Satisfaction Problem - DisCSP

A DisCSP is formally described as DisCSP — {A,X, D,C} where;

A = {ai,a2, ■■■am} is a set of m agents.

X = {a?! ,X2,.--Xn} is a set of n variables.

D = {Di, D2, ■■■Dn} is the corresponding set of domains for each rci; i.e. each domain

(Dj) is a finite set of discrete values that can be assigned to

C = {ci, C2, ...Cp} is a set of p constraints that limit values that can be simultaneously

be assigned to the variables in the scope of Cj.

There is a distribution of variables to agents, such that each variable belongs to exactly

one agent while each agent may represent more than one variable i.e. each decision in a

collaborative problem can only be made by one participant but each participant can make

several decisions.

30

3.2. Privacy requirements and assumptions 31

Definition 3.1

of a constraint.

(Neighbours) Two variables are neighbours if they are both in the scope

Two agents are neighbours if at least one pair of variables they own are

neighbours.

Definition 3.2 (Neighbourhood) An agent’s neighbourhood is the set of its neighbours i.e

N= {xi,X2,...Xk}.

Definition 3.3 (Inter-agent constraint) An inter-agent constraint is a constraint between

variables owned by different agents.

Definition 3.4 (Intra-agent constraint) An intra-agent constraint is a constraint between

variables owned by the same agent.

Definition 3.5 (AgentViewt) An AgentView is the set of assignments {xi = ui, ...Xk —

for variables belonging to agent’s neighbours at time t.

Definition 3.6 (No-good) A no-good is an inconsistent AgentView i.e. as a result of

neighbours ’ current assignments there is no value in domain of a variable that satisfies all

constraints attached to it.

Agents try to solve a DisCSP by exchanging value assignments and other algorithm

specific information. For example, in distributed backtracking agents can infer new con

straints during a search and exchange them as well. They determine that a DisCSP is

solved when they simultaneously hold values for their variables that satisfy all the con

straints in a problem.

3.2 Privacy requirements and assumptions

3.2.1 Privacy and limited information

The distinguishing features of a DisCSP are privacy and limited availability of informa

tion. Yokoo et al [122] cite these as the key reasons why DisCSPs have to be solved by

distributed techniques and as the main challenge of this approach. Privacy, and security

of information, requires that information about a problem remains in the hands of its

3.2. Privacy requirements and assumptions 32

owners. Hence, the problem information can not be collected in one location for solving

with a centralised technique. This requirement also distinguishes distributed constraint

solving from parallel (e.g. [62, 126]) or cooperative (e.g. [19]) approaches to problem

solving, which rely on a constant flow of information between several search processes to

improve efficiency.

Generally, privacy is related to variables’ domains. Each agent is expected to keep

the full domain of a variable it owns private; therefore an agent can not know the full

domain of a variable it does not own. Agents are also expected to keep information about

constraints they are involved in private. This is illustrated with the example in Figure

3.1, which uses the standard notation to depict DisCSPs as graphs. In this diagram, the

nodes represent variables and arcs connecting nodes indicate the presence of constraints

between variables. In the example, variable a;i has separate constraints with variables X2,

xs, and X4; but privacy requirements prevent the agent that owns variable xi from being

aware of the constraint between variables X3 and X4. Agents are not permitted to reveal

any information to a neighbour about constraints with other agents. Hence, each agent

always has a partial view of the problem being solved.

Figure 3.1: Privacy of constraints in Distributed Constraint Satisfaction Problems.

Other forms of privacy have been considered in the literature. For example, Silaghi et

al [107] argue that the standard model of privacy may not be suitable for problems such as

distributed negotiation. Therefore, they propose an alternative model where variables and

domains are public knowledge while constraints remain private. In some other work, Brito

and Meseguer [15] propose a model in which variables’ domains are public knowledge but

3.2. Privacy requirements and assumptions 33

actual values assigned to variables remain private. They also considered Partially Known

Constraints (PKC) (or asymmetric constraints) in which each agent in the scope of the

constraint is aware of just a handful of the forbidden combinations in the constraint.

In this work, we continue with the standard notions of privacy keeping variables’

domains and information about unrelated constraints private. We assume that each agent

has a partial view of a problem, and it is only aware of the constraints it is directly involved

in. We also assume that preferences for particular values (if any exist) are also private.

We restrict the amount of information agents are allowed to reveal during the problem

solving process to the values currently assigned to their respective variables. As such,

agents may not inform their neighbours about values received from other agents. In the

case where each agent has multiple variables, an agent can not inform its neighbours about

its local variables not sharing constraints with those neighbours. This violates the privacy

requirement if neighbours can use such information to infer additional details about agents.

and where such inference is not possible the information is redundant.

3.2.2 Other assumptions in the model

We also make the following assumptions:

All constraints are symmetric.

Any constraint with X as its scope, can be decomposed into an aggregation of

constraints with smaller arities i.e. any global constraints can be decomposed into

several smaller constraints.

Agents’ behaviours are purely reactive. Therefore, they can not make predictions

about future states and they base all their decisions on current (or past) information.

Agents communicate with each other by sending messages with the values assigned to

their variables as well as requests to neighbours to perform certain actions (clarified

in Chapters 5 to 7). We assume that agents can only communicate with their

neighbours.

3.3. Scope of the model 34

• Communication is reliable i.e. messages will get to all recipients with a fixed finite

delay. We also assume that all messages are received in the order in which they

were sent. However, in Section 5.7, this assumption is relaxed when the impact of

unreliable communication is studied.

3.3 Scope of the model

For the DisCSPs we study in this work, we focus on static versions where the components

of a problem i.e. agents, variables, domains and constraints, are specified in advance before

agents attempt to solve it. These components remain fixed during the problem solving

process. There are no additions or modifications to the components. In addition, the aim

of the adopted model is to find the first full assignment of values to variables that satisfies

all constraints simultaneously. Therefore, this does not extend to Distributed Constraint

Optimisation Problems (DisCOPs) [78] where the objective is to find the best solution.

from all possible solutions to a problem, or to optimise a given objective function.

Chapter 4

Penalty-based Strategies for

Dealing with Local Optima

4.1 Introduction

Solving problems with iterative improvement/local search algorithms offers the advantage

of quicker convergence over constructive search. However, this benefit comes with a po

tential for convergence to locally optimal non-solution states and/or a propensity for the

search to wander about on sub-optimal plateaus in the objective landscape. Strategies

proposed to overcome these drawbacks typically introduce some non-improving decisions

with the intention of moving the search away to other, possibly unexplored, regions of the

search space in order to resume the search for a solution. Alternatively, some strategies

try to determine the sources of the deadlocks associated with the local optima and seek

moves that directly attempt to resolve them. A widely studied approach for doing this.

as highlighted in Section 2.1.1, modifies the shape of the objective/cost landscape with

weights attached to constraints. Algorithms based on this approach have been shown to

be remarkably effective for solving SAT problems in centralised settings.

In Section 4.2, we reconsider landscape modification with constraint weights and high

light a key weakness of the approach. Following that, in Section 4.3, a new approach for

modifying objective landscapes with penalties attached to domain values is introduced

35

4.2. Modifying the cost landscape with constraint weights 36

along with an illustration of how this strategy overcomes the identified weakness of using

constraint weights. A similar penalty based strategy for solution perturbation is intro

duced in Section 4.4. Both strategies, which are discussed in detail, form the basis of new

distributed constraint satisfaction algorithms introduced in Chapters 5, 6, and 7 of this

thesis.

4.2 Modifying the cost landscape with constraint weights

The idea of dealing with local optima by modifying the shape of the cost landscape was

introduced in a modification to local search by Morris [81] in his work on local search for

boolean satisfiability. The aim was to provide a mechanism to allow a search focus its

efforts on resolving clauses that were repeatedly unsatisfied and regularly associated with

local optima. Hence, weights were attached to clauses (or to constraints in the case of

CSPs) and the cost function of the problem to be solved was modified as follows:

h = cwi * viol^Ci) (1)

where;

Ci is the ith constraint

cwi is the weight of the zth constraint

viol(ci} is 0 if the constraint is satisfied, otherwise it is 1

The weighted sum of violated constraints is used to evaluate candidate solutions. The

weights attached to violated constraints are increased whenever the search is stuck at local

minima to change the shape of the cost landscape. This drives the search away from the

deadlocked region and, at the same time, it should have the effect of blocking out other

regions where solutions do not exist.

However, we argue that modifying landscapes this way can sometimes be futile and

it can cause a search to remain stuck at deadlocks on plateaus. The alterations in the

4.2. Modifying the cost landscape with constraint weights 37

landscape caused by the constraint weight modifications affect the altitudes of plateaus

but the plateaus remain flat. As such, there is no room for the search to find a path out

of a local optimum.

To illustrate this, take the example DisCSP in Figure 4.1 and its resulting cost land

scape in Figure 4.2. Given the current assignments, the search is in a deadlock state (point

P in region A) violating constraint ci - on a plateau in the cost landscape. There are two

other plateaus in the landscape: region B where both constraints are violated and region

C where just C2 is violated; and a small region with solutions (e.g. x — 1,10 > y < 12).

Variables
Domains

Constraints
Constraint weights

Current assignments x = 8, 4

Figure 4.1; An Example DisCSP

To resolve the deadlock using constraint weights, the weight of the violated constraint

is increased to (cwi = 2) and this results in the modified landscape in Figure 4.3(a). While

the altitudes have changed, the plateau around the deadlock remains, as well as the other

plateaus in regions B and C. Increasing cwi further results in the landscape in Figure

4.3(b), the plateaus are still intact and therefore the search is unable to find a path out

of the plateau and the deadlock remains unresolved.

Recent work on constraint weighted local search (e.g. [29, 30, 111]) have arguments

against allowing weights to grow unbounded in their use for resolving conflicts at local

optima. Amongst other things, blocking possible paths to solutions is cited as a reason why

the growth of weights should be controlled, and therefore propose weight decay schemes

to limit any detrimental impacts of weights on cost landscapes. However, we argue that

the introduction of weight decays may not necessarily improve the effectiveness of using

constraint weights to contorting plateaus. We argue that the effects of weight decays only

serve to change the altitudes of plateaus (i.e. pushing them down) just as they are changed

when weights are initially increased.

4.3. Modifying cost landscapes with penalties on domain values 38

Figure 4.2: Cost landscape for the DisCSP in Figure 4.1.

Figure 4.3: Effect of constraint weight modifications on the cost landscape for the DisCSP
in Figure 4.1; (a) cwi = 2 and (b) cwi — 5.

4.3 Modifying cost landscapes with penalties on domain val-

ues

Given the highlighted weakness of using constraint weights to deal with local optima, we

introduce a new penalty based strategy as an alternative mechanism. This new approach

is finer-grained and shifts emphasis from constraints violated at deadlock states to the

assignments associated with those violations. Therefore, a penalty is attached to each

4.3. Modifying cost landscapes with penalties on domain values 39

individual value in every variables’ domain, and consequently the cost function to be min

imised by the search for each variable is as follows:

(2)

where:

di is the ith value in the variables domain

v{di') is the number of constraints violated if di is selected

p{di) is the penalty attached to di

When the underlying search is stuck at a local optimum, penalties attached to the

values currently assigned to the variables with violated constraints are increased, therefore

contorting the landscape around the deadlocked region. Using the example from Figure

4.2 to illustrate, increasing the penalties on the current values of x and y results in the

landscape shown in Figure 4.4. The effect of the penalties on the landscape is more

dramatic; new peaks appear at the point of the deadlock as well as within the plateaus in

regions B and C. As such, the search can resume with downhill moves in either direction

of the new peak.

Besides contorting plateaus, domain penalties may be used as a primitive form of

learning by the search. As penalties attached to particular values grow, the search is able

to gradually “learn” of the association between the assignments and local optima. Hence,

regions containing those assignments are excluded from further exploration as the search

progresses.

The domain penalties introduced here are somewhat similar to the feature penalties

in the Guided Local Search (GLS) algorithm [113] but differ fundamentally in the way

they are used. First of all, in GLS solution features are penalised rather than individual

domain values as we suggest. For GLS, solution features are properties of a solution that

can be used to define it such that all features can not appear in all solutions at the same

time. The choice of solution features are dependent on the problems being solved. For

4.3. Modifying cost landscapes with penalties on domain values 40

Figure 4.4: Effect of penalty increases on the cost landscape for the DisCSP in Figure 4.1
i.e. increased penalties attached to Dx(8) and Dy{4} from 0 to 1.

example, location-facility pairs were used as features in GLS for the Quadratic Assignment

Problem, while jobs were used as features in the version for work force scheduling, and non

overlapping intervals of variables’ domains were used as features when GLS was applied

to function optimisation.

When a search is stuck at local optima in GLS, the cost of the features present at the

local optima as well as the number of times the features have been penalised are used to

determine the utility for penalising the feature (Util^fi))^. And fi with the highest utility

is penalised. However, Util^fi) decreases over time the more fi penalised, giving GLS

room to penalise other features. Obviously, feature penalties are included in a problem’s

cost function and there is an additional regularisation parameter that is used to control

the impact of penalties on the cost function - and by extension the explorative behaviour

of the search.

As we mentioned, we propose simple penalties: one for each value in each variable’s

domain. So, our “feature” set is fixed irrespective of the problem type. The increments

when the search is stuck are additive, and applied to the penalties on values currently

^Here we use fi to refer to the zth feature.

4.4. Perturbing a search with penalties 41

assigned to those variables involved in violated constraints. In Chapter 5, we introduce

additional heuristics for discarding penalties when they are no longer needed.

4.4 Perturbing a search with penalties

Of the many strategies proposed for dealing with local optima in iterative improvement

search, the simplest is solution perturbation i.e. forcing a jump out of a plateau to another

region in the search space (as illustrated in Figure 4.5), therefore allowing the resumption of

intensification activity. Perturbation mechanisms proposed in the literature come in many

forms and range from maximal perturbations i.e. restarting the search with a new random

instantiation when a local optimum is encountered (e.g. [54]); to minimal perturbations

which try to minimise deviations from existing search trajectories in an attempt to preserve

much of the previous search effort up to the deadlocked state. Examples include Iterated

Local Search [86] where random values are assigned to some variables, random walks in

SAT solvers [102], and the mutation operator in genetic algorithms.

Figure 4.5: Schematic illustration of solution perturbations - pl, p2, and p3.

Minimal perturbations have been shown to be effective in dealing with local optima,

especially in the SAT domain, but their limitations include a potential for a search to

expend a lot of effort wandering around a plateau before finding a way out. Where

perturbations are too weak, the search is unable to leave the deadlock state. For example.

4.4. Perturbing a seaxch with penalties 42

in experiments evaluating the effects of randomly perturbing deadlocked variables in a

simple greedy hill-climber (outlined in Figure 4.1), we found that the perturbations had

no effect 67% of the time. In addition, some perturbations may push a search back up its

trajectory (e.g. pl in in Figure 4.5), and can possibly result in infinite oscillation between

a set of points in the search space.

Algorithm 4.1 Greedy sequential hill-climber.
1;
2
3
4
5
6
7
8:
9: end while

initialised problem with random value assignments
while solution not found do

for each xi in X do
select value d from D{xi) that minimises constraint violations

end for
if no changes made then

apply perturbation
end if

Building on the ideas on landscape modification presented in Section 4.3, a new

penalty-based perturbation strategy is introduced in this work. The idea is to induce

jumps by encouraging all variables involved in a deadlock to change their assignments.

Therefore, the underlying cost function is modified as follows:

z

t if a temporary penalty is imposed

(3)

0 otherwise

where:

di is the ith value in the variables domain

r(di) is the number of constraints violated if di is selected

t is the temporary penalty (t > 1)

The temporary penalty is imposed on current values assigned to deadlocked variables,

therefore worsening the evaluation of those assignments. As a result, a new value that

4.4. Perturbing a search with penalties 43

minimises equation (3) is assigned to each variable; following which the penalty is dis

carded. This approach allows us to combine intensification and diversification in a single

move because by selecting a value that minimises the sum of penalties and violations the

search is pushed, but not too far away, from its existing trajectory.

To evaluate the effectiveness of the perturbation scheme, an experiment was devised

whereby a simple greedy hill-climber (Algorithm 4.1) is driven to a local optimum and then

perturbed with different heuristics. The effects of the perturbations were evaluated when

the algorithm either found a solution or settled on a new local optimum. Of particular in

terest, were the number of deadlocks resolved, and critically, the number of new constraint

violations caused i.e. the number of previously satisfied constraints that become violated.

These were evaluated on binary DisCSPs in which all constraints were linear inequalities

between pairs of variables.

We considered two types of penalty based perturbations: one in which the earliest

variable involved in the deadlock is perturbed and one in which all variables involved in

the deadlock are perturbed. These strategies were compared with random perturbations:

(i) unilateral perturbations where a random value is selected for one variable involved in

a deadlock, and (ii) multilateral perturbations where random values are selected for all

variables in a deadlock. There were also comparisons with perturbations using temporary

constraint weights. The results are summarized in Table 4.1.

Perturbation strategy % of constraints
resolved

% of times new violations
were caused

Random (unilateral) 27 32
Random (multilateral) 50 42
Temporary constraint weights 84 66
Temporary penalties (unilateral) 39 37
Temporary penalties (multilateral) 57 43

Table 4.1: Effect of perturbation strategies with the greedy hill climber. Tested with 100
DisCSPs {n = 30,d = 5,pl = 0.3).

The results show that the advantage of constraint based perturbation is that it re

solves a high percentage of constraint violations that cause deadlocks, but the drawback

is that in doing so deadlocks are transferred to other parts of the constraint graph. Uni

4.5. Chapter Summary 44

lateral random perturbations are worse on both metrics; very few constraints are resolved

and at the same time, more constraint violations are caused. Perturbing with unilateral

temporary penalties also results in similar outcomes.

It is clear that both multilateral perturbation schemes perform equally well on both

metrics, and have the clear advantage of not transferring as many deadlocks to other

parts of the constraint graph. But, between them, the temporary penalty strategy is

more efficient. With random perturbations, within this framework, both perturbation and

intensification can not be combined in a single iteration i.e. one can not select a random

value for a variable and immediately select a value minimising the number of constraint

violations. This returns the original value and hence the effects of the perturbation are

negated immediately. Therefore to make random perturbations work, the deadlocked

variables are perturbed in one iteration and the response to these can only start in the

succeeding iteration.

When combined, both metrics in Table 4.1 suggest that the net effect of the temporary

constraint weights make it the overall best i.e. the lowest sum of the percentage of unre

solved constraints and the percentage of the number of times new violations were caused.

However, on closer scrutiny of the results, we find that for every five constraints resolved,

the strategy with constraint weights causes two previously satisfied constraints to become

violated, compared to one new violation for every five resolutions using the temporary

penalties. And on that basis, we consider perturbation with the temporary penalty as a

competitive alternative.

4.5 Chapter Summary

Two penalty based strategies for dealing with local optima in iterative improvement search

were introduced in this chapter. In the first strategy, deadlocks are dealt with by modi

fying the cost landscape with penalties on domain values. We showed that this approach

has a more profound impact on cost landscapes, compared to similar constraint based

approaches, hence we argue that it is more effective at resolving deadlocks. The second

strategy introduced was a penalty based mechanism for search perturbation. We showed

4.5. Chapter Summary 45

that, compared to some other perturbation heuristics, the new approach has the advantage

of resolving existing deadlocks while not causing as many new deadlocks in other parts of

the constraint graph.

Chapter 5

Distributed Penalty Driven Search

5.1 Introduction

In this chapter, we introduce Distributed Penalty Driven Search (DisPeL) for solving

DisCSPs where each agent owns just one variable. DisPeL is a distributed iterative im

provement search algorithm that deals with local optima using the penalty based strategies

introduced in Chapter 4. We discuss the algorithm and its behaviour, and present results of

its empirical evaluation along with comparisons with the Distributed Breakout Algorithm

which is based on a somewhat similar philosophy with DisPeL.

This chapter is structured as follows. The new algorithm, DisPeL, is introduced in

Section 5.2, and in Sections 5.3 and 5.4, parts of the algorithm’s strategy are discussed in

detail and their impact on the algorithm’s overall behaviour examined; while its theoretical

properties are discussed in Section 5.5. Results of empirical evaluations are presented

in Section 5.6, and the effects of unreliable communications on DisPeL’s behaviour are

discussed in Section 5.7.

46

5.2. Distributed Penalty Driven Search (DisPeL) 47

5.2 Distributed Penalty Driven Search (DisPeL)

5.2.1 Overview

DisPeL is designed to solve DisCSPs where each agent controls just one variable^ and the

objective is to find the first solution that satisfies all constraints simultaneously. It is a

greedy hill-climber, or an iterative improvement algorithm, in which agents, in a fixed

ordering, take turns to improve a random initialisation. Therefore, unlike conventional

hill-climbing, it is an approach that accepts sequential improvements in each iteration

rather than the best possible improvements (building on Algorithm 4.1). Determining the

best improvement to implement in the conventional way has significant cost implications

in distributed problem solving; it requires each agent to compute a possible improvement

and all agents collectively determine which improvements to implement by exchanging

the computed values. However, using sequential improvements communication costs are

reduced as all improvements are accepted and the information, used to make decisions, is

always coherent.

The core of DisPeL’s strategy is its use of penalties to modify underlying cost land

scapes in order to deal with local deadlocks that prevent agents from improving the so

lution. These penalties are attached to individual domain values, and are used in a two

phased strategy as follows:

1. In the first phase, the solution is perturbed with temporary penalties in an attempt

to force agents to try other combinations of values, and allow exploration of other

areas of the search space.

2. If the perturbation fails to resolve a deadlock, resolution moves to the second phase,

where agents try to learn about and avoid the value combinations that caused the

deadlock by increasing the incremental penalties attached to the culprit values.

Penalties are used collaboratively, so that whenever an agent detects a deadlock and

has to use a penalty, it implements the penalty on its current assignment and asks its

Tn this chapter, we often use the term agent to also refer to the variable an agent represents.

5.2. Distributed Penalty Driven Search (DisPeL) 48

neighbours to implement the same penalty on their current assignments as well. A no

good store is used to keep track of deadlocks encountered, and hence, used to help agents

decide what phase of the resolution process to initiate when a deadlock is encountered.

We assume that all constraints are undirected, therefore each agent in DisPeL will

evaluate, locally, all constraints attached to its variable. Hence, each agent will commu

nicate, in a synchronised manner, with all other agents that are co-constrained with it

exchanging value assignments and requests to impose penalties.

5.2.2 Algorithm details

DisPeL is an iterative improvement algorithm in the sense that it starts off with a ran

dom flawed solution which agents take turns to improve until a valid zero cost solution is

found. The search is generally downhill in the cost landscape (or uphill in the objective

landscape) where, in each iteration, agents use the min-conflicts heuristic [77] (or local

repair) to select values that minimise the number of constraints violated. The cost func

tion for each agent is modified to include two types of penalties, so as to incorporate the

penalty driven strategies for landscape modification and solution perturbation, as follows:

t if a temporary penalty is imposed

(1)

0 otherwise

where:

di is the ith value in the variables domain

v{di} is the number of constraints violated if di is selected

p(di) is the incremental penalty attached to di

t is the temporary penalty (t = 3)

As such, when it is an agent’s turn to improve the solution state, it always selects the

^This value may be optimised for different problem classes, however, unless explictly stated we use this
value for t in all our experiments irrespective of the problem size.

5.2. Distributed Penalty Driven Search (DisPeL) 49

least cost value in its domain i.e. the value with the lowest sum of constraint violations

(given current assignments to neighbouring variables) and penalties. Penalties are imposed

(in the case of the temporary penalty) or increased (in the case of incremental penalties)

when a deadlock is encountered as follows:

• If it is the first visit to a particular deadlock state, the earliest agent involved in

the deadlock imposes a temporary penalty on its current assignment and sends a

message to lower priority neighbouring agents involved in the deadlock to impose

temporary penalties on their assignments when it gets to their turns to act. Each

agent discards the temporary penalty on the domain value as soon as it is used.

• If the deadlock state is being revisited, the earliest agent involved increases the

incremental penalty attached to its current assignment and sends a message to all

its lower priority neighbours to do the same. Note that the incremental penalties

are not discarded after being used.

We assume that deadlocks occur at quasi-local-optima rather than at real local op

tima - the cost of detecting if the whole solution is stuck at a real local optimum is high

and doing this repeatedly can increase the search costs of the underlying algorithm expo

nentially. We determine that an agent is at a quasi-local-optimum when its AgentView

(see Definition 3.5) is unchanged in two successive iterations and its current assignment

is inconsistent. This differs slightly from the original definition of quasi-local-optima (in

[123]) as states where agents have no values in their domains that reduce the number of

constraints violated. As we discuss in Section 5.3, agents need to wait for the additional

iteration to ascertain the deadlocks and prevent the use of penalties to resolve deadlocks

that may not exist.

The temporary penalty, used when deadlocks are first encountered, is used to perturb

the solution so that agents are forced to explore other regions of the search space to find

combinations of values that can resolve the deadlocks. But it is used in a way that tries

to induce a localised perturbation, which is intended to keep the search in nearby regions

of the search space. Therefore, when an agent uses a temporary penalty, it will make a

5.2. Distributed Penalty Driven Search (DisPeL) 50

request to those lower priority agents violating constraints with it to also use the penalty,

thus making implicit requests for them to try alternative values that could possibly resolve

the conflict - even though the initiating agent is also changing its value. If the attempt

is unsuccessful, and the agents return to their assignments at the deadlock, incremental

penalties attached to the current assignments are increased. But this time, the agent

initiating the resolution will request that all its lower priority neighbours increase the

value of the incremental penalties attached to their current assignments. The idea is

that the combination of current assignments prevents one or more agents from finding

consistent values and can not be part of a solution; and as such the increased costs {h)

make the assignments less attractive and prompt exploration of other areas of the search

space.

Incremental penalties also serve as a primitive form of short-term learning (or search

memory) which allows agents to learn to avoid selecting values repeatedly associated with

deadlocks. These penalties are set to zero at initialisation, and are increased during the

search. A side effect of using incremental penalties to resolve deadlocks is the potential for

the penalties to dominate agents’ cost functions, since penalties are given equal weighing

with constraint violations. This domination can drive the search away from promising

regions of the search space, because as penalties grow, agents seeking to minimise their

cost functions will be pushed towards values with the least penalties rather than those

with the least constraint violations. To overcome this, incremental penalties are reset to

zero during the search, as follows:

• When a variable has a consistent value, all incremental penalties attached to each

value in its domain are discarded. Here, we assume that penalties become redundant

when an agent has a consistent value. This action also leaves room for maneuvering

when either the variable suddenly becomes inconsistent or it is involved in a deadlock

resolution process.

• Each agent also discards the penalties on its entire domain when it detects distortions

to its cost function. We determine that a cost function is distorted when all the

conditions in the rule, detailed in Figure 5.1, are satisfied. This second case is akin

5.2. Distributed Penalty Driven Search (DisPeL) 51

to an aspiration move (as in Tabu search [34, 35]), where search memory is sometimes

ignored. This is illustrated with the example in Figure 5.2. In the example, the cost

function is distorted because the assignment {x = g} has the least sum of constraint

violations and penalties. But, the assignment {x = b} now violates fewer constraints

and as such the cost function is being distorted by the penalties. Therefore, resetting

penalties this way allows agents to keep paths to better solutions open.

Distortion Rule;
Condition 1.1: The evaluation (/i) of the current assignment

is the least in a variable’s domain.

Condition 1.2: There is another value in the domain, which has fewer
constraint violations than the current assignment.

Figure 5.1; Detecting distortions to cost functions by incremental penalties.

As argued, resetting penalties allow agents to keep paths to potential solutions open;

but doing it quite frequently also comes with a potential to cause the search to oscillate

as it continuously removes barriers that prevent it from returning to earlier visited (and

infeasible) regions of the search space. In Section 5.4.2, where we discuss penalty resets

in detail, we show that the benefits of doing this are significant and they outweigh the

possible risks.

v(Dx} = [3,5,2,3,6]
p(Dx) = [2,0,4,l,0]

therefore,
fi(Dx) - [5,5,6,4,6]

and the current assignment, with the least h{Dx) is {x — g}.

Figure 5.2: An example of a distorted cost function

To tie both phases of the deadlock resolution strategy together, each agent maintains

a no-good store in which deadlocks encountered are kept as no-goods. A no-good is an

agent’s AgentView comprising the assignments of all variables constrained with it at the

time of the deadlock (Definition 3.6). No-goods are not treated as new constraints, to rule

5.2. Distributed Penalty Driven Search (DisPeL) 52

out infeasible tuples, as used in forms of learning prevalent in backtracking algorithms

(e.g. [33, 9]). No-goods are simply used as short-term memory to enable agents to deter

mine what phase of resolution to use when they are stuck. As such, when a deadlock is

encountered an agent checks its no-good store to find out if the deadlock state has been

visited recently. If not so, the deadlock state is placed in the no-good store and the agent

proceeds to initiate the first phase of deadlock resolution. And if the deadlock state is in

the no-good store, the agent recognises that at least one previous attempt had been made

at resolving the deadlock and can proceed with a longer term approach to resolving it i.e.

it applies the second phase of deadlock resolution.

A fixed number of no-goods is held at any point in time by each agent, maintained

on a First-In-First-Out basis. From experiments, which are discussed in Section 5.4.3, we

found that the maximum number of no-goods held is not particularly critical to DisPeL’s

performance. This is because, as we also show in that section, that the majority of no

goods are only encountered once during the search. Therefore, we chose arbitrarily to fix

the maximum number of no-goods held by each agent to 4 irrespective of the number of

constraints attached to the agent or the kind of problem being solved.

5.2.3 Agent behaviour

Agents take turns to improve an initial random solution in DisPeL and the order in which

their turns are taken is decided using the Distributed Agent Ordering scheme [43]. There

fore, at initialisation, each agent locates its position in the ordering by locally partitioning

its neighbours into parents (r+) and children (P") using their lexicographic tags (or IDs)

i.e. parents are those neighbours that precede an agent in alphabetical order. This results

in a static ordering that permits concurrent activity by unconnected agents.

During the search, each agent communicates with both sets of neighbours sending

updates to them, as well as penalty messages to lower priority neighbours. Agents with

higher priority neighbours get to take their turns after receiving messages from all of them.

While agents without higher priority neighbours (i.e. r+ is empty), only become active

after receiving updates from all their lower priority neighbours; this prevents them from

5.2. Distributed Penalty Driven Search (DisPeL) 53

continuously sending updates and allows for proper synchronisation of each iteration.

At initialisation, agents select random values for their variables and inform all neigh-

hours of their current assignments. After which, the agents take turns to improve the

solution executing the processes outlined in Algorithms 5.1, 5.2, 5.3, 5.4, and 5.5. When

active, each agent selects the value with the least cost i.e. minimising equation (1). And,

where there are two or more values with the same sum of constraint violations and penal

ties, an agent selects the leftmost^ of these values. If, however, there is no value with

a lower evaluation than the current assignment then the assignment is retained. After

selecting a value, the agent sends an update to all its neighbours informing them of the

new assignment.

Algorithm 5.1 DisPeL: Agent main loop
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

initialise
repeat

messages <— accept^
while active do

penalty Request <— null
processMessages ()
if cost function (h) is distorted then

reset all incremental penalties
end if
if penalty Request null then

r esp ond _to .message ()
penalty Request <— null

else
if current value is consistent then

reset all incremental penalties
penalty Request <— null

else
check_for .deadlocks ()

end if
end if
sendMessage^penaltyRequest)

end while
until termination condition met

Deadlock resolution is initiated whenever an agent detects that it is at a quasi-local

optimum. At this stage, the agent checks its no-good store to find out if the deadlock has

been recently encountered. If the deadlock is new, it imposes the temporary penalty on its

^This is similar to the leftmost minimum rule in [44, 66].

5.2. Distributed Penalty Driven Search (DisPeL) 54

Algorithm 5.2 procedure check_for_deadlocks(); initiating deadlock resolution.
1: if agentView(t) 7^ agentView(t-l) then
2: select value minimising cost function
3: return
4: end if
5: if agentView(t) is not in no-good store then

impose temporary penalty on current value
add agentView(t) to no-good store
penalty Request <— ImposeTemporary Penalty

6:
7:
8:
9: else

10: increase incremental penalty on current value
11: penalty Request <— IncreaseIncPenalty
12: end if
13: select value minimising cost function

Algorithm 5.3 procedure respond_to_message() Responding to a penalty message
received from a higher priority agent.___

1: if penalty Request = I mposeTempor ary Penalty then
2: increase temporary penalty on current value
3: else
4: impose incremental penalty on current value
5: end if
6: select value minimising cost function

Algorithm 5.4 procedure processMessagesQ
1
2
3
4
5
6
7
8
9

10
11
12

for i = 0 to num(messa5'es) do
update with message.variable.message.value
if message, penalty Request null then

if message.penaltyRequest = IncreaseIncPenalty then
penalty Request IncreaseIncPenalty

else
if penalty Request IncreaseIncPenalty then

penalty Request I mposeTempor ary Penalty
end if

end if
end if

end for

5.2. Distributed Penalty Driven Search (DisPeL) 55

Algorithm 5.5 procedure sendMessage(^penaltyRequest)
1: send message{id,value,null) to all neighbours in F+
2: if penalty Request = IncreaseIncPenalty then
3: send messaQe(id,value,penaltyRequest) to all neighbours in F“
4: else if penalty Request = ImposeTempor ary Penalty then
5:

6:

7
8
9

send message{id, value, ImposeTemporaryPenalty) to neighbours in F violating
constraints with Self
send message{id,value,null} to neighbours in F" not violating constraints with
Self

else
send message(zd, value, null} to all neighbours in F“

end if

current value (Algorithm 5.2, line 6) and selects a new value minimising (1) (Algorithm

5.2, line 13). In addition, its AgentView is placed in the no-good store (Algorithm 5.2,

line 7) and at the same time the agent sends a message to neighbours in F~ that were

violating constraints with it^ to impose temporary penalties on their current assignments

(Algorithm 5.5, lines 4-6).

However, if the deadlock had been previously encountered, the agent increases the

incremental penalty attached to its current assignment by 1 (Algorithm 5.2, line 10) and

goes on to select a value minimising its cost function. Furthermore, while informing its

neighbours of its new value, it also requests that all neighbours in F“ increase the penalties

attached to their current assignments (Algorithm 5.5, lines 2 and 3).

When an agent receives a request to impose or increase a penalty on its value it does

so accordingly and selects the least cost value in its domain (Algorithm 5.3). Agents may

at times receive multiple requests from two or more neighbours in F'*’ simultaneously, and

when this happens the requests are treated as one request if they are for the same type

of penalty. For example, the agent will not increase the penalty on its current assignment

more than once in a single iteration even if it receives several requests to do so. But,

when the requests are simultaneously received for different penalties, agents will ignore

the requests to impose a temporary penalty (Algorithm 5.4) - thereby prioritising learning

over perturbation and allowing agents to focus on resolving the deadlocks in the order in

which they were encountered.

^That is before its value may have been changed as a result of the temporary penalty.

5.2. Distributed Penalty Driven Search (DisPeL) 56

To keep things stable and limit the amount of simultaneous deadlock resolution activity,

an agent involved in deadlock resolution, i.e. one that has received a request to impose

a penalty in the current iteration, is prevented from initiating any deadlock resolution

action itself (Algorithm 5.1, lines 10-12).

5.2.4 An example run

The DisCSP in Figure 5.3 is used to illustrate the deadlock resolution process in DisPeL.

In this example, there is a deadlock between agents b and d; neither agent has a value in

its domain that reduces the number of constraints violated, as shown in v(b) and v(d') in

the figure. Agents in the DisCSP will take their turns in the order a, then b, and then c,

d, and e can take their turns simultaneously since there are no constraints between them;

after which agents f and g take their turns one after the other. Since, agent a is consistent

we assume it has already taken its turn where it does not change its assignment.

At this point, the agent b imposes a temporary penalty on its assignment causing it

to change its value to (5 = 2). It also sends a request to agent d, which was violating

a constraint with it, asking d to impose the temporary penalty on its current value too

(Figure 5.4). In response, agent d imposes the temporary penalty on its value, and selects

the least cost value in its domain {d = 3) (Figure 5.5).

Other agents are unaffected by the changes, and therefore will keep their assignments

in the current iteration. In the next iteration, agent b evaluates its state and finds that

the values 3 and 4 both violate a single constraint each and it selects the first of those

values {x = 3}. This, in turn, prompts agent c to change its assignment to (c = 2), as it

had suddenly become inconsistent (Figure 5.6). At the same time, the deadlock between

agents b and d is now resolved.

If the perturbation failed to resolve the deadlock and, all agents still have their original

assignments, agent b would have initiated the next phase of resolution by increasing the

incremental penalty on its current value, and asking all its lower priority neighbours (c.

d, e) to do the same.

5.2. Distributed Penalty Driven Search (DisPeL) 57

Figure 5.3: Illustration of deadlock resolution in DisPeL with the temporary penalty.

2. select value with min A(x)

Figure 5.4; Example of deadlock resolution with the temporary penalty (step 2).

3. ask d to impose temporary
penalty on its current value too

1. impose temporary penalty (t=3)
on current value

()-[224j

b = 2

5.2. Distributed Penalty Driven Search (DisPeL) 58

Figure 5.5: Example of deadlock resolution with the temporary penalty (step 3).

Figure 5.6: Example of deadlock resolution with the temporary penalty (step 4).

5.3. Deadlock detection in DisPeL 59

5.3 Deadlock detection in DisPeL

We mentioned earlier, in Section 5.2.2, that due to the distributed nature of the search,

agents use penalties whenever they encounter quasi-local-optima (or deadlocks). We also

pointed out that agents determine that they are deadlocked when they have inconsis

tent values and their neighbours’ values are unchanged in two successive iterations. This

approach differs from Yokoo and Hirayama’s [123] original definition of the quasi-local

optimum, which they define as a state in which an agent has an inconsistent value and it

does not have any value in its domain that reduces the number of constraints currently

violated.

Their definition of a deadlock state can not work in DisPeL since it will cause agents

to use penalties prematurely in attempts to resolve deadlocks that may not exist. Agents,

in DisPeL, take turns to improve the solution and as such agents are simultaneously

responding to decisions taken by their higher priority neighbours in the current iteration,

and those taken by lower priority neighbours in the preceding iteration. Therefore, if

an agent assumes it is deadlocked because it currently has no improvements there is a

probability that in response to an unconnected event, one of its lower priority neighbours

might change its value; thereby giving the agent the opportunity to try other values in

the succeeding iteration. As a result, the only time an agent can determine that it is

deadlocked, with some certainty, is when its neighbours assignments are unchanged in

successive iterations.

We illustrate the problem of premature deadlock detection further with the DisCSP in

Figure 5.7. In the example, with the current assignments both agent a and agent c are at

quasi-local-optima given the original definition. Agent a is deadlocked because its domain

value 1 violates the constraint with c and the values 2 and 3 violate the constraint with

d. Similarly, agent c is deadlocked because its current assignment violates the constraint

with d and its other value violates its other constraints. Neither agent has any value in

its domain that reduces the number of constraints it currently violates.

Using DisPeL’s approach, agents a and c will note their current states, retain their

current assignments, and wait for the next iteration to confirm the deadlocks. However,

5.3. Deadlock detection in DisPeL 60

Figure 5.7: Examples of “premature” deadlocks in DisPeL’s framework.

when it gets to agent d’s turn to act, it changes its assignment to {d = 2) which opens an

opportunity for agent a to resolve the conflict without using penalties. And, as a result

the possible deadlock which both agents a and c were preparing to resolve no longer exists.

If either agent a or c had acted immediately, any penalties implemented could have

influenced agent d such that it could have been prevented from making the change that

dissolves the deadlock. The effects could possibly have pushed the search further away

from nearby solutions. As a result, agents can miss opportunities to intensify the search

of the surrounding regions of their current location in the search space.

In Chapter 7, this deadlock detection scheme is not used in the extension of DisPeL

for agents with multiple local variables because of the peculiarities of deadlock detection

in such problems i.e. deadlocks may be local or the interaction of inter and intra-agent

constraints may increase the complexity of the deadlock detection process. We found that

performance of that extension is not critically hampered by the absence of the deadlock

detection mechanism, but we must stress that features of the problems studied may be a

factor. Removal of deadlock detection in DisPeL may be of some benefit in highly struc

tured problems which local search algorithms traditionally do not fare well. It should

prevent agents from getting stuck in deep plateaus in the skewed cost landscapes of struc

tured problems, therefore the removal of deadlock detection could possibly improve overall

search efficiency.

5.4. Impact of heuristics 61

5.4 Impact of heuristics

DisPeL is primarily built around its penalty based deadlock resolution strategies but its

other components, such as the reset policy and the no-good store, influence its behaviour

in different ways. In this section, we discuss the impact of these components on the

algorithm’s performance (in Sections 5.4.2 and 5.4.3 respectively), and also look empirically

at the impact of the temporary penalty.

5.4.1 DisPeL without the temporary penalty

The temporary penalty is used in the first phase of deadlock resolution to perturb the

solution state. The justification for its inclusion, in Section 4.4, is evidence showing that

when used it has advantage of not causing as many new constraint violations in other

parts of a problem not affected by a deadlock. Here, we study, empirically, the effect of

the temporary penalty on DisPeL’s performance.

DisPeL’s main strategy for dealing with local optima is the landscape modification with

penalties. This is a “long term” approach for resolving deadlocks and also for preventing

their repeated occurrence. The temporary penalty is a perturbation scheme that also

creates the effect of a rapid build-up of incremental penalties. In this guise, it aids DisPeL

by speeding up resolution of some deadlocks that would otherwise require a build up of

incremental penalties. It therefore, allows for quicker resumption of search intensification

activity.

To examine the impact of the temporary penalty on DisPeL’s behaviour, an experiment

was conducted comparing DisPeL with two reduced versions of it: one where incremental

penalties alone are used for deadlock resolution, and another where the temporary penal

ties are used exclusively. Performance was evaluated with two sets of randomly generated

DisCSPs ((n = 60,d= 10,pl - 0.1,p2 = 0.5) and {n = 100,d- 10,pl = 0.06,p2 = 0.5)),

where we measured the percentages of problems solved within a maximum of lOOn it

erations. There were a thousand problems in each problem set, although we used only

the first 100 problems (from one set) to evaluate the version relying exclusively on the

5.4. Impact of heuristics 62

temporary penalty®. The summary, in Table 5.1, also includes the average and median

number of iterations taken to find the solutions®.

Table 5.1: Influence of temporary and incremental penalties on DisPeL’s performance.

Heuristic n % of problems solved average cost median cost
Temporary penalty alone 60 4.0 215.5 172.0
Incremental penalty alone 82.7 801.5 451.0
DisPeL 87.6 1107.5 661.0
Incremental penalty alone 100 74.5 1613.9 905.0
DisPeL 88.6 1660.0 988.0

The results of the experiments show that with the temporary penalty alone, the al

gorithm rarely solved any problems. The reason for this is that, there is no strategy for

detecting repeat visits to deadlock states and therefore the search is nearly always locked

in an infinite oscillation between deadlock states. This can occur when perturbations

continuously push the search back to points earlier in its trajectory, or when some per

turbations conspire to cause the search to repeatedly jump back and forth between some

deadlocks.

Combined with the incremental penalty in DisPeL, the contribution of the temporary

penalty is a higher percentage of problems solved; compared with the version of the algo

rithm using incremental penalties alone. The gap between the algorithms is wider in the

larger problems - where the percentage of unsolved problems by DisPeL was about half of

that using incremental penalties alone. However, the costs do appear to be lower in the

fewer problems solved with the incremental penalties alone. We argue that the temporary

penalty improves the performance by allowing the algorithm resolve some “easy” dead

locks quickly, and thus improving chances of finding the solution within the time bounds

by allowing the algorithm to use the incremental penalties only on the more difficult dead

locks. Furthermore, as we have shown in Section 4.4, when the temporary penalty is used

the likelihood of causing previously satisfied constraints to become violated is lower.

^The version with the temporary penalty alone was not used for all problems in the set and it was
not considered for the experiments with the second problem set because preliminary investigations had
indicated that the version was not competitive.

^Unsolved problems are excluded from the statistics.

5.4. Impact of heuristics 63

5.4.2 The penalty reset policy

Incremental penalties are reset when agents have consistent assignments and when they

detect distortions to their cost functions. We argue that this is necessary because the

penalties can dominate cost functions therefore forcing agents to seek values with the least

penalties and at the same time blocking paths to solutions. Similar ideas of discarding

search memory (in the form of weights or penalties) have been explored in the literature,

especially in the work on centralised local search. For example, periodic penalty resets

were proposed in [75], while regular [30] and probabilistic [57] weight decays have been

shown to improve performance of weighted local search algorithms. The authors also argue

that weights can block paths to solutions when retained. Tompkins and Hoos [111], in

their study of the effects of weights on cost landscapes, conclude that weights often have

large unintended effects on landscapes and that there must be mechanisms to undo such

effects.

Both conditions for resetting penalties in DisPeL are new. As far as we are aware,

there is no equivalent in the literature for resetting penalties when agents (or variables in

centralised search) find consistent assignments. We argue that doing this gives agents room

to maneuver when they suddenly become inconsistent or have to partake in a deadlock

resolution with inconsistent neighbours. The results summarised in Table 5.2 are from

experiments used to justify our reset policy, where we compared DisPeL with variants

of it using different reset policies: not resetting penalties at all, resetting penalties only

when consistent values are found, and resetting penalties only when cost functions are

distorted. In addition, a version of DisPeL with continuous penalty resets is also included

in the experiments.

Table 5.2: Comparative evaluation of alternative reset policies in DisPeL on attempts to
solve 100 randomly generated DisCSPs (n = 60,d = 10,pl = 0.1,p2 = 0.5).

Policy % of problems solved average cost median cost
No resets 0 n/a n/a
Reset only when consistent 87 1725 1207
Reset only when distorted 84 1597 1142
Combined resets (DisPeL) 93 1040 676
No penalty retention 48 1026 673

5.4. Impact of heuristics 64

First of all, the results in the table show that the impact of any form of penalty resets

is significant in this framework. Penalties differ from constraint weights fundamentally in

the way they affect cost functions. While one can look at weights as being ‘woven into

the fabric’ of an underlying function, penalties are more like appendages. Hence, while

solvers that rely on constraint weights can successfully solve problems without limiting

the growth of weights, it appears that it is not the case with this penalty based strategy.

It is clear that penalties do a very good job of blocking off paths to solutions if retained.

As Table 5.2 shows, performance improves when penalties are discarded frequently; more

problems are solved and the search costs are at least 40% lower.

The trend in Table 5.2 shows that performance of the algorithm improves as there are

more opportunities to discard penalties (i.e. for the first four rows). This naturally leads

to the question of what happens if a maximal reset policy is used i.e. incremental penalties

are discarded as frequently as the temporary penalties. Results from a version of DisPeL

with this policy show that the percentage of problems solved drops dramatically, and it

suggests that the policies implemented in DisPeL allow the algorithm to retain penalties

as long as they are useful and therefore properly learn about assignments associated with

quasi-local-optima.

5.4.3 Impact of the number of no-goods held

No-goods are held by agents primarily to allow them to decide on what penalty to im

plement when deadlocks are encountered. But no-goods also serve as a form of memory

where, in a way, they can help agents detect cycles when the search oscillates between

a few deadlock states. That is if at least two no-goods are held. Such oscillations can

occur when a perturbation at a deadlock pushes the search towards another deadlock, and

a second perturbation pushes the search back to the first deadlock. If only one no-good

is retained, agents cannot discover this oscillation and will waste a lot of effort roaming

about in a small region of the search space. This can possibly prevent the algorithm from

solving the problem.

No-goods are not taken as new constraints, and therefore, agents only hold a limited

5.4. Impact of heuristics 65

number of them at any point in time. In this section, we examine what impact the number

of no-goods agents are permitted to hold can have on DisPeL’s performance. So far we

have shown that other forms of search memory, i.e. the incremental penalties, improve

DisPeL’s performance if they are short lived, and we try to see if the same applies to no

goods. We carried out two sets of empirical experiments to flesh out any influences that

the number of no-goods held can have on DisPeL’s behaviour. To start with, we studied

the frequency of repeat visits to deadlock states by DisPeL, if all no-goods are retained in

memory with a view to establishing how often no-goods are referred to, on average, during

the search and look for pointers to how much information needs to be retained. In the

second set of experiments, we evaluate DisPeL’s performance with varying limits on the

maximum number of no-goods agents were allowed to hold at any point in time. In those

experiments, we compared runs over several problems and used Run Length Distributions

[55] with single instances to further scrutinise the behaviour.

In the first experiment, we ran DisPeL on several problems of different sizes, i.e. num

ber of variables and domain sizes, to study how often deadlocks encountered are revisited

in the course of a search. In these runs, agents were allowed to hold every deadlock they

encountered. Results of this experiment, which are summarised in Table 5.3, show that at

least 60% of the deadlock states were only encountered once during the search. And, at

most 20% of deadlocks were revisited more than twice during the search. On the smaller

problems, the percentage of repeat visits is higher. There appears to be a lot of explo

rative activity as the size of the search space grows and agents are not being repeatedly

attracted to the same deadlocks. Hence, suggesting that there is no need to retain too

much information, as only a handful of deadlocks turn out to be significant and require

more attention for their resolution.

We test this assertion in the second experiment where we ran DisPeL on several prob

lems with different limits to the number of no-goods agents were permitted to hold. We

tried some arbitrary limits and also ran the algorithm with individual limits for agents - in

multiples of the number of constraints (C) attached to their variables. Two problem sets

were used for this experiment, each comprising 100 randomly generated DisCSPs. Table

5.4. Impact of heuristics 66

Table 5.3: Frequency of visits to deadlock states. Average (and standard deviation) from
runs on 50 random DisCSPs in each set.

Problem set % 1 visit (cr) % 2 visits (cr) % > 2 visits
(40,5,0.15,0.5) 61.2 (5.64) 19.0 (4.4) 19.8
(40,10,0.15,0.5) 66.9 (15.29) 19.8 (14.7) 13.3
(60,10,0.1,0.5) 68.0 (2.53) 19.2 (2.1) 12.9
(60,5,0.1,0.5) 74.3 (12.86) 16.0 (11.0) 9.7
(75,8,0.08,0.5) 74.9 (3.21) 14.7 (3.6) 10.4
(75,15,0.08,0.5) 70.4 (0.91) 15.9 (0.5) 13.7
(80,15,0.08,0.5) 74.2 (0.96) 15.5 (0.7) 10.3
(80,8,0.08,0.5) 76.0 (2.96) 13.4 (2.5) 10.6

5.4 summarises the results of the experiment, showing the percentage of problems solved,

the average and median search costs from the runs. In all the runs, the algorithm was

started from the same initialisation to remove any random influences on the outcome.

Table 5.4: DisPeL’s performance on random DisCSPs ((n — 40, d = 10, pl = 0.15,p2 —
0.5) and {n = 60, d = 10, pl = 0.1,p2 — 0.5)) with different limits {ngMax} on the number
of no-goods agents hold.

n ngMax % solved average cost median cost
40 1 82 593.3 314.0

2 90 627.6 338.5
4 90 684.2 389.5
8 90 650.3 406.5
C 87 653.9 423.0

2C 89 620.8 402.0
60 1 85 1124.1 677.0

2 91 1268.5 760.0
4 90 1176.9 646.0
8 87 1014.8 580.0
C 90 1039.7 647.5

2C 91 1291.8 772.0

As expected, the results in the table show that when only one no-good is held, the

probability of finding solutions is lower. As we have argued earlier, holding one no-good

can prevent agents from detecting oscillations between deadlock states and thus prevent

the search from converging on a solution state. But the results show that beyond holding

one no-good, the effect of the limit is unclear, even when it is tailored to the individual

problem. There are no clear patterns in the statistics, and this suggests that the other

components of DisPeL dominate this particular parameter.

5.4. Impact of heuristics 67

As a way of confirming this, we used Run Length Distribution costs to study how

the probability of finding solutions changes with the number of iterations. We tested the

algorithm with limits of 2, 4, and 2C no-goods per agent on a random DisCSP instance

(n = 40, d = 10,pl = 0.15,p2 = 0.5). The plot in Figure 5.8 shows and example of the

typical distribution of costs from 200 attempts with each value for the parameter. The

curves overlap each other, and the probability of finding a solution grows at similar rates

for the different values.

Figure 5 8- Run Length Distributions comparing performance of DisPeL when each agent
holds a maximum of 2, 4, and 2C no-goods, plotted from 200 attempts on a random
DisCSP.

In summary, we have shown that the number of no-goods held by agents is not par

ticularly critical to DisPeL’s behaviour. Except in the case where each agent holds just

one no-good, the evaluations show that the effect of retaining more memory is unclear.

Though a number of values

number of no-goods agents

solved or the problem size.

are ecpially good, we arbitrarily chose to limit the niaxiniiiin

can hold to 4 - irrespective of the type of problems being

We used this value in the rest of our empirical evaluations

with DisPeL.

5.5. Theoretical Properties 68

Summary

In the preceeding sections, DisPeL was stripped apart to study the impact of some of the

prominent components of its strategy. Justifications for the inclusion of these components

were outlined and backed up with empirical evidence. In summary, we have shown that

although the temporary penalty (or perturbation phase) on its own is weak, it provides a

massive boost to the performance of the algorithm when combined with the incremental

penalty. We have also shown that agents do not necessarily need to retain so much memory

about deadlocks encountered during the search, since the probability of the search being

repeatedly attracted to particular deadlock states is small. Similarly, empirical evidence

shows that when incremental penalties are allowed to accumulate unbounded, their impact

on DisPeL’s performance is quite severe. So, while the penalties are critical to helping

DisPeL leave plateaus, it is also critical that they are not kept for long periods of time.

5.5 Theoretical Properties

5.5.1 Soundness

Theorem 5.1 DisPeL is sound because it will only terminate iff a valid solution is found.

Proof DisPeL will only report a solution when all agents stop and settle in a stable

configuration. As long as there is a deadlock in the constraint network (there is at least

one violated constraint), the highest priority agent involved in the deadlock will always take

actions for its resolution. Therefore, the system will not settle on a stable configuration

and, as a result, the algorithm will not terminate.

5.5.2 Completeness

DisPeL is incomplete because if a problem is unsolvable, agents have no way of detecting

that fact. Search memory (i.e. penalties and no-goods) in DisPeL are ephemeral and

therefore can not be used to cut out all infeasible areas of the search space. And as such.

there is nothing theoretically preventing the search from repeatedly visiting previously

5.5. Theoretical Properties 69

encountered local optima and running indefinitely. For the same reasons, DisPeL is not

guaranteed to find a solution even if one exists.

5.5.3 Space complexity

DisPeL has a space complexity that is linear in the number of variables in the DisCSP

being solved, and is bounded by O(^|=[A + (5 x AgentViewi}). The space used by each

agent includes a matching penalty vector for its domain, a maximum of 4 no-goods held at

any point in time, and the AgentView from the previous iteration for deadlock resolution.

5.5.4 Privacy

In terms of privacy, agents in DisPeL preserve the same level of privacy as the prominent

distributed iterative improvement algorithms. Agents reveal values that have the best

evaluations in their domains and only one value is revealed at a time. Information “leaks”

may occm if an agent’s neighbour chooses to keep track of all values received from it over

the course of the search. However, unless explicitly informed there is still some uncertainty.

from the neighbour’s perspective, about what extent of the agent’s domain that has been

revealed. Agents in DisPeL are not permitted to reveal information to one neighbour about

their connections to other agents, nor are they permitted to inform neighbours about the

values received from other agents.

Of course, this level of privacy is lower than that preserved in algorithms that use

trusted servers (e.g. [125]) or secure encryption schemes (e.g. [104] and [84]). However,

it is much higher than the level preserved in distributed backtracking algorithms with

no-good learning; where the creation of no-goods can result in an agent informing one

neighbour about constraints with another set of agents.

5.5.5 Termination detection

Termination detection in DisPeL is built around the fact that stability persists as soon as

a solution is found. At a stable state, all agents will retain their current values and the

solution remains rooted at a fixed position in the search space. Therefore to terminate

5.6. Empirical Evaluation 70

correctly, one needs to detect the fact that each agent is consistent and that the solution

is unchanged in two successive iterations.

For experimentation, we took a pragmatic approach and assumed the existence of a

System agent (as done in [40] and [105] for example), that initiates the search, handles

message passing, and performs termination detection. Extending this approach for a

distributed environment will require each agent to notify the System agent any time it has

been consistent in two or more successive iterations. The System agent terminates the

search if it has received such messages from all agents in a single iteration.

Alternatively, if the cost of regularly communicating with the System agent is high,

the termination detection mechanism introduced in [123] can also be used in DisPeL. This

mechanism is intertwined with the search algorithm, so that termination detection is not

run as separate process and it does not increase the number of messages exchanged. We

found that this mechanism also works well with DisPeL. Details of the mechanism are

outlined in the aforementioned paper, as well as the proof of its correctness.

5.6 Empirical Evaluation

We carried out extensive empirical evaluations of DisPeL’s performance with several types

of problems including distributed graph colouring, random DisCSPs, and the car sequenc

ing problem. Performance was evaluated with two metrics: (1) the percentage of problems

solved within stated time limits, and (2) the cost of finding solutions, where, the cost met

ric is the number of iterations required to find solutions. This is used because in this

particular case it is representative of other evaluation metrics, such as message counts and

consistency checks, commonly used in the community. DisPeL is a synchronous algorithm

in which all agents do consistency checks and communicate with their neighbours in each

iteration. Therefore, the number of consistency checks and messages sent can be directly

inferred from the number of cycles executed. Clock time is ignored as an evaluation met

ric because it is too implementation dependent [3]; and because all the experiments in

this work were carried out in a simulation of a distributed system on a single machine.

Therefore, the clock time from such simulations will not take into account the real costs

5.6. Empirical Evaluation 71

of distributed computation, such as message count, which are critical and can easily be

inferred from the iteration count.

DisPeL is compared to the Distributed Breakout Algorithm (DBA) [123], which is the

only other distributed iterative improvement algorithm that deals with local optima by

modifying cost landscapes. In DBA, weights are attached to constraints and agents try

to minimise the weighted sum of constraint violations. Weights are used to modify the

landscape, by increasing those attached to violated constraints whenever agents encounter

quasi-local-optima. Therefore, the comparison of DisPeL and DBA allows us to evaluate

the effectiveness of the different landscape modification strategies, as well as to test the

claims made in Section 4.3.

All agents in DBA act concurrently, each simultaneously looking for possible improve

ments (in an improve iteration) and exchanging current assignments (in an ok? iteration).

While exchanging possible improvements, only those agents with the highest improvements

in their neighbourhoods are allowed to change their values (ties are broken in favour of

agents with the lowest lexicographic IDs). This prevents agents connected by constraints

from changing values simultaneously and it allows the search to follow a steepest descent

path.

Prior to the evaluation reported here, we verified our implementation of DBA by

testing it on graphs generated with the same methods specified in [123] and we achieved

results matching those reported. DBA and DisPeL were run on several DisCSPs where

each variable was assigned to an agent and each agent represented just one variable. For

the following experiments, we count each of DBA’s cycles (the improve and ok? cycles)

as a separate iteration to compare its search costs with DisPeL. Therefore, to give agents

in DBA the same number of opportunities to improve a solution, the maximum number

of iterations in each run for DBA is twice that used for DisPeL.

5.6.1 Distributed Graph Colouring

Keeping with tradition, our first set of experiments were conducted using random dis

tributed graph colouring problems. These were all solvable instances created with the

5.6. Empirical Evaluation 72

method specified in [27]. For this class of problems, we were specifically interested in

how performance changes with respect to constraint density (degree) on a fixed problem

size. Therefore, we used the well studied 3-colour 100-node graphs for which complexity

peaks are well established [18, 51]. For each constraint density considered, 100 random

instances were generated, hence a total of 1,100. DisPeL and DBA were both run on these

graphs and were limited to 10,000 and 20,000 iterations respectively. Results showing the

percentage of problems solved, median search costs (i.e. number of iterations used), and

average search costs are plotted in Figures 5.9, 5.10, and 5.11 respectively.

DBA
DisPeL

Figure 5.9: Percentage of distributed graph colouring problems {n = 100, k = 3} solved
by DisPeL and DBA.

4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3
degree

Results show that on the percentage of problems solved, both algorithms have the

“easy-hard-easy” profile which the problem class is known to exhibit. However, within the

time limits, DisPeL solved more problems than DBA in all but one point. In the region

of hard problems (i.e. 4.5 > degree < 5.3), DBA solved significantly fewer problems. In

the profile of search costs plotted in Figures 5.10 and 5.11, DBA still exhibits that “easy-

hard-easy” pattern, with search costs peaking in the middle where the hardest problems

are. Although, DisPeL’s search costs have a similar pattern these are almost always an

order of magnitude lower than DBA’s costs. And, the difference in search costs between

“easy” and “hard” problems for DisPeL is not as pronounced.

5.6. Empirical Evaluation 73

Figure 5.10: Median search costs of DisPeL and DBA from attempts on distributed graph
colouring problems.

Figure 5.11; Average search costs of DisPeL and DBA from attempts on distributed graph
colouring problems.

5.6.2 Random Distributed Constraint Satisfaction Problems

We conducted experiments on randomly generated distributed constraint satisfaction prob

lems to study the behaviour of both algorithms on problems with non-binary constraints.

These solvable instances were generated using the standard Model-B [85], but modified

with preferential attachment of constraints to variables so that they resemble real-life

5.6. Empirical Evaluation 74

problems [6, 117]^. The experiments reported here investigate the relationship between

search costs and the number of variables in the problem, assuming a fixed ratio of con

straints to variables and fixed domain sizes. We used 100 instances for each problem size,

and set the maximum number of iterations to lOOn for DisPeL and 200n for DBA.

Figures 5.12, 5.13, and 5.14 show the percentage of problems solved, the median and

the average search costs respectively. The results are similar to those from the distributed

graph colouring experiments, although in this case the differences in the number of prob

lems solved are more profound. DBA solved fewer problems as the problem size increased

(Figure 5.12) and this is accompanied by sharp increases in search costs (Figures 5.13 and

5.14). For DisPeL, while there is a smaller drop in success rates, the increase in search

costs in relation to the problem size is nearly linear. Furthermore, search costs for DisPeL

were significantly lower.

number of variables

Figure 5.12: Percentage of problems solved by DisPeL and DBA from runs on problems
with 3-ary constraints {n variables, 2n constraints, d — 10, p2 = 0.55).

^In [6], it was shown that the distribution of links in many real life networks, as diverse as cell metabolic
networks and the world wide web, follow a power law where the majority of nodes have a few connections to
them and a small number of nodes have a high number of connections. Walsh [117] found similar patterns
in his study of real life Constraint Satisfaction Problems and proposed a modified power law model for
generating random realistic problems.

5.6. Empirical Evaluation 75

Figure 5.13: Median search costs for DisPeL and DBA from the runs in Figure 5.12.

Figure 5.14: Average search costs for DisPeL and DBA from the runs in Figure 5.12

5.6.3 Car sequencing problems

Finally both algorithms were evaluated with Car Sequencing Problems [87]. Car sequenc

ing is not one of the traditional test beds used for evaluating distributed algorithms, but

it is used here because the car sequencing dataset^ is one of the few publicly available

problem sets where instances are entirely made up of non-binary constraints. Besides, it

®FYom the CSPLib at http://www.csplib.org

5.6. Empirical Evaluation 76

allows us to present results from problems not randomly generated, and leaves room for

direct comparison with our work in the future. The problems in the dataset typically

contain constraints of different arities and varying tightness. In addition, the domain sizes

of variables involved are typically larger than those used in the experiments reported so

far.

The car sequencing problem is a permutation problem where a number of cars of

different models are to be scheduled for an assembly line. Each model requires a different

set of options (e.g. electric windows or GPS navigation systems), and each option is

installed by a different workstation along the line. Each workstation is designed to handle

at most a certain percentage of cars passing through it at any point in time. For example,

a workstation to install electric windows has the capacity to handle 3 out of every 5 cars on

the line at any point in time, without affecting the assembly flow. Therefore, cars requiring

particular options must be spaced in the schedule so that workstations’ capacities are never

exceeded.

To model the car sequencing problem as a DisCSP, we use more expressive constraints

that allow us to indicate to the algorithms the degree of satisfaction / violation for each

tuple evaluated; similar to the Valued CSP [98] and also to the evaluation function in the

Adaptive Local Search algorithm [20]. We found that this was the most suitable approach

for a distributed representation of the problem, given the assumptions of privacy and

limited availability of information. This expressiveness also provides a means of dealing

with the global constraints in the problems. We model the car sequencing problem in the

DisCSP framework as a tuple S = (M, W, X, A, D, C}, where:

S = (si, 52, ••••» is a the schedule (or solution) where each Si is the slot in the zth

position of the schedule.

M = (mi, m2, ..-jmfc) is the number of cars of k models to be assembled.

W = {wi,W2, •••,'Wp} is the set of options available and the respective workstations

for installing each option.

O = (Oi, <^2, •••) Ok}, is the set of options to be installed on the cars of each model.

5.6. Empirical Evaluation 77

X = {xi,X2, ■■■, Xn} the variables in the DisCSP, referring to the slots in the schedule

therefore Xi = Sj.

A = {ai,a2, the agents representing variables in the problem, each variable

belongs to only one agent and each agent represents only variable.

D = (Di,..., Dn} the domain of each variable, \Di\ = k where each value in Di refers

to a car model in M i.e. there is a one to one mapping between each Di and M.

C = {Capx, ...,Capp\ AlCfi, is the set of constraints comprising two types

of constraints: (1) workstation capacity constraints {Cap} and (2) enumeration con

straints {MC}.

Each agent in the DisCSP is assigned a variable (or slot in the schedule) and is respon

sible for selecting the model of the car to be placed in its slot. Therefore, a solution is

found when agents have built a schedule containing the right number of cars of each model

and satisfy the capacity constraints of all workstations. The two types of constraints in

our model of the problem are defined as follows:

Definition 5.1 (Capacity constraint Capi G C). A workstation capacity constraint Cap{oi.,p.,q')

specifies that a maximum of p out of every q consecutive cars scheduled in S can require

option i.

Definition 5.2 (Enumeration constraint MCj E C). An enumeration constraint is cre

ated for each model of car to be produced. Each enumeration constraint (MCi) is a global

constraint that is satisfied if the exact number of cars required for the ith model have been

selected by agents.

The scope of a capacity constraint (Cap(oi,p, g)) is over every set of q consecutive slots

in the schedule, such that for each option each agentj holds a capacity constraint for each

sub-set of consecutive slots on the schedule including itself from {j - g) -H 1 to (j g) — 1.

The example in Figure 5.15 is used to illustrate this.

5.6. Empirical Evaluation 78

r

Cap(GPS4,4) V

^2 ^3 ^4 ^5 ^6 ^7 ^3 Sp

-2 ^3 ^4 ^6 S7 ^3 Sp

^2 S3 ^4 ^6 S7 ^3 Sp

-2 S3 ^4 ^5 ^6 S7 ^3 Sp

Figure 5.15: A illustration of scope of capacity constraints in the distributed car sequenc
ing.

In Figure 5.15 we assume that the workstation installing GPS systems has a capacity

to deal with at most one car out of every four consecutive cars in the schedule. Agent 5,

in the example, keeps four copies of this constraint (shaded slots) one for each set of four

consecutive cars including itself and evaluates each constraint separately. Agents evaluate

each copy of the capacity constraint on its own so that the capacity constraints have a

more expressive impact on the cost landscapes and can help to reduce the size and number

of plateaus in that landscape.

Each agent keeps a copy of each global enumeration constraint and evaluates it with

the choices made by other agents. Keeping with the expressiveness theme, the constraint

evaluation returns a zero if the constraint is satisfied or the difference between the required

number of cars and the number of cars of that model cmrently scheduled. Where a negative

results indicates to agents that more of them need to consider selecting a particular model.

Solvable instances from the CSPLib dataset were used for the experiments. These

are made up of 50 instances, grouped into 5 sets of 10 instances for each of the different

workstation capacity rates (or constraint tightness) which range from 70% to 90%. In each

of these instances there are 200 cars to schedule, 5 workstations, and 17 to 30 configurations

of options (or models) to be considered. To generate enough data for analysis, we made

5 attempts on each problem instance starting off with a different random initialisation in

each run. The maximum number of iterations was set to 5,000 and 10,000 for DisPeL and

DBA respectively. Results of these experiments are presented in Figures 5.16, 5.17, and

5.6. Empirical Evaluation 79

5.18 showing the percentage of problems solved, median search costs, and average search

costs respectively.

dBa
DisPeL

Figure 5.16: Percentage of distributed car sequencing problems solved by DisPeL and
DBA.

Figure 5.17: Median search costs for DisPeL and DBA from runs on in Figure 5.16.

The results are consistent with those reported in the previous experiments in Sec

tions 5.6.1 and 5.6.2, where DisPeL consistently solved more problems and required fewer

iterations. The results also show how DBA’s performance deteriorates as the capacity

constraints tighten. However, DBA is also handicapped by the problem structure. As

5.6. Empirical Evaluation 80

Figure 5.18: Average search costs for DisPeL and DBA from runs on in Figure 5.16.

the constraint graphs are complete, DBA’s coordination heuristic only allows one variable

to change its value every two iterations i.e. the ok? and improve iterations. There are

no concurrent changes, thus DBA becomes the equivalent of a standard centralised local

search / hill-climbing algorithm.

5.6.4 Discussion of results

The empirical results presented here comparing DisPeL and DBA have demonstrated the

strengths of our penalty based strategy for dealing with local optima. DisPeL consistently

solved more problems than DBA and it consistently required fewer cycles. While the

differences in performance of both algorithms vary from one problem class to the next, it

appears that the gap widens as constraints get tighter. For example, in distributed graph

colouring all constraints have a uniform tightness of 30% and DBA solves nearly as many

problems as DisPeL. But as constraint tightness is increased to 50% in the experiments

with random DisCSPs, DBA’s performance degrades considerably. This is even more

evident in the results of the experiments on the car sequencing problems which include

constraints with higher ratios of forbidden tuples.

We give three reasons to explain DisPeL’s performance advantage over DBA. First

of all, as we demonstrated in Section 4.2, landscape modification with domain penalties

5.6. Empirical Evaluation 81

is more effective at dealing with local optima and it allows quicker resumption of search

by the underlying algorithm; compared to modifications with constraint weights - which

DBA relies on. Secondly, by resetting penalties the way we do, DisPeL regularly has

opportunities to undo negative effects of penalties on the cost landscape. DBA, however,

has no such opportunities and as such its performance can be severely hindered by bad

decisions made early in the search or ill-advised weight increases.

Thirdly, while parallel computation in DBA allows agents to eliminate idle time, the

coordination heuristic can slow the algorithm down considerably by inadvertently cutting

down on the number of legal improvements that can take place in a single iteration.

The sub-graph of a DisCSP in Figure 5.19 is used to illustrate how this can happen.

We assume that each agent in the illustration has computed the same possible improve

given the current state of the solution, and that each of them has the best improvements

amongst their other neighbours. Using DBA’s coordination heuristic, agent a’s change

is given priority over that of agent b and at the same time agent b has a priority over

agent c. Therefore, in the current iteration only agent a’s value is allowed to change; even

though agent c can also change its value without causing causing any oscillations as agent

b’s value is fixed.

0—0—Q-
Figure 5.19: Preventing simultaneous changes in DBA - an illustration.

In Figure 5.20, we look at the resulting effect this on a larger scale where we show

the number of agents changing values in every two iterations in DBA from a sample run

on a distributed graph colouring instance {n = 100, A; = 3, degree — 4.7), plotted along

side the same count from a sample run of DisPeL. The number of consistent agents in the

corresponding iterations for both algorithms are plotted in Figure 5.21.

There is a lot more activity in each iteration of DisPeL than DBA (in terms of agents

changing values) especially in the first few iterations and a high percentage of agents

5.6. Empirical Evaluation 82

Figure 5.20: Number of agents changing values in each iteration from sample runs of DBA
and DisPeL.

Figure 5.21: Number of consistent agents in each iteration from sample runs of DBA and
DisPeL.

quickly becoming consistent in DisPeL. Therefore, it appears that only ‘critical’ deadlocks

remain unresolved. For DBA, few agents get to change values in each iteration and there

fore deadlocks tend to linger during the search. As a result, the number of consistent

agents increases at a much slower pace than in DisPeL. The obvious implication is that

DBA will tend to require considerably more time than DisPeL to solve problems.

The experiments with the car sequencing problems vividly illustrate how DBA is ad

5.7. Coping with unreliable communications 83

versely affected by the structure of the constraint graph. The constraint graph for each

instance is complete, each variable is connected to every other variable in the problem.

and therefore only one variable’s value is changed in every two iterations. Consequently,

search costs are inevitably high.

In summary, the results of comparative evaluations of DisPeL and DBA show that

on different problem types, DisPeL solved more problems than DBA. Furthermore, Dis

PeL incurs much lower search costs in the process. The results also suggest that DisPeL’s

advantage over DBA is wider as constraint graphs are denser, especially since in highly

connected graphs DBA’s heuristics limit the number of concurrent changes that can take

place in a single iteration.

5.7 Coping with unreliable communications

So far, all the experimentation with DisPeL has been done with the assumption that

communications between agents are reliable at all times i.e. messages will always get to

intended recipients. This is a shared assumption in the distributed constraints community,

along with the assumption that messages will be received in the order in which they were

sent. Although, it is widely acknowledged that communication failures may occur, and

that they can happen for reasons such as network congestions or even packet corruption.

This happened on some rare occasions, while we were working with agents located on

separate machines. Given the ordering heuristic used in DisPeL, an undelivered message

can cause an agent to wait indefinitely for its turn to improve the solution, and this wait

can cascade through the network and effectively stop the search. We remedied this with

a modification that allowed agents to resume activity if messages have not been received

after a reasonable amount of time. The agents were allowed to assume that the neighbour’s

(i.e. the sender) value is unchanged and proceed with the search.

Channel reliability is a major issue in distributed computation in general. Messages

may be lost, duplicated, or due to traffic on different routers they may arrive in a different

order from which they were sent. The resulting impact on the processes depending on these

messages can be severe. Message tagging with sequence numbers and acknowledgement of

5.7. Coping with unreliable communications 84

delivery are common ways of dealing with unreliable channels [91]. But even this approach

is not immune from the aforementioned problems - acknowledgement messages can also

be lost in transmission. Nevertheless, taking this approach to guarantee even minimum

levels of reliability may be too expensive for distributed constraint solving. It can result in

an exponential increase in the number of messages exchanged, and when weighed against

its benefits, the additional measures may not be justifiable.

Studies on the effects of channel unreliability in distributed constraint solving suggest

that DisCSP algorithms can sometimes benefit from unreliability. In work presented in

[26], it was shown that the element of randomness in communication delays can improve

performance and robustness of distributed backtracking algorithms like the Asynchronous

Backtracking and Asynchronous Weak Commitment Search, as well as reduce overall net

work load. Similar work in [78], where the underlying algorithm was allowed to select which

messages must be reliably delivered, showed that the occasional lost message reduces the

amount of work agents do and in some cases speed up the algorithm.

In this section, we studied the effects of lost messages on DisPeL’s performance to

test its robustness and also with a view to determine if there is any need to incorporate

additional measures to guarantee certain levels of performance. We look at the eflfect on

the algorithm’s ability to solve problems, and the resulting search costs, if lost messages

are simply ignored. Asides from the issue of ordering / coordination (mentioned earlier).

message losses can also influence DisPeL’s behaviour in the following ways:

The obvious case of agents not receiving updates from neighbours and, as such.

making decisions with outdated information.

The other obvious case of an agent involved in a deadlock not receiving a message

to implement a penalty on its value.

The false negative of an agent assuming it is at a quasi-local-optimum even though

one of its neighbours’ value has changed. And the agent subsequently initiates

the deadlock resolution process, therefore disrupting search with spurious penalty

requests.

5.7. Coping with unreliable communications 85

We study the effect of channel unreliability in three scenarios®: (1) where any indi

vidual message can be lost, (2) where only messages sent from agents that have either

changed their values or made penalty requests are from time to time lost, and (3) where

occasionally, all messages sent by an agent in one iteration are not delivered. To perform

the experiments, we modified DisPeL slightly by removing the ordering / coordination

heuristic so that all agents sequentially take turns to be active.

For the first scenario, we devised an experiment to evaluate the impact of undelivered

messages where unreliability was simulated by randomly deciding with a probability Ip

if a message sent from an agent to another is lost. RLD analysis was used to study the

direct impact of the lost messages, abstracting out the effects of random initialisations and

problem structures. This was done using a critically difficult distributed graph colouring

instance {n — 100, A: = 3, degree — 4.7), with which 500 attempts were made with different

values of Ip. In each attempt, the search was initialised from the same random position

and a limit of 10,000 iterations was imposed. In Figures 5.22 and 5.22, we show plots for

runs with loss probabilities [0.05,0.1,0.15] and [0.05,0.2,0.4] respectively; and a summary

of the results of the full experiment appears in Table 5.5.

Figure 5.22: Distribution of DisPeL’s search costs with message loss probabilities (0.05,
0.1, 0.15).

As expected, the plots show that search costs increase steadily with the number of

^We still assume that messages are received in the order in which they were sent and that there are no
transmission delays.

5.7. Coping with unreliable communications 86

search cost

Figure 5.23: Distribution of DisPeL’s search costs with message loss probabilities (0.05,
0.2, 0.4).

Table 5.5: DisPeL’s performance as the probability of losing messages increases.

Ip % solved average cost median cost
0.05 100 284.2 215.5
0.10 100 363.5 253.5
0.15 100 459.1 350.5
0.20 100 579.7 422.0
0.25 100 759.1 577.0
0.30 100 1086.7 766.5
0.40 99 2070.3 1525.5

lost messages. Nevertheless, DisPeL still copes well even with high loss probabilities;

demonstrating a high level of tolerance to communication failures. This robustness can

be explained with the plot in Figure 5.21 - where we plotted the number of consistent

agents from a sample run of the algorithm. A high percentage of agents in the run were

consistent at any one time, therefore suggesting that only a handful of inconsistent agents

may be affected by lost messages.

The second set of experiments considered the effect of losing just “important” messages

i.e. only those messages where either an agent has changed its value or it is sending a

request for its neighbours to implement a penalty. A case where as more messages are lost.

agents will be making more decisions with inaccurate information about their neighbours

assignments. We used two sets of random DisCSPs ((n = 30, d = 10,pl — 0.2,p2 = 0.5)

and {n = 60, d = 10,pl = 0.1,p2 — 0.5)) in this experiment, with 100 problems in each

5.7. Coping with unreliable communications 87

set. DisPeL was started with the same initialisation in each attempt, so that we could

focus solely on the effects of the lost messages. The results are summarised in Table 5.6.

Table 5.6: DisPeL’s performance as the probability of losing important messages increase.

n ip % solved average cost median cost
30 0.05 100 495.8 233.0

0.10 100 682.9 224.5
0.15 99 619.4 303.0
0.20 100 592.1 214.0
0.25 99 669.2 300.0
0.30 100 673.3 368.5
0.40 100 1146.1 524.0

60 0.05 98 1042.8 494.0
0.10 96 1066.1 790.5
0.15 97 1102.8 650.5
0.20 95 1154.9 616.0
0.25 97 1377.8 660.0
0.30 97 1501.4 807.0
0.40 95 1224.6 751.0

A similar tolerance to communication failures is shown even when all lost messages are

critical to agents’ decision making. A high percentage of problems are still solved even

with loss probabilities as high as 40%. The results for the runs on the smaller problems

show gradual increases in search costs, with two sudden jumps, one between Ip = 0.05

and Ip = 0.1, and the other between Ip = 0.3 and Ip = 0.4; where the average search

costs increase dramatically. But the trend is broken briefly at Ip = 0.2. Results for runs

on the larger problems also show the same gradual increase in search costs, although the

algorithm nearly always solved the same percentage of problems.

Finally, we investigate the effects of occasionally “cutting off” some agents on Dis

PeL’s performance. In this experiment, channel unreliability is simulated by dropping all

messages sent by an agent (in an iteration) with the probability Ip. And again, focusing

on those messages that contain new information for the recipients. Similar problems to

those used in the previous experiment (i.e. those in Table 5.6) were used and the results

are summarised in Table 5.7.

The results show that performance is not steadily decaying, especially in the runs on

the smaller problems. Rather, the effects of lost messages are almost random. But, the

5.8. Chapter Summary 88

Table 5.7: DisPeL’s performance as the probability of cutting of agents with important
messages increase.

n Ip % solved average cost median cost
30 0.05 95 653.0 256.0

0.10 97 678.8 321.0
0.15 96 790.3 303.5
0.20 96 639.4 255.0
0.25 95 532.0 187.0
0.30 97 723.9 371.0
0.40 96 789.4 455.5

60 0.05 91 1880.4 724.0
0.10 90 1917.3 903.0
0.15 96 1515.1 926.0
0.20 93 1703.2 1012.0
0.25 93 1648.2 947.5
0.30 95 1720.5 927.5
0.40 93 1841.0 873.5

random loss of messages appears to help DisPeL through the introduction of randomisation

that enables it avoid propagating the effects of bad decisions made by agents. As such, a

high percentage of problems are still solved even with a 40% loss rate.

Overall the results show that DisPeL has a high tolerance for unreliable communica

tions, and suggest that perhaps for just the worst case where message delivery is highly

uncertain, it may not be necessary to incorporate additional measures such as acknowl

edgement messages to guarantee reasonable levels of reliability.

5.8 Chapter Summary

We described the Distributed Penalty Driven Search algorithm in this chapter. DisPeL is

an iterative improvement algorithm that deals with local optima by perturbing the search

and modifying the cost landscape with two types of penalties on domain values. It also

includes additional heuristics, such as agents maintaining no-good stores and a policy of

discarding penalties. The impact of each component of DisPeL’s strategy was discussed

in detail, and as a result we were able to show how DisPeL’s performance is built on a

synergy resulting from the combination of its components.

Results of empirical evaluations, and a comparison with the Distributed Breakout Algo-

5.8. Chapter Summary 89

rithrn, were also presented in the chapter. The algorithms were evaluated with distributed

graph colouring problems, random DisCSPs, and instances of the car sequencing problem.

In all cases, results showed that DisPeL consistently solved more problems than DBA

and required fewer iterations to do so. We argued that, in addition to the effects of con

straint weights on the landscape, DBA was also handicapped by its coordination heuristic

which limited the progress towards solutions. Finally, DisPeL’s tolerance to unreliable

communications was discussed. Results from empirical tests showed that with message

failure rates as high as 40%, DisPeL was still able to find solutions in all attempts on a

problem instance. Those experiments introduced some form of randomisation to DisPeL

i.e. with the random loss of messages, in Chapter 6 we follow this up with a stochastic

version of DisPeL to explore how randomisation in DisPeL itself can be used to enhance

its performance.

Chapter 6

Exploiting Randomisation in

DisPeL

6.1 Introduction

DisPeL is a deterministic algorithm: there are no inbuilt random decisions and it is guided

by a set of fixed rules implemented in a fixed order. These affect the algorithm in a way

that makes it vulnerable to the effects of “bad” random initialisations; where determinism

can lock the algorithm onto paths that keep the search wandering about, for long periods,

in unprofitable regions of the search space. This behaviour is evident from the RLD plots

in Chapter 5 which showed that on the same problem, DisPeL could find a solution with

less than 100 iterations on some runs and required about 10,000 iterations on others. In

the worst case, it may not find a solution given its incompleteness.

In this chapter, we consider a modification to DisPeL that introduces a stochastic

element into a critical part of its deadlock resolution strategy - giving it opportunities to

alter the search trajectory in a non-deterministic manner as a search progresses. We show

that this randomisation can boost performance while reducing its memory requirements.

as well as the complexity of the deadlock resolution process.

This chapter is structured as follows. First we briefiy review some strategies for ex

ploiting randomisation in combinatorial search in Section 6.2. The new version of DisPeL

90

6.2. Exploiting randomisation in combinatorial search 91

ls presented in Section 6.3 and in Section 6.4 we discuss how an optimal values for its criti

cal parameter were established. Finally, we present results of empirical experiments where

we compare the new algorithm with DisPeL and the Distributed Stochastic Algorithm in

Section 6.5.

6.2 Exploiting randomisation in combinatorial search

Hoos and Stutzle introduced Run Length Distribution plots, in [55], to analyse the run

time behaviour of Stochastic Local Search (SLS) algorithms; while studying how an al

gorithm’s performance varied with random initialisations and inbuilt random decisions.

The distribution of search costs, in their study, showed that certain initialisations led

to solutions with short runs irrespective of algorithm parameter settings. They argue

that although SLS algorithms are approximately complete as run time approaches infin

ity, search efficiency actually decreases over time. Therefore, the effects of ‘good random

initialisations’ can be exploited to boost performance of algorithms with periodic restarts

from new random points. Their experiments showed that once optimal cut-offs (i.e. num

ber of iterations between restarts) were found, periodic resets dramatically improved the

performance of the underlying algorithms increasing the probability of finding solutions;

especially when compared to single runs over longer time spans with the same algorithm.

In related work by Hutter et al [57], on dynamic local search algorithms for solving SAT

formulae, randomisation for undoing the effects of cast landscape modifications was inves

tigated. A scheme was introduced where, with a small probability, weights on constraints

are smoothened towards the average of all constraint weights. It was demonstrated that

randomisation can be used to reduce the complexity of weight update procedures and still

allow the underlying weighted hill-climber to outperform the more complicated algorithms

- notably the Exponential Sub-Gradient algorithm [100].

A similar study on complete backtracking algorithms by Gomes et al [38] also show

benefits of randomisation in search. The study focused on the effects of randomisation

in tie-breaking decisions and it was argued that when the heuristic evaluation of which

variable to label next was equal for two or more variables, the random selection of one

6.3. Stochastic DisPeL 92

affects the run time of the algorithm to the extent that run time becomes highly variable

and unpredictable. Hence, on some runs the same algorithm may find a solution in seconds

and yet on others, it may not find a solution in hours. In their strategy for exploiting

randomisation, a new heuristic evaluation function for determining the next variable to

label is introduced which increases the number of choices at each branching point and

hence the number of random decisions made at different points. In addition, periodic

restarts from the root of the search tree were also introduced. The combination of these

modifications boosted performance of the underlying algorithms with speed-ups of several

orders of magnitude.

A handful of similar randomisation strategies have been explored in the literature of

distributed constraint reasoning. In the Distributed Stochastic Algorithms (DSA), pre

sented in [128], all agents are active in parallel and each agent decides randomly whether

to improve the solution or to do nothing in each iteration. In addition to reducing the

amount of incoherence in their decisions, the random choice to do nothing also helps the

algorithm to avoid local optima. Extensions of DSA, in [5], introduced additional ran

domisation in the form of a random choice to make uphill moves when an agent has no

improvements available. Furthermore, the authors also introduced a version of the algo

rithm where the probabilities for agents to make uphill moves decay over time fashioned

after the centralised simulated annealing algorithm [60].

Similarly, non-deterministic tie-breaking schemes were proposed for DBA in [119],

which allowed agents to occasionally override their coordination heuristic permitting some

connected agents to change values simultaneously and, at the same time, make tie-breaking

non-deterministic.

6.3 Stochastic DisPeL

As the RLDs in Chapter 5 show, DisPeL can undoubtedly benefit from a periodic restart

strategy with new random instantiations. But the main drawback with periodic restarts

is that it is difficult to automatically determine appropriate cut-offs a priori. And since

the performance of a restart strategy is particularly sensitive to the cut-off, one may need

6.3. Stochastic DisPeL 93

to carry out a lot of experimentation before hand to find optimal cut-offs for different

problem types and sizes.

As an alternative, we try to exploit randomisation in DisPeL by focusing on the critical

choice point in its deadlock resolution strategy, by making the choice of what phase to

implement a random one. Therefore, we change the agents’ behaviour so that whenever

an agent is at a quasi-local-minimum, it decides randomly either to perturb the solution

(with probability p) or to increase incremental penalties (with probability 1 — p); rather

than following the deterministic route of perturbing first and learning with incremental

penalties later. This eliminates the need for the no-good store, since agents no longer

have to determine if a deadlock was previously encountered, and thus reduce the algo

rithm’s memory requirements and the number of operations agents have to implement

when deadlocks are encountered.

We call this new algorithm Stochastic Distributed Penalty Driven Search (Stoch-

DisPeL), and implement its new stochastic behaviour by replacing the check_for_deadlock()

procedure listed in Algorithm 5.2 with the one outlined in Algorithm 6.1. All other pro

cesses executed by agents in DisPeL remain the same. Therefore, when an agent chooses

the penalty to implement, it will still send a request to the affected neighbours to imple

ment the same. Agents at the receiving end will still act in the same deterministic manner

of prioritising the incremental penalty requests over temporary penalty requests.

select value minimising objective function
penalty Request <— null
return

Algorithm 6.1 Stoch-DisPeL: procedure check_for_deadlocks()
1: if AgentView(t) AgentView(t-l) then
2:
3:
4:
5: end if
6: r <— random value in [0..1]
7: if r < p then
8: impose temporary penalty on current value
9: penalty Request <— I mposeTempor ary Penalty

10: else
11: increase incremental penalty on current value
12: penalty Request <— Incr easel ncPenalty
13: end if
14: select value minimising objective function

6.4. Determining an optimal p value 94

6.4 Determining an optimal p value

The new parameter (p) has a significant impact on Stoch-DisPeL’s performance; the simple

act of randomly determining which type of penalty is used or how often the temporary

penalty is used influences the speed of deadlock resolution and determines the trajectories

the search follows as it progresses. In Section 5.4.3 it was shown that DisPeL relied on the

temporary penalty to resolve deadlocks i.e. it was used in at least 60% of the time. This

appears to work well on the different classes of problems DisPeL was tested on. However,

for Stoch-DisPeL, we found that the impact of p in Stoch-DisPeL varies from one problem

class to another - on some problem classes it is beneficial to use the temporary penalty

more often (i.e. a large p) and on others the reverse is the case. In the following, we present

empirical studies of how the value for the parameter affects the algorithm’s performance on

classes of unstructured problems (Section 6.4.1) and structured problems (Section 6.4.2).

6.4.1 Impact of p on unstructured problems

For unstructured problems, we used random DisCSPs and distributed graph colouring

instances for the investigation. Two sets of experiments were run on each problem class.

First, multiple runs on single instances were used for RLD analysis and, secondly, promis

ing values of p from the first experiments were used for other experiments with a larger

problem set.

In the RLD plots in Figures 6.1 and 6.2, we ran Stoch-DisPeL on single problem

instances to compare the effect of the different values of p from 0.1 to 0.9 (in increments of

0.1). In all cases we started the runs from the same random initialisation, so that the only

influence on performance was the random choice made when deadlocks are encountered (i.e.

p). In Figure 6.1, the plots^ show the distribution of search costs on a single distributed

graph colouring instance (n = 100, k = 3, d = 4.6) for the different values of p. For

each value, 500 attempts were made with a maximum limit of 10,000 iterations before

an attempt was deemed unsuccessful. The average and median costs from these runs are

shown in Table 6.1.
^Several plots are used for the sake of clarity, as most curves overlap each other.

6.4. Determining an optimal p value 95

search cost

search cost

Figure 6.1: Run Length Distribution of Stoch-DisPeL on a distributed graph colouring
instance with different values for p.

Table 6.1: Average and median search costs in Stoch-DisPeL from RLD analysis in Figure
6.1, for different values of p.

p average cost median cost
0.1 292.0 197.0
0.2 282.3 206.5
0.3 259.1 203.0
0.4 288.1 209.5
0.5 302.4 228.5
0.6 322.2 245.0
0.7 367.3 290.5
0.8 395.0 309.0
0.9 545.5 451.0

6.4. Determining an optimal p value 96

The plots in Figure 6.1 show that while the average cost in Table 6.1 varies, the

performance of the algorithm is almost identical for values of p from 0.1 to 0.4. and

the median costs are also comparable. Pairwise Student t-tests for the values show that

the distributions are mostly identical. And from p = 0.5 onwards search costs increase

steadily. What stands out distinctly from the results is the huge difference between p — 0.8

and p = 0.9 (see Figure 6.2), the increase in search costs is abrupt and the probability of

finding a solution with any time limit is significantly lower.

The same experiment was repeated using a random DisCSP instance ((n = 60, d =

15,pl = 0.1,p2 = 0.6)). The results, plotted in Figure 6.2, follow a similar pattern with

the earlier ones. Although, this time the differences from p = 0.7 to p — 0.9 are more

distinguishable. There are sharp increases in search costs from one value to the next.

1

search cost

1.75

10000

search cost

Figure 6.2: Run Length Distribution of Stoch-DisPeL on a random DisCSP instance with
different values for p.

Based on the results presented here, it was hard to put a finger down on a best value

for p. It is clear, however, that performance is less than optimal for large values of p- and

6.4. Determining an optimal p value 97

Table 6.2: Average and median search costs in Stoch-DisPeL from RLD analysis in Figure
6.2, for different values of p.

p average cost median cost
0.1 648.8 522.5
0.2 657.0 535.0
0.3 625.4 488.0
0.4 693.4 581.0
0.5 724.3 599.0
0.6 816.4 687.5
0.7 967.0 797.0
0.8 1413.9 1174.0
0.9 2052.6 1675.0

any value between 0.1 to 0.4 was equally good. To confirm this, a second experiment was

carried out where we tested the algorithm on a larger dataset with problems of different

sizes, using three values for p (0.2, 0.3, 0.4). The results, which are shown in Figures 6.3

to 6.5, are also not as clear cut as the previous experiments. In Figure 6.3, where success

rates on attempts on 250 problems are plotted, there is no clear winner - in two groups

of problems (n = 30 and n = 50), the success rate is higher with p = 0.2. And in another

two groups, more problems where solved with p = 0.3. This pattern is also exhibited in

the cost plots (Figures 6.4 and 6.5).

Figure 6.3: Percentage of random DisCSPs solved by Stoch-DisPeL with different values
for p.

6.4. Determining an optimal p value 98

Figure 6.4; Average search costs from runs in Figure 6.3.

Figure 6.5: Median search costs from runs in Figure 6.3.

The results from all experiments carried were not clear cut, therefore we chose arbi

trarily to run Stoch-DisPeL with a probability of 0.3 in the rest of our evaluations of the

algorithm on unstructured problems. This value also gave the best performance in both

experiments with regards to search cost.

6.4.2 Impact of p on structured problems

Quasigroup completion problems^ [36] were used to represent structured problems for our

investigations on the impact of p. Similar experiments were run with different values of p,

but for the sake of brevity, we present details of the experiment with the larger dataset.

For this experiment, we used two groups of problems with different sizes i.e. order

12 (with 84 active agents) and order 14 (with 114 active agents). One hundred solvable

instances were generated for each problem size and Stoch-DisPeL was run with different

values for p on each set for a maximum of 14,400 and 19,600 iterations respectively.

^These are described formally in Section 6.5.3.

6.5. Empirical Evaluation 99

Table 6.3: Average and median search costs in Stoch-DisPeL from runs on quasigroup
completion problems (42% pre-assigned cells) with different values of p.

order P average cost median cost
12 0.1 476.5 270.5

0.2 460.4 287.5
0.3 295.8 191.5
0.4 216.7 167.5
0.5 216.0 156.5
0.6 182.6 148.5
0.7 161.5 108.0
0.8 173.0 145.5
0.9 259.4 162.5

14 0.1 3507.1 2466.5
0.2 2018.7 1202.5
0.3 1121.8 776.0
0.4 977.2 590.0
0.5 455.9 313.0
0.6 404.2 278.5
0.7 267.1 200.0
0.8 257.7 211.5
0.9 380.3 263.0

The results summarised in Table 6.3 are quite conclusive, they clearly show that on

both problem sizes the minimum median costs were achieved with a value p = 0.7. On

the smaller problems, the minimum average was found with the same value. While on the

larger instances, a slightly better minimum average was found at p = 0.8. Nevertheless,

for later experiments on structured problems, we used 0.7 for all runs irrespective of the

problem size.

6.5 Empirical Evaluation

In fmther empirical evaluations of Stoch-DisPeL, we compared its performance with Dis

PeL as well as with a modified version of the Distributed Stochastic Algorithm (DSA).

DSA is a distributed iterative improvement search algorithm that relies completely on

stochastic decisions to avoid deadlocks. In DSA, all agents act concmrently selecting and

exchanging new assignments. In each iteration of DSA, each agent decides individually

either to select a value that minimises the number of constraints it violates (with proba

bility Ct) or to retain its current variable assignment (with probability 1 — ct) - where a is

6.5. Empirical Evaluation 100

the probability of parallelism. In addition, deadlocked agents are also permitted to make

sideways moves that do not worsen their evaluations.

DSA was initially designed to solve optimisation problems - distributed scan schedul

ing problems [27] in particular, where the agents are expected to reside on simple inter

connected devices with limited computational resources. Given the nature of the problem.

the algorithm was designed to allow agents to satisfy as many constraints as quickly as

possible, rather than to find zero cost solutions. And, it has been shown to converge

quicker to locally optimal solutions than DBA[127]. However, Hirayama and Yokoo, in

[49], point out that because DSA has no explicit mechanism for escaping from local optima

it has low success rates in decision problems where the goal is to satisfy all constraints.

Once stuck, the sideways moves are usually not enough to push a search out of locally

optimal regions and hence, the algorithm will have difficulty in solving many problems.

Later work by Arshad and Silaghi [5] introduced additional randomisation allowing

agents to make uphill moves with a probability (p2). Their modified version, called DSA-

Bl, enabled DS A to find paths out of plateaus in the cost landscape. The authors extended

this further in the Distributed Simulated Annealing (DSAN) algorithm where p2 decays

overtime. We modified DSA-Bl (to make DSA-BIN) to prevent agents from making

uphill moves whenever they had consistent assignments, giving agents the opportunity

to make “informed” random decisions. We found that this improved the performance of

the algorithm significantly because by stabilising things it allowed for increased search

intensification activity.

We also found that DSA-BIN was stronger than DSAN. The fixed value of p2 meant

that the algorithm still had opportunities to find solutions as time went on; whereas,

with DSAN we observed that as p2 gets smaller the probability of the algorithm finding a

solution decreases as well because there are fewer opportunities to make the moves needed

to escape from plateaus. Therefore, in the experiments reported in this chapter we used

DSA-BIN to represent the class of DSA algorithms. Furthermore, from our evaluations,

we found that it solved the highest percentage of problems with p2 — 0.05 (with random

6.5. Empirical Evaluation 101

DisCSPs) and p2 — 0.2 (with distributed SAT problems^ and with structured problems).

We use these settings for experiments with DSA-BIN reported here.

We compared the algorithms (Stoch-DisPeL, DisPeL, and DSA-BIN) on random DisC

SPs, SAT formulae from the SATLib dataset [56]^, and structured DisCSPs. In each case.

we analysed the percentage of problems solved within the time limits and the costs (in

terms of iterations) incurred in solving these problems.

6.5.1 Performance on Random DisCSPs

Random binary DisCSPs of different sizes (30 < n < 100) where used in the evaluation

of the algorithms to study how search costs scale up with the problem size. For each

n, 100 instances were created where the ratio of constraints to variables was constant at

3:1 and the tightness (p2) of each constraint fixed at 0.5. There were 10 values in each

variables’ domain and all algorithms were limited to a maximum of lOOn iterations on

each attempt. The results of these experiments are plotted in Figures 6.6, 6.7, and 6.8,

showing the success rates, median and average search costs respectively.

Percentage of random DisCSPs solved by Stoch-DisPeL, DisPeL, and DSA-Figure 6.6;
BIN.

^Where the uphill move is simply a flip of the truth assignment.
^The instances are available online at http://www.satlib.org.

6.5. Empirical Evaluation 102

problem size

Figure 6.7: Median search costs from runs in Figure 6.6.

problem size

Figure 6.8: Average search costs from runs in Figure 6.6.

Figure 6.6 shows that Stoch-DisPeL is dominant over the other algorithms. It consis

tently solved more problems than both algorithms, except in the n = 50 dataset where it

was matched by DisPeL. Against DSA-BIN, both versions of DisPeL faired well. They

consistently solved more problems and required fewer iterations especially on the larger

problems (Figures 6.7 and 6.8).

6.5. Empirical Evaluation 103

6.5.2 Performance on Distributed SAT problems

As we mentioned earlier, the algorithms were also evaluated with publicly available SAT

instances. These were modelled as DisCSPs where each agent represents a literal (variable)

and has to find a truth assignment that simultaneously satisfies all relevant clauses given

the current assignments of other agents appearing in those clauses. SAT was chosen be

cause, amongst other things, it is a domain where stochastic algorithms have traditionally

fared well especially in centralised local search.

Datasets with 75, 125, 150, 175 literals per problem where used in the experiments.

each with 100 solvable instances. And in the case of the problems with 100 literals, the

first 500 instances from the dataset were used. In all cases, the algorithms were limited

to a maximum of lOOn iterations (where n is the number of literals in a formula) before

attempts were deemed unsuccessful. The results of these experiments are summarised in

Figures 6.9, 6.10 and 6.11.

Figure 6.9: Percentage of problems solved by Stoch-DisPeL, DisPeL, and DSA-BIN from
attempts on benchmark SAT instances.

The plots in the figures show that, in terms of success rates, Stoch-DisPeL and DisPeL

are evenly matched. But Stoch-DisPeL has a slight cost advantage over DisPeL and, on

6.5. Empirical Evaluation 104

data set

Figure 6.10; Average costs (iterations) of Stoch-DisPeL, DisPeL, and DSA-BIN used-up
to solve the problems in Figure 6.9.

data set

Figure 6.11; Median costs (iterations) of Stoch-DisPeL, DisPeL, and DSA-BIN used-up
to solve the problems in Figure 6.9.

6.5. Empirical Evaluation 105

this criterion, the results are fairly consistent with those from the experiments on random

DisCSPs. In addition, both algorithms do well compared to DSA-BIN especially as the

problems get larger. In the experiments with the original DSA algorithm on the same

datasets, Hirayama and Yokoo [49] reported results showing a dismal performance in the

domain. At best the algorithm was only able to solve 11% of the problems in one dataset.

The stronger results reported here confirm the necessity and the profound impact of the

occasional non-improving moves that are used to help the algorithm deal with local optima.

6.5.3 Performance on structured DisCSPs

Finally, the algorithms were evaluated with structured DisCSPs. For this we used Quasiqroup

Completion Problems, which are NP-complete and can be placed somewhere between

purely random and highly structured problems [36]. A quasigroup can be described as an

N by N matrix in which N elements are placed in its cells, such that an element occurs

exactly once each row and exactly once in each column. In quasigroup completion, some

cells have pre-assigned elements and the problem is to determine if the empty cells can be

filled to complete a quasigroup® [36].

Quasigroup completion has been widely studied and parallels are drawn between the

problem class and other problems such as statistical experiment design, scheduling, and

timetabling [36]. It has been determined, that for problems up to order 20 (N < 20) a

phase transition occurs when 42% of the cells are pre-assigned. Search costs peaked at

this region and problems were almost always unsolvable [37].

We generated solvable instances of order 8 to 15 in the phase transition region for

our experiments. These problems were encoded as binary DisCSPs where each agent was

assigned to a cell and connected with individual constraints to other agents attached to

cells in the same row and column with it. All three algorithms were modified so that in

the first iteration of each run, agents with pre-assigned values informed their neighbours of

the pre-assignments and ceased to participate in the search. The neighbours that receive

such messages place huge fixed penalties® on the values received from the pre-assigned

^You may think of it as a CSP formalisation of Sudoku.
®These penalties were used in DSA-BIN as well, and they should not be confused with the incremental

6.5. Empirical Evaluation 106

Figure 6.12: Percentage of quasigroup completion problems (N x N agents) solved by
Stoch-DisPeL, DisPeL, and DSA-BIN .

agents, to have the same effect as domain reduction in complete search. Furthermore,

after “pruning” the affected values, agents also removed the pre-assigned neighbours from

their AgentViews. For this problem class, we found that DSA-BlN’s performance was

optimal with the parameters p = 0.5 and p2 = 0.02.

100 instances were generated for each problem size. And like all other experiments.

the algorithms were limited to a maximum of lOOn iterations; where n is the number of

agents (cells) in each problem. Results of these experiments are presented in Figures 6.12,

6.13, and 6.14 which show the percentage of problems solved, the average, and the median

search costs respectively.

On the structured problems, DSA-BIN was unable to solve a handful of instances and

its search costs were considerably higher than both Stoch-DisPeL and DisPeL. Cost-wise,

Stoch-DisPeL and DisPeL do equally well on the smaller instances but DisPeL’s search

costs increase at a much faster pace from order 13 onwards. Overall, the results are

consistent with those reported in Sections 6.5.1 and 6.5.2.

penalties in DisPeL and Stoch-DisPeL.

6.5. Empirical Evaluation 107

Figure 6.13; Average search costs from successful runs on the quasigroup completion
problems.

Figure 6.14; Median search costs from successful runs on the quasigroup completion prob
lems.

6.5. Empirical Evaluation 108

6.5.4 Discussion

We argue that DisPeL can suffer from the effects of bad initialisations, where it is put

on search trajectories that could prevent it from finding solutions. In addition, once on

a bad trajectory, the combination of deterministic use of penalties and frequent penalty

resets can conspire to cause the algorithm to oscillate between a fixed set of non-solution

states. As a result, we argue that randomisation can allow the search to get out of such

bad trajectories simply by changing the way in which penalties are selected.

To test this conjecture, we ran DisPeL several times on different problems to find bad

initialisation^. Then, we ran Stoch-DisPeL on the same problems starting it off these

instantiations. In Figure 6.15 an example of one of such runs is shown. The “bad start”

curve plots the distribution of search costs on successful runs for Stoch-DisPeL on a random

DisCSP ((n = 80, d = 15,pl = 0.1,p2 = 0.5)) which DisPeL was unable to solve given

the particular initialisation. In this case, Stoch-DisPeL was successful in each attempt

within the allotted time of 8,000 iterations and it appears not to have suffered from the

effects of the bad initialisation. Obviously randomisation is a double edged sword, it can

also prevent the algorithm from finding a solution quickly. The “good start” curve in

the same figure is a repeat of the same experiment, this time using an initialisation with

which DisPeL found a solution with 41 iterations. Both curves are nearly identical, clearly

Stoch-DisPeL was unable to capitalise on the “good” initialisation. In that, a risk of the

randomisation strategy.

Given this, a hybrid of both algorithms, exploiting the best features of either, is an

attractive proposition. Probably done in a way that allows agents use the deterministic

approach early in the search and then switching to a stochastic approach as the process

draws on.

The results from the evaluation of the algorithms show that both versions of DisPeL

outperformed DSA-BIN in the problems tested. The difference was smaller in the Dis-

SAT experiments, which as we noted earlier is a domain where stochastic algorithms are

expected to do well. DSA, as originally proposed, suffered from an inability to effectively
^Where we considered an initialisation as bad when a solution was not found after a maximum of 200n

iterations.

6.6. Chapter Summary 109

Figure 6.15: Run Length Distribution of Stoch-DisPeL on a problem instance repeatedly
starting “good” and “bad” random initialisations.

deal with local optima once stuck; the modifications in DSA-BIN introduced measures

to overcome this deficiency. But, the continued reliance on random decisions for these

improvements has its drawbacks. For example, the absence of search memory leaves the

door open for the algorithm to repeatedly make the same mistakes in attempting to resolve

particular deadlocks. But, as we have shown in Table 4.1 albeit in a different context.

random unilateral decisions do not quickly resolve as many deadlocks as either the penalty

based approach or an approach that uses constraint weights. And, in addition, random

moves still caused other constraints, previously satisfied, to be violated. Therefore, dead

locks can linger in the constraint network as a search progresses. Results of DSA-BlN’s

performance especially in Section 6.5.1 support those earlier assertions.

6.6 Chapter Summary

In this chapter we have described Stoch-DisPeL, a stochastic variation of DisPeL which

introduces a random choice in DisPeL’s deadlock resolution strategy. Rather than follow

the fixed rule of perturbing and then incrementing penalties, in Stoch-DisPeL agents

6.6. Chapter Summary 110

randomly decide on which type of penalty to use. Therefore, agents decide to use

temporary penalty with a probability p and the incremental penalty with 1 — p.

a result of this modification, the no-good store is no longer used thereby reducing

the

As

the

memory requirements and the number of operations performed by agents when deadlocks

are discovered.

We showed, from empirical tests, that on unstructured problems performance of the

new algorithm was optimal at small values of its critical parameter (0.1 < p < 0.4) hence

favouring incremental penalties over temporary penalties. While on structured problems.

the optimal value for the critical parameter was about p = 0.7. The algorithm was eval

uated on random DisCSPs, structured DisCSPs, and benchmark instances of the boolean

satisfiability problem. Its performance was compared with DisPeL and an improved ver

sion of the Distributed Stochastic Algorithm on the same problems. The results showed

that randomisation improves performance of the penalty driven strategy; Stoch-DisPeL

consistently solved more problems than DisPeL and DSA-BIN, and it typically required

fewer iterations in the process.

Chapter 7

Solving coarse-grained DisCSPs

7.1 Introduction

In previous chapters we discussed versions of DisPeL for solving problems where each agent

has just one variable, a case for which there are limited realistic scenarios. In this chapter

we consider the more realistic scenario where DisCSPs are coarse-grained with agents

holding multiple local variables. In such cases, like timetabling or meeting scheduling.

besides the constraints between variables held by different agents there are also local

constraints between variables within an agent. These kinds of problems can prove to be a

real test for collaborative problem solving where agents have to find a balance between the

emphasis they place on resolving either the internal or the external constraints. Placing

slightly more emphasis on one group of constraints can compromise the collective ability

of agents to reach agreement and solve problems.

In this chapter we present two distributed iterative improvement algorithms for solving

coarse grained DisCSPs. First, we introduce an extension of Stoch-DisPeL, Multi-DisPeL,

for agents with multiple local variables. We also discuss a modification of Eisenberg’s

Distributed Breakout for coarse-grained DisCSPs where we introduced new heuristics for

controlling the growth of constraint weights and some randomisation. We show that these

modifications improve the performance of the algorithm considerably.

The chapter is structured as follows. First, in Section 7.2, we brielfy discuss coarse

111

7.2. Background 112

grained DisCSPs and briefly review the literature on algorithms for solving them. In Sec

tion 7.3, we introduce the extension to Stoch-DisPeL, following that we also introduce the

modifled breakout algorithm in Section 7.4. Finally, in Section 7.5, we present the results

of empirical evaluations of both algorithms along with comparisons with other similar al

gorithms. Finally, in Section 7.6 we briefly highlight some possible extensions/variations

for the new algorithm.

7.2 Background

In the model of DisCSP considered so far, we have always assumed that each agent owns

exactly one variable, and that in a real-world setting information about each variable re

sides on a separate machine. At this lowest level of granularity, the amount of information

about a problem available to agents is restricted to knowledge about the constraints they

are involved in and value updates received from neighbouring agents during the search.

As a result, there is a limited amount of computation that agents can perform locally and

all the search effort is focused on the distributed collaborative activity.

There are, however, problems that come natmally in a different form / model from

that described above i.e. DisCSPs which are made up of interconnected sub-problems.

Each sub-problem, naturally distinct from other parts of the problem, is a CSP on its

own comprising a set of variables and constraints between those variables, as well as

constraints between some variables in the local CSP and variables in other sub-problems

(as illustrated in Figure 7.1). Therefore, rather than represent variables, each agent in

the DisCSP represents a sub-problem. Distributed lecture timetabling is an example of

such coarse grained DisCSPs, where agents represent lecturers and each sub-problem is

the set of courses taught by an individual. The constraints in the CSPs include those

stating that an individual can not teach two different courses at the same time (intra

agent constraints), as well as constraints to prevent some clashes with courses taught by

other lecturers (inter-agent constraints) either because of student coiu-se registrations or

resource availability.

Agents in these DisCSPs inevitably are more complex, compared to the agents used so

Figure 7.1: An illustrative example of a coarse grained DisCSP, with 3 inter-connected
sub-problems / agents.

far, since they each control more than one variable and as such have much more problem

information available. Consequently, agents have the opportunity (or are required) to do

more local computation in the search for a solution.

According to Yokoo and Hirayama [124], the amount of local computation (and the

level of granularity) required by complex agents can vary along two extremes. At one

extreme, a problem can be formalised as a fine grained DisCSP where each sub-problem

becomes a variable. Therefore, each agent does all its local computation before hand by

finding all possible solutions for its sub-problem which are taken as the “domain values”

of the new variables. These local solutions are exchanged with other agents during the

collaborative search. This approach was adopted in [120] on their work on distributed SAT

solving. But, Yokoo and Hirayama argue that the obvious limitation of this approach is

that when local sub-problems get large and complex, it may be impossible to find all local

solutions initially.

At the other extreme, there is the option of treating each variable in a sub-problem as

a virtual agent - in short, running a single variable per agent algorithm, where local com

putation is minimal and all effort is expended on the distributed search. Therefore, agents

simulate all activities of these virtual agents including communications between them and

7.3. Multi-DisPeL: DisPeL for agents with multiple local variables 114

other real agents. But, Yokoo and Hirayama argue that this is wasteful because, according

to them, the cost of local computation is significantly lower than that of communications

between virtual agents. And they add that the solution lies somewhere in between, where

agents can enjoy the flexibility of the flnest level of granularity and at same time exploit

the clustering of local variables to speed up the search.

In distributed backtracking algorithms for DisCSPs with complex agents, most promi

nently Asynchronous Backtracking [50, 69] and Asynchronous Weak Commitment Search

[124], the granularity of the single variable per agent case is still maintained and therefore

variables are inadvertently treated as virtual agents; especially since these algorithms are

direct extensions of earlier versions for fine grained DisCSPs. By taking each variable as a

virtual agent, agents in those algorithms use a single strategy to deal with both inter-agent

and intra-agent constraints as there is typically no distinction between the constraints. As

such, deadlocks are still detected (and no-goods generated) from each variable rather than

from entire sub-problems. At the same time, the amount of computation done locally

within agents is still significant. Each agent will typically try, exhaustively in the worst

case, to And a local solution that is consistent with higher priority external variables be

fore either extending the partial solution or requesting revision of earlier choices by other

agents.

7.3 Multi-DisPeL: DisPeL for agents with multiple local

variables

7.3.1 Algorithm overview

The Distributed Penalty Driven Search for agents with multiple local variables (Multi-

DisPeL) is based on Stoch-DisPeL. It is a distributed iterative improvement algorithm

which relies on the penalty driven strategies introduced in Chapter 4 to resolve deadlocks.

The key features of the algorithm are:

• As in Stoch-DisPeL, agents take turns to improve an initial random solution over

successive iterations and communicate new assignments to their neighbours.

7.3. Multi-DisPeL: DisPeL for agents with multiple local variables 115

In each iteration, each agent uses a steepest descent local search to improve the

evaluations of its variables.

When the steepest descent search is stuck, penalties attached to the current assign

ments of inconsistent variables are used to modify cost landscapes.

Variables are treated as virtual agents whenever penalties are used where penal

ties are “sent” from individual variables involved in deadlocks to variables sharing

constraints with them.

In the same vein as above, penalties are imposed by agents on local variables and

requests for their implementation are also sent to the owners of external variables

connected to the originating variables.

Like Stoch-DisPeL, agents choose randomly between using a temporary penalty and

increasing incremental penalties whenever they decide to implement penalties.

Penalties are used aggressively in Multi-DisPeL, compared to DisPeL and Stoch-

DisPeL. We no longer require that agents have to detect that states are unchanged in

two successive iterations. As that will slow down, or prevent, resolution of local deadlocks

within an agent. Rather, penalties are used as soon as the steepest descent search, which

agents use locally to improve the solution, is stuck. And, as a result of this, we ensure that

in each iteration agents also have more opportunities to discard incremental penalties.

In each iteration, each agent uses a typical steepest descent local search to minimise

the total number of constraints violated by its local variables. We modified the standard

steepest descent search for agents in Multi-DisPeL to speed up the algorithm. Rather

than computing and implementing the best improvements one after the other, agents make

improvements as follows:

1. Find all possible improvements to the solution i.e. all assignments Vi that have the

least cost in the domain dx^ of each variable Xi.

2. The best improvements which do not conflict i.e involving unconnected variables,

are selected and implemented simultaneously.

7.3. Multi-DisPeL: DisPeL for agents with multiple local variables 116

3. Ties are broken in favour of variables with the largest number of constraints or the

highest lexicographic IDs.

These modifications allow us to speed up the search by reducing the computational

costs of the steepest descent search. Rather than throw away the computations carried

out, agents can use the opportunity to implement all improvements that can be made in

parallel - which, using the standard descent approach, would probably be implemented at

a much higher cost since the improvements would have to be recomputed over and over

again.

Although we use the steepest descent search locally, for all the experiments reported

in this chapter, Multi-DisPeL’s structure does not necessarily restrict agents to using this

strategy internally. We believe that other heuristics or local search modifications specific

to particular problems may be used as alternatives, as long as these algorithms can take

into account the information contained in penalties. For example, one may replace the

steepest descent search with WalkSAT [102] when solving boolean satisfiability formulae;

the penalties on truth values can still be used to drive the variable selection heuristics.

Another implication of the new framework, is that agents need not necessarily be

homogeneous. Each agent has the opportunity to use a heuristic of its preference for its

steepest descent search, or one best suited to its particular sub-problem as long as penalties

form part of the evaluation function and contribute to driving the selected heuristic. We

discuss this and other possibilities further in Section 7.6.2.

7.3.2 Agent Behaviour

Much of the activity in Multi-DisPeL takes place within agents although they exchange

values and penalty requests amongst themselves. As such, in describing the new algorithm,

we focus our attention on describing the actions (outlined in Algorithms 7.1 to 7.7) that

take place locally within agents when they are active.

We assume that agents know the owners of variables constrained with their local vari

ables; as such we define an agent’s neighbours are those agents whose variables share at

least one constraint with the variables belonging to the agent. We also assume that each

7.3. Multi-DisPeL: DisPeL for agents with multiple local variables 117

agent, as well as each variable, has a unique ID.

At initialisation, agents create an ordering using the Distributed Agent Ordering

heuristic with their IDs, as done in DisPeL, whereby they partition their neighbouring

agents into higher and lower priority agents. Based on this ordering, agents will therefore

treat all variables belonging to higher priority agents as higher priority variables as well as

taking variables belonging to lower priority agents as lower priority variables. And in the

same fashion as DisPeL, each agent communicates with both sets of neighbours and takes

its turn to improve the solution after receiving updates from all higher priority neighbours.

During the initialisation process, agents also initialise their local variables with random

instantiations and exchange these assignments with their neighbours.

During the search, agents take turns to improve the solution - each of them tries to

reduce the number of constraints violated by the local variables they control. When it is an

agent’s turn to act, it runs a steepest descent local search algorithm (Algorithm 7.2); where

it repeatedly seeks out assignments for its local variables that improve the solution until it

can no longer find any improvements and there are no opportunities to use penalties. The

steepest descent search allows agents to rapidly improve their local solutions and when

this search gets stuck (or is successful) agents discard penalties on consistent variables as

well as those penalties distorting the cost landscapes of inconsistent variables (Algorithm

7.4, line 3). If the local solution is not consistent, penalties are then used by the agents

to resolve any outstanding deadlocks and to allow the steepest descent search to resume.

As mentioned earlier, penalties are used more aggressively in this algorithm. Agents

are no longer required to check if variables are at quasi-local-minima (i.e. detect that

neighbours’ values are unchanged in two successive iterations), as with the local steepest

descent search a variable’s value may be changed more than once in a single iteration.

Therefore, penalties are imposed on local variables as soon as an agent’s steepest descent

search is stuck. The penalties are still used in the same way as in DisPeL and Stoch-

DisPeL, so whichever penalty is selected is imposed on the first inconsistent variable and

then on all its internal neighbours. Agents will inform lower priority agents that control

other variables connected to the inconsistent variable to impose the same penalties on

7.3. Multi-DisPeL: DisPeL for agents with multiple local variables 118

those variables when the lower priority agents become active. The choice of what penalty

to use i.e. temporary or incremental penalty, is a random one. When an agent’s steepest

descent search is stuck, it scrolls through each of its inconsistent variables and chooses

penalties to impose on those variables’ current assignments (Algorithm 7.4, lines 7-16).

The fact that agents do not distinguish between internal and external constraints can

cause the steepest descent search to go on indefinitely i.e. an agent keeps trying to find

a consistent local solution even though values of external variables prevent it from doing

so. To prevent this, when the steepest descent is stuck agents do not impose any “new”

penalties on variables whose assignments have changed in the current iteration or have

been penalised in the current iteration (Algorithm 7.4, lines 8-10).

The steepest descent search terminates, in each iteration, when the local solution is

consistent, no further improvements can be found, or agents can not impose any new penal

ties on the local variables. When this happens, agents send the new variables’ assignments

to all affected neighbours, as well as any requests to impose penalties.

7.3.3 Theoretical Properties

Since Multi-DisPeL is based on similar ideas to DisPeL and Stoch-DisPeL, Multi-DisPeL shares

some theoretical properties with these algorithms. Therefore, like DisPeL, Multi-DisPeL is

sound and it terminates if and only if a solution is found. And in the same vein, there

are no completeness guarantees since in Multi-DisPeL the search memory is short-lived

and therefore can not be used to permanently rule out previously visited regions. Multi-

DisPeL’s space requirements are also minimal, any additional information agents hold are

related to either their variables’ domain values (e.g. the penalty vectors) or to their vari

ables (e.g. tokens to detect that a variable has been penalised in the current iteration).

Hence, the space complexity increases only linearly with the problem size.

7.3. Multi-DisPeL: DisPeL for agents with multiple local variables 119

Algorithm 7.1 Multi-DisPeL: Main loop
1: initialise
2: ordering <— empty
3: for i = 0 to OwnVars.size do
4: ordering ordering /\ var^
5: end for
6: loop
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25: end loop

messages <— acceptQ
while active do

for i — 0 to num{messages} do
processMessage(messa^ei)

end for
for i = 0 to Vars.size do

if vari is consistent then
reset v ar i.incremental Penalties

else if cost function for var^ is distorted then
reset vari.incrementalPenalties

end if
if varx-penalty Status null then

implement penalty on varx
end if

end for
improveSolutionO
send variable assignments and penalty requests to all neighbouring agents

end while

Algorithm 7.2 procedure improveSolution()
1: for i = 0 to Vars.size do
2: Xi.moved FALSE
3: end for
4: while true do
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18: end while

improvements getlmprovementsO
if improvements = then

penalty Imposed iniposePenalties()
if -^penaltiesUsed then

break
end if

else
for i = 0 to improvements.size do

X impprovementsi.var
update assignment (x, improvementsi.value}
x.moved <r- TRUE

end for
end if

7.3. Multi-DisPeL: DisPeL for agents with multiple local variables 120

Algorithm 7.3 getlmprovements()

get V E di with the minimum
5 h{xi.currentvalue} — h{xi.v')
if > 0 then

impSet impSet U improvement{xi, v,
end if

1: impSet 0
2: for z = 0 to Vars.size do
3:
4:
5:
6:
7-.
8: end for

be st Improvements <—
for all {improvement, Xi, Vi, Si) E impSet do

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

remove FALSE
for all {improvement, Xj,Vj,6j) G impSet do

if ^isNeighbour{xi,Xj} then continue
if 5i < Sj then remove <— TRUE
if — Sj then

if {xi.numConstraints < Xj.numConstraints)\/ {xi.id > Xj.icL) then
remove TRUE

end if
end if

end for
if -^remove then

bestimprovements bestimprovements U improvement{xi, Vi, Sj)
end if

end for
return bestimprovements

7.3. Multi-DisPeL: DisPeL for agents with multiple local variables 121

Algorithm 7.4 imposePenalties()
penalty Imposed FALSE
for i = 0 to Vars.size do

if isConsistent(xi)\/ cost function of Xi is distorted then
Xi.resetIncrementalPenalties

end if
end for
for i = 0 to Vars.size do

if Xi.moved isConsistent{xi} V (xi.penalty Status null) then
continue

end if
r random value in [0..1]
if r < p then

Xi.penaltyStatus sentAddTempPenalty
else

Xi.penalty Status sentIncreaseIncPenalty
end if
penalty Imposed •«— TRUE
implementLocalPenalties(5'efPen<2Ztj^7?eczpzents(a:j), Xj .penalty Status)

end for
return penalty Imposed

Algorithm 7.5 getPenaltyRecipients(vara;)
1: recipientList
2; for
3:
4:
5:
6:
7-.
8: end for
9: return recipientList

empty
z = 0 to varx.constraints.length do
if varx.penalty Sent = incr easel ncPenalty then

recipientList <— recipientList /\ varx-constraintsi.neighhours
else if constraintViolated(vara;.c<mstraznf5i) then

recipientList <— recipientList K varx-constraintsi.neighbours
end if

7.3. Multi-DisPeL: DisPeL for agents with multiple local variables 122

Algorithm 7.6 procedure implementLocalPenalties(reczpientL25t,
1: for each Xi E. recipientList.size Pi Vars do
2:
3:
4:
5:
6:
7:
8:

9:
10:
11:
12:
13: end for

if penalty Sent = addTemp Penalty then
if Xi.penalty Status — null then

Xi.penalty Status imposeTempPenalty
impose temporary penalty on x i. current Value

end if
else

if Xi.penalty Status = null V Xi.penalty Status = imposeTempPenalty
then

Xi.penaltyStatus increaseIncPenalty
increase incremental penalty on Xi.currentValue

end if
end if

Algorithm 7.7 procedure processMessage(message)
1: update Agentview with message.variable, message.value
2:
3
4
5
6
7
8
9

10
11
12
13

if message.penalty Request = null then
return

end if
for each vari constrained with message.variable do

if message.penaltyRequest = increaseIncPenalty then
var^.penalty Status <— increaseIncPenalty

else
if Vi.penalty Status increaseIncPenalty then

vari.penaltyStatus <— imposeTempPenalty
end if

end if
end for

7.4. Enhancing Distributed Breakout (DisBO) with weight decay and randomisation
 123

7.4 Enhancing Distributed Breakout (DisBO) with weight

decay and randomisation

The distributed breakout algorithm (DBA) has been extended for coarse-grained DisCSPs

by its original authors in the form of Multi-DB [48, 49], which was shown to be particu

larly effective at solving distributed SAT problems. Eisenberg, in [25], proposed another

extension, DisBO, for his work on project scheduling. This version was largely based on

DBA’s framework but differed in its emphasis on increasing weights only at real local

optima. Eisenberg noted DisBO’s ability to identify unsolvable problems or difficult parts

of a problem and therefore used it in the first phase of a hybrid algorithm where it was

combined with distributed backtracking search to solve distributed scheduling problems.

We have studied DisBO, and we propose some modifications to it. We show that the

modifications improve its overall performance considerably.

DisBO differs from Multi-DB in that it has an additional third cycle for global state

detection, since weights are only increased when the search is stuck at real local optima

and not at quasi-local-optima. Therefore, in addition to the improve and ok? cycles, there

is a detect-global-state cycle, which is used to determine that either a solution has been

found, that the maximum number of cycles has been reached, or that the search is stuck at

a real local minimum. But, the detect-global-state cycle is expensive, in terms of messages

sent, because it requires agents to continuously exchange state messages until they have

determined that all messages have reached all agents in the network. This was needed to

get a snapshot of the state of the entire network without resorting to a global broadcast

mechanism where each agent is assumed to know every other agent in the network.

DisBO limits the amount of computation done locally within each agent to allow agents

to focus on the collaborative aspect of the problem solving activity. In DisBO, each agent’s

variables are partitioned into two sets, private and public variables. The private variables

are those variables that have no inter-agent constraints attached to them. The bulk of the

local computation done by agents in DisBO are with these private variables, where in each

improvement phase the agents repeatedly select values for these variables that minimise

the weighted constraint violations until no further improvements are possible. The pub

7.4. Enhancing Distributed Breakout (DisBO) with weight decay and randomisation
 124

lie variables, on the other hand, are treated like virtual agents and DBA’s coordination

heuristic is used to prevent any two public variables (even those within one agent) from

changing their values simultaneously; except in the case that the concurrent changes do

not cause the constraints between them to be violated.

In our modification to the algorithm (DisBO-wd), the weight update scheme in DisBO

was replaced with a modification of the weight decay scheme from Prank’s work on SAT

solving with local search [30]. This weight decay strategy uses weights much more aggres

sively than the standard breakout algorithms. Instead of modifying weights only when a

search is stuck at local optima, weights on violated constraints are continuously updated

after each move. At the same time, weights are also decayed at a fixed rate during the

updates to allow the algorithm focus on recent increments. Prank argues that this strategy

allows weights to provide immediate feedback to the variable selection heuristic and hence

emphasise those variables in unsatisfied clauses. We modified the update rule further, so

that weights on satisfied constraints are continuously decayed as well. Therefore, before

computing possible improvements in DisBO-wd, agents update their constraint weights as

follows:

Weights on violated constraints at time t are computed as = {dr * + Ir

Weights on satisfied constraints at time t are decayed as Wi^t = max{{dr * 1)

where:

dr is the decay rate (dr < 1).

Ir is the learning rate (/r > 0).

Several values for these parameters were tested in empirical investigations and we

found that DisBO-wd’s performance was optimal on distributed SAT problems with the

parameters set to dr = 0.99 and Ir = P, which were consistent with the findings in [30].

And, DisBO-wd performance was optimal with the parameters dr = 0.99 and Zr = 8 on
^Results of this investigation are presented in Appendix A

7.4. Enhancing Distributed Breakout (DisBO) with weight decay and randomisation
125

random DisCSPs.

With the new weight update scheme, we were able to reduce the number of DisBO’s

cycles from three to two, since it was no longer necessary to determine if the search was

stuck at real local optima. And while doing this, we also moved the termination detec

tion mechanism into the ok? cycle, thus bringing it in line with the original distributed

breakout framework.

We also included some randomisation in the algorithm, where the coordination heuris

tic was replaced with the random break from Wittenberg’s work on randomising DBA

[119] which is used for non-deterministic tie-breaking. In DBA when two neighbouring

variables have the same improvement, the variable with the smaller lexicographic ID is

given priority to make its change. But, with the random break, in each improvement cycle

agents select and communicate random tie-breaking numbers for each variable, and when

there is a tie the variable with the lower number is given priority. Therefore, tie breaking

is not always in one direction [49].

Figure 7.2:
graph colouring problems of various sizes. Each point represents attempts on 100 problems.

Comparison of success rates of DisBO and DisBO-wd on random distributed

In Figures 7.2 and 7.3, we summarise empirical results from experiments compar

ing DisBO with our modified version (DisBO-wd). The experiments, which evaluated

7.5. Empirical Evaluation 126

Figure 7.3:
Figure 7.2.

Average cycles required by DisBO and DisBO-wd to solve the problems in

the algorithms’ performance on critically difficult distributed graph colouring problems

(A: = degree = 4.7), show that DisBO-wd solved more problems than DisBO (Figure

7.2), especially on the larger problems. Furthermore, DisBO-wd typically required fewer

cycles on average to solve the problems (Figure 7.3). We also achieved similar results in

comparisons on distributed SAT problems.

Other alternatives for improving DisBO were also considered; notably probabilistic

weight resets and probabilistic weight smoothing [57], which both outperformed DisBO

but were not as strong as the weight decay strategy.

7.5 Empirical Evaluation

Experimental evaluation of Multi-DisPeL was carried out using coarse grained versions

of several DisCSPs including distributed graph colouring, boolean satisfiability formulae

(SAT), and randomly generated DisCSPs. In each case, the algorithm’s performance was

compared to two versions of Distributed Breakout (Multi-DB and DisBO-wd) and the

Asynchronous Weak Commitment Search algorithm (Multi-AWCS) [124]. We also include

7.5. Empirical Evaluation 127

Stoch-DisPeL in the comparisons using it as a primary benchmark for Multi-DisPeL.

The two distributed breakout algorithms (DisBO-wd and Multi-DB) were included in

the evaluations, so that we continue the comparison of landscape modification strategies

i.e. constraint weights against domain penalties. In DisBO-wd, as discussed in Section

7.4, constraint weights are modified continuously during the search in a bid to keep the

heuristics informed about persistent deadlocks. Multi-DB [48], was introduced by DBA’s

authors and is based on DBA’s deadlock resolution strategy, where weights attached to

constraints are used to modify the cost landscape whenever quasi-local-optima are encoun

tered. In Multi-DB, all agents act concurrently in the same manner as in DBA i.e. sending

value updates in the ok? cycle and, finding and coordinating concurrent improvements

in the improve cycle. To find possible improvements, agents are allowed to run a local

search algorithm for a fixed number of steps to identify a set of local changes that reduce

the cost of the current solution. These changes are exchanged with neighbouring agents,

and those changes on variables with the best improvements are accepted; any ties are

broken deterministically in favour of the agent with the lowest lexicographic ID. However,

simultaneous value changes of two or more co-constrained variables are permitted where

such changes do not increase the cost of the solution. Multi-DB works particularly well

on distributed SAT problems, and it has been shown to outperform Multi-AWCS in that

domain [48, 69]. Multi-DB is used only in the experiments on distributed SAT problems,

whereas DisBO-wd is used in all experiments.

Unlike the breakout algorithms and Multi-DisPeL, the Asynchronous Weak Commit

ment Search is a complete algorithm and is not built around the idea of resolving deadlocks

by modifying cost landscapes. Rather, it is an efficient^ combination of backtracking and

iterative improvement search that deals with deadlocks through a combination of variable

re-ordering and storage of explicit no-goods, which help the search avoid combinations of

values that can not be part of a solution. While the algorithm has been shown to out

perform other distributed backtracking algorithms [124], it has the drawback of possibly

requiring an exponential amount of memory in the worst case to store no-goods.
^With regards to the number of iterations taken on average to solve a problem.

7.5. Empirical Evaluation 128

The same metrics, from Chapters 5 and 6, were used to evaluate the algorithms. Al

gorithms were compared on the percentage of problems solved within a maximum number

of iterations (or cycles)^. As usual the number of iterations (of cycles) used was taken as

the measure of efficiency; in the case of synchronous algorithms we can infer the number

of messages exchanged between agents and approximate the number of constraint checks

with the metric.

7.5.1 Creating coarse-grained DisCSPs

Publicly available problem instances, as well as randomly generated problems, were used

to evaluate the algorithms in this chapter. These problems were partitioned into evenly

sized inter-connected sub-problems for each agent using a simple partitioning algorithm

which was designed to ensure that there was always a meaningful cluster of variables

within each agent i.e. there are constraints between some of the variables belonging to an

agent. Sub-problems for each agent (a^) were created as follows:

1.

2.

3.

4.

7.5.2

First, a randomly selected variable (xj) that is not already allocated to another agent

is allocated to Uj.

A variable constrained with Xi is randomly selected and allocated to ai.

The process of randomly selecting one of the variables already allocated to ai and

selecting a random neighbour of the variable for allocation to ai is repeated until the

number of required variables for ai have been found.

In addition, with a small probability (p) a randomly selected variable is allocated to

Oj, even if it is not connected with any of a/s existing variables.

Distributed graph colouring

To start off, we evaluated Multi-DisPeL on distributed graph colouring problems to study

the relationship between search costs and the problem size, as well as the influence of agent

Given its completeness and unlimited time, Multi-AWCS is guaranteed to solve all problems used since
they all have solutions. But, in this case we are interested in its performance in bounded time.

7.5. Empirical Evaluation 129

size (i.e. the number of variables each agent controls) on its performance. Results from

runs with Stoch-DisPeL, DisBO-wd, and Multi-AWCS on the same problems were used

as a benchmark for Multi-DisPeL’s performance.

Critically difficult, but solvable, random distributed graph colouring instances (k =

3, degree = 4.7) were used for the experiments. We generated problems of different sizes

(i.e. with 100, 150, 200, and 250 nodes per instance) and 100 instances for each problem

size. These problem instances were partitioned and solved with different numbers of agents

(ranging from 2 to 25) so we could directly study the effect of agent size on performance

of the coarse grained algorithms. In the experiments, each algorithm was limited to a

maximum of lOOn iterations in each attempt. However, we use a maximum of 200n

iterations for DisBO-wd, to count its two cycles (i.e. improve and ok?} separately and as

such give it the same number of opportunities to change variable assignments as the other

algorithms. We recorded the number of problems solved within the maximum number

of iterations and the average and median number of iterations required. The results are

presented in two sets, first we show a comparison of Multi-DisPeL and Stoch-DisPeL

in Table 7.1. In Tables 7.2 and 7.3, we compare the performance of Multi-DisPeL with

Multi-AWCS and DisBO-wd on the same problems looking at performance where variables

are distributed evenly and unevenly amongst agents.

The results in Table 7.1 confirm that problem solving is quicker when agents do addi

tional computation when dealing with coarse-grained DisCSPs, as opposed to treating each

variable as a virtual agent. Although both Multi-DisPeL and Stoch-DisPeL solve roughly

the same number of problems, Multi-DisPeL has lower average search costs. The results

also show that performance for Multi-DisPeL improves as agents control more variables,

suggesting that agents are able to exploit the opportunity of more problem information

to speed up the search.

In Table 7.2, we summarise the results comparing Multi-DisPeL with other coarse

grained algorithms (Multi-AWCS and DisBO) on the same problems from Table 7.1. Both

Multi-DisPeL and Multi-AWCS solved about the same number of problems in each set,

but performance for DisBO-wd degrades on the larger problems. It solves fewer problems

7.5. Empirical Evaluation 130

Table 7.1: Performance of Multi-DisPeL and Stoch-DisPeL on distributed graph colouring
problems.

algorithm n agents % solved average cost median cost
Stoch-DisPeL 100 - 100 236.5 111

150 - 100 686.4 300
200 - 99 1878.5 890
250 - 98 2201.2 1277

Multi-DisPeL 100 2 100 84.5 44
4 100 102.6 43
5 100 105.3 58
10 100 112.1 55

150 3 100 300.7 no
5 99 271.3 121
10 100 291.2 148
15 100 351.1 135

200 4 100 804.4 329
5 100 897.3 324
10 100 1135.4 373

250 5 99 1242.6 417
10 100 1660.5 529
25 97 1785.7 668

and its search costs are considerably higher. In Section 5.6 earlier, we already hinted at

some of the reasons why the strategy of modifying landscapes with constraint weights and

the technique of limiting the concurrent changes can adversely affect the performance of

algorithms built around that framework; these effects are evident in the comparison results

shown. The results also show that Multi-AWCS generally has lower average search costs

than Multi-DisPeL, but Multi-DisPeL has lower median costs in all but one problem set.

We carried out further experiments on distributed graph colouring where we considered

the case where all agents do not necessarily have the same number of variables, making

the random problems slightly more realistic. So, we modified the partitioning algorithm to

distribute an uneven number of variables to a random number of agents. Using critically

difficult graph colouring instances (i.e. A: = 3, degree — 4.7), we evaluated the performance

of Multi-DisPeL, Multi-AWCS, and DisBO-wd on the same problems from Table 7.2 in

order to study how the algorithms are affected by the new distribution of variables to

agents. The results, which are summarised in Table 7.3, follow similar patterns with the

previous experiment with Multi-DisPeL having lower median search costs than Multi-

7.5. Empirical Evaluation 131

Table 7.2: Performance of Multi-DisPeL, Multi-AWCS, and DisBO-wd on distributed
graph colouring problems.

algorithm n agents % solved average cost median cost
Multi-DisPeL 100 2 100 84.5 44

4 100 102.6 43
5 100 105.3 58
10 100 112.1 55

150 3 100 300.7 110
5 99 271.3 121
10 100 291.2 148
15 100 351.1 135

200 4 100 804.4 329
5 100 897.3 324
10 100 1135.4 373

Multi-AWCS 100 2 100 57.0 35
4 100 114.9 77.5
5 100 123.24 91.5
10 100 162.83 129

150 3 100 222.9 178.5
5 100 288.3 198
10 100 341.0 276.5
15 100 313.1 223

200 4 100 563.5 422
5 100 556.0 431
10 100 704.4 527

DisBO-wd 100 2 100 966.4 725
4 100 982.6 606
5 100 1084.3 690.5
10 100 1019.8 816.5

150 3 98 4248.3 2436
5 97 4376.4 2274
10 98 4977.1 2482
15 99 3784.1 2176

200 4 85 10376.2 6526
5 82 11726.6 6686
10 83 10262.0 5956

7.5. Empirical Evaluation 132

Table 7.3: Performance of Multi-DisPeL, Multi-AWCS, and DisBO-wd on distributed
graph colouring problems with a random number of agents and an uneven distribution of
variables to those agents, rx.x is the average number of agents in a problem set.

algorithm n agents % solved average cost median cost
Multi-DisPeL 100 r7.2 100 125.5 61

150 r9.6 99 304.1 129
200 rll.9 100 1056.0 348

Multi-AWCS 100 r7.2 100 120.8 98
150 r9.6 100 303.7 262.5
200 rll.9 100 672.0 557.5

DisBO-wd 100 r7.2 r 100 1099.6 568
150 r9.6 100 3872.3 2401
200 rll.9 89 11432.2 7414

AWCS. It appears that the uneven distribution of variables increases search costs, for

both Multi-DisPeL and Multi-AWCS, and the costs are similar to the cases where agents

hold a small number of variables (cf. Table 7.2).

In summary, the experiments show that Multi-DisPeL is clearly competitive on dis

tributed graph colouring compared to its ancestor, Stoch-DisPeL, and well against both

Multi-AWCS and DisBO-wd. Compared to Multi-AWCS, Multi-DisPeL’s average search

costs were slightly higher, but its median search costs are almost always lower than those

for Multi-AWCS. In short, Multi-DisPeL is able to achieve similar levels of performance

with Multi-AWCS without the additional overhead of creating new constraints (in form

of no-goods) and not breaching privacy by connecting variables that were not previously

linked in the original specification of the problems being solved.

7.5.3 Distributed SAT problems

In the second set of experiments, we evaluate the performance of Multi-DisPeL and the

benchmark algorithms on distributed SAT problems. Satisfiable 3-SAT instances from the

SATLib dataset were used for the experiments; made up of formulae with 100, 125, and 150

literals. These were transformed into coarse-grained DisCSPs with the technique specified

in Section 7.5.1. We did not run any experiments with Multi-DB and Multi-AWCS,

rather we used results on experiments with the same instances from [48], published by

7.5. Empirical Evaluation 133

the algorithms’ authors, as benchmarks'^. All of the other algorithms (i.e, Multi-DisPeL,

Stoch-DisPeL, and DisBO-wd) were run once on each instance, and were limited to lOOn

iterations (where n is the number of literals in a formulae) before attempts were recorded

as unsuccessful . The results in Tables 7.4, 7.5, and 7.6 show the percentage of problems

solved, the average search costs, and the median search costs from the runs.

The results for Multi-DB are for a version with periodic random restarts, which Hi-

rayama and Yokoo in [48] found solved more problems than the original version. Similarly,

in the same work, the authors used a version of Multi-AWCS without no-good learning to

keep their comparisons with Multi-DB fair. For Multi-DisPeL, we found that performance

with the fixed parameter values for the temporary penalty (fixed at 3) and the probability

of using the temporary penalty (fixed at 0.3) was less than optimal. And, therefore, we

adjusted these parameters as follows: (1) the size of temporary penalty was fixed to 2; and

(2) the probability of using the temporary penalty was increased to 50%. These parame

ter tuning made a huge difference to the algorithm’s performance in the SAT domain. In

the same regard, the parameters for DisBO-wd were set to Zr = 1 and dr = 0.99 for the

domain (cf. Section 7.4).

The results of the experiments on distributed SAT problems as plotted in Tables 7.4 to

7.6 show that both versions of the penalty driven search were very strong especially in terms

of cost. Both algorithms (Stoch-DisPeL and Multi-DisPeL) do nearly as well as Multi-DB

and DisBO-wd in terms of the percentage of problems solved. In fact, Stoch-DisPeL’s

performance makes a strong case for using simple virtual agents to solve distributed SAT

problems given that computational overhead may be lower in this case.

Compared to Multi-DB, DisBO-wd is very competitive especially on the smaller prob

lems. DisBO-wd solves as many problems as Multi-DB and its search costs are much lower

on average. DisBO-wd also has a consistency in its search costs for each problem size that

Multi-DB does not match. For example, average search costs in the 150 literal problems

increase by about 350% as the number agents increase for Multi-DB. While on the same
‘‘Variables are randomly distributed amongst agents in [48], so from each agent’s perspective the prob

lems may not be exactly the same.
®In [48], Multi-DB and Multi-AWCS were limited to a maximum of 250n iterations on their runs.

7.5. Empirical Evaluation 134

Table 7.4: Performance of Multi-DisPeL and other algorithms on 1000 random distributed
SAT problems with 100 literals distributed evenly amongst different numbers of agents.

algorithm agents % solved average cost median cost
Stoch-DisPeL - 99.1 626 200
Multi-DisPeL 2 99.2 297 93

4 98.7 455 118
5 98.1 487 136
10 98.7 593 154
20 97.7 576 145

Multi-DB 2 99.9 886 346
4 100 1390 510
5 100 1640 570

10 99.6 3230 1150
20 99.7 3480 1390

Multi-AWCS 2 99.9 1390 436
4 98.7 4690 1330
5 97.6 6100 1730
10 96.8 7630 2270
20 95.0 8490 2680

DisBO-wd 2 100 923 515
4 100 948 495
5 100 984 490
10 99.9 1003 516
20 99.8 993 510

Table 7.5: Performance of Multi-DisPeL and other algorithms on 100 random distributed
125 literal SAT problems.

algorithm agents % solved average cost median cost
Stoch-DisPeL - 99 1074 360
Multi-DisPeL 5 95 874 263

25 96 911 303
Multi-DB 5 100 2540 816

25 100 6300 2330
Multi-AWCS 5 87 1.92 X 10^ 9290

25 80 2.55 X 10^ 1.58 X 10^
DisBO-wd 5 100 1727 725

25 100 1686 921

7.5. Empirical Evaluation 135

Table 7.6: Performance of Multi-DisPeL and other algorithms on 100 random distributed
150 literal SAT problems.

algorithm agents % solved average cost median cost
Stoch-DisPeL - 97 1320 353
Multi-DisPeL 3 97 1367 323

5 90 829 268
10 93 1214 292
15 95 1574 368

Multi-DB 3 100 2180 608
5 100 3230 1200
10 96 9030 2090
15 98 9850 3850

Multi-AWCS 3 81 2.43 X 10^ 1.11 X 10^
5 67 3.71 X 10^ 2.61 X 10^
10 61 3.94 X 10^ 3.60 X lO'^
15 61 4.23 X 10^ 4.17 X 10^

DisBO-wd 3 99 2078 874
5 99 2186 910
10 99 2054 1012
15 98 1893 898

problems, DisBO-wd’s average search costs remain within a 15% range of the minimum

average without a clear degradation in performance as the number of agents increase.

Clearly, while both DisBO-wd and Multi-DB, rely on modifying constraint weights to deal

with deadlocks, DisBO-wd is less affected by the distribution of variables to agents.

Multi-AWCS is not as strong as the other algorithms in this domain. It solves the

least number of problems and it has the highest search costs. As we pointed out, Multi-

DisPeL and Stoch-DisPeL do perform quite well in this domain. Both algorithms have

lower average and median search costs, even though the percentage of problems solved is

marginally lower than Multi-DB and DisBO-wd.

7.5.4 Random distributed constraint satisfaction problems

Finally, we evaluated the algorithms’ performance on random DisCSPs. However, in this

experiment Multi-AWCS is only used in the runs with the smallest sized problems. It is well

documented (for example in [106, 72, 69]) that Multi-AWCS may require an exponential

amount of memory to store no-goods during an attempt to solve a problem. The number

of no-goods generated may increase exponentially on large problems, and since each no

7.5. Empirical Evaluation 136

good may be evaluated at least once in each iteration, the length of time to complete

each iteration increases dramatically as the search progresses. In our experience with the

algorithm, we found that it typically ran out of memory on runs with large problems,

especially for DisCSPs with 60 variables or more®, and the algorithm sometimes required

considerable amounts of time to solve even a single instance.

The runs with random DisCSPs are similar to the earlier experiments (Section 6.5.1),

this time we used three groups of problems with varying sizes and 100 problems in each

group. Likewise, we consider the behaviour of the algorithms as the problem size in

creases as well as the impact of the number of variables each agent owns. The results of

these experiments are summarised in Table 7.7 where we show the percentage of problems

solved, and the average and the median iterations from successful runs on attempts on

100 instances for each problem size.

The results in Table 7.7 are fairly consistent with the results of experiments on dis

tributed graph colouring. Both Multi-DisPeL and Multi-AWCS have lower search costs

than Stoch-DisPeL and DisBO-wd, and DisBO-wd’s performance degrades considerably on

the largest problems. But, in this case the search costs for Multi-AWCS increase abruptly

as the number of agents in the coarse-grained DisCSPs increase. And, apart from the case

where the 50 variables are partitioned amongst 2 agents, Multi-AWCS does worse than

Multi-DisPeL.

Average and median search costs for Multi-DisPeL show a steady increase, within each

problem size, as the number of agents increases. And at the lowest level of granularity,

the average search costs are only 13% lower than Stoch-DisPeL on the largest problems;

although the median search costs are much lower. This suggests that there is a case to

use virtual agents (and an algorithm like Stoch-DisPeL) when there are just a handful

of variables per agent and computational resources for each agent are at a premium

Nevertheless, it is clear that in Multi-DisPeL, agents cure able to take advantage of the

additional problem information from clustering of variables to shorten the time taken to

find solutions.
^Experiments were run in a Java environment on a 3Ghz Pentium PC with 1GB of RAM.

7.5. Empirical Evaluation 137

Table 7.7: Performance of Multi-DisPeL and other algorithms on random DisCSPs
((n, d = 10,pl « 0.1,p2 = 0.5)).

algorithm n agents % solved average cost median cost
Stoch-DisPeL 50 - 99 771 423

100 - 94 1319 786
200 - 98 2425 1287

Multi-AWCS 50 2 100 186 90
5 100 738 288
10 98 995 527

Multi-DisPeL 50 2 99 250 109
5 99 307 124

10 99 309 146
100 2 94 611 260

4 99 905 308
5 97 856 276
10 94 928 449

200 4 97 1209 474
5 95 1382 534
10 95 2190 727
20 94 2137 846

DisBO-wd 50 2 98 1770 951
5 94 1927 1336
10 99 1855 1104

100 2 90 5468 3754
4 79 5251 3922
5 83 4996 2922
10 88 4695 3065

200 4 57 11778 11482
5 62 13454 8060
10 65 16832 14432
20 57 13289 9544

7.6. Algorithm variations 138

7.5.5 Summary of results

Results of the experiments in this chapter are consistent with those presented in Section

5.6, when comparing Multi-DisPeL and DisBO-wd. As we had argued earlier, our penalty

based strategy is a more effective diversification scheme for dealing with local optima. The

results in this chapter give additional support for this conjecture. In all problem classes,

Multi-DisPeL solved more problems than DisBO-wd and it required fewer iterations. But,

DisBO-wd is quite competitive compared to Multi-DB, which is the other algorithm that

relies on constraint weights to deal with local optima; but unlike DisBO-wd, weights in

Multi-DB are allowed to grow unbounded. DisBO-wd’s search costs were always lower

than those for Multi-DB in the SAT problems where each agent has just a few variables

although, not doing as much local computation meant that it could not take advantage

of the additional information available when the number of variables per agent was large.

Nevertheless, the results do support the proposition that retention of constraint weights

can have negative effects on the cost landscape, as argued in [81, 111].

Compared to Multi-AWCS, Multi-DisPeL had higher search costs in the experiments

with distributed graph colouring problems but lower median costs. Multi-DisPeL was

very competitive in the other problem sets. However, Multi-DisPeL had a much lower

space complexity than Multi-AWCS; it does not create any new constraints and no new

links are created between unconnected agents. Therefore, in Multi-DisPeL the number of

messages sent by each agent in each iteration is fixed; whereas as more links are created

in Multi-AWCS traffic increases as problem solving progresses, as well as the amount of

processing each agent does.

7.6 Algorithm variations

7.6.1 Pre-processing local sub-problems

Search efficiency in Multi-DisPeL can be improved by taking advantage of the information

agents have of local sub-problems to pre-process a problem. And such pre-processing can

be used to reduce the search space of problem or to determine if a problem is unsolvable

7.6. Algorithm variations 139

in the first place. For example, if the size of an agent’s local problem is not prohibitive, it

can perform a complete tree search on it before participating in the collaborative search.

And if the tree search indicates that the local sub-problem is unsolvable, the agent can

relax some of its local constraints where possible or inform other agents of the futility of

embarking on a collaborative search.

Alternatively, agents can also perform arc-consistency on the local sub-problems before

the search begins to filter out values that can not be part of a valid solution. And as with

a full search, arc-consistency may also indicate that a sub-problem, and by extension the

whole problem, is unsolvable. The combination of tree search and consistency maintenance

techniques can be used by agents to give stronger guarantees of local consistency.

7.6.2 Heterogeneous agents

As we mentioned in Section 7.3.1, agents are not necessarily restricted to using a steepest

descent search heuristic to improve their local sub-problems in Multi-DisPeL. Especially

as agents only exchange information about the assignments for their local variables and

the requests to implement penalties. Other heuristics can be used locally as long as

penalties can be directly incorporated in the cost functions of such methods and agents

can easily determine when to implement new penalties. For example, the case of using

either WalkSAT or the memory based Novelty [71] as an alternative is straightforward; the

modified cost functions can be used to drive the variable selection heuristic and penalties

can be imposed when a fixed number of tries have been completed.

Each agent can also choose a heuristic best suited to its individual sub-problem or its

processing capacity. And where agents have certain preferences, local heuristics may be

geared towards such preferences. Alternatively, in an exaggerated case, agents can even

switch between heuristics during a search process. Most likely in hybrid cases where each

agent also has a local learning algorithm and therefore, as a search progresses, the best

heuristics for their sub-problems are identified and used more often.

7.7. Chapter summary 140

7.7 Chapter summary

We presented Multi-DisPeL in this chapter which extends Stoch-DisPeL for coarse-grained

DisCSPs. Like Stoch-DisPeL, Multi-DisPeL is a distributed iterative improvement algo

rithm that utilises penalties on individual domain values to modify cost landscapes and

to deal with local optima. In Multi-DisPeL, each agent takes turns to improve the so

lution where it runs a steepest descent algorithm locally without distinguishing between

internal or external constraints. When this local attempt is stuck penalties are imposed

on local inconsistent variables as well as on external variables connected to them in the

same fashion with Stoch-DisPeL.

In Section 7.4, we introduced DisBO-wd which is a modification of the variant of

Distributed Breakout for a agents with multiple local variables presented in [25]. The

weight update mechanism in DisBO was modified, taking a leaf from [30], so that weights

on constraints also decay as well. All weights are updated in each iteration irrespective of

whether agents are at quasi-local-optima or not. We found that, with the changes, DisBO-

wd performed better than DisBO. DisBO-wd solved more problems and it required fewer

iterations to solve problems. Compared to Multi-DB, DisBO-wd is quite competitive in

the SAT domain. DisBO-wd has much lower complexity than Multi-DB, but it was able

to solve the same percentage of problems as Multi-DB and its search costs were lower.

We also presented results of empirical evaluations of Multi-DisPeL, comparing it first

with Stoch-DisPeL and with other coarse-grained algorithms. The results show that Multi-

DisPeL is quite competitive especially when the number of variables each agent holds is

high. Although it is based on the same strategy with Stoch-DisPeL, agents in Multi-DisPeL

are able to use the additional problem information available to them to improve search

efficiency. Multi-DisPeL also fared well against Multi-AWCS, Multi-DB, and DisBO-wd

in the experiments.

Chapter 8

Summary and suggestions for

future work

In this final chapter, we outline the contributions of this study and summarise the key

ideas and results (Section 8.1). And we also make suggestions for further work with the

algorithms introduced in this thesis (Section 8.3).

8.1 Contributions

8.1.1 Landscape modification with penalties

A mechanism for modifying cost landscapes with penalties on domain values in distributed

iterative improvement search was presented in Chapter 4. We argued that landscape

modification with weights on constraints, which is prominent in local search, can not

effectively induce search exploration in problems where the landscapes are dominated by

plateaus. With an example, we showed that a finer grained approach with penalties on

domain values can puncture plateaus and create new peaks in the landscape, and thus

give the search more opportunities to continue its downhill descent. We also presented

a mechanism for solution perturbation with penalties on domain values, introducing a

temporary penalty for doing this. We showed that this has the advantage of not causing

as many previously satisfied constraints to become violated; compared to perturbing a

141

8.1. Contributions 142

solution with random decisions or with constraint weights.

8.1.2 Distributed Penalty Driven Search

Based on the ideas of modifying cost landscapes and perturbing solutions with penalties

on domain values, we introduced the Distributed Penalty Driven Search (DisPeL) for

solving DisCSPs (Chapter 5). DisPeL is a synchronous distributed iterative improvement

algorithm where agents start off with a random initialisation and take turns to make

sequential improvements by selecting values in the domain that minimise the sum of

constraint violations and penalties. Agents resolve deadlocks with a two phased strategy,

where when a deadlock is first encountered the temporary penalty is used and in repeat

visits to the same deadlock incremental penalties attached to domain values are steadily

increased. We also showed that while the incremental penalties are effective at modifying

cost landscapes, they can also divert a search away from promising regions if they are

retained for too long or are allowed to grow unbounded.

8.1.3 Stochastic Distributed Penalty Driven Search

The two phased resolution process is implemented in a deterministic fashion in DisPeL,

which makes it vulnerable to the effects of bad random initialisations. To overcome this, a

variation to DisPeL is presented in the form of the Stochastic Distributed Penalty Driven

Search (Stoch-DisPel) (Chapter 6). In Stoch-DisPeL, agents decide randomly to use either

the temporary penalty or the incremental penalty when they encounter deadlocks. We

showed that with this modification, the risk of suffering from the effects of bad initialisation

is minimised but it may also mean that opportunities of good initialisations may soTnetimes

be missed.

8.1.4 Distributed Penalty Driven Search for Agents with Multiple Local Vari

ables

Both DisPeL and Stoch-DisPeL were specifically designed for problems where each agent

owned just a single variable. We noted that in realistic scenarios DisCSPs are likely to be

8.1. Contri bu tions 143

made of connected CSPs, where each agent represents a CSP with multiple variables. Dis

tributed Penalty Driven Search for Agents with Multiple Local Variables (Multi-DisPeL) is

introduced which extends the ideas from DisPeL and Stoch-DisPeL for the aforementioned

problems (Chapter 7). In Multi-DisPeL, agents still take turns to improve a solution and

they perform steepest descent search with their local variables in doing this. Agents im

plement penalties on their local variables and request that owners of external variables

also implement the same penalties on those variables connected to the deadlocked local

variables.

8.1.5 Other contributions

• DisCSP model of the Car Sequencing Problem. In Section 5.6.3, we describe

the car sequencing problem as a DisCSP for the evaluation of DisPeL. In the model,

agents represented slots on the schedule and the domain of each agent’s variable was

the number of different models of cars available. Global enumeration constraints for

each model were introduced, to ensure that the right number of cars was placed on

the schedule. To the best of our knowledge, this was the first attempt at solving this

problem within the DisCSP framework.

• Improvements to Distributed Stochastic Algorithm (DSA). We described a

modification to DSA [27, 128, 5] in Section 6.5, where we allowed only agents with

inconsistent variables to make non-improving decisions to help the algorithm better

deal with local optima. We found that this change (which we called DSA-BIN)

improved DSA’s performance by allowing it overcome the limitations highlighted in

[49] and thus improving the ability to find zero cost solutions.

• Improvements to Eisenberg’s Distributed Breakout (DisBO). DisBO [25]

was modified to create DisBO-wd in Section 7.4. Dis-BO’s weight update mechanism

was replaced with the multiplicative and decay mechanism from [30] which allowed us

to reduce the number of DisBO’s different cycles from three to two, with significant

cost implications. The new weight update mechanism was modified further so that

weights on satisfied constraints were continuously decayed as well. We found that

8.2. Summary of results 144

DisBO-wd outperformed DisBO both in terms of the percentage of problems solved

and cost of finding solutions.

8.2 Summary of results

The three new penalty driven algorithms were extensively evaluated on different prob

lems and their performance compared with similar distributed iterative improvement al

gorithms. In Chapter 5, we compared DisPeL with the Distributed Breakout Algorithm

(DBA) on distributed graph colouring problems, car sequencing problems, and random

non-binary DisCSPs. The objective was to compare the different cost landscape modifi

cation mechanisms employed by both algorithms: penalties on domain values for DisPeL

and constraint weights for DBA. Results showed that DisPeL solved more problems and

the number of iterations typically required was significantly lower than that for DBA.

Stoch-DisPeL was shown to outperform DisPeL in Chapter 6, as well as our own

improved version of the Distributed Stochastic Algorithm (DSA-BIN). In the experiments

with random binary DisCSPs and distributed boolean satisfiability formulae, Stoch-DisPeL

solved more problems within the allotted time and its search costs were lower.

Finally, the empirical evaluations in Chapter 7 show that Multi-DisPeL dominates

Stoch-DisPeL in problems where each agent has a large number of variables. The eval

uations in that chapter also included comparisons with coarse grained versions of other

distributed iterative improvement algorithms, including Distributed Breakout and Asyn

chronous Weak Commitment Search. The results of the evaluation show that Multi-DisPeL

is quite competitive with respect to those algorithms; in most cases its search costs are

significantly lower than those incurred by the other algorithms.

In summary, all evaluations carried out have shown that although the new algorithms

are incomplete, the solve a very high percentage of reasonably large DisCSPs, with up to

200 variables, within reasonable time.

8.3. Suggestions for further work 145

8.3 Suggestions for further work

Dynamic agent ordering: Published work on distributed backtracking algorithms

has shown that dynamically changing the ordering of variables during the search

can improve performance of such algorithms, by reducing the amount of redundant

search carried out by agents. In our algorithms, the agent ordering determines the

direction penalties flow; as such, it will be useful to study how agents ordering can

be changed dynamically during the search and how such changes can be used to

improve search efficiency.

Solving Distributed Constraint Optimisation Problems (DisCOPs): We presented

algorithms for solving distributed problems where the objective is find the first so

lution in which all constraints are satisfied. However, there are a lot of real life

problems where such solutions do not exist, and the problem solving challenge is

to find a solution with the least number of constraint violations or one that opti

mises a particular evaluation function. Extending the penalty driven algorithms for

such problems would be beneficial given that they scale up quite well. However,

the challenges of using these algorithms in distributed optimisation include correct

termination and possibly making the algorithms complete to provide guarantees of

solution optimality. Further research on extending the DisPeL algorithms for opti

misation can also consider problems with soft constraints or problems where agents

have preferences for particular values in their domains; in both cases the quality of

valid solutions are still evaluated by defined functions that have to be optimised.

• Solving dynamic DisCSPs: In dynamic DisCSPS, the problem specification is not

fixed; during a search constraints may be added or retracted, or agents may join in

or drop out of the collaborative process. Key challenges include agent coordination

issues and how to deal with new information without abandoning existing solutions.

The DisPeL algorithms should fare well for such problems, especially since all forms

of search memory held by agents are ephemeral. As such, agents are not predisposed

towards the initial problem specification. Nevertheless, there are still lots of chal

8.3. Suggestions for further work 146

lenges in adapting our new algorithms for dynamic problems and other opportunities

for improving efficiency on such problems.

• Multi-context search; The idea of solving DisCSPs with concurrent parallel searches

has been around for a few years, but it has been attracting a lot of attention lately as

a promising area of research. As agents take turns to act in the DisPeL algorithms,

they may have a lot of idle time on their hands. This idle time can be exploited and

used to carry out multiple searches; either each with different initialisations or each

search being on a different ordering of agents. Either way, multiple searches will allow

the algorithms to minimise the risks of having bad initialisations or unfavourable

agent orderings. However, to fully benefit from parallel searches, information has to

be shared between the different processes. A possibility for future work is to explore

means for using information from penalties imposed on values in one search to guide

other searches.

• Hybridisation and multi-algorithm search: Agents idle time can further be exploited

by allowing agents use that time to run processes of another algorithm to solve the

same problem. Running and sharing information with complete search algorithms

can provide interesting challenges, especially where such complete algorithms are

running asynchronously. For example, agents can use no-goods generated by the

complete algorithms to guide the iterative improvement search. And, the complete

algorithm can use information agents collect to guide their value selection. Another

interesting hybrid, is a parallel run of a DisPeL algorithm with a distributed asyn

chronous consistency maintenance algorithm where the problem is iteratively made

arc consistent with the information revealed during a search.

• There are also opportunities to explore other esoteric issues, like for example solving

problems with global constraints that can not be decomposed into aggregations of

smaller constraints, strengthening local inference so that agents make better deci

sions, and studying how the algorithms can scale up to deal with problems with

thousands of variables. Further work can also consider making agents pro-active

8.4. Thesis summary 147

where each agent can learn about and possibly estimate states of its neighbours

during a search and with that information improve its decision making.

• Exploring our ideas in centralised settings; To the best of our knowledge, the penalty

mechanism introduced in this study is entirely new and it has not been explored

in centralised CSP solving. A possibility for future work is to compare how the

mechanism stacks up against existing local search algorithms and if, for example,

our penalty reset policy can be used to improve other such algorithms. These ideas

may also be considered for problem solving on computing grids or clusters, of course

with a relaxation of the DisCSP privacy assumptions.

8.4 Thesis summary

In this thesis, we investigated the idea of dealing with local optima by using penalties

attached to domain values to modify cost landscapes. Our primary objective, as stated

in Section 1.1, was to enhance the performance of iterative improvement algorithms for

solving DisCSPs. This objective was achieved with the creation of three new algorithms

(DisPeL, Stoch-DisPeL, and Multi-DisPeL) and the modifications of two existing algo

rithms (DSA-BIN for DSA and DisBO-wd for DisBO). The three new algorithms were

based on the idea of resolving deadlocks with two types of penalties - one for perturb

ing a search and the other for modifying cost landscapes. We argued that modifying

cost landscapes with penalties is a more effective option, as the impact on landscapes are

more dramatic. This allows for quicker resumption of search exploration and as a result,

improves overall search efficiency. The new algorithms were extensively evaluated on dif

ferent types of problems and compared with existing distributed iterative improvement

algorithms. The results reported here showed that the new algorithms were significant

improvements. They solved more problems within the limited time allowed and they

typically incurred significantly lower costs in the process.

Appendix A

Determining optimal parameter

values for DisBO-wd

We introduced DisBO-wd a modification of DisBO [25], in Section 7.4. The weight update

mechanism of DisBO is replaced with the scheme for continuous weight updates proposed

in [30]. This new scheme introduces two new parameters into DisBO-wd i.e. the learning

rate (Zr) and the decay rate (dr). The learning rate controls how fast weights on violated

constraints grow in DisBO-wd, while the decay rate biases the search towards the most

recent weight increases.

In his work on SAT solving with a modified GSAT [101] algorithm, Frank [30] found

that the decay rate was optimal at dr = 0.999, more problems were solved within an allot

ted time than with the value set to 0.95 and 0.99. He also found that the learning rate was

optimal at Zr = 1 compared to runs with the values 8, 16, and 24. However, DisBO-wd

differs from GSAT in many respects especially given the amount concurrent changes that

take place in distributed search. Therefore, we had to carry out an experiments to deter

mine optimal values for the parameters in the distributed algorithm. We used distributed

SAT instances and random DisCSPs for this experiment, evaluating DisBO’s performance

on 100 instances in each case, with the parameters set to Ir = [1,2,3,5,8,10,12,16] and

dr = [0.9,0.95,0.98,0.99]. In Tables A.l and A.2, we summarise the results from this ex

periment, showing the percentage of problems solved, the average and the median search

148

Determining optimal parameter values for DisBO-wd 149

costs incurred where we limited DisBO-wd to 10,000 iterations on each attempt on the

SAT problems and 12,000 iterations on each attempt on the DisCSPs.

dr Ir % solved average cost median cost
0.9 1 60 85 28

2 82 178 90
3 84 151 108
5 94 303 141
8 88 273 139
10 92 300 129
12 92 233 176
16 88 314 145

0.95 1 88 208 111
2 98 304 144
3 100 303 130
5 100 329 195
8 100 259 161
10 98 338 181
12 100 314 136
16 100 358 233

0.98 1 100 236 119
2 100 375 198
3 100 247 174
5 100 263 213
8 100 286 202

10 100 439 176
12 100 380 219
16 100 386 174

0.99 1 100 186 130
2 100 252 127
3 100 243 189
5 100 235 139
8 100 373 235
10 100 312 213
12 100 318 207
16 100 269 213

Table A.l: Performance of DisBO-wd on Distributed SAT problems with different values
for its parameters (Zr and dr).

The results in Table A.l summarise attempts to solve 50-literal SAT instances from the

SATLib problem set. These results are in agreement with the findings in [30], the optimal

values for DisBO-wd match those previously reported. As dr increases, DisBO-wd solved

more problems but there is no clear relationship between the search costs and the decay

Determining optimal parameter values for DisBO-wd 150

rate. With the learning rate, it is clear that the search costs increase with the value of

that parameter.

dr Ir % solved average cost median cost
0.9 1 29 1598 462

2 79 1160 550
3 95 2298 1458
5 99 2412 1648
8 100 2416 1658
10 96 2472 1876.5
12 93 2080 1606
16 94 2260 1286.5

0.95 1 87 1304 663
2 100 1986 1030.5
3 100 2226 1414.5
5 98 1952 1114
8 93 1922 1238

10 95 1876 1104
12 96 2048 1232
16 100 2050 1182.5

0.98 1 95 1834 1163
2 98 1590 1050
3 96 1568 916
5 99 1822 1024
8 99 2114 1038

10 96 1476 984
12 100 1752 1082.5
16 98 2018 1152

0.99 1 97 1668 978
2 97 1748 1120
3 97 1506 832
5 93 1528 826
8 99 1554 858
10 100 1682 828.5
12 96 2152 1432.5
16 97 2454 1376

Table A.2: Performance of DisBO-wd on 100 random DisCSPs (< n = 60,d = 10, pl =
0.1,p2 = 0.5 >) with different values for its parameters (Zr and dr).

The results in Table A.2 show that the parameters influence DisBO-wd differently with

the random DisCSPs. Performance, in terms of search cost, again show improvements

for high values of dr, this suggests that overall the search benefits from retaining some

information of not too recent weight increases for as long as possible and they are not

Determining optimal parameter values for DisBO-wd 151

quickly dominated by newer weight increases. However, it appears that the learning rate

Ir has a different effect on performance in this domain. The algorithm generally does not

fare too well with the smallest and largest values for this parameter. The results, although

not clear cut, show that DisBO-wd is optimal with the values 3,8, or 10 (at dr = 0.99),

where the average search costs are minimal and the percentage of problems solved are

significantly high. But, we arbitrarily chose {Ir = 8 and dr = 0.99) for the experiments

with the algorithm because it solved slightly more problems than with Ir = 3 and the

search costs were lower than with Ir = 10.

Bibliography

[1] Abdulwahed M. Abbas and Edward P. K. Tsang. Constraint-based timetabling-a

case study. In 2001 ACS / IEEE International Conference on Computer Systems

and Applications (AICCSA 2001), pages 67-72. IEEE Computer Society, June 2001.

[2] Panagiotis Adamidis. Parallel evolutionary algorithms: A review. In fth Hellenic-

European Conference on Computer Mathematics and its Applications, September

1998.

[3] Ravinda K. Ahuja and James B. Orlin. Use of representative operation counts in

computational testing of algorithms. INFORMS Journal of Computing, 8(3):318—

330, June 1996.

[4] Aaron Armstrong and Edmund Durfee. Dynamic prioritization of complex agents in

distributed constraint satisfaction problems. In Proceedings of the Fifteenth Interna

tional Joint Conference on Artificiallntelligence (IJCAI), volume 1, pages 620-625,

1997.

[5] Muhammad Arshad and Marius C. Silaghi. Distributed simulated annealing and

comparison to DSA. In Proceedings of the Fourth Workshop on Distributed Con

straint Reasoning, IJCAI-DCR 2003, 2003.

[6] Albert-Lszl Barabsi and Rka Albert. Emergence of scaling in random networks.

Science, 286(5439):509—512, October 1999.

[7] Christian Bessiere. Arc-consistency and arc-consistency again. Artificial Intelligence,

65(1); 179-190, January 1994.

152

BIBLIOGRAPHY 153

[8] Christian Bessiere, Arnold Maestre, Ismel Brito, and Pedro Meseguer. Asynchronous

backtracking without adding links: a new member in the ABT family. Artificial

Intelligence, 161(l-2):7-24, January 2005.

[9] Christian Bessiere, Arnold Maestre, and Pedro Meseguer. Distributed dynamic back

tracking. In Toby Walsh, editor. Lecture Notes in Computer Science 2239 Springer

(CP 2001), 2001.

[10] Christian Bessiere and Jean-Charles Regin. MAC and combined heuristics: Two

reasons to forsake FC (and CBJ?) on hard problems. In Eugene C. Freuder, editor.

Proceedings of the Second International Conference on Principles and Practice of

Constraint Programming, volume 1118 of Lecture Notes in Computer Science, pages

61-75. Springer, 1996.

[11] Christian Bessiere and Jean-Charles Regin. Refining the basic constraint propaga

tion algorithm. In Bernhard Nebel, editor. Proceedings of the 17th International

Joint Conference on Artificial Intelligence (IJCAI 2001), pages 309-315. Morgan

Kaufmann, 2001.

[12] Christian Blum and Andrea Roll. Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. ACM Computing Surveys, September 2003.

[13] Markus Bohlin. Constraint satisfaction by local search. Technical Report T2002:07,

Swedish Institute of Computer Science, July 2002.

[14] E. Bonabeau, M. Dorigo, and G. Theraulaz. Inspiration for optimization from social

insect behaviour. Nature, 406:39 - 42, July 2000.

[15] Ismel Brito and Pedro Meseguer. Distributed forward checking. In Francesca Rossi,

editor. Principles and Practice of Constraint Programming (CP2003), volume 2833

of LNCS, pages 801 - 806, Berlin, September 2003. Spriger.

[16] Ismel Brito and Pedro Meseguer. Synchronous, asynchronous and hybrid algorithms

for DisCSPs. In Proceedings of the Fifth International Workshop on Distributed

Constraint Reasoning, September 2004.

BIBLIOGRAPHY 154

[17] Tom Carchrae and J. Christopher Beck. Low-knowledge algorithm control. In Deb

orah L. McGuinness and George Ferguson, editors. Proceedings of the Nineteenth

National Conference on Artificial Intelligence (AAAI Of), pages 49-54. AAAI Press

/ The MIT Press, July 2004.

[18] Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the really hard

problems are. In Proceedings of the Twelfth International Joint Conference on Ar-

tificiallntelligence, IJCAI-91, Sidney, Australia, pages 331-337, 1991.

[19] Scott Clearwater, Bernardo Huberman, and Tad Hogg. Cooperative solution of

constraint satisfaction problems. Science, 254:1181-1183, November 1991.

[20] Phillippe Codognet and Daniel Diaz. Yet another local search method for constraint

solving. In Kathleen Steinhofel, editor. Stochastic Algorithms: Foundations and

Applications (SAGA 2001). volume 2264 of Lecture Notes in Computer Science,

pages 73-90, Berlin, 2001. Springer.

[21] Zeev Collin, Rina Dechter, and Shmuel Katz. On the feasibility of distributed con

straint satisfaction. In Proceedings of the Twelfth International Joint Conference on

Artificial Intelligence, IJCAI-91, pages 318-324, 1991.

[22] Rina Dechter. Enhancement schemes for constraint processing: Backjumping, learn

ing, and cutset decomposition. Artificial Intelligence, 41(3):273-312, 1990.

[23] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[24] Rina Dechter and Daniel Frost. Backtracking algorithms for constraint satisfaction

problems - a tutorial survey. Technical report. University of California, Irvine, April

1998.

[25] Carlos Eisenberg. Distributed Constraint Satisfaction For Coordinating And Inte

grating A Large-Scale, Heterogeneous Enterprise. PhD thesis, Swiss Federal Institute

of Technology (EPFL), Lausanne (Switzerland), September 2003.

BIBLIOGRAPHY 155

[26] Cesar Fernandez, Ramon Bejar, Bhaskar Krishnamachari, and Carla P. Gomes.

Communication and computation in distributed csp algorithms. In Pascal Van Hen-

tenryck, editor. Sth International Conference, Principles and Practice of Constraint

Programming - (CP 2002), volume 2470 of Lecture Notes in Computer Science, pages

664-679. Springer, September 2002.

[27] Stephen Fitzpatrick and Lambert Meertens. An experimental assessment of a

stochastic, anytime, decentralized, soft colourer for sparse graphs. In Kathleen Stein-

hofel, editor. Lecture Notes in Computer Science 2264, ist Syposium on Stochastoc

Algorithms, pages 49-64, Berlin, December 2001. Springer-Verlag.

[28] Stephen Fitzpatrick and Lambert Meertens. Experiments on dense graphs with a

stochastic, peer-to-peer colorer. In Carla Gomes and Toby Walsh, editors. Proceed

ings of the Eighteenth National Conference on Artificial Intelligence AAAI-02, pages

24-28. AAAI, AAAI Press, July 2002.

[29] Jeremy Frank. Weighting for godot; Learning heuristics for GSAT. In Proceedings of

the Thirteenth National Conference on Artificial Intelligence (AAAI 96), volume 1,

pages 338-343. AAAI Press / The MIT Press, August 1996.

[30] Jeremy Frank. Learning short-term weights for GSAT. In Martha Pollack, edi

tor, Proceedings of the 15th International Joint Conference on Artificial Intelligence

(IJCAI97), pages 384-391, San Franciso, August 1997. Morgan Kaufmann.

[31] Eugene C. Freuder. Synthesizing constraint expressions. Communications of the

ACM, 21(ll):958-966, 1978.

[32] J. Gashnig. Performance measurement and analysis of certain search algorithms.

Technical Report CMU-CS-79-124, Carnegie Mellon University, Pittsburg, PA, 1979.

[33] Matthew L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence

Research, 1:25-46, August 1993.
/

[34] Fred Glover. Tabu search - part 1. ORSA Journal on Computing, 1(3): 190-206,

Summer 1989.

BIBLIOGRAPHY 156

[35] Fred Glover. Tabu search - part H. ORSA Journal on Computing, 2(l):4-32, Winter

1990.

[36] Carla P. Gomes, Bart Selman, and Nuno Crato. Heavy-tailed distributions in com

binatorial search. In Gert Smolka, editor. Proceedings of the Third International

Conference on Principles and Practice of Constraint Programming - (CP ’97), vol

ume 1330 of Lecture Notes in Computer Science, pages 121-135. Springer, November

1997.

[37] Carla P. Gomes, Bart Selman, Nuno Crato, and Henry A. Kautz. Heavy-tailed phe

nomena in satisfiability and constraint satisfaction problems. Journal of Automated

Reasoning, 24(l/2):67-100, February 2000.

[38] Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting combinatorial search

through randomization. In Proceedings of the Fifteenth National Conference on

Artificial Intelligence (AAAP98), pages 431-437, Madison, Wisconsin, July 1998.

AAAI Press / The MIT Press.

[39] Mattias Grdnkvist. A constraint programming model for tail assignment. In Jean-

Charles Regin and Michel Rueher, editors, Proceedings of the First International

Conference Integration of Al and OR Techniques in Constraint Programming for

Combinatorial Optimization Problems (CPAIOR 2004), volume 3011 of Lecture

Notes in Computer Science, pages 142-156. Springer, April 2004.

[40] Youssef Hamadi. Optimal distributed arc-consistency. In Joxan Jalfar, editor. Pro

ceedings of the Sth Int’l Conference Principles and Practice of Constraint Program

ming - CP’99, volume 1713 of Lecture Notes in Computer Science, pages 219-233.

Springer, October 1999.

[41] Youssef Hamadi. Interleaved backtracking in distributed constraint networks. In

ternational Journal on Artificial Intelligence Tools, 11 (2): 167-188, June 2002.

[42] Youssef Hamadi. Conflicting agents in distributed search. International Journal on

Artificial Intelligence Tools, 14(3):459-476, 2005.

BIBLIOGRAPHY 157

[43] Youssef Hamadi, Christian Bessiere, and Joel Quinqueton. Backtracking in dis

tributed constraint networks. In Henri Prade, editor, 13th European Conference on

Artificial Intelligence ECAI 98, pages 219-223, Chichester, August 1998. John Wiley

and Sons.

[44] Jiming Liu. Han Jing and Cai Qingsheng. From ALIFE Agents to a Kingdom of N

Queens, pages 110 - 120. The World Scientific Publishing Co. Pte, Ltd, November

1999.

[45] Pierre Hansen and Nenad Mladenovic. Variable Neighbourhood Search, pages 221-

234. Oxford University Press, New York, 2002.

[46] Robert M. Haralick and Gordon L. Elliott. Increasing tree search efficiency for

constraint satisfaction problems. Artificial Intelligence, 14(3):263-313, 1980.

[47] Katsutoshi Hirayama and Makoto Yokoo. The effect of nogood learning in dis

tributed constraint satisfaction. In ICDCS ’00: Proceedings of the The 20th In

ternational Conference on Distributed Computing Systems (ICDCS 2000), pages

169-177, Washington, DC, USA, April 2000. IEEE Computer Society.

[48] Katsutoshi Hirayama and Makoto Yokoo. Local search for distributed SAT with

complex local problems. In Proceedings of the first international joint conference on

Autonomous agents and multiagent systems, AAMAS 2002, pages 1199 - 1206, New

York, NY, USA, 2002. ACM Press.

[49] Katsutoshi Hirayama and Makoto Yokoo. The distributed breakout algorithms.

Artificial Intelligence, 161 (1—2):89—115, January 2005.

[50] Katsutoshi Hirayama, Makoto Yokoo, and Kaita Sycara. The phase transition in

distributed constraint satisfaction problems: first results. In Proceedings of the

International Workshop on Distributed Constraint Satisfaction, 2000.

[51] Tad Hogg. Refining the phase transition in combinatorial search. 81:127-154, March

1996.

BIBLIOGRAPHY 158

[52] Tad Hogg and Colin P. Williams. Solving the really hard computational problems

with cooperative search. In Proceedings of AAAI93, pages 231-236. AAAI, AAAI

Press, 1993.

[53] Tag Hogg and Bernardo A. Huberman. Better than the best: The power of coop

eration. In CSSS: 1989 Lectures in Complex Systems, The Proceedings of the 1989

Complex Systems Summer School, volume 2 of Studies in the Sciences of Complexity,

pages 165-184, Santa Fe, NM, 1992. Addison-Wesley.

[54] Holger H. Hoos. Stochastic Local Search - methods, models, applications. PhD thesis,

Darmstadt University of Technology, Germany, 1998.

[55] Holger H. Hoos and Thomas Stutzle. Evaluating las vegas algorithms: Pitfalls

and remedies. In Gregory F. Cooper and Serafin Moral, editors. Proceedings of

the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI’98), pages

238-245. Morgan Kaufmann, July 1998.

[56] Holger H. Hoos and Thomas Stutzle. Satlib: An online resource for research on

SAT. In I. P. Gent, H. van Maaren, and T. Walsh, editors. Third Workshop on the

Satisfiability Problem (SAT 2000), pages 283-292. IOS Press, 2000.

[57] Frank Hutter, Dave A. D. Tompkins, and Holger H. Hoos. Scaling and probabilistic

smoothing: Efficient dynamic local search for SAT. In P. Van Hentemyck, editor.

Proceedings of the Sth International Conference on Principles and Practice of Con

straint Programming (CP02), volume 2470 of LNCS, pages 233-248, London, UK,

September 2002. Springer-Verlag.

[58] M. D. Johnston. SPIKE: AI scheduling for bubble space telescope after 18 months of

orbital operations. In Proceedings of the 1992 AAAI Spring Symposium on Practical

Approaches to Scheduling and Planning, pages 1-5, Stanford, CA, 1992.

[59] James Kennedy and Russell Eberhart. Particle swarm optimization. In Proc. IEEE

International Conference on Neural Networks, pages 1942 - 1948, NJ, 1995. IEEE,

IEEE.

BIBLIOGRAPHY 159

[60] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.

Science, 220, 4598(4598):671-680, May 1983.

[61] Kurt Konolige. Easy to be hard: Difficult problems for greedy algorithms. In

Jon Doyle, Erik Sandewall, and Pietro Torasso, editors. Proceedings of the fth In

ternational Conference on Principles of Knowledge Representation and Reasoning

(KR’94)-, pages 374-378. Morgan Kaufmann, May 1994.

[62] William A. Kornfeld. The use of parallelism to implement a heuristic search. In

Patrick J. Hayes, editor. Proceedings of the 7th International Joint Conference on

Artificial Intelligence (IJCAI ’81), pages 575-580. William Kaufmann, august 1981.

[63] Manuel Laguna and Rafael Marti. A GRASP for coloring sparse graphs. Computa

tional Optimization and Applications, 19(2).T65-178, 2001.

[64] Catherine Lassez, Ken McAloon, and Roland Yap. Constraint logic programming

and option trading. IEEE Expert, pages 42-50, Fall 1987.

[65] Maria Lin Sui Ling. Multi-agent Constraint Satisfaction and Optimisation. PhD

thesis, IC-Parc, Imperial College London, November 2002.

[66] J. Liu, J. Han, and Y. Y. Tang. Multi-agent constraint satisfaction. Artificial

Intelligence, 136(l):101-144, March 2002.

[67] JyiShane Liu and Katia P. Sycara. Exploiting problem structure for distributed con

straint optimization. In Victor Lesser, editor, Proceedings of the First International

Conference on Multi-Agent Systems, pages 246-254, San Francisco, CA, 1995. MIT

Press.

[68] Alan K. Mackworth. Consistency in networks of relations. Artificial Intelligence,

8(1):99-118, 1977.

[69] Arnold Maestre and Christian Bessiere. Improving asychronous backtracking for

dealing with complex local problems. In Ramon Lopez de Mantaras and Lorenza

BIBLIOGRAPHY 160

Saitta, editors. Proceedings of the 16th Eureopean Conference on Artificial Intelli

gence (ECAI 2004), pages 206-210. IOS Press, August 2004.

[70] Roger Mailler and Victor Lesser. Using cooperative mediation to solve distributed

constraint satisfaction problems. In Proceedings of Third International Joint Con

ference on Autonomous Agents and MultiAgent Systems (AAMAS 2004), 2004.

[71] David A. McAllester, Bart Selman, and Henry A. Kautz. Evidence for invariants

in local search. In Proceedings of the Fourteenth National Conference on Artificial

Intelligence (AAAI ’97), pages 321-326. AAAI Press / The MIT Press, 1997.

[72] Ammon Meisels and Oz Lavee. Using additional information in DisCSPs search.

In Pregnesh Jay Modi, editor. Proceedings of the 5th International Workshop on

Distributed Constraint Reasoning, September 2004.

[73] Amnon Meisels and Roie Zivan. Asynchronous forward-checking on DisCSPs. In

Proceedings of the Distributed Constraint Reasoning Workshop (IJCAI-DCR 2003),

2003.

[74] Michela Milano and Andrea Roll. MAGMA: A multiagent architecture for meta

heuristics. IEEE Trans, on Systems, Men and Cybernetics - Part B, 34(2):925-941,

April 2004.

[75] Patrick Mills. Extensions to Guided Local Search. PhD thesis. University of Essex,

Essex, 2002.

[76] Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird. Solving

large-scale constraint-satisfaction and scheduling problems using a heuristic repair

method. In Proceedings of the Sth National Conference on Artificial Intelligence

(AAAI 90), pages 17-24. AAAI Press / The MIT Press, July 1990.

[77] Steven Minton, Mark D. Jonston, Andrew B. Philips, and Philip Laird. Minimiz

ing conflicts: a heuristic repair method for constraint satisfaction and scheduling

problems. Artificial Intelligence, 58:161-205, 1992.

BIBLIOGRAPHY 161

[78] Pragnesh Jay Modi. Distributed Constraint Optimization for Multiagent Systems.

PhD thesis, University of Southern California, Department of Computer Science,

2003.

[79] Roger Mohr and Thomas C. Henderson. Arc and path consistency revisited. Artifi

cial Intelligence, 28(2):225-233, 1986.

[80] Ugo Montanari. Networks of constraints: Fundamental properties and applications

to picture processing. Inf. Sci., 7:95-132, 1974.

[81] Paul Morris. The breakout method for escaping from local minima. In Proceedings

of the 11th National Conference on Artificial Intelligence(AAAI 93), pages 40-45,

1993.

[82] T. Nguyen and Yves Deville. A distributed arc-consistency algorithm. Science of

Computer Programming, 30(1-2):227-250, 1998.

[83] Viet Nguyen, Djamila Sam-Haroud, and Boi Fallings. Distributed dynamic back-

jumping. In Pragnesh Jay Modi, editor. Proceedings of the Fifth International Work

shop on Distributed Constraint Reasoning (DCR 2004), September 2004.

[84] Kobbi Nissim and Roie Zivan. Secure discsp protocols - from centralised towards

distributed solutions. In Amnon Meisels, editor. Proceedings of the Sixth Interna

tional Workshop on Distributed Constraint Reasoning (DCR 2005). pages 161-175,

July 2005.

[85] Edgar M. Palmer. Graphical evolution: an introduction to the theory of random

graphs. John Wiley &: Sons, Inc., 1985.

[86] Luis Paquete and Thomas Stutzle. An experimental investigation of iterated local

search for coloring graphs. In Stefano Cagnoni, Jens Gottlieb, Emma Hart, Martin

Middendorf, and Gunther Raidl, editors. Applications of Evolutionary Computing,

Proceedings of EvoWorkshops2002:EvoCOP, EvoIASP, EvoSTim, pages 121-130,

Kinsale, Ireland, March 2002. Springer-Verlag.

BIBLIOGRAPHY 162

[87] Bruce D. Parrello, Waldo C. Kabat, and L. Wos. Job-shop scheduling using auto

mated reasoning: a case study of the car-sequencing problem. Journal of Automated

Reasoning, 2(l):l-42, 1986.

[88] Steven Prestwich. Random walk with continuously smoothed variable weights. In

Fahiem Bacchus and Toby Walsh, editors. Proceedings of Sth Int’l Conference on

Theory and Applications of Satisfiability Testing (SAT 2005), volume 3569 of LNCS,

pages 203-215. Springer, June 2005.

[89] Patrick Prosser. Domain filtering can degrade intelligent backtracking search. In

Ruzena Bajcsy, editor. Proceedings of the 13th International Joint Conference on

Artificial Intelligence (IJCAI ’93), pages 262-267, Chambry, Prance, August 1993.

Morgan Kaufmann.

[90] Patrick Prosser, Chris Conway, and Claude Muller. A constraint maintenance system

for the distributed resource allocation problem. Intell. Syst. Eng., l(l):76-83, 1992.

[91] Michel Raynal. Networks and Distributed Computation. North Oxford Academic,

London, 1987.

[92] Georg Ringwelski. Distributed and dynamic constraint processing in two agent

layers. Technical report, Cork Constraint Computation Centre, Universtity of Cork,

Cork Ireland, October 2003.

[93] Georg Ringwelski. The DDAC4 algorithm for arc-consistency enforcement in dy

namic and distributed discsp. In Proceedings of the Fifth International Workshop

on Distributed Constraint Reasoning, September 2004.

[94] Georg Ringwelski. Incremental constraint propagation for interleaved distributed

backtracking. In Proceedings of the Distributed Constraints Reasoning Workshop

(CP-DCR 2004), September 2004.

[95] Georg Ringwelski and Youssef Hamadi. Boosting distributed constraint satisfaction.

In Peter van Beek, editor, Proceedings of the 11th International Conference Prin-

BIBLIOGRAPHY 163

ciples and Practice of Constraint Programming - CP 2005, volume 3709 of Lecture

Notes in Computer Science, pages 549-562. Sringer, September 2005.

[96] Daniel Sabin and Eugene C. Freuder. Contradicting conventional wisdom in con

straint satisfaction. In Alan Horning, editor. Proceedings of the Second International

Workshop on Principles and Practice of Constraint Programming, (PPCP’Of), vol

ume 874 of Lecture Notes in Computer Science, pages 10-20. Springer, 1994.

[97] Arvind Sathi and Mark Fox. Constraint-direction negotiation of resource realloca

tions. Technical Report CMU-RI-TR-89-12, The Robotics Institute, Carnegie Mellon

University, Pittsburgh, PA, March 1989.

[98] Thomas Schiex, Helene Fargier, and Gerard Verfaillie. Valued constraint satisfac

tion problems: Hard and easy problems. In Chris Mellish, editor, Proceedings In

ternational Joint Conference on Artificial Intelligence (IJCAP95), volume 1, pages

631-639, Montreal, August 1995. Morgan Kaufmann.

[99] Dale Schuurmans and Finnegan Southey. Local search characteristics of incomplete

SAT procedures. In Proceedings of the Seventeenth National Conference on Artificial

Intelligence (AAAI 2000), pages 297-302. AAAI Press / The MIT Press, July 2000.

[100] Dale Schuurmans, Finnegan Southey, and Robert C. Holte. The exponentiated sub

gradient algorithm for heuristic boolean programming. In Bernhard Nebel, editor.

Proceedings of the Seventeenth International Joint Conference on Artificial Intelli

gence, (IJCAI 2001), pages 334-341. Morgan Kaufmann, August 2001.

[101] Bart Selman and Henry A. Kautz. Domain-independent extensions to gsat: Solving

large structmed satisfiability problems. In Ruzena Bajcsy, editor. Proceedings of the

13th International Joint Conference on Artificial Intelligence (IJCAI '93), pages

290-295, August 1993.

[102] Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strategies for improving

local search. In Proceedings of the 12th National Conference on Artificial Intelligence

(AAAI ’94), volume 1, pages 337-343. AAAI Press, July 1994.

BIBLIOGRAPHY 164

[103] Bart Selman, Hector J. Levesque, and David G. Mitchell. A new method for solving

hard satisfiability problems. In William R. Swartout, editor. Proceedings of the 10th

National Conference on Artificial Intelligence (AAAI 92), pages 440-446. The AAAI

Press / The MIT Press, July 1992.

[104] Marius-Calin Silaghi, Amit Abhyankar, Markus Zanker, and Roman Bartak. Desk

mates (stable matching) with privacy of preferences, and a new distributed csp

framework. In Ingrid Russell and Zdravko Markov, editors. Proceedings of the

Eighteenth International Florida Artificial Intelligence Research Society Conference

(FLAIRS 2005), pages 671-677. AAAI Press, May 2005.

[105] Marius-Calin Silaghi and Boi Fallings. Asynchronous aggregation and consistency in

distributed constraint satisfaction. Artificial Intelligence, 161(l-2):25-53, January

2005.

[106] Marius-Calin Silaghi, D. Sam-Haroud, and Boi Fallings. Hybridizing ABT and AWC

into a polynomial space, complete protocol with reordering. Technical Report 364,

Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland), May 2001.

[107] Marius-Calin Silaghi, Djamila Sam-Haroud, and Boi Fallings. Asynchronous search

with aggregations. In Proceedings of the Seventeenth National Conference on Arti

ficial Intelligence (AAAI 2000), pages 917-922, Austin, Texas, August 2000. AAAI

Press.

[108] Marius-Calin Silaghi, Djamila Sam-Haroud, and Boi Fallings. ABT with asyn

chronous reordering. In 2nd Asia-Pacific Conference on Intelligent Agent Technology

(IAT’2001), pages 54-63. World Scientific, 2001.

[109] Christine Solnon. Ants can solve constraint satisfaction problems. IEEE Transac

tions On Evolutionary Computation, 6(4):347- 357, August 2002.

[110] Gadi Solotorevsky, Ehud Gudes, and Amnon Meisels. Distributed constraint satis

faction problems - a model and application. 1997.

BIBLIOGRAPHY 165

[Ill] Dave Tompkins and Holger Hoos. Warped landscapes and random acts of SAT

solving. In Sth International Symposium on Artificial Intelligence and Mathematics

(AMAI 2004), January 2004.

[112] Michel Toulouse, Teodor Crainic, and Brunilde Sanso. Systemic behavior of coop

erative search algorithms. Parallel Computing, 30(l):57-79, January 2004.

[113] Christos Voudouris. Guided local search for combinatorial optimisation problems.

PhD thesis. University of Essex, Colchester, UK, July 1997.

[114] Christos Voudouris. Guided local search: An illustrative example in function opti

misation. BT Technology Journal, 16(3):46-50, July 1998.

[115] Christos Voudouris and Edward Tsang. Solving the radio link frequency assignment

problem using guided local search. In Proceedings of the NATO Symposium on Radio

Length Erequency Assignment, October 1998.

[116] Benjamin W. Wah and Zhe Wu. The theory of discrete lagrange multipliers for non

linear discrete optimization. In Principles and Practice of Constraint Programming,

pages 28-42, 1999.

[117] Toby Walsh. Search on high degree graphs. In Bernhard Nebel, editor. Proceedings

of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI

2001), pages 266-274. Morgan Kaufmann, August 2001.

[118] David Waltz. Understanding line drawings of scenes with shadows. In Patrick Henry

Winston, editor, The Psychology of Computer Vision. McGraw-Hill, New York, 1975.

[119] Lars Wittenburg. Distributed constraint solving and optimizing for micro-electro

mechanical systems. Master’s thesis. Technical University of Berlin, Decebmer 2002.

[120] Xiaolong Jin Yi Tang, Jiming Liu. Adaptive compromises in distributed problem

solving. In Proceedings of the fth International Conference on Intelligent Data En-

gineeringand Automated Learning IDEAL 2003., March 2003.

BIBLIOGRAPHY 166

[121] Makoto Yokoo. Asynchronous weak-commitment search for solving distributed con

straint satisfaction problems. In Ugo Montanari and Francesca Rossi, editors, Pro-

ceeidings of the First International Conference Principles and Practice of Constraint

Programming (CP ’95), volume 976 of Lecture Notes in Computer Science, pages

88-102. Springer, September 1995.

[122] Makoto Yokoo, Edmund H. Durfee, Torn Ishida, and Kazuhiro Kuwabara. Dis

tributed constraint satisfaction for formalizing distributed problem solving. In 12th

International Conference on Distributed Computing Systems (ICDCS-92), pages

614-621, 1992.

[123] Makoto Yokoo and Katsutoshi Hirayama. Distributed breakout algorithm for solving

distributed constraint satisfaction problems. In Proceedings of the Second Interna

tional Conference on Multi-Agent Systems, pages 401-408. MIT Press, 1996.

[124] Makoto Yokoo and Katsutoshi Hirayama. Distributed constraint satisfaction algo

rithm for complex local problems. In ICMAS ’98: Proceedings of the 3rd Interna

tional Conference on Multi Agent Systems, pages 372-379, Washington, DC, USA,

July 1998. IEEE Computer Society.

[125] Makoto Yokoo, Koutarou Suzuki, and Katsutoshi Hirayama. Secure distributed

constraint satisfaction: Reaching agreement without revealing private information.

In Pascal Van Hentenryck, editor. Proceedings of the Sth International Conference

Principles and Practice of Constraint Programming - (CP ’02), volume 2470 of

Lecture Notes in Computer Science, pages 387-401. Springer, September 2002.

[126] Z.Habbas, F. Herrmann, P.-P. Mrel, and D. Singer. Parallel search algorithms for

constraint satisfaction problems. In Dominique de Werra and Thomas M. Liebling,

editors. Proceedings of the 16th International Symposium on Mathematical Program

ming, Lausanne, July 1997.

[127] Weixiong Zhang and Lars Wittenburg. Distributed breakout revisited. In Proceedings

BIBLIOGRAPHY 167

of the Eighteenth National Conference on Artificial Intelligence, pages 352 — 357.

AAAI Press, July 2002.

[128] Weixong Zhang, Guandong Wang, Zhao Xing, and Lars Wittenburg. Distributed

stochastic search and distributed breakout: properties, comparison and applica-

tions to constraint optimization problems in sensor networks. Artificial Intelligence,

161(l-2):55-87, January 2005.

[129] Yuanlin Zhang and Roland H. C. Yap. Making AC-3 an optimal algorithm. In Bern-

hard Nebel, editor. Proceedings of the Seventeenth International Joint Conference

on Artificial Intelligence (IJCAI 2001), pages 316-321. Morgan Kaufmann, August

2001.

[130] Lingzhong Zhou, John Thornton, and Abdul Sattar. Dynamic agent-ordering and

nogood-repairing in distributed constraint satisfaction problems. In Valerie Barr

and Zdravko Markov, editors. Proceedings of the 17th Florida Artificial Intelligence

Research Symposium Conference (FLAIRS)., Maimi, May 2004. AAAI Press.

[131] Roie Zivan and Amnon Meisels. Concurrent backtrack search on DisCSPs. In Valerie

Barr and Zdravko Markov, editors. Proceedings of the 17th International Florida

Artificial Intelligence Research Symposium Conference. AAAI Press, 2004.

[132] Roie Zivan and Amnon Meisels. Dynamic reordering for asynchronous backtrack

ing on DisCSPs. In Amnon Meisels, editor, Proceedings of the Sixth International

Workshop on Distributed Constraint Reasoning (DCR 05), pages 15-29, July 2005.

	coversheet_template_THESIS
	BASHARU 2006 Modifying landscapes with penalties

