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Abstract

The process 
first step in 
Satisfaction

the problem

The recent growth of the internet and distributed computing facilitated by the internet has 
created more opportunities for collaboration between individuals and organisations. These 
new forms of collaborative activity put groups of participants in situations where there is 
a shared objective but at the same time there is also a competition for resources by the 
participants. Hence, there is a need for participants to make compromises in order to reach 
agreement. Examples of such situations include collaborative scheduling in supply chain 
management or even individuals trying to agree on a schedule of meetings, 
of reaching agreement on any of such situations can be automated and the 
such automation may be to model the situations as Distributed Constraint 
Problems (DisCSPs).

DisCSPs formally describe distributed problems where each participant in 
is represented by an agent, and the collection of agents have to collaborate in order to 
reach a satisfactory agreement (or find a solution) for a problem. Yokoo’s seminal work 
on distributed constraint solving introduced the idea of distributed approaches to solving 
such problems. And following that, research in the new field has come up with a variety 
of techniques, including combinatorial search and other forms of inference, for solving 
DisCSPs. In this study, we investigate an iterative improvement search approach for 
solving DisCSPS.

Iterative improvement search has the advantage, over constructive search, of being 
able to converge quicker on large problems. But, it also has a propensity to converge to 
local optima in the process. Previous work on iterative improvement search (in centralised 
and distributed forms) has considered a variety of techniques for dealing with the problem 
of convergence on local optima. Prominent amongst these include introducing forms of 
randomisation or modifying the shapes of objective landscapes to guide a search out 
of plateaus. We present a new approach for dealing with local optima in distributed 
iterative improvement by modifying the cost landscape with two forms of penalties which 
are attached to individual domain values. We use one type of penalty to perturb solutions 
and the other to help agents learn about (and avoid) domain values frequently associated 
with local optima. We argue that, compared to other forms of landscape modification, our 
approach has a more dramatic effect on cost landscapes and hence, it is a more effective 
strategy for solving DisCSPs by iterative improvement search.

Based on the idea of using two forms of penalties for dealing with local optima, we 
introduce three new distributed algorithms for solving DisCSPs where the objective is to 
find the first solution that satisfies all constraints simultaneously. First, we introduce the 
Distributed Penalty Driven Search (DisPeL) which is built around a two phased strategy 
of using penalties. We also introduced a stochastic variation of that algorithm (Stoch- 
DisPeL), which reduces some of DisPeL’s complexities and allows agents to randomly 
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decide which of the two penalties to use when dealing with local optima. These two 
algorithms are specifically designed for scenarios where each agent represents a variable 
in a DisCSP, unlike our third algorithm (Multi-DisPeL) which extends some of the ideas 
from the earlier algorithms to DisCSPs where each agent represents multiple variables.

We evaluated all three algorithms on a number of distributed constraint satisfaction 
problems including distributed graph colouring, distributed Boolean satisfiability, and ran
dom DisCSPs. We also compared them to state-of-the-art distributed iterative improve
ment algorithms. The results of the evaluations show that the penalty driven algorithms 
are effective alternatives; they solved more problems and typically incurred lower costs in 
the process.
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Chapter 1

Introduction

Recent commentaries in the popular press suggest that we are currently in the midst of the

Information Revolution. Just like the printing press, the steam engine, and television, the 

spread of the Internet has changed, and it is still expected to change, our lives profoundly 

and in unanticipated ways. More than any time in human history, nearly half of the 

world’s population has instant access to information on just about any topic under the 

sun. Electronic mail and other Internet enabled technologies allow us to communicate 

instantly too. Suddenly, the degrees of separation between any two individuals on the 

planet have been shortened.

This instant connectivity between individuals is also changing the ways we collaborate 

and work together. For example, open source projects like the Linux operating system 

or the Wikipedia project have shown us how geographically dispersed individuals can 

successfully collaborate on ad hoc basis. And, nowhere is this impact more felt than in 

the business environment. The ways companies operate, compete, and collaborate are 

constantly being changed. Value chain networks that interconnect internal information 

systems via the Internet now provide an end-to-end link between end-users and raw ma

terial suppliers such that companies can respond quicker to changes in the market place.

In fact, it has come to the point that explicit virtual organisations can now exist; where 

companies at different levels of a value chain can rapidly form new alliances to exploit spe

cific opportunities for very short periods of time. Unlike hierarchical alliances in existing 

1



Introduction 2

supply chain networks, such ad hoc alliances face some quite complex challenges; from de

centralised coordination to trust - since partners in one alliance may become competitors 

months after the dissolution of the alliance.

In its broadest sense, this study is about such collaborations. It is interested in the 

forms of collaborations where there is a common objective to be achieved by a group of 

participants and yet each participant has its own objectives. Furthermore, in these col

laborative situations there is a competition for resources and trust between participants is 

not unbounded. Such collaborations permeate different levels of human endeavour, from 

individuals trying to schedule meetings to joint multinational projects like the Interna

tional Space Station. In particular, this study is interested in how problems are solved in 

such collaborative groupings. We consider problems like scheduling or resource allocation 

where group objectives are clearly defined but individual objectives introduce additional 

limitations on how solutions are negotiated. We consider how such problems can be solved 

automatically by systems of autonomous and homogeneous software agents representing 

participants in a group.

Normally, in the absence of individual objectives, such problems already belong to 

a class of computationally intractable problems where the difficulty of a problem can 

increase exponentially with its size. At present, there are no known algorithms that 

guarantee that such problems can be solved in reasonable time. However, over the last 

thirty years Constraint Satisfaction has emerged as a successful paradigm for dealing with 

these problems. The constraint satisfaction approach uses the constraints implicit in a 

problem to rule out parts of a problem that can not be in a solution and as such improve 

the efficiency of the problem solving process. As such, in constraint satisfaction, a problem 

is first formally represented as a Constraint Satisfaction Problem (CSP) comprising a 

finite set of decision variables, each with a set of alternatives it can adopt, and a set 

of constraints [23]. The constraints in a problem define relations between variables, and 

state which alternatives the decision variables can simultaneously assume. In scheduling 

for example, a typical constraint is one that imposes precedence relationships on the order 

in which any set of tasks are to be performed. A CSP is solved when all choices for decision 
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variables are consistent with all the constraints between the variables.

In collaborative situations, the problems to be solved can be formally modelled as

Distributed Constraint Satisfaction Problems (DisCSPs) [122], where, in addition to the

CSP components, there is a set of autonomous agents. Each agent represents an individual 

participant in the grouping, controlling all decision variables owned by that participant.

In the DisCSP model, it is assumed that participants are physically dispersed and, for 

several reasons, information about a problem remains in the hands of its owners and 

as such all information can not be collected at a single location. Agents collaborate to 

solve a DisCSP by negotiating on possible choices for their decision variables, based on 

information available locally, to find a stable state where all choices are consistent with 

all the constraints between variables.

Besides the intractability of DisCSPs, the distribution of information creates additional 

challenges for the process of solving them. For instance, agents can not appreciate the 

impact of their decisions on the grouping since each agent has partial knowledge of the 

problem being solved. As such, all decisions are based on the information held within 

each agent and the bits of information gathered from local connections with other agents.

There is also a privacy requirement that limits the amount of information each agent is 

permitted to reveal to other agents. Therefore, the key research challenge in solving such 

problems remains crafting out behavioms and interactions for individual agents so that 

the problem solving efficiency of a system of agents is improved.

1.1 Research objective

DisCSPS are mostly solved by search. The techniques for carrying out such search fall 

under two major categories; (1) backtracking and (2) iterative improvement. Backtracking 

search constructs solutions by sequentially considering possible alternatives and revising 

early decisions that rule out all alternatives for later decisions. Backtracking is guaranteed 

to be complete as it can determine when a problem is unsolvable with certainty and, when 

it is solvable, find all possible solutions. Iterative improvement, on the other hand, starts 

its search at a random position in the space of all possible combinations of alternatives. 
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and it proceeds to move from one point to the next in that space making improvements 

until a solution is found.

In centralised problems, iterative improvement algorithms offer the key advantage of 

converging quicker on large problems than complete backtracking search; although without 

similar theoretical guarantees of completeness. Such algorithms have been shown to be 

remarkably effective for solving problems with millions of variables. For example, a local 

search algorithm has been used to solve the //-queens problem with a million queens in less 

than a minute [76], while the practical limit for complete backtracking is a few hundred 

queens [23].

The weaknesses of complete algorithms are amplified further when solving problems 

in distributed environments with the privacy restrictions of DisCSPs. The added cost 

of communications between processes imposes even more severe practical limits on such 

algorithms. Such is the effect of these limitations that in the literature on distributed 

backtracking most experiments are performed with problems having no more than 60 vari

ables^ , while distributed versions of iterative improvement algorithms have shown promise 

on larger problems.

However, iterative improvement in general suffers from the problem of regular con

vergence to local optima i.e. non-optimal solutions or traps in the solution space that 

prevent a search from making any improvements and halts its progress. The strategy 

for dealing with local optima is thus a crucial component of any iterative improvement 

algorithm. Such strategies naturally aim to help a search find the quickest paths out of 

locally optimal regions and possibly try to prevent the search from returning to such re

gions. Therefore these strategies also influence the overall effectiveness and efficiency of 

the underlying iterative improvement search.

In this study, we focus on distributed iterative improvement search for solving DisC

SPs. Our primary research objective is to improve performance of this form of search by 

improving the strategy for dealing with local optima. To do this, we look at cost landscape 

modification as a means of enabling a search to find paths out of such optima. We propose

^This was an observation from a personal survey of published literature in the field up to 2005.
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a new strategy based on the idea of using penalties attached to individual domain values

and argue that it is a more effective means of landscape modification. This strategy is

used as the basis for three new distributed iterative improvement algorithms.

1.2 Key contributions

The key contributions of this study are:

1. A new mechanism for modifying cost landscapes with penalties on individual domain

values. We argue that modifying cost landscapes with weights on constraints, which

is a popular approach, may not be effective at inducing exploration in landscapes

dominated by plateaus. Therefore, we propose a much finer grained approach where

assignments associated with plateaus are penalised. This is extended further so

that penalties can also be used to perturb searches as another means of encouraging

search exploration.

2. The Distributed Penalty Driven Search (DisPeL) algorithm is introduced built around

the new landscape modification mechanism. DisPeL is a synchronous distributed it

erative improvement algorithm for solving DisCSPs where each agent has only one

variable. In DisPeL, sequential improvements are made to a random initialisation

and a two phased penalty strategy is used by agents to deal with deadlocks occurring

at local optima. Penalties are used to perturb the solution in the first phase and

are used to modify cost landscapes in the second phase. DisPeL is sound and it

has a linear space complexity. Extensive experimentation has been carried out using

different problems, with sizes of up to 200 variables, and the results show DisPeL

provides significant cost savings over the Distributed Breakout algorithm [123]. We

also show that it is robust to communications failures, where it still solves a high

percentage of problems when up to 40% of messages are not received by intended

recipients.

3. DisPeL is extended in form of the Stochastic Distributed Penalty Driven Search

(Stoch-DisPeL) algorithm, in order to reduce the risks of bad initialisations in Dis-
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PeL. Actions to resolve deadlocks in DisPeL are performed in a deterministic manner;

and as such, if a search starts off on a trajectory that does not lead to a solution,

DisPeL is unable to avoid an infinite oscillation between non-solution states. Stoch-

DisPeL makes the choice of what resolution phase to implement a random one and

therefore the search trajectory is no longer exclusively determined by the random

initialisation.

4. Stoch-DisPeL is extended to create Penalty Driven Search for Agents with Multi

ple Local Variables (Multi-DisPeL). As its name implies, Multi-DisPeL is designed

for problems where each agent has multiple variables, constraints between these

variables, as well as constraints with variables owned by other agents. The penalty

mechanism is integrated into the local algorithms used by agents and applied in order

to resolve deadlocks that occur both between local variables and between variables

belonging to different agents.

1.3 Scope of this study

Attention in this study is focused on algorithms for solving DisCSPs where the objective 

is to find the first solution that satisfies all constraints simultaneously. As such, we do 

not consider Distributed Constraint Optimisation Problems, where the objective is to find 

the best solution as determined by a stated objective function. Neither do we consider 

distributed problems that require an algorithm to return all possible solutions to it. Fi

nally, we assume that each problem’s specification is fixed in advance and does not change 

during the process of attempting to solve it.

1.4 Thesis outline

This thesis is organised as follows. Chapter 2 is a survey of related work on algorithms for 

solving Constraint Satisfaction Problems both in centralised and distributed environments.

In Chapter 3, a formal description of the Distributed Constraint Satisfaction Problem is 

presented, as well the model of DisCSP used in this study. We also outline our assumptions 
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and the scope of the model. New ideas for modifying cost landscapes are presented in

Chapter 4 along with a comparison with the dominant approach. In Chapters 5, 6, and 

7 new distributed iterative improvement algorithms, based on the ideas in Chapter 4, are 

presented. Results of empirical evaluations are also presented in the respective chapters.

Finally, a summary of thesis and suggestions for further work are presented in Chapter 8.



Chapter 2

Survey of Related Work

2.1 Constraint Satisfaction

Much of the work in Artificial Intelligence (Al) problem solving can directly or indirectly 

be placed into one of two categories: representation or search. In areas like machine vision, 

natural language, and expert systems, the challenge for Al is to find appropriate represen

tations of the real world in forms that computers can manipulate meaningfully. While in 

other areas, such as machine learning, game playing, and planning, the Al challenge is to 

find patterns or valid series of actions from extremely large sets of possibilities. Constraint 

satisfaction (or constraint reasoning) is an emerging paradigm that brings both these two 

categories together, to deal with a wide variety of problems that require some intelligence 

to solve. In problems such as scene recognition [118], option trading [64], or resource allo

cation [58, 1, 39], the constraint satisfaction paradigm ties the two Al categories together 

by providing formal methods for describing problems as Constraint Satisfaction Problems 

(CSPs); a well as providing a host of techniques for solving such problems.

Formally, a CSP is defined as a triple (X, D, C) [23], where X is a set of finite decision 

variables, D is a set of finite domains listing possible values for each variable, and C is 

the set of constraints that restrict what values can be assigned to sets of variables. The 

solution to a CSP is an assignment of a value to each variable, so that all constraints 

in the CSP are simultaneously satisfied. CSPs are NP Complete problems that involve 

8
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combinatorial search spaces and are therefore solved by search and/or inference methods. 

In the following, we outline the main categories of algorithms for solving CSPs, highlighting 

the strengths and any limitations of algorithms in each category along the way.

2.1.1 Search techniques for solving CSPs

Search algorithms for solving CSPs may be classified as either constructive search or 

local search. A review of prominent work in these two categories of search algorithms 

is presented in this section. Given the direct relevance to this study, we dwell a bit 

on landscape modification techniques in the review of literature on local search. We also 

include a survey of cooperative search which is another form of distributed problem solving, 

but it differs from DisCSP solving in that cooperative approaches focus on integrating 

parallel processes to improve efficiency.

Systematic backtracking search

Backtracking search, which is one of the earliest methods used for solving CSPs, is generally 

described as an incremental process in which a partial solution is extended until a full 

solution is found [24]. The partial solution is a list of labelled variables (i.e. variables 

assigned values), that starts off with an empty list. This solution is extended by assigning 

a value to an unlabelled variable that satisfies all its constraints with variables in the 

partial solution. If a partial solution can not be extended (or a dead-end is reached), 

the search tracks backwards to revise earlier decisions to consider other alternatives for 

labelled variables. Backtracking search terminates when a solution has been found or it 

has determined that all possible combination of values in the smallest partial solution can 

not be extended to find a complete solution.

The basic backtracking algorithms (chronological backtracking) extends partial solu

tions in predefined orders; and whenever dead-ends are encountered, the search moves 

backwards one step to revise the last variable labelled. But, in doing so, backtracking can 

suffer from trashing i.e. where the search continues to revisit the same dead-end without 

revising the earliest decisions responsible for the dead-ends. Therefore the search wastes a 
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lot of effort to discover this and for this reason chronological backtracking is rarely used.

In its place a number of modifications have been introduced which change, amongst other 

things, how far to backtrack when dead-ends are encountered and the order in which 

variables are labelled.

Trashing in backtracking can be dealt with using schemes that control how far the 

search backtracks when dead-ends are encountered or with schemes for learning about 

the causes of the dead-ends. Backjumping schemes [32, 22, 89] allow a search to jump 

over recently labelled variables, unconnected with a dead-end, to the most recent variable 

contributing to a domain wipe out i.e. all values in the domain of an unlabelled variable 

are ruled out by assignments to variables in the partial solution. On the other hand, 

learning schemes such as Ginsberg’s Dynamic Backtracking [33] allow a search to identify 

the earliest causes of dead-ends and rectify them without unlabelling variables unrelated 

to the dead-end. A detailed review of backtracking algorithms can be found in [24].

The introduction of Forward Checking [46] schemes allow backtracking algorithms 

to anticipate the effect of early decisions on the search and propagate these decisions to 

unlabelled variables. When a variable is labelled, all values inconsistent with its assignment 

are removed from the domains of unlabelled variables. This helps the search identify 

potential deadlocks in advance when domains of unlabelled variables become empty. With 

Forward Checking there is also an opportunity to dynamically change the order in which 

variables are labelled or values are selected. For example, with the popular Smallest 

Domain First heuristic [46], the solution is extended with the unlabelled variable with the 

smallest remaining domain so that the search can focus on where it is likely to fail first.

Backtracking has the advantage of being complete. Its systematic exploration of the 

search space will guarantee that it correctly determines that either a problem has one 

or more solutions, or that there are no solutions to it. But, because of its exhaustive 

exploration of a space that is exponential to a problem’s size, backtracking can be expensive 

and the time required to solve a problem may grow exponentially as well.
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Local search techniques

Local search (or iterative improvement search) describes a form of search that starts off 

at a random point in a search (or state) space with a complete assignment of random 

values to all variables (i.e. a candidate solution); and in successive iterations, it explores 

different points in the space until a valid solution to a problem is found or the maximum 

time allowed has elapsed. It is termed local, in the sense that the search moves to adjacent 

points in the search space i.e. moving to candidate solutions reachable by changing the 

value of just one variable in the current candidate solution, as it progresses.

The basic local search algorithm is a greedy approach that moves, in each iteration, to 

the most improved the solution in the neighbourhood^ of the current candidate solution, 

as determined by a given objective/cost function. For example, in CSP solving, a typical 

objective function is the number of satisfied constraints and therefore a valid solution (and 

the maximum objective) is one in which all constraints are satisfied. Alternatively, a cost 

function may be used to drive the search where the cost of a candidate solution is the 

number of constraints violated and a valid solution is one with zero cost.

A visual metaphor of rugged landscapes is typically used to describe this form of search 

where the space of possible solutions form an uneven landscape and the altitude of each 

point in this landscape (i.e. a candidate solution) is determined by its objective value or 

cost. The metaphor is extended further to describe the basic greedy algorithm as either 

hill-climbing or steepest descent search. Therefore, the greedy search is often described 

as improving uphill in the objective landscape (in the case of hill-climbing) or downhill in 

the cost landscape (for steepest descent)

A hill-climbing search continues until either a solution is found or a local optimum is 

reached. A local optimum is a deadlock (or conflict) state in which some constraints are 

violated but the solution can not be improved by changing the value of any single variable 

i.e. there is no improvement in the neighbourhood of the current candidate solution. 

Visually, local optima are described as points on plateaus in objective/cost landscapes, in 

^The neighbourhood of a solution is the set of all adjacent solutions reachable from the current candidate 
solution

2prom Chapter 4 onwards, we assume that search is steepest descent in the cost landscape, hence any 
reference to improving moves imply downhill moves.
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which the landscape is flat in all directions from the points.

On encountering a local optimum, the basic hill-climbing algorithm discards the current 

candidate solution and the search is restarted from a new location in the search space. 

Generally, hill-climbing is considered to be inefficient because of its strategy for dealing 

with local optima. Some of the early modifications to hill-climbing, particularly Simulated 

Annealing (SA) [60] and Tabu Search (TS)[34, 35], introduce more subtle mechanisms for 

avoiding and escaping from local optima so that the search experience gained is not entirely 

lost.

Drawing on an analogy with the annealing of metals. Simulated Annealing modifies 

the standard hill-climbing algorithm to accept some non-improving moves with a small 

probability. These random moves give a search opportunities to leave plateaus and also 

promote search space exploration so that regions not necessarily covered by a greedy hill

climber are considered. In addition, the non-improving moves can help a search avoid 

local optima in the first place by occasionally knocking it off search paths bound for such 

plateaus. The probability of accepting non-improving moves is a function of the annealing 

temperature and this temperature decays over time according to a cooling schedule. The 

main advantage of SA is that it has been proven to converge on global optima, albeit 

with infinite time [12]. Tabu-search, on the other hand, introduces a form of learning to 

hill-climbing and like SA, accepts the occasional non-improving move. In addition, TS 

tries to overcome the possibility of oscillation i.e. the same set of moves maybe repeatedly 

accepted, by maintaining a tabu list of recent moves. Moves listed as tabu may not be 

repeated for the duration of their stay on the list. SA and TS are amongst the oldest and 

the most widely used hemistics for solving combinatorial problems [12]. Other variations 

on the standard hill-climbing consider other forms of randomisation, in addition to new 

heuristics to guide the search. Examples include WalkSAT [102], GSAT [103], GRASP 

[63], Variable Neighbourhood Search [45], and Iterated Local Search [86].

Dealing with local optima by randomisation has the advantage of giving the search 

opportunities to make jumps to distant regions of the search space and expanding its 

scope. But, except in the case of tabu search, randomisation strategies are generally 
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memory less and are unable to prevent a search from repeating the same mistakes. Nor, 

do they focus adequately on the causes of deadlocks. Landscape modification schemes, 

which are popular in local search algorithms for solving boolean satisfiability formulae 

(SAT), try to alleviate this last problem by introducing naive learning mechanisms that 

aim to allow a search to remember plateaus encountered and to avoid other regions of the 

search space where solutions do not exist [13].

In the earliest work along this line, Morris [81] extends local search by introducing 

weights which are attached to constraints and are incorporated into a problem’s objective 

function in the Breakout algorithm; such that the local search proceeds to minimise the 

sum of weighted violations. When the search is stuck at a local minimum, weights on 

violated constraints are increased - highlighting these constraints and changing the shape 

of the objective/cost landscape. Therefore, the search emphasis is on satisfying constraints 

with the highest weights, which are considered to be the most difficult to resolve. But, 

Morris admits that the constraint weights can modify the landscape to the extent that 

paths to solutions are blocked off, therefore, can leave the search to wander aimlessly in 

unprofitable regions. Later works on SAT solving consider other formulations that allow 

weights to decay over time. In [29, 30] weights are modified after each move by the search, 

so that those on violated constraints are increased and, at the same time, decay to enable 

the search forget previous weight increases and to focus on the most recent increases. 

Similarly, in the Scaling and Probabilistic Smoothing (SAPS) [57], a smoothing procedure 

is introduced that brings all weights towards the mean weight with a certain probability. 

Other algorithms for SAT solving like the Discrete Lagrange Multiplier (DLM) [116], the 

Smoothed Descent and Flood (SDF) [99], and Exponentiated Sub-Gradient (ESG) [100], 

which also use similar but more complicated weighting schemes have been shown to be 

very efficient.

It is argued that constraint weighting allows a search to learn or prioritise “important” 

constraints, but Tompkins and Hoos in [111] disagree with this and they argue that weights 

only serve as an effective diversification mechanism. They also add that weights do not 

hold important cues about difficult parts of a problem. They reached this conclusions 
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from an experiment where the terminal constraint weights from successful runs of SAPS 

were used as the initial weights for other runs. They found that the information encoded 

in the weights did not improve search performance in the second runs and in some cases it 

even took longer to solve some problems. They also argue, like Morris [81], that weights 

on constraints can have undesirable effects on the objective/cost landscape and as such 

there must be mechanisms to undo their impact.

The Guided Local Search (GLS) [113] for combinatorial search adopts a similar philos

ophy to the Breakout algorithm, but its emphasis is on problem features. Problem features 

can be subsets of a variable’s domain or constraints. Penalties are attached to each prob

lem feature, and those on features present^ in a candidate solution are augmented in its 

cost function. Like the Breakout algorithm, penalties on those features present are in

creased whenever the local search is stuck at local optima. In GLS, penalties are increased 

proportional to their costs and the growth of penalties on a feature is controlled by a utility 

function which decreases over time. Penalties also change the shape landscape allowing 

the search to avoid regions containing “bad” features, but the impact of the penalties 

on the landscape is controlled by a lambda parameter which can be tuned to control the 

diversification / intensification bias of the search. GLS has been applied to and shown to 

be a competitive algorithm for problems in domains such as frequency planning [115], the 

travelling salesman problem [113], and function optimisation [114]. However, it still runs 

the same risks as the Breakout algorithm i.e. the potential for feature penalties to block 

paths to solutions is still present. Extensions to GLS proposed in [75], include an aspira

tion move where feature penalties are completely ignored, if there is a better solution in 

the neighbourhood of the current solution with respect to the original cost function. The 

extension also includes a probability for accepting random decisions.

In other related work, weights on variables have also been studied. In [88], the effects 

of dynamic variable weighing and continuous weight smoothing are investigated for tie- 

breaking for the variable selection heuristic in WalkSAT. Weights are associated with the 

number of times a variable’s value has changed and where there is a tie for the next 

^In the case that constraints are used as features, the constraints are present in a candidate solution if 
they are violated.
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variable to be flipped, the variable with least weight is selected. The introduction of these 

schemes was shown to dramatically improve the performance of WalkSAT.

Unlike backtracking, local search algorithms are incomplete. There are no mechanisms 

for detecting that problems are unsolvable, nor are there any means to guarantee that 

solutions would be found even if they exist. Hence, in practice, local search algorithms are 

run with maximum time bounds or limits on the number of iterations. Furthermore, it 

has been demonstrated that local search techniques do suffer on structured problems [61] 

and are inferior to the inference of backtracking algorithms on such problems. Although, 

Hoos [54] argues to the contrary. Nevertheless, on some problem domains local search 

algorithms do outperform complete algorithms; they are used to solve larger problems 

within practical limits that are impossible with complete algorithms. For example, local 

search algorithms have been used to solve SAT problems with several hundred thousand 

variables, compared to a maximum of 600 variables for complete search algorithms [23].

Cooperative or parallel search for solving CSPs

According to Clearwater et al [19], the justification for cooperative search has amongst its 

many benefits performance speed ups in the time taken to And solutions and improvements 

in the quality of solutions generated. It is also argued that cooperative search with multiple 

search processes allows for exploration of more areas of the search space, either via different 

initial starting points, the use of different parameter settings, or different heuristics in the 

search processes. Resulting from these is the added advantage that cooperative search 

algorithms are likely to generate more unique solutions to problems.

We consider cooperative search to be generally about the exchange of information 

between search processes. With this view, we widen the umbrella of cooperative search 

to cover the host of population based heuristics in the literatme. In cooperative search, a 

number of search processes run concurrently and periodically exchange information about 

profitable areas of the search space to exploit (or unprofitable areas of the search space 

to avoid). Information received from other processes may be used to: (i) resolve conflicts 

[52], where one process hits a dead-end; (ii) guide the search of multiple processes, each on
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a different search strategy [74]. Information exchange in search can be explicit as already 

noted, or may be implicit in the nature of an algorithm. For example, in the evolutionary 

approach with Genetic Algorithms, a parallel search is carried out implicitly. Cooperation 

is enforced by selection and cross-over operators which allow the exchange of information 

about high fitness regions of the search space.

By viewing cooperative search as information exchange, the key issue with cooperative 

algorithms (or systems) will be determining what form of information is exchanged between 

search processes [112]. With genetic algorithms, partial solutions are exchanged. In [52] 

and [53], the explicit exchange of ‘hints’ between search processes is proposed, although 

the hints exchanged in the implementation presented were partial solutions. Agent’s rep

resenting processes in the framework shared a common blackboard for storing and looking 

up hints to resolve conflicts in individual searches. In a similar approach, the work in [112] 

also proposed the exchange of tabu history in a group of concurrent tabu-search processes. 

The idea was to guide the search away from potential deadlocks. Milano and Roll [74] also 

proposed the exchange of partial solutions in a cooperative strategy for their framework, 

in which search with different heuristics (in some cases different parameters for search 

operators) run in parallel. The strategy adopted in the work was to take as input for a set 

of processes running population-based algorithms, the output of another set of processes 

running local search heuristics and vice versa. In work along similar lines presented in [17], 

several algorithms are run in parallel and at periodic intervals the overall best solution 

found by one of the algorithms used as new starting points for the other algorithms.

The definition of cooperation adopted in this study covers population based approaches 

for the reason that cooperation is implicit in the design and operation of such approaches. 

However, explicit cooperation mechanisms may still be incorporated into these approaches. 

The multi-population or parallel genetic algorithm [2] is an example of such. In this case, 

multiple populations are evolving, each on a separate ‘island’, and there is exchange of 

chromosomes between the populations at periodic intervals. Which, amongst other things, 

introduces some diversity into each sub-population and points the sub-populations to high 

fitness regions of the search space. Other approaches, such as the ant colony optimisation 
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algorithm [14, 109] and the particle swarm optimisation algorithm [59] use explicit markers 

from the most successful individuals in the search to guide the rest of the population.

2.1.2 Constraint propagation and consistency maintenance

According to Dechter [23], constraint propagation is perhaps the most fundamental concept 

in constraint reasoning. Constraint propagation and consistency maintenance are methods 

of inference that use information contained in constraints to rule out parts of a problem 

that can not be a part of a valid solution to the problem. These ideas have been explored 

in some of the earliest works in constraint reasoning (e.g. [118, 68]) and they still attract 

significant interest in the community.

Constraint propagation techniques are used to reduce the size of a problem; either by 

inferring new constraints from the combination of existing constraints or by deleting those 

values that do not appear in the set of allowed combinations in at least one constraint. 

Arc-consistency, which is probably the most popular of the constraint propagation tech

niques, does the latter. Pioneered in early works on constraint solving ([118] and [68]), 

arc-consistency works to ensure that each value in a variable’s domain has at least one 

supporting value in the domains of other variables that are constrained with the variable. 

For example, take a CSP with two variables (x and y), where both variables have the same 

domain of 5 values = [1..5], and there is a single constraint x > y. Arc-consistency 

will delete 0 in x’s domain since there are no values in y's domain that satisfy the con

straint if X = 0; 5 is also deleted from y's domain in the same regard. This creates an 

equivalent problem [23] but with a smaller search space keeping just the values that can 

be present in a solution.

Depending on the nature of the constraints involved, arc-consistency techniques can 

detect that a problem has no solution when a variable’s domain is completely deleted. 

But, doing this requires a complete evaluation of all value combinations in a CSP. This 

complete enumeration meant that the early arc-consistency algorithms (e.g. AC-1, AC-2, 

and AC-3 in [68]) were rather expensive, though in polynomial time, having worst case 

complexities of O(ed^); where e is the number of constraints in the problem and d is the 
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size of the largest variable domain. Later versions, such as AC3.1 [129], AC-4 [79], AC-6 

[7], and AC-2001 [11], introduced measures to eliminate redundant checks and thus reduce 

the worst case complexity of to O{edP}.

Arc-consistency ensures that each constraint (or arc) in a CSP has at least one com

bination of values that satisfy it, but that can not in itself determine if the un-deleted 

values can be combined for a valid solution for a CSP. To deal with this, path-consistency 

[80] strengthens the propagation beyond the variables in the scope of one constraint i.e. 

determining if there are supporting values in other constraints for values satisfying an 

initial constraint. For example, a CSP with 3 variables {x,y, and z) and the constraints 

(x < y,y > z), is considered to be path consistent if for value in y's domain that satisfy 

the constraint {x > y) there is a support value in z's domain that satisfies the second 

constraint. Path consistency is also known as 3-consistency (for binary CSPs), but con

sistency algorithms that extend consistency propagation to larger sets of variables are 

known /c-consistency algorithms, fc-consistency, generalised in [31], determines that a CSP 

is ^-consistent if for any consistent instantiations of k-1 variables, there is a value in the 

domain of an /cth variable that satisfies all its constraints with the k-l variables.

Despite the strengths of the constraint propagation techniques discussed here, they 

are rarely used alone to solve CSPs alone as there are times when search is still necessary 

and because the reduced problem space is still large. Therefore, constraint propagation 

techniques are often used in a pre-processing stage, or intertwined with search algorithms 

to improve search efficiency. For example. Arc-consistency algorithms can be combined 

with backtracking to maintain arc-consistency as variables are instantiated [96]; and this 

combination has been shown, in [10], to be the most efficient strategy for solving CSPs.

2.2 Distributed Constraint Satisfaction

Distributed problems of interest in this study typically come in the form of a number of de

cisions to be made individually by several participants involved in collaborative situations. 

There are a limited set of alternatives each participant can consider for each decision and 

there are restrictions on the alternatives that can be simultaneously selected for several 
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decisions. For example, in a Supply Chain system each company makes its own decisions 

on its production schedules and some of the choices made for these decisions are restricted 

by agreements and delivery decisions to be made by other participants in the chain. This 

example also highlights an important feature of distributed problems - all the information 

about the decisions and the alternatives for each decision are inherently distributed and 

can not be collected in a single location for problem solving.

In the seminal work for the field, Yokoo et al [122] extended the CSP framework to for

mally describe such distributed problems as Distributed Constraint Satisfaction Problems 

(DisCSPs) and introduced the idea of distributed approaches for solving them. In this 

formalism, distributed problems are solved by collections of automated software agents - 

each acting on behalf of a single participant in a problem. The decisions to made by the 

agents become variables in a problem and the alternatives for each decision become its 

variable’s domain, while the restrictions on alternatives that can be selected are the con

straints in the problem. In Chapter 3, we give formal definitions of DisCSPs and discuss 

some of the underlying assumptions of the formal models. However, in the following, we 

discuss algorithms for solving DisCSPs.

Algorithms for solving DisCSPs can be classified along similar lines with those for 

solving CSPs. Hence, the following review discusses backtracking, iterative improvement, 

and consistency propagation for DisCSPs. In addition, other methods that have no direct 

equivalents in centralised CSP solving such as those that use mediators to resolve deadlocks 

are also reviewed.

2.2.1 Distributed backtracking search

Just as in problem solving in single processor environments, backtracking search is a pop

ular technique for distributed problem solving. The same theoretical guarantees of com

pleteness and the amenability to analysis make it the most widely form of search studied 

in the DisCSP community. Direct extensions of centralised backtracking algorithms have 

been proposed for solving DisCSPs (e.g. Synchronous Backtracking [21]), but other such 

algorithms allow for asynchronous activity and introduce other measures to take advantage 
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of some of the peculiarities of problem solving in distributed environments.

In distributed backtracking, constraints are directed and as such agents agree on a 

static ordering so that values are proposed from the top to the bottom (via okl mes

sages), and the proposals are evaluated in the reverse direction. This way dead-ends are 

easily identifiable, i.e. when a set of proposals wipe out an agent’s domain it can initi

ate backtracking. Synchronous Backtracking (SBT), which is earliest form of distributed 

backtracking, is a direct extension of centralised backtracking search and it tries to repli

cate the exact behaviour from that form of search in distributed environments. So just 

as in the centralised case, solutions are extended one variable at a time - an agent at a 

time, and moving up the agent ordering when backtracking occurs. But this approach is 

generally considered to waste resources because agents at the bottom of the ordering are 

almost always idle; especially where there is a lot of backtracking in the middle of the 

ordering. Asynchronous Backtracking (ABT) [122] tries to overcome this limitation by 

allowing all agents to act concurrently and asynchronously, as its name implies.

In ABT, agents still maintain a total and static ordering but they are all active simul

taneously, constantly sending proposals to neighbouring agents lower in the ordering and 

at the same time evaluating the proposals they receive. In addition, agents learn, during 

the search, about combinations of proposals that can not be part of a solution. When such 

combinations are found, they are used to create new constraints in the form of no-goods, 

to prevent their recurrence. No-goods are sent by the agents that generate them to the 

nearest agent in the no-good higher up in the ordering. Occasionally, the proposals causing 

a no-good can involve agents not originally linked in the constraint network. Therefore, 

agents receiving such no-goods create new links with those agents they are not connected 

to; and hence are able to evaluate the new constraint.

The static ordering of agents in ABT allows the algorithm to avoid infinite processing 

loops, despite the concurrent activity by all agents. The advantages of its asynchronous 

approach include reduced idle time and earlier detection of deadlocks e.g. where a proposal 

from the first agent in the ordering wipes out the domain of the last agent in the ordering. 

ABT has been shown to be sound and complete, as well being quicker to solve problems 
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than SBT.

Several modifications (or new versions) for ABT have been proposed, including for 

example [108] and [132] which all present new heuristics to allow agents to change their 

ordering asynchronously and dynamically during the search. In particular, Zivan and 

Meisels [132] showed that this reduces the runtime of the algorithm and the number of 

constraint checks carried out. In another modification to ABT [16], agents are made to 

switch back and forth between asynchronous and synchronous activity. The forward phase 

of the search is asynchronous and backtracking is synchronous - to reduce the amount of 

redundancies in ABT, whenever agents send no-good messages they wait for the responses 

to those messages before resuming their search. This was also shown to improve ABT’s 

performance.

The Distributed Dynamic Backtracking (DisDB), [9, 8], inspired by dynamic back

tracking [33] improves on ABT, especially reducing the number of messages exchanged 

between agents [131]. DisDB is somewhat similar to ABT, it is also asynchronous and 

agents also learn from no-goods. But, DisDB’s space complexity is polynomial since no

goods are regularly discarded, and only one no-good is retained for each domain value. 

Nevertheless, DisDB is complete. In a detailed study of DisDB in [8], it was found that 

performance is not significantly impaired on problems to the left of the complexity peak 

if agents do not create new links with unconnected agents when no-goods are received. In 

other work, NIeisels and Lavee [72] show how additional information can be included in 

no-goods to improve its performance.

A distributed version of Graph-Based Backjumping [22] was introduced as Distributed 

Dynamic Backjumping (DDBJ) [83] which also includes dynamic variable and value or

dering. In the algorithm which is semi-asynchronous, agents run the forward solution 

extending phase and the backjumping phase concurrently; just as in ABT and DisDB. 

But, the forward phase is made sequential by having agents send ok? and Forward Check 

messages rather than the lone ok? message in ABT. These synchronise the forward phase 

and allow the search to perform forward checking. DDBJ is complete and it has much lower 

space requirements than DisDB since agents do not store no-goods. Empirical evaluations 
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in [83] show that DDBJ outperformed DisDB and the Asynchronous Forward Checking 

(AFC) algorithm [73] on random problems.

The Asynchronous Aggregation Search (AAS) [107] is an ABT-like algorithm for a 

DisCSP where agents can jointly own variables; this is useful for problems like negotiation 

or those that involve joint decision making. Constraints are private to agents in that 

model, therefore in AAS rather than propose values agents send all the values for a variable 

consistent with their constraints.

Asynchronous activity in backtracking search is exploited further in the Interleaved 

Distributed Intelligent Backtracking (IDIBT) [41] where agents are able to run multiple 

searches in parallel. The idea is to use what would be agents’ idle time to explore different 

regions of the search space simultaneously. In IDIBT, agents create a static ordering that 

results in one agent being designated as a Source agent. The source agent partitions 

the search space by creating search contexts for disjoint subsets of its domain. Search is 

initiated in each context when the source agent sends its first proposal in that context. As 

all messages include the context identification, agents are able to maintain information for 

the different contexts, permitting them to evaluate proposals and extend different solutions 

in parallel using an extension of Graph Based Backjumping. Like ABT and DisDB, IDIBT 

is also complete but it has a much lower space complexity. In later work by its author 

[42], additional heuristics were introduced to allow agents to maintain partial directional 

consistency during in a search with Conflict Directed Backjumping (CBJ) [89]. Similarly, 

the effects of Forward Checking and Look Ahead strategies on IDIBT were studied in 

[94]. These were found to reduce the number of constraint checks performed and the 

local computation efforts of agents. Distributed parallel backtracking search was also 

explored in Concurrent Backtracking (ConBT) [131] where agents retain partial solutions 

of different searches in parallel.

The idea of concurrent searches was extended further in the Multi-Directional Dis

tributed Search [95] where different search algorithms can be run in parallel and useful 

information is shared between the searches. The authors argued that idle time is signifi

cant in distributed backtracking, and as such agents can use that time to solve the same 
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problem with a second algorithm. In their work, modified versions of ABT and IDIBT 

were run in parallel, each with different agent orderings. The experimental evaluation 

showed that the combined searches cut idle time significantly and provided a speed up of 

one order of magnitude compared to using either algorithm on its own.

2.2.2 Asynchronous Weak Commitment Search

A drawback of asynchronous backtracking is that when the agents highest in the ordering 

make bad decisions, agents below them have to exhaustively search all possibilities before 

the bad decisions are revised. Asynchronous AVeak Commitment Search (AWCS) [121] 

tries to avoid this by allowing agents to dynamically change their positions in the ordering 

during the search. In addition, constraints are not directed in AWCS and as such, the 

Min-Conflicts [77] heuristic is used for value ordering.

Each agent in AWCS holds a non-negative integer value to represent its priority, and 

ties are broken in favour of the agents with the lowest lexicographic IDs. These priority 

values are also exchanged when agents communicate with their neighbours. During the 

search, each agent finds all values in its domain that satisfy all constraints with higher 

priority neighbours, and from these values it selects the value that minimises constraint 

violations with lower priority neighbours. Where an agent’s domain has been wiped out 

by values of higher priority neighbours, it generates a new constraint in the form an 

undirected no-good and it sends the no-good to all higher priority neighbours involved in 

it. At the same time, the agent increases its priority to the highest in its neighbourhood. 

Storage of no-goods guarantee the algorithm’s completeness, since there is a finite number 

of them and AWCS can ascertain that a problem is unsolvable if an empty no-good is 

created.
AWCS is efficient in terms of the number of asynchronous cycles performed, but it has 

the drawback of possibly creating an exponential number of no-goods during a search [49]. 

As each no-good is a new constraint, the number of constraint evaluations will increase as 

the search progresses. These drawbacks may limit the applicability of AWCS to small or 

loosely constrained problems [72].
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In modifications to AWCS, Hirayama and Yokoo considered new learning schemes for 

generating smaller and more efficient no-goods [47] and Zhou et al have used constraint 

violations to determine agent prioritise [130]. AWCS has also been extended for agents 

holding multiple local variables in [124].

2.2.3 Distributed consistency maintenance techniques

Consistency maintenance in DisCSP solving is a challenge because of the privacy require- 

ments/assumptions in the basic DisCSP model. Agents can not (are not expected to) know 

the full domain of variables owned by other agents; as such, the conventional methods for 

consistency maintenance or even for achieving arc-consistency can not be directly applied 

without relaxing the privacy assumption. Hence, some of the early work in distributed 

consistency maintenance more or less ignored the privacy assumption and focused on how 

arc-consistency can be achieved on multi-processor environments [90] or on improving the 

efficiency of the process [82, 40, 93]. Other work (discussed next) departs from the basic 

DisCSP model, highlighting scenarios where the basic model is not sufficient and there

fore introduce new algorithms for achieving arc-consistency without violating the privacy 

requirements of the underlying models.

The DisCSP model adopted in [107] considers scenarios like distributed negotiation, 

where variables are jointly owned by agents. Therefore domains are public knowledge but 

constraints are private. As a result, the Asynchronous Aggregation Search, presented in 

that work, allows agents to propagate constraints and exchange partial solutions during a 

search. In their work on the Distribute Forward Checking (DFC) [15] algorithm, Brito and 

Meseguer consider a DisCSP model where domains and constraints are public knowledge, 

but the values agents select for their variables are private. During the search, which is 

intertwined with a distributed backtracking algorithm, agents propagate constraints by 

pruning domains of un-instantiated neighbours. So rather than sending their labels to 

neighbours, agents send a list of domain values available to neighboms.

Also working with a different model in [92], Ringwelski and Wallace introduce con

straint agents in addition to agents representing variables. The constraint agents are 
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linked to and communicate with ‘variable’ agents. The role of the constraint agents was 

to propagate constraints that result from variable instantiations or constraint additions'^.

Like DFC, the consistency maintenance is intertwined with a search algorithm.

The Asynchronous Forward Checking (AFC) algorithm [73] works with the standard

DisCSP model to combine synchronous backtracking search with asynchronous constraint 

propagation. Agents take turns to construct a solution sequentially and, at the same time, 

the owners of un-instantiated variables perform forward checking tasks notifying owners 

of instantiated variables of values that do not propagate.

2.2.4 Distributed iterative improvement

As we have discussed in Section 2.1.1, iterative improvement search (or local search) allows 

a search to start off with a complete assignment of values to variables and proceeds to 

iteratively move the state towards a valid zero-cost solution. Although methods based 

on local search are incomplete, they have the advantage of converging quicker to good 

quality solutions (or possibly zero cost solutions) than backtracking algorithms, especially 

on large problems. But, with this speed of convergence there is the ever present potential 

for such methods to converge to local optima. As such the challenge in the design of new 

iterative improvement algorithms is devising strategies for effectively dealing with local 

optima, that allow a search leave a plateau in the objective landscape and possibly prevent 

it from returning to that region.

In DisCSP solving, strategies considered for dealing with local optima have included 

landscape modification with constraint weights and randomisation to perturb solutions 

that cause a search to jump to other areas of the search space. The earliest work in the 

distributed iterative improvement is the Distributed Breakout Algorithm (DBA) [123, 49] 

which was inspired by the Breakout algorithm [81](see Section 2.1.1).

In DBA, agents carry out a distributed steepest descent search by exchanging possible 

improvements to a candidate solution and implementing the best improvements that do 

not conflict with each other. To do this, agents act concurrently alternating between

the improve and update cycles. In the improve cycle, each agent finds the value in its 
^They were working on dynamic DisCSPs that change as the solution process progress. 
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domain that minimises its weighted constraint violations and computes the improvement

to its current assignment. These improvements are exchanged between the agents, and 

the agents with the best improvements are allowed to change their values in the update 

cycle. Ties are broken with the agents’ lexicographic IDs in the case that two or more 

neighbouring agents have the same possible improvement.

Deadlocks at local optima are dealt with using weights attached to constraints and 

those on violated constraints are increased whenever agents are at deadlocks. To minimise 

communication costs, DBA’s authors consider the notion of quasi-local-optima which is 

much weaker than local optima. It is described as a state in which a subset of connected 

agents can not find any improvements to their local evaluations. Agents individually 

increase weights, in the update cycle, on the constraints they violate when they detect 

that they are at quasi-local-minima. Hirayama and Yokoo [123] also investigated the 

effects of increasing weights at real local optima and found that performance in terms 

of the number of cycles taken is better. But this comes with the requirement that each 

agent is able to communicate with all other agents in the constraint network (even those 

it does not share constraints with) and this increases the number of messages exchanged 

between agents considerably. Empirical evaluation of DBA showed that it outperformed 

Asynchronous Weak Commitment Search on difficult problem instances; DBA solved more 

problems and it did so in less time [123].

Originally, it is assumed that each agent in DBA owns just one variable, but newer 

versions in [48, 25] extend the breakout method for problems where each agent owns mul

tiple local variables. Other work in [119], introduce some randomisation for tie-breaking 

in DBA and extend it for handling distributed constraint optimisation problems.

In the Distributed Stochastic Algorithm (DSA) [27, 28, 128], the authors introduce a 

stochastic light-weight strategy for dealing with local optima in their work on distributed 

target tracking. Agents act synchronously and in parallel, each selecting a value minimis

ing the number of constraints violated given assignments received from neighbours in the 

previous iteration. To reduce incoherency and to avoid local optima, agents have random 

activations such that in each iteration an agent decides with a fixed probability to retain 
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its current assignment. DS A was shown to converge quicker to local optima than DBA on 

distributed scan scheduling problems - cast as distributed constraint optimisation prob

lems. But, Hirayama and Yokoo [49] point out that once DSA is stuck at a local optima it 

has no means of escaping; and as such it would not be strong in decision problems where 

the objective is to satisfy all constraints.

Arshad and Silaghi considered improvements to DSA and extend the framework in 

Distributed Simulated Annealing (DSAN) [5], where they introduce additional random 

decisions to allow agents to occasionally select values that may not improve their evalua

tions. Inspired by the Simulated Annealing [60], DSAN’s authors introduce an additional 

parameter to control the probability of making the non-improving changes and they allow 

this parameter to decay over time. Thus, the search is able to explore more regions early 

in the process and it increasingly scrutinises good regions later on. DSAN was shown to 

outperform DSA in the experiments reported in [5], but like the works on DSA they also 

focus on flnding good quality solutions quickly rather than zero cost solutions.

2.2.5 Third party mediators

The common thread in all the work reviewed in this section so far is the notion of agents 

acting ‘independently’ to either extend solutions or to resolve conflicts. But given the 

limited view each agent has of the problem, they can not fully evaluate the impact of the 

decisions they make on other parts of the constraint network. For example, there is the 

risk that actions taken to resolve a conflict by one agent in one part of the DisCSP will 

cause the appearance of a new conflict in another part of the problem. To overcome this, 

a number of approaches in the literature propose the referral of conflicts to third parties 

or mediators for resolution.

Mailler introduced a cooperative mediation protocol in the Asynchronous Partial Over

lay (APO) algorithm [70], where agents can opt to mediate conflicts for their neighbours. 

In this hybrid of centralised and distributed search, when an agent is mediating a conflict, 

it requests for information from its neighbours about the variables and constraints in the 

conflict (which is outside its view of the problem) so that it can fully anticipate the impact 
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of its decisions. A centralised systematic algorithm is used to resolve the conflict with the 

collected information. Mediating agents can detect the absence of solutions, and hence 

the APO algorithms are certified to be complete. In his empirical evaluations, Mailler 

showed that APO outperformed AWCS in distributed graph colouring and distributed 

target tracking problems where it typically required fewer iterations to find solutions. A 

similar approach for mediation was presented in [120] where virtual agents were constantly 

created and used to mediate in conflicts.

Sathi and Fox also present a hybrid of centralised and distributed search in [97] for 

their work on resource re-allocation. In their approach, a central mediator has a global 

view of the problem and resolves conflicts that depend on multiple resource offerings. A 

somewhat related approach in [4] utilises a separate agent acting as a centralised no-good 

processor. The algorithm requires that agents regularly check with the no-good processor 

before assigning values to their respective variables. While in the broker model presented 

in [65], agents routinely send unresolved parts of their local sub-problems to a central 

mediator for resolution.

2.2.6 Anchor agents

While third party mediators are used to resolve conflicts during a search, the notion of 

an anchor agent is one that is predetermined to be central (or a backbone) of a DisCSP. 

Anchor agents propose partial solutions for other agents to extend, or they can act as 

mediators when partial solutions are not unanimously consistent.

In their work on job shop scheduling, Liu and Sycara proposed the Anchor and Ascend 

algorithm [67], where agents controlling bottleneck resources are designated anchor agents. 

Anchor agents will first seek to optimise their local sub-problems and modify the solutions 

when they are proven to be infeasible. Two variations on this theme are considered in 

[110]. In the first variation, a central agent attempts to And values for all variables in its 

sub-problem (with emphasis on variables involved in inter-agent constraints). Following 

which, other agents search for consistent sub-solutions. The second variation, is a direct 

reversal of roles where the central agent awaits the sub-solutions before attempting to solve 
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its sub-problem. The second approach was shown to be more efficient, as it eliminates the 

amount of wasted search effort by peripheral agents that takes place when a single agent 

is not able to find consistency with the initial proposal.



Chapter 3

Problem Formalisation

In this chapter, we present a formal description of the DisCSPs model used for this work 

(Section 3.1). We discuss the assumptions made about the nature of the problems in 

Section 3.2 and highlight the scope of the formal model (and the study) in Section 3.3.

3.1 The Distributed Constraint Satisfaction Problem - DisCSP

A DisCSP is formally described as DisCSP — {A,X, D,C} where;

A = {ai,a2, ■■■am} is a set of m agents.

X = {a?! ,X2,.--Xn} is a set of n variables.

D = {Di, D2, ■■■Dn} is the corresponding set of domains for each rci; i.e. each domain 

(Dj) is a finite set of discrete values that can be assigned to

C = {ci, C2, ...Cp} is a set of p constraints that limit values that can be simultaneously 

be assigned to the variables in the scope of Cj.

There is a distribution of variables to agents, such that each variable belongs to exactly 

one agent while each agent may represent more than one variable i.e. each decision in a 

collaborative problem can only be made by one participant but each participant can make 

several decisions.

30
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Definition 3.1

of a constraint.

(Neighbours) Two variables are neighbours if they are both in the scope 

Two agents are neighbours if at least one pair of variables they own are 

neighbours.

Definition 3.2 (Neighbourhood) An agent’s neighbourhood is the set of its neighbours i.e

N= {xi,X2,...Xk}.

Definition 3.3 (Inter-agent constraint) An inter-agent constraint is a constraint between 

variables owned by different agents.

Definition 3.4 (Intra-agent constraint) An intra-agent constraint is a constraint between 

variables owned by the same agent.

Definition 3.5 (AgentViewt) An AgentView is the set of assignments {xi = ui, ...Xk — 

for variables belonging to agent’s neighbours at time t.

Definition 3.6 (No-good) A no-good is an inconsistent AgentView i.e. as a result of 

neighbours ’ current assignments there is no value in domain of a variable that satisfies all 

constraints attached to it.

Agents try to solve a DisCSP by exchanging value assignments and other algorithm 

specific information. For example, in distributed backtracking agents can infer new con

straints during a search and exchange them as well. They determine that a DisCSP is 

solved when they simultaneously hold values for their variables that satisfy all the con

straints in a problem.

3.2 Privacy requirements and assumptions

3.2.1 Privacy and limited information

The distinguishing features of a DisCSP are privacy and limited availability of informa

tion. Yokoo et al [122] cite these as the key reasons why DisCSPs have to be solved by 

distributed techniques and as the main challenge of this approach. Privacy, and security 

of information, requires that information about a problem remains in the hands of its 
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owners. Hence, the problem information can not be collected in one location for solving 

with a centralised technique. This requirement also distinguishes distributed constraint 

solving from parallel (e.g. [62, 126]) or cooperative (e.g. [19]) approaches to problem 

solving, which rely on a constant flow of information between several search processes to 

improve efficiency.

Generally, privacy is related to variables’ domains. Each agent is expected to keep 

the full domain of a variable it owns private; therefore an agent can not know the full 

domain of a variable it does not own. Agents are also expected to keep information about 

constraints they are involved in private. This is illustrated with the example in Figure 

3.1, which uses the standard notation to depict DisCSPs as graphs. In this diagram, the 

nodes represent variables and arcs connecting nodes indicate the presence of constraints 

between variables. In the example, variable a;i has separate constraints with variables X2, 

xs, and X4; but privacy requirements prevent the agent that owns variable xi from being 

aware of the constraint between variables X3 and X4. Agents are not permitted to reveal 

any information to a neighbour about constraints with other agents. Hence, each agent 

always has a partial view of the problem being solved.

Figure 3.1: Privacy of constraints in Distributed Constraint Satisfaction Problems.

Other forms of privacy have been considered in the literature. For example, Silaghi et 

al [107] argue that the standard model of privacy may not be suitable for problems such as 

distributed negotiation. Therefore, they propose an alternative model where variables and 

domains are public knowledge while constraints remain private. In some other work, Brito 

and Meseguer [15] propose a model in which variables’ domains are public knowledge but 
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actual values assigned to variables remain private. They also considered Partially Known

Constraints (PKC) (or asymmetric constraints) in which each agent in the scope of the 

constraint is aware of just a handful of the forbidden combinations in the constraint.

In this work, we continue with the standard notions of privacy keeping variables’ 

domains and information about unrelated constraints private. We assume that each agent 

has a partial view of a problem, and it is only aware of the constraints it is directly involved 

in. We also assume that preferences for particular values (if any exist) are also private.

We restrict the amount of information agents are allowed to reveal during the problem 

solving process to the values currently assigned to their respective variables. As such, 

agents may not inform their neighbours about values received from other agents. In the 

case where each agent has multiple variables, an agent can not inform its neighbours about 

its local variables not sharing constraints with those neighbours. This violates the privacy 

requirement if neighbours can use such information to infer additional details about agents.

and where such inference is not possible the information is redundant.

3.2.2 Other assumptions in the model

We also make the following assumptions:

All constraints are symmetric.

Any constraint with X as its scope, can be decomposed into an aggregation of 

constraints with smaller arities i.e. any global constraints can be decomposed into

several smaller constraints.

Agents’ behaviours are purely reactive. Therefore, they can not make predictions 

about future states and they base all their decisions on current (or past) information.

Agents communicate with each other by sending messages with the values assigned to 

their variables as well as requests to neighbours to perform certain actions (clarified 

in Chapters 5 to 7). We assume that agents can only communicate with their

neighbours.
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• Communication is reliable i.e. messages will get to all recipients with a fixed finite

delay. We also assume that all messages are received in the order in which they

were sent. However, in Section 5.7, this assumption is relaxed when the impact of

unreliable communication is studied.

3.3 Scope of the model

For the DisCSPs we study in this work, we focus on static versions where the components 

of a problem i.e. agents, variables, domains and constraints, are specified in advance before 

agents attempt to solve it. These components remain fixed during the problem solving 

process. There are no additions or modifications to the components. In addition, the aim 

of the adopted model is to find the first full assignment of values to variables that satisfies 

all constraints simultaneously. Therefore, this does not extend to Distributed Constraint

Optimisation Problems (DisCOPs) [78] where the objective is to find the best solution.

from all possible solutions to a problem, or to optimise a given objective function.



Chapter 4

Penalty-based Strategies for

Dealing with Local Optima

4.1 Introduction

Solving problems with iterative improvement/local search algorithms offers the advantage 

of quicker convergence over constructive search. However, this benefit comes with a po

tential for convergence to locally optimal non-solution states and/or a propensity for the 

search to wander about on sub-optimal plateaus in the objective landscape. Strategies 

proposed to overcome these drawbacks typically introduce some non-improving decisions 

with the intention of moving the search away to other, possibly unexplored, regions of the 

search space in order to resume the search for a solution. Alternatively, some strategies 

try to determine the sources of the deadlocks associated with the local optima and seek 

moves that directly attempt to resolve them. A widely studied approach for doing this.

as highlighted in Section 2.1.1, modifies the shape of the objective/cost landscape with 

weights attached to constraints. Algorithms based on this approach have been shown to 

be remarkably effective for solving SAT problems in centralised settings.

In Section 4.2, we reconsider landscape modification with constraint weights and high

light a key weakness of the approach. Following that, in Section 4.3, a new approach for 

modifying objective landscapes with penalties attached to domain values is introduced 

35
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along with an illustration of how this strategy overcomes the identified weakness of using 

constraint weights. A similar penalty based strategy for solution perturbation is intro

duced in Section 4.4. Both strategies, which are discussed in detail, form the basis of new 

distributed constraint satisfaction algorithms introduced in Chapters 5, 6, and 7 of this 

thesis.

4.2 Modifying the cost landscape with constraint weights

The idea of dealing with local optima by modifying the shape of the cost landscape was 

introduced in a modification to local search by Morris [81] in his work on local search for

boolean satisfiability. The aim was to provide a mechanism to allow a search focus its 

efforts on resolving clauses that were repeatedly unsatisfied and regularly associated with 

local optima. Hence, weights were attached to clauses (or to constraints in the case of 

CSPs) and the cost function of the problem to be solved was modified as follows: 

h = cwi * viol^Ci) (1)

where;

Ci is the ith constraint

cwi is the weight of the zth constraint

viol(ci} is 0 if the constraint is satisfied, otherwise it is 1

The weighted sum of violated constraints is used to evaluate candidate solutions. The 

weights attached to violated constraints are increased whenever the search is stuck at local 

minima to change the shape of the cost landscape. This drives the search away from the 

deadlocked region and, at the same time, it should have the effect of blocking out other 

regions where solutions do not exist.

However, we argue that modifying landscapes this way can sometimes be futile and 

it can cause a search to remain stuck at deadlocks on plateaus. The alterations in the 
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landscape caused by the constraint weight modifications affect the altitudes of plateaus 

but the plateaus remain flat. As such, there is no room for the search to find a path out 

of a local optimum.

To illustrate this, take the example DisCSP in Figure 4.1 and its resulting cost land

scape in Figure 4.2. Given the current assignments, the search is in a deadlock state (point 

P in region A) violating constraint ci - on a plateau in the cost landscape. There are two 

other plateaus in the landscape: region B where both constraints are violated and region 

C where just C2 is violated; and a small region with solutions (e.g. x — 1,10 > y < 12).

Variables
Domains

Constraints 
Constraint weights

Current assignments x = 8, 4

Figure 4.1; An Example DisCSP

To resolve the deadlock using constraint weights, the weight of the violated constraint 

is increased to (cwi = 2) and this results in the modified landscape in Figure 4.3(a). While 

the altitudes have changed, the plateau around the deadlock remains, as well as the other 

plateaus in regions B and C. Increasing cwi further results in the landscape in Figure 

4.3(b), the plateaus are still intact and therefore the search is unable to find a path out 

of the plateau and the deadlock remains unresolved.

Recent work on constraint weighted local search (e.g. [29, 30, 111]) have arguments 

against allowing weights to grow unbounded in their use for resolving conflicts at local 

optima. Amongst other things, blocking possible paths to solutions is cited as a reason why 

the growth of weights should be controlled, and therefore propose weight decay schemes 

to limit any detrimental impacts of weights on cost landscapes. However, we argue that 

the introduction of weight decays may not necessarily improve the effectiveness of using 

constraint weights to contorting plateaus. We argue that the effects of weight decays only 

serve to change the altitudes of plateaus (i.e. pushing them down) just as they are changed 

when weights are initially increased.
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Figure 4.2: Cost landscape for the DisCSP in Figure 4.1.

Figure 4.3: Effect of constraint weight modifications on the cost landscape for the DisCSP 
in Figure 4.1; (a) cwi = 2 and (b) cwi — 5.

4.3 Modifying cost landscapes with penalties on domain val-

ues

Given the highlighted weakness of using constraint weights to deal with local optima, we 

introduce a new penalty based strategy as an alternative mechanism. This new approach 

is finer-grained and shifts emphasis from constraints violated at deadlock states to the 

assignments associated with those violations. Therefore, a penalty is attached to each 
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individual value in every variables’ domain, and consequently the cost function to be min

imised by the search for each variable is as follows:

(2)

where:

di is the ith value in the variables domain

v{di') is the number of constraints violated if di is selected 

p{di) is the penalty attached to di

When the underlying search is stuck at a local optimum, penalties attached to the 

values currently assigned to the variables with violated constraints are increased, therefore 

contorting the landscape around the deadlocked region. Using the example from Figure

4.2 to illustrate, increasing the penalties on the current values of x and y results in the 

landscape shown in Figure 4.4. The effect of the penalties on the landscape is more 

dramatic; new peaks appear at the point of the deadlock as well as within the plateaus in 

regions B and C. As such, the search can resume with downhill moves in either direction 

of the new peak.

Besides contorting plateaus, domain penalties may be used as a primitive form of 

learning by the search. As penalties attached to particular values grow, the search is able 

to gradually “learn” of the association between the assignments and local optima. Hence, 

regions containing those assignments are excluded from further exploration as the search 

progresses.

The domain penalties introduced here are somewhat similar to the feature penalties 

in the Guided Local Search (GLS) algorithm [113] but differ fundamentally in the way 

they are used. First of all, in GLS solution features are penalised rather than individual 

domain values as we suggest. For GLS, solution features are properties of a solution that 

can be used to define it such that all features can not appear in all solutions at the same 

time. The choice of solution features are dependent on the problems being solved. For
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Figure 4.4: Effect of penalty increases on the cost landscape for the DisCSP in Figure 4.1 
i.e. increased penalties attached to Dx(8) and Dy{4} from 0 to 1.

example, location-facility pairs were used as features in GLS for the Quadratic Assignment

Problem, while jobs were used as features in the version for work force scheduling, and non

overlapping intervals of variables’ domains were used as features when GLS was applied 

to function optimisation.

When a search is stuck at local optima in GLS, the cost of the features present at the 

local optima as well as the number of times the features have been penalised are used to 

determine the utility for penalising the feature (Util^fi))^. And fi with the highest utility 

is penalised. However, Util^fi) decreases over time the more fi penalised, giving GLS 

room to penalise other features. Obviously, feature penalties are included in a problem’s 

cost function and there is an additional regularisation parameter that is used to control 

the impact of penalties on the cost function - and by extension the explorative behaviour 

of the search.

As we mentioned, we propose simple penalties: one for each value in each variable’s 

domain. So, our “feature” set is fixed irrespective of the problem type. The increments

when the search is stuck are additive, and applied to the penalties on values currently 

^Here we use fi to refer to the zth feature.
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assigned to those variables involved in violated constraints. In Chapter 5, we introduce 

additional heuristics for discarding penalties when they are no longer needed.

4.4 Perturbing a search with penalties

Of the many strategies proposed for dealing with local optima in iterative improvement 

search, the simplest is solution perturbation i.e. forcing a jump out of a plateau to another 

region in the search space (as illustrated in Figure 4.5), therefore allowing the resumption of 

intensification activity. Perturbation mechanisms proposed in the literature come in many 

forms and range from maximal perturbations i.e. restarting the search with a new random 

instantiation when a local optimum is encountered (e.g. [54]); to minimal perturbations 

which try to minimise deviations from existing search trajectories in an attempt to preserve 

much of the previous search effort up to the deadlocked state. Examples include Iterated 

Local Search [86] where random values are assigned to some variables, random walks in 

SAT solvers [102], and the mutation operator in genetic algorithms.

Figure 4.5: Schematic illustration of solution perturbations - pl, p2, and p3.

Minimal perturbations have been shown to be effective in dealing with local optima, 

especially in the SAT domain, but their limitations include a potential for a search to 

expend a lot of effort wandering around a plateau before finding a way out. Where 

perturbations are too weak, the search is unable to leave the deadlock state. For example. 
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in experiments evaluating the effects of randomly perturbing deadlocked variables in a 

simple greedy hill-climber (outlined in Figure 4.1), we found that the perturbations had 

no effect 67% of the time. In addition, some perturbations may push a search back up its

trajectory (e.g. pl in in Figure 4.5), and can possibly result in infinite oscillation between 

a set of points in the search space.

Algorithm 4.1 Greedy sequential hill-climber.
1;
2
3
4
5
6
7
8:
9: end while

initialised problem with random value assignments 
while solution not found do

for each xi in X do
select value d from D{xi) that minimises constraint violations 

end for
if no changes made then

apply perturbation
end if

Building on the ideas on landscape modification presented in Section 4.3, a new 

penalty-based perturbation strategy is introduced in this work. The idea is to induce 

jumps by encouraging all variables involved in a deadlock to change their assignments. 

Therefore, the underlying cost function is modified as follows:

z

t if a temporary penalty is imposed

(3)

0 otherwise

where:

di is the ith value in the variables domain

r(di) is the number of constraints violated if di is selected 

t is the temporary penalty (t > 1)

The temporary penalty is imposed on current values assigned to deadlocked variables, 

therefore worsening the evaluation of those assignments. As a result, a new value that 
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minimises equation (3) is assigned to each variable; following which the penalty is dis

carded. This approach allows us to combine intensification and diversification in a single 

move because by selecting a value that minimises the sum of penalties and violations the 

search is pushed, but not too far away, from its existing trajectory.

To evaluate the effectiveness of the perturbation scheme, an experiment was devised 

whereby a simple greedy hill-climber (Algorithm 4.1) is driven to a local optimum and then 

perturbed with different heuristics. The effects of the perturbations were evaluated when 

the algorithm either found a solution or settled on a new local optimum. Of particular in

terest, were the number of deadlocks resolved, and critically, the number of new constraint 

violations caused i.e. the number of previously satisfied constraints that become violated.

These were evaluated on binary DisCSPs in which all constraints were linear inequalities 

between pairs of variables.

We considered two types of penalty based perturbations: one in which the earliest 

variable involved in the deadlock is perturbed and one in which all variables involved in 

the deadlock are perturbed. These strategies were compared with random perturbations: 

(i) unilateral perturbations where a random value is selected for one variable involved in 

a deadlock, and (ii) multilateral perturbations where random values are selected for all 

variables in a deadlock. There were also comparisons with perturbations using temporary

constraint weights. The results are summarized in Table 4.1.

Perturbation strategy % of constraints 
resolved

% of times new violations 
were caused

Random (unilateral) 27 32
Random (multilateral) 50 42
Temporary constraint weights 84 66
Temporary penalties (unilateral) 39 37
Temporary penalties (multilateral) 57 43

Table 4.1: Effect of perturbation strategies with the greedy hill climber. Tested with 100 
DisCSPs {n = 30,d = 5,pl = 0.3).

The results show that the advantage of constraint based perturbation is that it re

solves a high percentage of constraint violations that cause deadlocks, but the drawback 

is that in doing so deadlocks are transferred to other parts of the constraint graph. Uni
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lateral random perturbations are worse on both metrics; very few constraints are resolved 

and at the same time, more constraint violations are caused. Perturbing with unilateral 

temporary penalties also results in similar outcomes.

It is clear that both multilateral perturbation schemes perform equally well on both 

metrics, and have the clear advantage of not transferring as many deadlocks to other 

parts of the constraint graph. But, between them, the temporary penalty strategy is 

more efficient. With random perturbations, within this framework, both perturbation and 

intensification can not be combined in a single iteration i.e. one can not select a random 

value for a variable and immediately select a value minimising the number of constraint 

violations. This returns the original value and hence the effects of the perturbation are 

negated immediately. Therefore to make random perturbations work, the deadlocked 

variables are perturbed in one iteration and the response to these can only start in the 

succeeding iteration.

When combined, both metrics in Table 4.1 suggest that the net effect of the temporary 

constraint weights make it the overall best i.e. the lowest sum of the percentage of unre

solved constraints and the percentage of the number of times new violations were caused. 

However, on closer scrutiny of the results, we find that for every five constraints resolved, 

the strategy with constraint weights causes two previously satisfied constraints to become 

violated, compared to one new violation for every five resolutions using the temporary 

penalties. And on that basis, we consider perturbation with the temporary penalty as a 

competitive alternative.

4.5 Chapter Summary

Two penalty based strategies for dealing with local optima in iterative improvement search 

were introduced in this chapter. In the first strategy, deadlocks are dealt with by modi

fying the cost landscape with penalties on domain values. We showed that this approach 

has a more profound impact on cost landscapes, compared to similar constraint based 

approaches, hence we argue that it is more effective at resolving deadlocks. The second 

strategy introduced was a penalty based mechanism for search perturbation. We showed 
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that, compared to some other perturbation heuristics, the new approach has the advantage 

of resolving existing deadlocks while not causing as many new deadlocks in other parts of 

the constraint graph.



Chapter 5

Distributed Penalty Driven Search

5.1 Introduction

In this chapter, we introduce Distributed Penalty Driven Search (DisPeL) for solving 

DisCSPs where each agent owns just one variable. DisPeL is a distributed iterative im

provement search algorithm that deals with local optima using the penalty based strategies 

introduced in Chapter 4. We discuss the algorithm and its behaviour, and present results of 

its empirical evaluation along with comparisons with the Distributed Breakout Algorithm 

which is based on a somewhat similar philosophy with DisPeL.

This chapter is structured as follows. The new algorithm, DisPeL, is introduced in 

Section 5.2, and in Sections 5.3 and 5.4, parts of the algorithm’s strategy are discussed in 

detail and their impact on the algorithm’s overall behaviour examined; while its theoretical 

properties are discussed in Section 5.5. Results of empirical evaluations are presented 

in Section 5.6, and the effects of unreliable communications on DisPeL’s behaviour are 

discussed in Section 5.7.

46
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5.2 Distributed Penalty Driven Search (DisPeL)

5.2.1 Overview

DisPeL is designed to solve DisCSPs where each agent controls just one variable^ and the 

objective is to find the first solution that satisfies all constraints simultaneously. It is a 

greedy hill-climber, or an iterative improvement algorithm, in which agents, in a fixed 

ordering, take turns to improve a random initialisation. Therefore, unlike conventional 

hill-climbing, it is an approach that accepts sequential improvements in each iteration 

rather than the best possible improvements (building on Algorithm 4.1). Determining the 

best improvement to implement in the conventional way has significant cost implications 

in distributed problem solving; it requires each agent to compute a possible improvement 

and all agents collectively determine which improvements to implement by exchanging 

the computed values. However, using sequential improvements communication costs are 

reduced as all improvements are accepted and the information, used to make decisions, is 

always coherent.

The core of DisPeL’s strategy is its use of penalties to modify underlying cost land

scapes in order to deal with local deadlocks that prevent agents from improving the so

lution. These penalties are attached to individual domain values, and are used in a two 

phased strategy as follows:

1. In the first phase, the solution is perturbed with temporary penalties in an attempt 

to force agents to try other combinations of values, and allow exploration of other

areas of the search space.

2. If the perturbation fails to resolve a deadlock, resolution moves to the second phase, 

where agents try to learn about and avoid the value combinations that caused the 

deadlock by increasing the incremental penalties attached to the culprit values.

Penalties are used collaboratively, so that whenever an agent detects a deadlock and 

has to use a penalty, it implements the penalty on its current assignment and asks its 

Tn this chapter, we often use the term agent to also refer to the variable an agent represents.
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neighbours to implement the same penalty on their current assignments as well. A no

good store is used to keep track of deadlocks encountered, and hence, used to help agents 

decide what phase of the resolution process to initiate when a deadlock is encountered.

We assume that all constraints are undirected, therefore each agent in DisPeL will 

evaluate, locally, all constraints attached to its variable. Hence, each agent will commu

nicate, in a synchronised manner, with all other agents that are co-constrained with it 

exchanging value assignments and requests to impose penalties.

5.2.2 Algorithm details

DisPeL is an iterative improvement algorithm in the sense that it starts off with a ran

dom flawed solution which agents take turns to improve until a valid zero cost solution is 

found. The search is generally downhill in the cost landscape (or uphill in the objective 

landscape) where, in each iteration, agents use the min-conflicts heuristic [77] (or local 

repair) to select values that minimise the number of constraints violated. The cost func

tion for each agent is modified to include two types of penalties, so as to incorporate the 

penalty driven strategies for landscape modification and solution perturbation, as follows:

t if a temporary penalty is imposed

(1)

0 otherwise

where:

di is the ith value in the variables domain

v{di} is the number of constraints violated if di is selected 

p(di) is the incremental penalty attached to di

t is the temporary penalty (t = 3)

As such, when it is an agent’s turn to improve the solution state, it always selects the

^This value may be optimised for different problem classes, however, unless explictly stated we use this 
value for t in all our experiments irrespective of the problem size.
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least cost value in its domain i.e. the value with the lowest sum of constraint violations 

(given current assignments to neighbouring variables) and penalties. Penalties are imposed 

(in the case of the temporary penalty) or increased (in the case of incremental penalties) 

when a deadlock is encountered as follows:

• If it is the first visit to a particular deadlock state, the earliest agent involved in

the deadlock imposes a temporary penalty on its current assignment and sends a

message to lower priority neighbouring agents involved in the deadlock to impose 

temporary penalties on their assignments when it gets to their turns to act. Each 

agent discards the temporary penalty on the domain value as soon as it is used.

• If the deadlock state is being revisited, the earliest agent involved increases the

incremental penalty attached to its current assignment and sends a message to all 

its lower priority neighbours to do the same. Note that the incremental penalties

are not discarded after being used.

We assume that deadlocks occur at quasi-local-optima rather than at real local op

tima - the cost of detecting if the whole solution is stuck at a real local optimum is high 

and doing this repeatedly can increase the search costs of the underlying algorithm expo

nentially. We determine that an agent is at a quasi-local-optimum when its AgentView 

(see Definition 3.5) is unchanged in two successive iterations and its current assignment 

is inconsistent. This differs slightly from the original definition of quasi-local-optima (in 

[123]) as states where agents have no values in their domains that reduce the number of 

constraints violated. As we discuss in Section 5.3, agents need to wait for the additional 

iteration to ascertain the deadlocks and prevent the use of penalties to resolve deadlocks 

that may not exist.

The temporary penalty, used when deadlocks are first encountered, is used to perturb 

the solution so that agents are forced to explore other regions of the search space to find 

combinations of values that can resolve the deadlocks. But it is used in a way that tries 

to induce a localised perturbation, which is intended to keep the search in nearby regions 

of the search space. Therefore, when an agent uses a temporary penalty, it will make a 
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request to those lower priority agents violating constraints with it to also use the penalty, 

thus making implicit requests for them to try alternative values that could possibly resolve 

the conflict - even though the initiating agent is also changing its value. If the attempt 

is unsuccessful, and the agents return to their assignments at the deadlock, incremental 

penalties attached to the current assignments are increased. But this time, the agent 

initiating the resolution will request that all its lower priority neighbours increase the 

value of the incremental penalties attached to their current assignments. The idea is 

that the combination of current assignments prevents one or more agents from finding 

consistent values and can not be part of a solution; and as such the increased costs {h) 

make the assignments less attractive and prompt exploration of other areas of the search 

space.

Incremental penalties also serve as a primitive form of short-term learning (or search 

memory) which allows agents to learn to avoid selecting values repeatedly associated with 

deadlocks. These penalties are set to zero at initialisation, and are increased during the 

search. A side effect of using incremental penalties to resolve deadlocks is the potential for 

the penalties to dominate agents’ cost functions, since penalties are given equal weighing 

with constraint violations. This domination can drive the search away from promising 

regions of the search space, because as penalties grow, agents seeking to minimise their 

cost functions will be pushed towards values with the least penalties rather than those 

with the least constraint violations. To overcome this, incremental penalties are reset to 

zero during the search, as follows:

• When a variable has a consistent value, all incremental penalties attached to each

value in its domain are discarded. Here, we assume that penalties become redundant 

when an agent has a consistent value. This action also leaves room for maneuvering 

when either the variable suddenly becomes inconsistent or it is involved in a deadlock

resolution process.

• Each agent also discards the penalties on its entire domain when it detects distortions 

to its cost function. We determine that a cost function is distorted when all the

conditions in the rule, detailed in Figure 5.1, are satisfied. This second case is akin 
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to an aspiration move (as in Tabu search [34, 35]), where search memory is sometimes 

ignored. This is illustrated with the example in Figure 5.2. In the example, the cost 

function is distorted because the assignment {x = g} has the least sum of constraint 

violations and penalties. But, the assignment {x = b} now violates fewer constraints 

and as such the cost function is being distorted by the penalties. Therefore, resetting

penalties this way allows agents to keep paths to better solutions open.

Distortion Rule;
Condition 1.1: The evaluation (/i) of the current assignment 

is the least in a variable’s domain.

Condition 1.2: There is another value in the domain, which has fewer 
constraint violations than the current assignment.

Figure 5.1; Detecting distortions to cost functions by incremental penalties.

As argued, resetting penalties allow agents to keep paths to potential solutions open; 

but doing it quite frequently also comes with a potential to cause the search to oscillate 

as it continuously removes barriers that prevent it from returning to earlier visited (and 

infeasible) regions of the search space. In Section 5.4.2, where we discuss penalty resets 

in detail, we show that the benefits of doing this are significant and they outweigh the 

possible risks.

v(Dx} = [3,5,2,3,6]
p(Dx) = [2,0,4,l,0] 

therefore,
fi(Dx) - [5,5,6,4,6]

and the current assignment, with the least h{Dx) is {x — g}.

Figure 5.2: An example of a distorted cost function

To tie both phases of the deadlock resolution strategy together, each agent maintains 

a no-good store in which deadlocks encountered are kept as no-goods. A no-good is an 

agent’s AgentView comprising the assignments of all variables constrained with it at the 

time of the deadlock (Definition 3.6). No-goods are not treated as new constraints, to rule 



5.2. Distributed Penalty Driven Search (DisPeL) 52

out infeasible tuples, as used in forms of learning prevalent in backtracking algorithms 

(e.g. [33, 9]). No-goods are simply used as short-term memory to enable agents to deter

mine what phase of resolution to use when they are stuck. As such, when a deadlock is 

encountered an agent checks its no-good store to find out if the deadlock state has been 

visited recently. If not so, the deadlock state is placed in the no-good store and the agent 

proceeds to initiate the first phase of deadlock resolution. And if the deadlock state is in 

the no-good store, the agent recognises that at least one previous attempt had been made 

at resolving the deadlock and can proceed with a longer term approach to resolving it i.e. 

it applies the second phase of deadlock resolution.

A fixed number of no-goods is held at any point in time by each agent, maintained 

on a First-In-First-Out basis. From experiments, which are discussed in Section 5.4.3, we 

found that the maximum number of no-goods held is not particularly critical to DisPeL’s 

performance. This is because, as we also show in that section, that the majority of no

goods are only encountered once during the search. Therefore, we chose arbitrarily to fix 

the maximum number of no-goods held by each agent to 4 irrespective of the number of 

constraints attached to the agent or the kind of problem being solved.

5.2.3 Agent behaviour

Agents take turns to improve an initial random solution in DisPeL and the order in which 

their turns are taken is decided using the Distributed Agent Ordering scheme [43]. There

fore, at initialisation, each agent locates its position in the ordering by locally partitioning 

its neighbours into parents (r+) and children (P") using their lexicographic tags (or IDs) 

i.e. parents are those neighbours that precede an agent in alphabetical order. This results 

in a static ordering that permits concurrent activity by unconnected agents.

During the search, each agent communicates with both sets of neighbours sending 

updates to them, as well as penalty messages to lower priority neighbours. Agents with 

higher priority neighbours get to take their turns after receiving messages from all of them. 

While agents without higher priority neighbours (i.e. r+ is empty), only become active 

after receiving updates from all their lower priority neighbours; this prevents them from 
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continuously sending updates and allows for proper synchronisation of each iteration.

At initialisation, agents select random values for their variables and inform all neigh- 

hours of their current assignments. After which, the agents take turns to improve the 

solution executing the processes outlined in Algorithms 5.1, 5.2, 5.3, 5.4, and 5.5. When 

active, each agent selects the value with the least cost i.e. minimising equation (1). And, 

where there are two or more values with the same sum of constraint violations and penal

ties, an agent selects the leftmost^ of these values. If, however, there is no value with 

a lower evaluation than the current assignment then the assignment is retained. After 

selecting a value, the agent sends an update to all its neighbours informing them of the 

new assignment.

Algorithm 5.1 DisPeL: Agent main loop 
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

initialise
repeat

messages <— accept^
while active do

penalty Request <— null 
processMessages () 
if cost function (h) is distorted then 

reset all incremental penalties
end if
if penalty Request null then

r esp ond _to .message () 
penalty Request <— null

else
if current value is consistent then 

reset all incremental penalties 
penalty Request <— null

else
check_for .deadlocks () 

end if 
end if 
sendMessage^penaltyRequest) 

end while
until termination condition met

Deadlock resolution is initiated whenever an agent detects that it is at a quasi-local 

optimum. At this stage, the agent checks its no-good store to find out if the deadlock has 

been recently encountered. If the deadlock is new, it imposes the temporary penalty on its 

^This is similar to the leftmost minimum rule in [44, 66].
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Algorithm 5.2 procedure check_for_deadlocks(); initiating deadlock resolution. 
1: if agentView(t) 7^ agentView(t-l) then
2: select value minimising cost function
3: return
4: end if
5: if agentView(t) is not in no-good store then 

impose temporary penalty on current value 
add agentView(t) to no-good store 
penalty Request <— ImposeTemporary Penalty

6:
7:
8:
9: else

10: increase incremental penalty on current value
11: penalty Request <— IncreaseIncPenalty
12: end if
13: select value minimising cost function

Algorithm 5.3 procedure respond_to_message() Responding to a penalty message 
received from a higher priority agent.___________________________________________

1: if penalty Request = I mposeTempor ary Penalty then 
2: increase temporary penalty on current value
3: else
4: impose incremental penalty on current value
5: end if
6: select value minimising cost function

Algorithm 5.4 procedure processMessagesQ
1
2
3
4
5
6
7
8
9

10
11
12

for i = 0 to num(messa5'es) do
update with message.variable.message.value
if message, penalty Request null then

if message.penaltyRequest = IncreaseIncPenalty then 
penalty Request IncreaseIncPenalty

else
if penalty Request IncreaseIncPenalty then

penalty Request I mposeTempor ary Penalty
end if

end if
end if

end for 
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Algorithm 5.5 procedure sendMessage(^penaltyRequest)
1: send message{id,value,null) to all neighbours in F+
2: if penalty Request = IncreaseIncPenalty then
3: send messaQe(id,value,penaltyRequest) to all neighbours in F“
4: else if penalty Request = ImposeTempor ary Penalty then
5:

6:

7
8
9

send message{id, value, ImposeTemporaryPenalty) to neighbours in F violating 
constraints with Self
send message{id,value,null} to neighbours in F" not violating constraints with 
Self

else
send message(zd, value, null} to all neighbours in F“

end if

current value (Algorithm 5.2, line 6) and selects a new value minimising (1) (Algorithm 

5.2, line 13). In addition, its AgentView is placed in the no-good store (Algorithm 5.2, 

line 7) and at the same time the agent sends a message to neighbours in F~ that were 

violating constraints with it^ to impose temporary penalties on their current assignments 

(Algorithm 5.5, lines 4-6).

However, if the deadlock had been previously encountered, the agent increases the 

incremental penalty attached to its current assignment by 1 (Algorithm 5.2, line 10) and 

goes on to select a value minimising its cost function. Furthermore, while informing its 

neighbours of its new value, it also requests that all neighbours in F“ increase the penalties 

attached to their current assignments (Algorithm 5.5, lines 2 and 3).

When an agent receives a request to impose or increase a penalty on its value it does 

so accordingly and selects the least cost value in its domain (Algorithm 5.3). Agents may 

at times receive multiple requests from two or more neighbours in F'*’ simultaneously, and 

when this happens the requests are treated as one request if they are for the same type 

of penalty. For example, the agent will not increase the penalty on its current assignment 

more than once in a single iteration even if it receives several requests to do so. But, 

when the requests are simultaneously received for different penalties, agents will ignore 

the requests to impose a temporary penalty (Algorithm 5.4) - thereby prioritising learning 

over perturbation and allowing agents to focus on resolving the deadlocks in the order in 

which they were encountered.

^That is before its value may have been changed as a result of the temporary penalty.
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To keep things stable and limit the amount of simultaneous deadlock resolution activity, 

an agent involved in deadlock resolution, i.e. one that has received a request to impose 

a penalty in the current iteration, is prevented from initiating any deadlock resolution 

action itself (Algorithm 5.1, lines 10-12).

5.2.4 An example run

The DisCSP in Figure 5.3 is used to illustrate the deadlock resolution process in DisPeL. 

In this example, there is a deadlock between agents b and d; neither agent has a value in 

its domain that reduces the number of constraints violated, as shown in v(b) and v(d') in 

the figure. Agents in the DisCSP will take their turns in the order a, then b, and then c, 

d, and e can take their turns simultaneously since there are no constraints between them; 

after which agents f and g take their turns one after the other. Since, agent a is consistent 

we assume it has already taken its turn where it does not change its assignment.

At this point, the agent b imposes a temporary penalty on its assignment causing it 

to change its value to (5 = 2). It also sends a request to agent d, which was violating 

a constraint with it, asking d to impose the temporary penalty on its current value too 

(Figure 5.4). In response, agent d imposes the temporary penalty on its value, and selects 

the least cost value in its domain {d = 3) (Figure 5.5).

Other agents are unaffected by the changes, and therefore will keep their assignments 

in the current iteration. In the next iteration, agent b evaluates its state and finds that 

the values 3 and 4 both violate a single constraint each and it selects the first of those 

values {x = 3}. This, in turn, prompts agent c to change its assignment to (c = 2), as it 

had suddenly become inconsistent (Figure 5.6). At the same time, the deadlock between 

agents b and d is now resolved.

If the perturbation failed to resolve the deadlock and, all agents still have their original 

assignments, agent b would have initiated the next phase of resolution by increasing the 

incremental penalty on its current value, and asking all its lower priority neighbours (c.

d, e) to do the same.
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Figure 5.3: Illustration of deadlock resolution in DisPeL with the temporary penalty.

2. select value with min A(x)

Figure 5.4; Example of deadlock resolution with the temporary penalty (step 2).

3. ask d to impose temporary 
penalty on its current value too

1. impose temporary penalty (t=3) 
on current value

*(*)-[224j

b = 2
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Figure 5.5: Example of deadlock resolution with the temporary penalty (step 3).

Figure 5.6: Example of deadlock resolution with the temporary penalty (step 4).
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5.3 Deadlock detection in DisPeL

We mentioned earlier, in Section 5.2.2, that due to the distributed nature of the search, 

agents use penalties whenever they encounter quasi-local-optima (or deadlocks). We also 

pointed out that agents determine that they are deadlocked when they have inconsis

tent values and their neighbours’ values are unchanged in two successive iterations. This 

approach differs from Yokoo and Hirayama’s [123] original definition of the quasi-local

optimum, which they define as a state in which an agent has an inconsistent value and it 

does not have any value in its domain that reduces the number of constraints currently 

violated.

Their definition of a deadlock state can not work in DisPeL since it will cause agents 

to use penalties prematurely in attempts to resolve deadlocks that may not exist. Agents, 

in DisPeL, take turns to improve the solution and as such agents are simultaneously 

responding to decisions taken by their higher priority neighbours in the current iteration, 

and those taken by lower priority neighbours in the preceding iteration. Therefore, if 

an agent assumes it is deadlocked because it currently has no improvements there is a 

probability that in response to an unconnected event, one of its lower priority neighbours 

might change its value; thereby giving the agent the opportunity to try other values in 

the succeeding iteration. As a result, the only time an agent can determine that it is 

deadlocked, with some certainty, is when its neighbours assignments are unchanged in 

successive iterations.

We illustrate the problem of premature deadlock detection further with the DisCSP in 

Figure 5.7. In the example, with the current assignments both agent a and agent c are at 

quasi-local-optima given the original definition. Agent a is deadlocked because its domain 

value 1 violates the constraint with c and the values 2 and 3 violate the constraint with

d. Similarly, agent c is deadlocked because its current assignment violates the constraint 

with d and its other value violates its other constraints. Neither agent has any value in 

its domain that reduces the number of constraints it currently violates.

Using DisPeL’s approach, agents a and c will note their current states, retain their 

current assignments, and wait for the next iteration to confirm the deadlocks. However,
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Figure 5.7: Examples of “premature” deadlocks in DisPeL’s framework.

when it gets to agent d’s turn to act, it changes its assignment to {d = 2) which opens an 

opportunity for agent a to resolve the conflict without using penalties. And, as a result 

the possible deadlock which both agents a and c were preparing to resolve no longer exists.

If either agent a or c had acted immediately, any penalties implemented could have 

influenced agent d such that it could have been prevented from making the change that 

dissolves the deadlock. The effects could possibly have pushed the search further away 

from nearby solutions. As a result, agents can miss opportunities to intensify the search 

of the surrounding regions of their current location in the search space.

In Chapter 7, this deadlock detection scheme is not used in the extension of DisPeL 

for agents with multiple local variables because of the peculiarities of deadlock detection 

in such problems i.e. deadlocks may be local or the interaction of inter and intra-agent 

constraints may increase the complexity of the deadlock detection process. We found that 

performance of that extension is not critically hampered by the absence of the deadlock 

detection mechanism, but we must stress that features of the problems studied may be a 

factor. Removal of deadlock detection in DisPeL may be of some benefit in highly struc

tured problems which local search algorithms traditionally do not fare well. It should 

prevent agents from getting stuck in deep plateaus in the skewed cost landscapes of struc

tured problems, therefore the removal of deadlock detection could possibly improve overall 

search efficiency.
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5.4 Impact of heuristics

DisPeL is primarily built around its penalty based deadlock resolution strategies but its 

other components, such as the reset policy and the no-good store, influence its behaviour 

in different ways. In this section, we discuss the impact of these components on the 

algorithm’s performance (in Sections 5.4.2 and 5.4.3 respectively), and also look empirically 

at the impact of the temporary penalty.

5.4.1 DisPeL without the temporary penalty

The temporary penalty is used in the first phase of deadlock resolution to perturb the 

solution state. The justification for its inclusion, in Section 4.4, is evidence showing that 

when used it has advantage of not causing as many new constraint violations in other 

parts of a problem not affected by a deadlock. Here, we study, empirically, the effect of 

the temporary penalty on DisPeL’s performance.

DisPeL’s main strategy for dealing with local optima is the landscape modification with 

penalties. This is a “long term” approach for resolving deadlocks and also for preventing 

their repeated occurrence. The temporary penalty is a perturbation scheme that also 

creates the effect of a rapid build-up of incremental penalties. In this guise, it aids DisPeL 

by speeding up resolution of some deadlocks that would otherwise require a build up of 

incremental penalties. It therefore, allows for quicker resumption of search intensification 

activity.

To examine the impact of the temporary penalty on DisPeL’s behaviour, an experiment 

was conducted comparing DisPeL with two reduced versions of it: one where incremental 

penalties alone are used for deadlock resolution, and another where the temporary penal

ties are used exclusively. Performance was evaluated with two sets of randomly generated 

DisCSPs ((n = 60,d= 10,pl - 0.1,p2 = 0.5) and {n = 100,d- 10,pl = 0.06,p2 = 0.5)), 

where we measured the percentages of problems solved within a maximum of lOOn it

erations. There were a thousand problems in each problem set, although we used only 

the first 100 problems (from one set) to evaluate the version relying exclusively on the 
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temporary penalty®. The summary, in Table 5.1, also includes the average and median 

number of iterations taken to find the solutions®.

Table 5.1: Influence of temporary and incremental penalties on DisPeL’s performance.

Heuristic n % of problems solved average cost median cost
Temporary penalty alone 60 4.0 215.5 172.0
Incremental penalty alone 82.7 801.5 451.0
DisPeL 87.6 1107.5 661.0
Incremental penalty alone 100 74.5 1613.9 905.0
DisPeL 88.6 1660.0 988.0

The results of the experiments show that with the temporary penalty alone, the al

gorithm rarely solved any problems. The reason for this is that, there is no strategy for 

detecting repeat visits to deadlock states and therefore the search is nearly always locked 

in an infinite oscillation between deadlock states. This can occur when perturbations 

continuously push the search back to points earlier in its trajectory, or when some per

turbations conspire to cause the search to repeatedly jump back and forth between some 

deadlocks.

Combined with the incremental penalty in DisPeL, the contribution of the temporary 

penalty is a higher percentage of problems solved; compared with the version of the algo

rithm using incremental penalties alone. The gap between the algorithms is wider in the 

larger problems - where the percentage of unsolved problems by DisPeL was about half of 

that using incremental penalties alone. However, the costs do appear to be lower in the 

fewer problems solved with the incremental penalties alone. We argue that the temporary 

penalty improves the performance by allowing the algorithm resolve some “easy” dead

locks quickly, and thus improving chances of finding the solution within the time bounds 

by allowing the algorithm to use the incremental penalties only on the more difficult dead

locks. Furthermore, as we have shown in Section 4.4, when the temporary penalty is used 

the likelihood of causing previously satisfied constraints to become violated is lower.

^The version with the temporary penalty alone was not used for all problems in the set and it was 
not considered for the experiments with the second problem set because preliminary investigations had 
indicated that the version was not competitive.

^Unsolved problems are excluded from the statistics.
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5.4.2 The penalty reset policy

Incremental penalties are reset when agents have consistent assignments and when they 

detect distortions to their cost functions. We argue that this is necessary because the 

penalties can dominate cost functions therefore forcing agents to seek values with the least 

penalties and at the same time blocking paths to solutions. Similar ideas of discarding 

search memory (in the form of weights or penalties) have been explored in the literature, 

especially in the work on centralised local search. For example, periodic penalty resets 

were proposed in [75], while regular [30] and probabilistic [57] weight decays have been 

shown to improve performance of weighted local search algorithms. The authors also argue 

that weights can block paths to solutions when retained. Tompkins and Hoos [111], in 

their study of the effects of weights on cost landscapes, conclude that weights often have 

large unintended effects on landscapes and that there must be mechanisms to undo such 

effects.

Both conditions for resetting penalties in DisPeL are new. As far as we are aware, 

there is no equivalent in the literature for resetting penalties when agents (or variables in 

centralised search) find consistent assignments. We argue that doing this gives agents room 

to maneuver when they suddenly become inconsistent or have to partake in a deadlock 

resolution with inconsistent neighbours. The results summarised in Table 5.2 are from 

experiments used to justify our reset policy, where we compared DisPeL with variants 

of it using different reset policies: not resetting penalties at all, resetting penalties only 

when consistent values are found, and resetting penalties only when cost functions are 

distorted. In addition, a version of DisPeL with continuous penalty resets is also included 

in the experiments.

Table 5.2: Comparative evaluation of alternative reset policies in DisPeL on attempts to 
solve 100 randomly generated DisCSPs (n = 60,d = 10,pl = 0.1,p2 = 0.5).

Policy % of problems solved average cost median cost
No resets 0 n/a n/a
Reset only when consistent 87 1725 1207
Reset only when distorted 84 1597 1142
Combined resets (DisPeL) 93 1040 676
No penalty retention 48 1026 673
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First of all, the results in the table show that the impact of any form of penalty resets 

is significant in this framework. Penalties differ from constraint weights fundamentally in 

the way they affect cost functions. While one can look at weights as being ‘woven into 

the fabric’ of an underlying function, penalties are more like appendages. Hence, while 

solvers that rely on constraint weights can successfully solve problems without limiting 

the growth of weights, it appears that it is not the case with this penalty based strategy.

It is clear that penalties do a very good job of blocking off paths to solutions if retained.

As Table 5.2 shows, performance improves when penalties are discarded frequently; more 

problems are solved and the search costs are at least 40% lower.

The trend in Table 5.2 shows that performance of the algorithm improves as there are 

more opportunities to discard penalties (i.e. for the first four rows). This naturally leads 

to the question of what happens if a maximal reset policy is used i.e. incremental penalties 

are discarded as frequently as the temporary penalties. Results from a version of DisPeL 

with this policy show that the percentage of problems solved drops dramatically, and it 

suggests that the policies implemented in DisPeL allow the algorithm to retain penalties 

as long as they are useful and therefore properly learn about assignments associated with 

quasi-local-optima.

5.4.3 Impact of the number of no-goods held

No-goods are held by agents primarily to allow them to decide on what penalty to im

plement when deadlocks are encountered. But no-goods also serve as a form of memory 

where, in a way, they can help agents detect cycles when the search oscillates between 

a few deadlock states. That is if at least two no-goods are held. Such oscillations can 

occur when a perturbation at a deadlock pushes the search towards another deadlock, and 

a second perturbation pushes the search back to the first deadlock. If only one no-good 

is retained, agents cannot discover this oscillation and will waste a lot of effort roaming 

about in a small region of the search space. This can possibly prevent the algorithm from 

solving the problem.

No-goods are not taken as new constraints, and therefore, agents only hold a limited 
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number of them at any point in time. In this section, we examine what impact the number 

of no-goods agents are permitted to hold can have on DisPeL’s performance. So far we 

have shown that other forms of search memory, i.e. the incremental penalties, improve

DisPeL’s performance if they are short lived, and we try to see if the same applies to no

goods. We carried out two sets of empirical experiments to flesh out any influences that 

the number of no-goods held can have on DisPeL’s behaviour. To start with, we studied 

the frequency of repeat visits to deadlock states by DisPeL, if all no-goods are retained in 

memory with a view to establishing how often no-goods are referred to, on average, during 

the search and look for pointers to how much information needs to be retained. In the 

second set of experiments, we evaluate DisPeL’s performance with varying limits on the 

maximum number of no-goods agents were allowed to hold at any point in time. In those 

experiments, we compared runs over several problems and used Run Length Distributions 

[55] with single instances to further scrutinise the behaviour.

In the first experiment, we ran DisPeL on several problems of different sizes, i.e. num

ber of variables and domain sizes, to study how often deadlocks encountered are revisited 

in the course of a search. In these runs, agents were allowed to hold every deadlock they 

encountered. Results of this experiment, which are summarised in Table 5.3, show that at 

least 60% of the deadlock states were only encountered once during the search. And, at 

most 20% of deadlocks were revisited more than twice during the search. On the smaller 

problems, the percentage of repeat visits is higher. There appears to be a lot of explo

rative activity as the size of the search space grows and agents are not being repeatedly 

attracted to the same deadlocks. Hence, suggesting that there is no need to retain too 

much information, as only a handful of deadlocks turn out to be significant and require 

more attention for their resolution.

We test this assertion in the second experiment where we ran DisPeL on several prob

lems with different limits to the number of no-goods agents were permitted to hold. We 

tried some arbitrary limits and also ran the algorithm with individual limits for agents - in 

multiples of the number of constraints (C) attached to their variables. Two problem sets 

were used for this experiment, each comprising 100 randomly generated DisCSPs. Table
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Table 5.3: Frequency of visits to deadlock states. Average (and standard deviation) from 
runs on 50 random DisCSPs in each set.

Problem set % 1 visit (cr) % 2 visits (cr) % > 2 visits
(40,5,0.15,0.5) 61.2 (5.64) 19.0 (4.4) 19.8
(40,10,0.15,0.5) 66.9 (15.29) 19.8 (14.7) 13.3
(60,10,0.1,0.5) 68.0 (2.53) 19.2 (2.1) 12.9
(60,5,0.1,0.5) 74.3 (12.86) 16.0 (11.0) 9.7
(75,8,0.08,0.5) 74.9 (3.21) 14.7 (3.6) 10.4
(75,15,0.08,0.5) 70.4 (0.91) 15.9 (0.5) 13.7
(80,15,0.08,0.5) 74.2 (0.96) 15.5 (0.7) 10.3
(80,8,0.08,0.5) 76.0 (2.96) 13.4 (2.5) 10.6

5.4 summarises the results of the experiment, showing the percentage of problems solved, 

the average and median search costs from the runs. In all the runs, the algorithm was 

started from the same initialisation to remove any random influences on the outcome.

Table 5.4: DisPeL’s performance on random DisCSPs ((n — 40, d = 10, pl = 0.15,p2 — 
0.5) and {n = 60, d = 10, pl = 0.1,p2 — 0.5)) with different limits {ngMax} on the number 
of no-goods agents hold.

n ngMax % solved average cost median cost
40 1 82 593.3 314.0

2 90 627.6 338.5
4 90 684.2 389.5
8 90 650.3 406.5
C 87 653.9 423.0

2C 89 620.8 402.0
60 1 85 1124.1 677.0

2 91 1268.5 760.0
4 90 1176.9 646.0
8 87 1014.8 580.0
C 90 1039.7 647.5

2C 91 1291.8 772.0

As expected, the results in the table show that when only one no-good is held, the 

probability of finding solutions is lower. As we have argued earlier, holding one no-good 

can prevent agents from detecting oscillations between deadlock states and thus prevent 

the search from converging on a solution state. But the results show that beyond holding 

one no-good, the effect of the limit is unclear, even when it is tailored to the individual 

problem. There are no clear patterns in the statistics, and this suggests that the other 

components of DisPeL dominate this particular parameter.
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As a way of confirming this, we used Run Length Distribution costs to study how 

the probability of finding solutions changes with the number of iterations. We tested the 

algorithm with limits of 2, 4, and 2C no-goods per agent on a random DisCSP instance 

(n = 40, d = 10,pl = 0.15,p2 = 0.5). The plot in Figure 5.8 shows and example of the 

typical distribution of costs from 200 attempts with each value for the parameter. The 

curves overlap each other, and the probability of finding a solution grows at similar rates 

for the different values.

Figure 5 8- Run Length Distributions comparing performance of DisPeL when each agent 
holds a maximum of 2, 4, and 2C no-goods, plotted from 200 attempts on a random 
DisCSP.

In summary, we have shown that the number of no-goods held by agents is not par

ticularly critical to DisPeL’s behaviour. Except in the case where each agent holds just 

one no-good, the evaluations show that the effect of retaining more memory is unclear. 

Though a number of values 

number of no-goods agents 

solved or the problem size.

are ecpially good, we arbitrarily chose to limit the niaxiniiiin 

can hold to 4 - irrespective of the type of problems being 

We used this value in the rest of our empirical evaluations

with DisPeL.
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Summary

In the preceeding sections, DisPeL was stripped apart to study the impact of some of the 

prominent components of its strategy. Justifications for the inclusion of these components 

were outlined and backed up with empirical evidence. In summary, we have shown that 

although the temporary penalty (or perturbation phase) on its own is weak, it provides a 

massive boost to the performance of the algorithm when combined with the incremental 

penalty. We have also shown that agents do not necessarily need to retain so much memory 

about deadlocks encountered during the search, since the probability of the search being 

repeatedly attracted to particular deadlock states is small. Similarly, empirical evidence 

shows that when incremental penalties are allowed to accumulate unbounded, their impact

on DisPeL’s performance is quite severe. So, while the penalties are critical to helping 

DisPeL leave plateaus, it is also critical that they are not kept for long periods of time.

5.5 Theoretical Properties

5.5.1 Soundness

Theorem 5.1 DisPeL is sound because it will only terminate iff a valid solution is found.

Proof DisPeL will only report a solution when all agents stop and settle in a stable 

configuration. As long as there is a deadlock in the constraint network (there is at least 

one violated constraint), the highest priority agent involved in the deadlock will always take 

actions for its resolution. Therefore, the system will not settle on a stable configuration 

and, as a result, the algorithm will not terminate.

5.5.2 Completeness

DisPeL is incomplete because if a problem is unsolvable, agents have no way of detecting 

that fact. Search memory (i.e. penalties and no-goods) in DisPeL are ephemeral and 

therefore can not be used to cut out all infeasible areas of the search space. And as such.

there is nothing theoretically preventing the search from repeatedly visiting previously 
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encountered local optima and running indefinitely. For the same reasons, DisPeL is not 

guaranteed to find a solution even if one exists.

5.5.3 Space complexity

DisPeL has a space complexity that is linear in the number of variables in the DisCSP 

being solved, and is bounded by O(^|=[ A + (5 x AgentViewi}). The space used by each 

agent includes a matching penalty vector for its domain, a maximum of 4 no-goods held at 

any point in time, and the AgentView from the previous iteration for deadlock resolution.

5.5.4 Privacy

In terms of privacy, agents in DisPeL preserve the same level of privacy as the prominent 

distributed iterative improvement algorithms. Agents reveal values that have the best 

evaluations in their domains and only one value is revealed at a time. Information “leaks” 

may occm if an agent’s neighbour chooses to keep track of all values received from it over 

the course of the search. However, unless explicitly informed there is still some uncertainty.

from the neighbour’s perspective, about what extent of the agent’s domain that has been 

revealed. Agents in DisPeL are not permitted to reveal information to one neighbour about 

their connections to other agents, nor are they permitted to inform neighbours about the 

values received from other agents.

Of course, this level of privacy is lower than that preserved in algorithms that use 

trusted servers (e.g. [125]) or secure encryption schemes (e.g. [104] and [84]). However, 

it is much higher than the level preserved in distributed backtracking algorithms with 

no-good learning; where the creation of no-goods can result in an agent informing one 

neighbour about constraints with another set of agents.

5.5.5 Termination detection

Termination detection in DisPeL is built around the fact that stability persists as soon as 

a solution is found. At a stable state, all agents will retain their current values and the 

solution remains rooted at a fixed position in the search space. Therefore to terminate 
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correctly, one needs to detect the fact that each agent is consistent and that the solution 

is unchanged in two successive iterations.

For experimentation, we took a pragmatic approach and assumed the existence of a 

System agent (as done in [40] and [105] for example), that initiates the search, handles 

message passing, and performs termination detection. Extending this approach for a 

distributed environment will require each agent to notify the System agent any time it has 

been consistent in two or more successive iterations. The System agent terminates the 

search if it has received such messages from all agents in a single iteration.

Alternatively, if the cost of regularly communicating with the System agent is high, 

the termination detection mechanism introduced in [123] can also be used in DisPeL. This 

mechanism is intertwined with the search algorithm, so that termination detection is not 

run as separate process and it does not increase the number of messages exchanged. We 

found that this mechanism also works well with DisPeL. Details of the mechanism are 

outlined in the aforementioned paper, as well as the proof of its correctness.

5.6 Empirical Evaluation

We carried out extensive empirical evaluations of DisPeL’s performance with several types 

of problems including distributed graph colouring, random DisCSPs, and the car sequenc

ing problem. Performance was evaluated with two metrics: (1) the percentage of problems 

solved within stated time limits, and (2) the cost of finding solutions, where, the cost met

ric is the number of iterations required to find solutions. This is used because in this 

particular case it is representative of other evaluation metrics, such as message counts and 

consistency checks, commonly used in the community. DisPeL is a synchronous algorithm 

in which all agents do consistency checks and communicate with their neighbours in each 

iteration. Therefore, the number of consistency checks and messages sent can be directly 

inferred from the number of cycles executed. Clock time is ignored as an evaluation met

ric because it is too implementation dependent [3]; and because all the experiments in 

this work were carried out in a simulation of a distributed system on a single machine.

Therefore, the clock time from such simulations will not take into account the real costs 
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of distributed computation, such as message count, which are critical and can easily be 

inferred from the iteration count.

DisPeL is compared to the Distributed Breakout Algorithm (DBA) [123], which is the 

only other distributed iterative improvement algorithm that deals with local optima by 

modifying cost landscapes. In DBA, weights are attached to constraints and agents try 

to minimise the weighted sum of constraint violations. Weights are used to modify the 

landscape, by increasing those attached to violated constraints whenever agents encounter 

quasi-local-optima. Therefore, the comparison of DisPeL and DBA allows us to evaluate 

the effectiveness of the different landscape modification strategies, as well as to test the 

claims made in Section 4.3.

All agents in DBA act concurrently, each simultaneously looking for possible improve

ments (in an improve iteration) and exchanging current assignments (in an ok? iteration). 

While exchanging possible improvements, only those agents with the highest improvements 

in their neighbourhoods are allowed to change their values (ties are broken in favour of 

agents with the lowest lexicographic IDs). This prevents agents connected by constraints 

from changing values simultaneously and it allows the search to follow a steepest descent 

path.

Prior to the evaluation reported here, we verified our implementation of DBA by 

testing it on graphs generated with the same methods specified in [123] and we achieved 

results matching those reported. DBA and DisPeL were run on several DisCSPs where 

each variable was assigned to an agent and each agent represented just one variable. For 

the following experiments, we count each of DBA’s cycles (the improve and ok? cycles) 

as a separate iteration to compare its search costs with DisPeL. Therefore, to give agents 

in DBA the same number of opportunities to improve a solution, the maximum number 

of iterations in each run for DBA is twice that used for DisPeL.

5.6.1 Distributed Graph Colouring

Keeping with tradition, our first set of experiments were conducted using random dis

tributed graph colouring problems. These were all solvable instances created with the 
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method specified in [27]. For this class of problems, we were specifically interested in 

how performance changes with respect to constraint density (degree) on a fixed problem 

size. Therefore, we used the well studied 3-colour 100-node graphs for which complexity 

peaks are well established [18, 51]. For each constraint density considered, 100 random 

instances were generated, hence a total of 1,100. DisPeL and DBA were both run on these 

graphs and were limited to 10,000 and 20,000 iterations respectively. Results showing the 

percentage of problems solved, median search costs (i.e. number of iterations used), and 

average search costs are plotted in Figures 5.9, 5.10, and 5.11 respectively.

DBA 
DisPeL

Figure 5.9: Percentage of distributed graph colouring problems {n = 100, k = 3} solved 
by DisPeL and DBA.

4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3
degree

Results show that on the percentage of problems solved, both algorithms have the 

“easy-hard-easy” profile which the problem class is known to exhibit. However, within the 

time limits, DisPeL solved more problems than DBA in all but one point. In the region 

of hard problems (i.e. 4.5 > degree < 5.3), DBA solved significantly fewer problems. In 

the profile of search costs plotted in Figures 5.10 and 5.11, DBA still exhibits that “easy- 

hard-easy” pattern, with search costs peaking in the middle where the hardest problems 

are. Although, DisPeL’s search costs have a similar pattern these are almost always an 

order of magnitude lower than DBA’s costs. And, the difference in search costs between 

“easy” and “hard” problems for DisPeL is not as pronounced.
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Figure 5.10: Median search costs of DisPeL and DBA from attempts on distributed graph 
colouring problems.

Figure 5.11; Average search costs of DisPeL and DBA from attempts on distributed graph 
colouring problems.

5.6.2 Random Distributed Constraint Satisfaction Problems

We conducted experiments on randomly generated distributed constraint satisfaction prob

lems to study the behaviour of both algorithms on problems with non-binary constraints.

These solvable instances were generated using the standard Model-B [85], but modified 

with preferential attachment of constraints to variables so that they resemble real-life 
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problems [6, 117]^. The experiments reported here investigate the relationship between 

search costs and the number of variables in the problem, assuming a fixed ratio of con

straints to variables and fixed domain sizes. We used 100 instances for each problem size, 

and set the maximum number of iterations to lOOn for DisPeL and 200n for DBA.

Figures 5.12, 5.13, and 5.14 show the percentage of problems solved, the median and 

the average search costs respectively. The results are similar to those from the distributed 

graph colouring experiments, although in this case the differences in the number of prob

lems solved are more profound. DBA solved fewer problems as the problem size increased 

(Figure 5.12) and this is accompanied by sharp increases in search costs (Figures 5.13 and 

5.14). For DisPeL, while there is a smaller drop in success rates, the increase in search 

costs in relation to the problem size is nearly linear. Furthermore, search costs for DisPeL 

were significantly lower.

number of variables

Figure 5.12: Percentage of problems solved by DisPeL and DBA from runs on problems 
with 3-ary constraints {n variables, 2n constraints, d — 10, p2 = 0.55).

^In [6], it was shown that the distribution of links in many real life networks, as diverse as cell metabolic 
networks and the world wide web, follow a power law where the majority of nodes have a few connections to 
them and a small number of nodes have a high number of connections. Walsh [117] found similar patterns 
in his study of real life Constraint Satisfaction Problems and proposed a modified power law model for 
generating random realistic problems.
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Figure 5.13: Median search costs for DisPeL and DBA from the runs in Figure 5.12.

Figure 5.14: Average search costs for DisPeL and DBA from the runs in Figure 5.12

5.6.3 Car sequencing problems

Finally both algorithms were evaluated with Car Sequencing Problems [87]. Car sequenc

ing is not one of the traditional test beds used for evaluating distributed algorithms, but 

it is used here because the car sequencing dataset^ is one of the few publicly available 

problem sets where instances are entirely made up of non-binary constraints. Besides, it

®FYom the CSPLib at http://www.csplib.org
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allows us to present results from problems not randomly generated, and leaves room for 

direct comparison with our work in the future. The problems in the dataset typically 

contain constraints of different arities and varying tightness. In addition, the domain sizes 

of variables involved are typically larger than those used in the experiments reported so 

far.

The car sequencing problem is a permutation problem where a number of cars of 

different models are to be scheduled for an assembly line. Each model requires a different 

set of options (e.g. electric windows or GPS navigation systems), and each option is 

installed by a different workstation along the line. Each workstation is designed to handle 

at most a certain percentage of cars passing through it at any point in time. For example, 

a workstation to install electric windows has the capacity to handle 3 out of every 5 cars on 

the line at any point in time, without affecting the assembly flow. Therefore, cars requiring 

particular options must be spaced in the schedule so that workstations’ capacities are never 

exceeded.

To model the car sequencing problem as a DisCSP, we use more expressive constraints 

that allow us to indicate to the algorithms the degree of satisfaction / violation for each 

tuple evaluated; similar to the Valued CSP [98] and also to the evaluation function in the 

Adaptive Local Search algorithm [20]. We found that this was the most suitable approach 

for a distributed representation of the problem, given the assumptions of privacy and 

limited availability of information. This expressiveness also provides a means of dealing 

with the global constraints in the problems. We model the car sequencing problem in the 

DisCSP framework as a tuple S = (M, W, X, A, D, C}, where:

S = (si, 52, ••••» is a the schedule (or solution) where each Si is the slot in the zth 

position of the schedule.

M = (mi, m2, ..-jmfc) is the number of cars of k models to be assembled.

W = {wi,W2, •••,'Wp} is the set of options available and the respective workstations 

for installing each option.

O = (Oi, <^2, •••) Ok}, is the set of options to be installed on the cars of each model.
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X = {xi,X2, ■■■, Xn} the variables in the DisCSP, referring to the slots in the schedule

therefore Xi = Sj.

A = {ai,a2, the agents representing variables in the problem, each variable

belongs to only one agent and each agent represents only variable.

D = (Di,..., Dn} the domain of each variable, \Di\ = k where each value in Di refers 

to a car model in M i.e. there is a one to one mapping between each Di and M.

C = {Capx, ...,Capp\ AlCfi, is the set of constraints comprising two types

of constraints: (1) workstation capacity constraints {Cap} and (2) enumeration con

straints {MC}.

Each agent in the DisCSP is assigned a variable (or slot in the schedule) and is respon

sible for selecting the model of the car to be placed in its slot. Therefore, a solution is 

found when agents have built a schedule containing the right number of cars of each model 

and satisfy the capacity constraints of all workstations. The two types of constraints in 

our model of the problem are defined as follows:

Definition 5.1 (Capacity constraint Capi G C). A workstation capacity constraint Cap{oi.,p.,q') 

specifies that a maximum of p out of every q consecutive cars scheduled in S can require 

option i.

Definition 5.2 (Enumeration constraint MCj E C). An enumeration constraint is cre

ated for each model of car to be produced. Each enumeration constraint (MCi) is a global 

constraint that is satisfied if the exact number of cars required for the ith model have been 

selected by agents.

The scope of a capacity constraint (Cap(oi,p, g)) is over every set of q consecutive slots 

in the schedule, such that for each option each agentj holds a capacity constraint for each 

sub-set of consecutive slots on the schedule including itself from {j - g) -H 1 to (j g) — 1.

The example in Figure 5.15 is used to illustrate this.
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Figure 5.15: A illustration of scope of capacity constraints in the distributed car sequenc
ing.

In Figure 5.15 we assume that the workstation installing GPS systems has a capacity 

to deal with at most one car out of every four consecutive cars in the schedule. Agent 5, 

in the example, keeps four copies of this constraint (shaded slots) one for each set of four 

consecutive cars including itself and evaluates each constraint separately. Agents evaluate 

each copy of the capacity constraint on its own so that the capacity constraints have a 

more expressive impact on the cost landscapes and can help to reduce the size and number 

of plateaus in that landscape.

Each agent keeps a copy of each global enumeration constraint and evaluates it with 

the choices made by other agents. Keeping with the expressiveness theme, the constraint 

evaluation returns a zero if the constraint is satisfied or the difference between the required 

number of cars and the number of cars of that model cmrently scheduled. Where a negative 

results indicates to agents that more of them need to consider selecting a particular model.

Solvable instances from the CSPLib dataset were used for the experiments. These 

are made up of 50 instances, grouped into 5 sets of 10 instances for each of the different 

workstation capacity rates (or constraint tightness) which range from 70% to 90%. In each 

of these instances there are 200 cars to schedule, 5 workstations, and 17 to 30 configurations 

of options (or models) to be considered. To generate enough data for analysis, we made

5 attempts on each problem instance starting off with a different random initialisation in 

each run. The maximum number of iterations was set to 5,000 and 10,000 for DisPeL and

DBA respectively. Results of these experiments are presented in Figures 5.16, 5.17, and 
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5.18 showing the percentage of problems solved, median search costs, and average search 

costs respectively.

dBa 
DisPeL

Figure 5.16: Percentage of distributed car sequencing problems solved by DisPeL and 
DBA.

Figure 5.17: Median search costs for DisPeL and DBA from runs on in Figure 5.16.

The results are consistent with those reported in the previous experiments in Sec

tions 5.6.1 and 5.6.2, where DisPeL consistently solved more problems and required fewer 

iterations. The results also show how DBA’s performance deteriorates as the capacity 

constraints tighten. However, DBA is also handicapped by the problem structure. As
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Figure 5.18: Average search costs for DisPeL and DBA from runs on in Figure 5.16.

the constraint graphs are complete, DBA’s coordination heuristic only allows one variable 

to change its value every two iterations i.e. the ok? and improve iterations. There are 

no concurrent changes, thus DBA becomes the equivalent of a standard centralised local 

search / hill-climbing algorithm.

5.6.4 Discussion of results

The empirical results presented here comparing DisPeL and DBA have demonstrated the 

strengths of our penalty based strategy for dealing with local optima. DisPeL consistently 

solved more problems than DBA and it consistently required fewer cycles. While the 

differences in performance of both algorithms vary from one problem class to the next, it 

appears that the gap widens as constraints get tighter. For example, in distributed graph 

colouring all constraints have a uniform tightness of 30% and DBA solves nearly as many 

problems as DisPeL. But as constraint tightness is increased to 50% in the experiments 

with random DisCSPs, DBA’s performance degrades considerably. This is even more 

evident in the results of the experiments on the car sequencing problems which include 

constraints with higher ratios of forbidden tuples.

We give three reasons to explain DisPeL’s performance advantage over DBA. First 

of all, as we demonstrated in Section 4.2, landscape modification with domain penalties 
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is more effective at dealing with local optima and it allows quicker resumption of search 

by the underlying algorithm; compared to modifications with constraint weights - which 

DBA relies on. Secondly, by resetting penalties the way we do, DisPeL regularly has 

opportunities to undo negative effects of penalties on the cost landscape. DBA, however, 

has no such opportunities and as such its performance can be severely hindered by bad 

decisions made early in the search or ill-advised weight increases.

Thirdly, while parallel computation in DBA allows agents to eliminate idle time, the 

coordination heuristic can slow the algorithm down considerably by inadvertently cutting 

down on the number of legal improvements that can take place in a single iteration.

The sub-graph of a DisCSP in Figure 5.19 is used to illustrate how this can happen. 

We assume that each agent in the illustration has computed the same possible improve 

given the current state of the solution, and that each of them has the best improvements 

amongst their other neighbours. Using DBA’s coordination heuristic, agent a’s change 

is given priority over that of agent b and at the same time agent b has a priority over 

agent c. Therefore, in the current iteration only agent a’s value is allowed to change; even 

though agent c can also change its value without causing causing any oscillations as agent 

b’s value is fixed.

0—0—Q-
Figure 5.19: Preventing simultaneous changes in DBA - an illustration.

In Figure 5.20, we look at the resulting effect this on a larger scale where we show 

the number of agents changing values in every two iterations in DBA from a sample run 

on a distributed graph colouring instance {n = 100, A; = 3, degree — 4.7), plotted along 

side the same count from a sample run of DisPeL. The number of consistent agents in the 

corresponding iterations for both algorithms are plotted in Figure 5.21.

There is a lot more activity in each iteration of DisPeL than DBA (in terms of agents 

changing values) especially in the first few iterations and a high percentage of agents
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Figure 5.20: Number of agents changing values in each iteration from sample runs of DBA 
and DisPeL.

Figure 5.21: Number of consistent agents in each iteration from sample runs of DBA and 
DisPeL.

quickly becoming consistent in DisPeL. Therefore, it appears that only ‘critical’ deadlocks 

remain unresolved. For DBA, few agents get to change values in each iteration and there

fore deadlocks tend to linger during the search. As a result, the number of consistent 

agents increases at a much slower pace than in DisPeL. The obvious implication is that

DBA will tend to require considerably more time than DisPeL to solve problems.

The experiments with the car sequencing problems vividly illustrate how DBA is ad
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versely affected by the structure of the constraint graph. The constraint graph for each 

instance is complete, each variable is connected to every other variable in the problem.

and therefore only one variable’s value is changed in every two iterations. Consequently, 

search costs are inevitably high.

In summary, the results of comparative evaluations of DisPeL and DBA show that 

on different problem types, DisPeL solved more problems than DBA. Furthermore, Dis

PeL incurs much lower search costs in the process. The results also suggest that DisPeL’s 

advantage over DBA is wider as constraint graphs are denser, especially since in highly 

connected graphs DBA’s heuristics limit the number of concurrent changes that can take 

place in a single iteration.

5.7 Coping with unreliable communications

So far, all the experimentation with DisPeL has been done with the assumption that 

communications between agents are reliable at all times i.e. messages will always get to 

intended recipients. This is a shared assumption in the distributed constraints community, 

along with the assumption that messages will be received in the order in which they were 

sent. Although, it is widely acknowledged that communication failures may occur, and 

that they can happen for reasons such as network congestions or even packet corruption. 

This happened on some rare occasions, while we were working with agents located on 

separate machines. Given the ordering heuristic used in DisPeL, an undelivered message 

can cause an agent to wait indefinitely for its turn to improve the solution, and this wait 

can cascade through the network and effectively stop the search. We remedied this with 

a modification that allowed agents to resume activity if messages have not been received 

after a reasonable amount of time. The agents were allowed to assume that the neighbour’s 

(i.e. the sender) value is unchanged and proceed with the search.

Channel reliability is a major issue in distributed computation in general. Messages 

may be lost, duplicated, or due to traffic on different routers they may arrive in a different 

order from which they were sent. The resulting impact on the processes depending on these 

messages can be severe. Message tagging with sequence numbers and acknowledgement of 
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delivery are common ways of dealing with unreliable channels [91]. But even this approach 

is not immune from the aforementioned problems - acknowledgement messages can also 

be lost in transmission. Nevertheless, taking this approach to guarantee even minimum 

levels of reliability may be too expensive for distributed constraint solving. It can result in 

an exponential increase in the number of messages exchanged, and when weighed against 

its benefits, the additional measures may not be justifiable.

Studies on the effects of channel unreliability in distributed constraint solving suggest 

that DisCSP algorithms can sometimes benefit from unreliability. In work presented in 

[26], it was shown that the element of randomness in communication delays can improve 

performance and robustness of distributed backtracking algorithms like the Asynchronous 

Backtracking and Asynchronous Weak Commitment Search, as well as reduce overall net

work load. Similar work in [78], where the underlying algorithm was allowed to select which 

messages must be reliably delivered, showed that the occasional lost message reduces the 

amount of work agents do and in some cases speed up the algorithm.

In this section, we studied the effects of lost messages on DisPeL’s performance to 

test its robustness and also with a view to determine if there is any need to incorporate 

additional measures to guarantee certain levels of performance. We look at the eflfect on 

the algorithm’s ability to solve problems, and the resulting search costs, if lost messages 

are simply ignored. Asides from the issue of ordering / coordination (mentioned earlier).

message losses can also influence DisPeL’s behaviour in the following ways:

The obvious case of agents not receiving updates from neighbours and, as such.

making decisions with outdated information.

The other obvious case of an agent involved in a deadlock not receiving a message

to implement a penalty on its value.

The false negative of an agent assuming it is at a quasi-local-optimum even though

one of its neighbours’ value has changed. And the agent subsequently initiates

the deadlock resolution process, therefore disrupting search with spurious penalty

requests.
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We study the effect of channel unreliability in three scenarios®: (1) where any indi

vidual message can be lost, (2) where only messages sent from agents that have either 

changed their values or made penalty requests are from time to time lost, and (3) where 

occasionally, all messages sent by an agent in one iteration are not delivered. To perform 

the experiments, we modified DisPeL slightly by removing the ordering / coordination 

heuristic so that all agents sequentially take turns to be active.

For the first scenario, we devised an experiment to evaluate the impact of undelivered 

messages where unreliability was simulated by randomly deciding with a probability Ip 

if a message sent from an agent to another is lost. RLD analysis was used to study the 

direct impact of the lost messages, abstracting out the effects of random initialisations and 

problem structures. This was done using a critically difficult distributed graph colouring 

instance {n — 100, A: = 3, degree — 4.7), with which 500 attempts were made with different 

values of Ip. In each attempt, the search was initialised from the same random position 

and a limit of 10,000 iterations was imposed. In Figures 5.22 and 5.22, we show plots for 

runs with loss probabilities [0.05,0.1,0.15] and [0.05,0.2,0.4] respectively; and a summary 

of the results of the full experiment appears in Table 5.5.

Figure 5.22: Distribution of DisPeL’s search costs with message loss probabilities (0.05, 
0.1, 0.15).

As expected, the plots show that search costs increase steadily with the number of

^We still assume that messages are received in the order in which they were sent and that there are no 
transmission delays.
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search cost

Figure 5.23: Distribution of DisPeL’s search costs with message loss probabilities (0.05, 
0.2, 0.4).

Table 5.5: DisPeL’s performance as the probability of losing messages increases.

Ip % solved average cost median cost
0.05 100 284.2 215.5
0.10 100 363.5 253.5
0.15 100 459.1 350.5
0.20 100 579.7 422.0
0.25 100 759.1 577.0
0.30 100 1086.7 766.5
0.40 99 2070.3 1525.5

lost messages. Nevertheless, DisPeL still copes well even with high loss probabilities;

demonstrating a high level of tolerance to communication failures. This robustness can 

be explained with the plot in Figure 5.21 - where we plotted the number of consistent 

agents from a sample run of the algorithm. A high percentage of agents in the run were 

consistent at any one time, therefore suggesting that only a handful of inconsistent agents 

may be affected by lost messages.

The second set of experiments considered the effect of losing just “important” messages 

i.e. only those messages where either an agent has changed its value or it is sending a 

request for its neighbours to implement a penalty. A case where as more messages are lost.

agents will be making more decisions with inaccurate information about their neighbours 

assignments. We used two sets of random DisCSPs ((n = 30, d = 10,pl — 0.2,p2 = 0.5) 

and {n = 60, d = 10,pl = 0.1,p2 — 0.5)) in this experiment, with 100 problems in each 
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set. DisPeL was started with the same initialisation in each attempt, so that we could 

focus solely on the effects of the lost messages. The results are summarised in Table 5.6.

Table 5.6: DisPeL’s performance as the probability of losing important messages increase.

n ip % solved average cost median cost
30 0.05 100 495.8 233.0

0.10 100 682.9 224.5
0.15 99 619.4 303.0
0.20 100 592.1 214.0
0.25 99 669.2 300.0
0.30 100 673.3 368.5
0.40 100 1146.1 524.0

60 0.05 98 1042.8 494.0
0.10 96 1066.1 790.5
0.15 97 1102.8 650.5
0.20 95 1154.9 616.0
0.25 97 1377.8 660.0
0.30 97 1501.4 807.0
0.40 95 1224.6 751.0

A similar tolerance to communication failures is shown even when all lost messages are 

critical to agents’ decision making. A high percentage of problems are still solved even 

with loss probabilities as high as 40%. The results for the runs on the smaller problems 

show gradual increases in search costs, with two sudden jumps, one between Ip = 0.05 

and Ip = 0.1, and the other between Ip = 0.3 and Ip = 0.4; where the average search 

costs increase dramatically. But the trend is broken briefly at Ip = 0.2. Results for runs 

on the larger problems also show the same gradual increase in search costs, although the 

algorithm nearly always solved the same percentage of problems.

Finally, we investigate the effects of occasionally “cutting off” some agents on Dis

PeL’s performance. In this experiment, channel unreliability is simulated by dropping all 

messages sent by an agent (in an iteration) with the probability Ip. And again, focusing 

on those messages that contain new information for the recipients. Similar problems to 

those used in the previous experiment (i.e. those in Table 5.6) were used and the results 

are summarised in Table 5.7.

The results show that performance is not steadily decaying, especially in the runs on 

the smaller problems. Rather, the effects of lost messages are almost random. But, the
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Table 5.7: DisPeL’s performance as the probability of cutting of agents with important 
messages increase.

n Ip % solved average cost median cost
30 0.05 95 653.0 256.0

0.10 97 678.8 321.0
0.15 96 790.3 303.5
0.20 96 639.4 255.0
0.25 95 532.0 187.0
0.30 97 723.9 371.0
0.40 96 789.4 455.5

60 0.05 91 1880.4 724.0
0.10 90 1917.3 903.0
0.15 96 1515.1 926.0
0.20 93 1703.2 1012.0
0.25 93 1648.2 947.5
0.30 95 1720.5 927.5
0.40 93 1841.0 873.5

random loss of messages appears to help DisPeL through the introduction of randomisation 

that enables it avoid propagating the effects of bad decisions made by agents. As such, a 

high percentage of problems are still solved even with a 40% loss rate.

Overall the results show that DisPeL has a high tolerance for unreliable communica

tions, and suggest that perhaps for just the worst case where message delivery is highly 

uncertain, it may not be necessary to incorporate additional measures such as acknowl

edgement messages to guarantee reasonable levels of reliability.

5.8 Chapter Summary

We described the Distributed Penalty Driven Search algorithm in this chapter. DisPeL is 

an iterative improvement algorithm that deals with local optima by perturbing the search 

and modifying the cost landscape with two types of penalties on domain values. It also 

includes additional heuristics, such as agents maintaining no-good stores and a policy of 

discarding penalties. The impact of each component of DisPeL’s strategy was discussed 

in detail, and as a result we were able to show how DisPeL’s performance is built on a 

synergy resulting from the combination of its components.

Results of empirical evaluations, and a comparison with the Distributed Breakout Algo- 
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rithrn, were also presented in the chapter. The algorithms were evaluated with distributed 

graph colouring problems, random DisCSPs, and instances of the car sequencing problem. 

In all cases, results showed that DisPeL consistently solved more problems than DBA 

and required fewer iterations to do so. We argued that, in addition to the effects of con

straint weights on the landscape, DBA was also handicapped by its coordination heuristic 

which limited the progress towards solutions. Finally, DisPeL’s tolerance to unreliable 

communications was discussed. Results from empirical tests showed that with message 

failure rates as high as 40%, DisPeL was still able to find solutions in all attempts on a 

problem instance. Those experiments introduced some form of randomisation to DisPeL

i.e. with the random loss of messages, in Chapter 6 we follow this up with a stochastic 

version of DisPeL to explore how randomisation in DisPeL itself can be used to enhance 

its performance.



Chapter 6

Exploiting Randomisation in

DisPeL

6.1 Introduction

DisPeL is a deterministic algorithm: there are no inbuilt random decisions and it is guided 

by a set of fixed rules implemented in a fixed order. These affect the algorithm in a way 

that makes it vulnerable to the effects of “bad” random initialisations; where determinism 

can lock the algorithm onto paths that keep the search wandering about, for long periods, 

in unprofitable regions of the search space. This behaviour is evident from the RLD plots 

in Chapter 5 which showed that on the same problem, DisPeL could find a solution with 

less than 100 iterations on some runs and required about 10,000 iterations on others. In 

the worst case, it may not find a solution given its incompleteness.

In this chapter, we consider a modification to DisPeL that introduces a stochastic 

element into a critical part of its deadlock resolution strategy - giving it opportunities to 

alter the search trajectory in a non-deterministic manner as a search progresses. We show 

that this randomisation can boost performance while reducing its memory requirements.

as well as the complexity of the deadlock resolution process.

This chapter is structured as follows. First we briefiy review some strategies for ex

ploiting randomisation in combinatorial search in Section 6.2. The new version of DisPeL

90
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ls presented in Section 6.3 and in Section 6.4 we discuss how an optimal values for its criti

cal parameter were established. Finally, we present results of empirical experiments where 

we compare the new algorithm with DisPeL and the Distributed Stochastic Algorithm in

Section 6.5.

6.2 Exploiting randomisation in combinatorial search

Hoos and Stutzle introduced Run Length Distribution plots, in [55], to analyse the run 

time behaviour of Stochastic Local Search (SLS) algorithms; while studying how an al

gorithm’s performance varied with random initialisations and inbuilt random decisions. 

The distribution of search costs, in their study, showed that certain initialisations led 

to solutions with short runs irrespective of algorithm parameter settings. They argue 

that although SLS algorithms are approximately complete as run time approaches infin

ity, search efficiency actually decreases over time. Therefore, the effects of ‘good random 

initialisations’ can be exploited to boost performance of algorithms with periodic restarts 

from new random points. Their experiments showed that once optimal cut-offs (i.e. num

ber of iterations between restarts) were found, periodic resets dramatically improved the 

performance of the underlying algorithms increasing the probability of finding solutions; 

especially when compared to single runs over longer time spans with the same algorithm.

In related work by Hutter et al [57], on dynamic local search algorithms for solving SAT 

formulae, randomisation for undoing the effects of cast landscape modifications was inves

tigated. A scheme was introduced where, with a small probability, weights on constraints 

are smoothened towards the average of all constraint weights. It was demonstrated that 

randomisation can be used to reduce the complexity of weight update procedures and still 

allow the underlying weighted hill-climber to outperform the more complicated algorithms

- notably the Exponential Sub-Gradient algorithm [100].

A similar study on complete backtracking algorithms by Gomes et al [38] also show 

benefits of randomisation in search. The study focused on the effects of randomisation 

in tie-breaking decisions and it was argued that when the heuristic evaluation of which 

variable to label next was equal for two or more variables, the random selection of one 
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affects the run time of the algorithm to the extent that run time becomes highly variable 

and unpredictable. Hence, on some runs the same algorithm may find a solution in seconds 

and yet on others, it may not find a solution in hours. In their strategy for exploiting 

randomisation, a new heuristic evaluation function for determining the next variable to 

label is introduced which increases the number of choices at each branching point and 

hence the number of random decisions made at different points. In addition, periodic 

restarts from the root of the search tree were also introduced. The combination of these 

modifications boosted performance of the underlying algorithms with speed-ups of several 

orders of magnitude.

A handful of similar randomisation strategies have been explored in the literature of 

distributed constraint reasoning. In the Distributed Stochastic Algorithms (DSA), pre

sented in [128], all agents are active in parallel and each agent decides randomly whether 

to improve the solution or to do nothing in each iteration. In addition to reducing the 

amount of incoherence in their decisions, the random choice to do nothing also helps the 

algorithm to avoid local optima. Extensions of DSA, in [5], introduced additional ran

domisation in the form of a random choice to make uphill moves when an agent has no 

improvements available. Furthermore, the authors also introduced a version of the algo

rithm where the probabilities for agents to make uphill moves decay over time fashioned 

after the centralised simulated annealing algorithm [60].

Similarly, non-deterministic tie-breaking schemes were proposed for DBA in [119], 

which allowed agents to occasionally override their coordination heuristic permitting some 

connected agents to change values simultaneously and, at the same time, make tie-breaking 

non-deterministic.

6.3 Stochastic DisPeL

As the RLDs in Chapter 5 show, DisPeL can undoubtedly benefit from a periodic restart 

strategy with new random instantiations. But the main drawback with periodic restarts 

is that it is difficult to automatically determine appropriate cut-offs a priori. And since 

the performance of a restart strategy is particularly sensitive to the cut-off, one may need 
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to carry out a lot of experimentation before hand to find optimal cut-offs for different 

problem types and sizes.

As an alternative, we try to exploit randomisation in DisPeL by focusing on the critical 

choice point in its deadlock resolution strategy, by making the choice of what phase to 

implement a random one. Therefore, we change the agents’ behaviour so that whenever 

an agent is at a quasi-local-minimum, it decides randomly either to perturb the solution 

(with probability p) or to increase incremental penalties (with probability 1 — p); rather 

than following the deterministic route of perturbing first and learning with incremental 

penalties later. This eliminates the need for the no-good store, since agents no longer 

have to determine if a deadlock was previously encountered, and thus reduce the algo

rithm’s memory requirements and the number of operations agents have to implement 

when deadlocks are encountered.

We call this new algorithm Stochastic Distributed Penalty Driven Search (Stoch-

DisPeL), and implement its new stochastic behaviour by replacing the check_for_deadlock() 

procedure listed in Algorithm 5.2 with the one outlined in Algorithm 6.1. All other pro

cesses executed by agents in DisPeL remain the same. Therefore, when an agent chooses 

the penalty to implement, it will still send a request to the affected neighbours to imple

ment the same. Agents at the receiving end will still act in the same deterministic manner 

of prioritising the incremental penalty requests over temporary penalty requests.

select value minimising objective function 
penalty Request <— null
return

Algorithm 6.1 Stoch-DisPeL: procedure check_for_deadlocks()
1: if AgentView(t) AgentView(t-l) then
2:
3:
4:
5: end if
6: r <— random value in [0..1]
7: if r < p then
8: impose temporary penalty on current value
9: penalty Request <— I mposeTempor ary Penalty

10: else
11: increase incremental penalty on current value
12: penalty Request <— Incr easel ncPenalty
13: end if
14: select value minimising objective function
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6.4 Determining an optimal p value

The new parameter (p) has a significant impact on Stoch-DisPeL’s performance; the simple 

act of randomly determining which type of penalty is used or how often the temporary 

penalty is used influences the speed of deadlock resolution and determines the trajectories 

the search follows as it progresses. In Section 5.4.3 it was shown that DisPeL relied on the 

temporary penalty to resolve deadlocks i.e. it was used in at least 60% of the time. This 

appears to work well on the different classes of problems DisPeL was tested on. However, 

for Stoch-DisPeL, we found that the impact of p in Stoch-DisPeL varies from one problem 

class to another - on some problem classes it is beneficial to use the temporary penalty 

more often (i.e. a large p) and on others the reverse is the case. In the following, we present 

empirical studies of how the value for the parameter affects the algorithm’s performance on 

classes of unstructured problems (Section 6.4.1) and structured problems (Section 6.4.2).

6.4.1 Impact of p on unstructured problems

For unstructured problems, we used random DisCSPs and distributed graph colouring 

instances for the investigation. Two sets of experiments were run on each problem class. 

First, multiple runs on single instances were used for RLD analysis and, secondly, promis

ing values of p from the first experiments were used for other experiments with a larger 

problem set.

In the RLD plots in Figures 6.1 and 6.2, we ran Stoch-DisPeL on single problem 

instances to compare the effect of the different values of p from 0.1 to 0.9 (in increments of 

0.1). In all cases we started the runs from the same random initialisation, so that the only 

influence on performance was the random choice made when deadlocks are encountered (i.e. 

p). In Figure 6.1, the plots^ show the distribution of search costs on a single distributed 

graph colouring instance (n = 100, k = 3, d = 4.6) for the different values of p. For 

each value, 500 attempts were made with a maximum limit of 10,000 iterations before 

an attempt was deemed unsuccessful. The average and median costs from these runs are 

shown in Table 6.1.
^Several plots are used for the sake of clarity, as most curves overlap each other.
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search cost

search cost

Figure 6.1: Run Length Distribution of Stoch-DisPeL on a distributed graph colouring 
instance with different values for p.

Table 6.1: Average and median search costs in Stoch-DisPeL from RLD analysis in Figure 
6.1, for different values of p.

p average cost median cost
0.1 292.0 197.0
0.2 282.3 206.5
0.3 259.1 203.0
0.4 288.1 209.5
0.5 302.4 228.5
0.6 322.2 245.0
0.7 367.3 290.5
0.8 395.0 309.0
0.9 545.5 451.0
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The plots in Figure 6.1 show that while the average cost in Table 6.1 varies, the 

performance of the algorithm is almost identical for values of p from 0.1 to 0.4. and 

the median costs are also comparable. Pairwise Student t-tests for the values show that 

the distributions are mostly identical. And from p = 0.5 onwards search costs increase 

steadily. What stands out distinctly from the results is the huge difference between p — 0.8 

and p = 0.9 (see Figure 6.2), the increase in search costs is abrupt and the probability of 

finding a solution with any time limit is significantly lower.

The same experiment was repeated using a random DisCSP instance ((n = 60, d = 

15,pl = 0.1,p2 = 0.6)). The results, plotted in Figure 6.2, follow a similar pattern with 

the earlier ones. Although, this time the differences from p = 0.7 to p — 0.9 are more

distinguishable. There are sharp increases in search costs from one value to the next.

1

search cost

1.75

10000

search cost

Figure 6.2: Run Length Distribution of Stoch-DisPeL on a random DisCSP instance with 
different values for p.

Based on the results presented here, it was hard to put a finger down on a best value 

for p. It is clear, however, that performance is less than optimal for large values of p- and
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Table 6.2: Average and median search costs in Stoch-DisPeL from RLD analysis in Figure 
6.2, for different values of p.

p average cost median cost
0.1 648.8 522.5
0.2 657.0 535.0
0.3 625.4 488.0
0.4 693.4 581.0
0.5 724.3 599.0
0.6 816.4 687.5
0.7 967.0 797.0
0.8 1413.9 1174.0
0.9 2052.6 1675.0

any value between 0.1 to 0.4 was equally good. To confirm this, a second experiment was 

carried out where we tested the algorithm on a larger dataset with problems of different 

sizes, using three values for p (0.2, 0.3, 0.4). The results, which are shown in Figures 6.3 

to 6.5, are also not as clear cut as the previous experiments. In Figure 6.3, where success 

rates on attempts on 250 problems are plotted, there is no clear winner - in two groups 

of problems (n = 30 and n = 50), the success rate is higher with p = 0.2. And in another 

two groups, more problems where solved with p = 0.3. This pattern is also exhibited in 

the cost plots (Figures 6.4 and 6.5).

Figure 6.3: Percentage of random DisCSPs solved by Stoch-DisPeL with different values 
for p.
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Figure 6.4; Average search costs from runs in Figure 6.3.

Figure 6.5: Median search costs from runs in Figure 6.3.

The results from all experiments carried were not clear cut, therefore we chose arbi

trarily to run Stoch-DisPeL with a probability of 0.3 in the rest of our evaluations of the 

algorithm on unstructured problems. This value also gave the best performance in both 

experiments with regards to search cost.

6.4.2 Impact of p on structured problems

Quasigroup completion problems^ [36] were used to represent structured problems for our 

investigations on the impact of p. Similar experiments were run with different values of p, 

but for the sake of brevity, we present details of the experiment with the larger dataset.

For this experiment, we used two groups of problems with different sizes i.e. order 

12 (with 84 active agents) and order 14 (with 114 active agents). One hundred solvable 

instances were generated for each problem size and Stoch-DisPeL was run with different 

values for p on each set for a maximum of 14,400 and 19,600 iterations respectively.

^These are described formally in Section 6.5.3.
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Table 6.3: Average and median search costs in Stoch-DisPeL from runs on quasigroup 
completion problems (42% pre-assigned cells) with different values of p.

order P average cost median cost
12 0.1 476.5 270.5

0.2 460.4 287.5
0.3 295.8 191.5
0.4 216.7 167.5
0.5 216.0 156.5
0.6 182.6 148.5
0.7 161.5 108.0
0.8 173.0 145.5
0.9 259.4 162.5

14 0.1 3507.1 2466.5
0.2 2018.7 1202.5
0.3 1121.8 776.0
0.4 977.2 590.0
0.5 455.9 313.0
0.6 404.2 278.5
0.7 267.1 200.0
0.8 257.7 211.5
0.9 380.3 263.0

The results summarised in Table 6.3 are quite conclusive, they clearly show that on 

both problem sizes the minimum median costs were achieved with a value p = 0.7. On 

the smaller problems, the minimum average was found with the same value. While on the 

larger instances, a slightly better minimum average was found at p = 0.8. Nevertheless, 

for later experiments on structured problems, we used 0.7 for all runs irrespective of the 

problem size.

6.5 Empirical Evaluation

In fmther empirical evaluations of Stoch-DisPeL, we compared its performance with Dis

PeL as well as with a modified version of the Distributed Stochastic Algorithm (DSA). 

DSA is a distributed iterative improvement search algorithm that relies completely on 

stochastic decisions to avoid deadlocks. In DSA, all agents act concmrently selecting and 

exchanging new assignments. In each iteration of DSA, each agent decides individually 

either to select a value that minimises the number of constraints it violates (with proba

bility Ct) or to retain its current variable assignment (with probability 1 — ct) - where a is 
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the probability of parallelism. In addition, deadlocked agents are also permitted to make 

sideways moves that do not worsen their evaluations.

DSA was initially designed to solve optimisation problems - distributed scan schedul

ing problems [27] in particular, where the agents are expected to reside on simple inter

connected devices with limited computational resources. Given the nature of the problem.

the algorithm was designed to allow agents to satisfy as many constraints as quickly as 

possible, rather than to find zero cost solutions. And, it has been shown to converge 

quicker to locally optimal solutions than DBA[127]. However, Hirayama and Yokoo, in 

[49], point out that because DSA has no explicit mechanism for escaping from local optima 

it has low success rates in decision problems where the goal is to satisfy all constraints. 

Once stuck, the sideways moves are usually not enough to push a search out of locally 

optimal regions and hence, the algorithm will have difficulty in solving many problems.

Later work by Arshad and Silaghi [5] introduced additional randomisation allowing 

agents to make uphill moves with a probability (p2). Their modified version, called DSA-

Bl, enabled DS A to find paths out of plateaus in the cost landscape. The authors extended 

this further in the Distributed Simulated Annealing (DSAN) algorithm where p2 decays 

overtime. We modified DSA-Bl (to make DSA-BIN) to prevent agents from making 

uphill moves whenever they had consistent assignments, giving agents the opportunity 

to make “informed” random decisions. We found that this improved the performance of 

the algorithm significantly because by stabilising things it allowed for increased search 

intensification activity.

We also found that DSA-BIN was stronger than DSAN. The fixed value of p2 meant 

that the algorithm still had opportunities to find solutions as time went on; whereas, 

with DSAN we observed that as p2 gets smaller the probability of the algorithm finding a 

solution decreases as well because there are fewer opportunities to make the moves needed 

to escape from plateaus. Therefore, in the experiments reported in this chapter we used 

DSA-BIN to represent the class of DSA algorithms. Furthermore, from our evaluations, 

we found that it solved the highest percentage of problems with p2 — 0.05 (with random 
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DisCSPs) and p2 — 0.2 (with distributed SAT problems^ and with structured problems).

We use these settings for experiments with DSA-BIN reported here.

We compared the algorithms (Stoch-DisPeL, DisPeL, and DSA-BIN) on random DisC

SPs, SAT formulae from the SATLib dataset [56]^, and structured DisCSPs. In each case.

we analysed the percentage of problems solved within the time limits and the costs (in 

terms of iterations) incurred in solving these problems.

6.5.1 Performance on Random DisCSPs

Random binary DisCSPs of different sizes (30 < n < 100) where used in the evaluation 

of the algorithms to study how search costs scale up with the problem size. For each 

n, 100 instances were created where the ratio of constraints to variables was constant at 

3:1 and the tightness (p2) of each constraint fixed at 0.5. There were 10 values in each 

variables’ domain and all algorithms were limited to a maximum of lOOn iterations on 

each attempt. The results of these experiments are plotted in Figures 6.6, 6.7, and 6.8,

showing the success rates, median and average search costs respectively.

Percentage of random DisCSPs solved by Stoch-DisPeL, DisPeL, and DSA-Figure 6.6;
BIN.

^Where the uphill move is simply a flip of the truth assignment. 
^The instances are available online at http://www.satlib.org.
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problem size

Figure 6.7: Median search costs from runs in Figure 6.6.

problem size

Figure 6.8: Average search costs from runs in Figure 6.6.

Figure 6.6 shows that Stoch-DisPeL is dominant over the other algorithms. It consis

tently solved more problems than both algorithms, except in the n = 50 dataset where it 

was matched by DisPeL. Against DSA-BIN, both versions of DisPeL faired well. They 

consistently solved more problems and required fewer iterations especially on the larger 

problems (Figures 6.7 and 6.8).
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6.5.2 Performance on Distributed SAT problems

As we mentioned earlier, the algorithms were also evaluated with publicly available SAT 

instances. These were modelled as DisCSPs where each agent represents a literal (variable) 

and has to find a truth assignment that simultaneously satisfies all relevant clauses given 

the current assignments of other agents appearing in those clauses. SAT was chosen be

cause, amongst other things, it is a domain where stochastic algorithms have traditionally 

fared well especially in centralised local search.

Datasets with 75, 125, 150, 175 literals per problem where used in the experiments.

each with 100 solvable instances. And in the case of the problems with 100 literals, the 

first 500 instances from the dataset were used. In all cases, the algorithms were limited 

to a maximum of lOOn iterations (where n is the number of literals in a formula) before 

attempts were deemed unsuccessful. The results of these experiments are summarised in

Figures 6.9, 6.10 and 6.11.

Figure 6.9: Percentage of problems solved by Stoch-DisPeL, DisPeL, and DSA-BIN from 
attempts on benchmark SAT instances.

The plots in the figures show that, in terms of success rates, Stoch-DisPeL and DisPeL 

are evenly matched. But Stoch-DisPeL has a slight cost advantage over DisPeL and, on
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data set

Figure 6.10; Average costs (iterations) of Stoch-DisPeL, DisPeL, and DSA-BIN used-up 
to solve the problems in Figure 6.9.

data set

Figure 6.11; Median costs (iterations) of Stoch-DisPeL, DisPeL, and DSA-BIN used-up 
to solve the problems in Figure 6.9.
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this criterion, the results are fairly consistent with those from the experiments on random

DisCSPs. In addition, both algorithms do well compared to DSA-BIN especially as the 

problems get larger. In the experiments with the original DSA algorithm on the same 

datasets, Hirayama and Yokoo [49] reported results showing a dismal performance in the 

domain. At best the algorithm was only able to solve 11% of the problems in one dataset.

The stronger results reported here confirm the necessity and the profound impact of the 

occasional non-improving moves that are used to help the algorithm deal with local optima.

6.5.3 Performance on structured DisCSPs

Finally, the algorithms were evaluated with structured DisCSPs. For this we used Quasiqroup

Completion Problems, which are NP-complete and can be placed somewhere between 

purely random and highly structured problems [36]. A quasigroup can be described as an

N by N matrix in which N elements are placed in its cells, such that an element occurs 

exactly once each row and exactly once in each column. In quasigroup completion, some 

cells have pre-assigned elements and the problem is to determine if the empty cells can be 

filled to complete a quasigroup® [36].

Quasigroup completion has been widely studied and parallels are drawn between the 

problem class and other problems such as statistical experiment design, scheduling, and 

timetabling [36]. It has been determined, that for problems up to order 20 (N < 20) a 

phase transition occurs when 42% of the cells are pre-assigned. Search costs peaked at 

this region and problems were almost always unsolvable [37].

We generated solvable instances of order 8 to 15 in the phase transition region for 

our experiments. These problems were encoded as binary DisCSPs where each agent was 

assigned to a cell and connected with individual constraints to other agents attached to 

cells in the same row and column with it. All three algorithms were modified so that in 

the first iteration of each run, agents with pre-assigned values informed their neighbours of 

the pre-assignments and ceased to participate in the search. The neighbours that receive 

such messages place huge fixed penalties® on the values received from the pre-assigned 

^You may think of it as a CSP formalisation of Sudoku.
®These penalties were used in DSA-BIN as well, and they should not be confused with the incremental
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Figure 6.12: Percentage of quasigroup completion problems (N x N agents) solved by 
Stoch-DisPeL, DisPeL, and DSA-BIN .

agents, to have the same effect as domain reduction in complete search. Furthermore, 

after “pruning” the affected values, agents also removed the pre-assigned neighbours from 

their AgentViews. For this problem class, we found that DSA-BlN’s performance was 

optimal with the parameters p = 0.5 and p2 = 0.02.

100 instances were generated for each problem size. And like all other experiments.

the algorithms were limited to a maximum of lOOn iterations; where n is the number of 

agents (cells) in each problem. Results of these experiments are presented in Figures 6.12, 

6.13, and 6.14 which show the percentage of problems solved, the average, and the median 

search costs respectively.

On the structured problems, DSA-BIN was unable to solve a handful of instances and 

its search costs were considerably higher than both Stoch-DisPeL and DisPeL. Cost-wise,

Stoch-DisPeL and DisPeL do equally well on the smaller instances but DisPeL’s search 

costs increase at a much faster pace from order 13 onwards. Overall, the results are 

consistent with those reported in Sections 6.5.1 and 6.5.2.

penalties in DisPeL and Stoch-DisPeL.
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Figure 6.13; Average search costs from successful runs on the quasigroup completion 
problems.

Figure 6.14; Median search costs from successful runs on the quasigroup completion prob
lems.
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6.5.4 Discussion

We argue that DisPeL can suffer from the effects of bad initialisations, where it is put 

on search trajectories that could prevent it from finding solutions. In addition, once on 

a bad trajectory, the combination of deterministic use of penalties and frequent penalty 

resets can conspire to cause the algorithm to oscillate between a fixed set of non-solution 

states. As a result, we argue that randomisation can allow the search to get out of such 

bad trajectories simply by changing the way in which penalties are selected.

To test this conjecture, we ran DisPeL several times on different problems to find bad 

initialisation^. Then, we ran Stoch-DisPeL on the same problems starting it off these 

instantiations. In Figure 6.15 an example of one of such runs is shown. The “bad start” 

curve plots the distribution of search costs on successful runs for Stoch-DisPeL on a random

DisCSP ((n = 80, d = 15,pl = 0.1,p2 = 0.5)) which DisPeL was unable to solve given 

the particular initialisation. In this case, Stoch-DisPeL was successful in each attempt 

within the allotted time of 8,000 iterations and it appears not to have suffered from the 

effects of the bad initialisation. Obviously randomisation is a double edged sword, it can 

also prevent the algorithm from finding a solution quickly. The “good start” curve in 

the same figure is a repeat of the same experiment, this time using an initialisation with 

which DisPeL found a solution with 41 iterations. Both curves are nearly identical, clearly 

Stoch-DisPeL was unable to capitalise on the “good” initialisation. In that, a risk of the 

randomisation strategy.

Given this, a hybrid of both algorithms, exploiting the best features of either, is an 

attractive proposition. Probably done in a way that allows agents use the deterministic 

approach early in the search and then switching to a stochastic approach as the process 

draws on.

The results from the evaluation of the algorithms show that both versions of DisPeL 

outperformed DSA-BIN in the problems tested. The difference was smaller in the Dis-

SAT experiments, which as we noted earlier is a domain where stochastic algorithms are 

expected to do well. DSA, as originally proposed, suffered from an inability to effectively 
^Where we considered an initialisation as bad when a solution was not found after a maximum of 200n 

iterations.
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Figure 6.15: Run Length Distribution of Stoch-DisPeL on a problem instance repeatedly 
starting “good” and “bad” random initialisations.

deal with local optima once stuck; the modifications in DSA-BIN introduced measures 

to overcome this deficiency. But, the continued reliance on random decisions for these 

improvements has its drawbacks. For example, the absence of search memory leaves the 

door open for the algorithm to repeatedly make the same mistakes in attempting to resolve 

particular deadlocks. But, as we have shown in Table 4.1 albeit in a different context.

random unilateral decisions do not quickly resolve as many deadlocks as either the penalty 

based approach or an approach that uses constraint weights. And, in addition, random 

moves still caused other constraints, previously satisfied, to be violated. Therefore, dead

locks can linger in the constraint network as a search progresses. Results of DSA-BlN’s 

performance especially in Section 6.5.1 support those earlier assertions.

6.6 Chapter Summary

In this chapter we have described Stoch-DisPeL, a stochastic variation of DisPeL which 

introduces a random choice in DisPeL’s deadlock resolution strategy. Rather than follow 

the fixed rule of perturbing and then incrementing penalties, in Stoch-DisPeL agents
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randomly decide on which type of penalty to use. Therefore, agents decide to use 

temporary penalty with a probability p and the incremental penalty with 1 — p.

a result of this modification, the no-good store is no longer used thereby reducing 

the

As

the

memory requirements and the number of operations performed by agents when deadlocks 

are discovered.

We showed, from empirical tests, that on unstructured problems performance of the 

new algorithm was optimal at small values of its critical parameter (0.1 < p < 0.4) hence 

favouring incremental penalties over temporary penalties. While on structured problems.

the optimal value for the critical parameter was about p = 0.7. The algorithm was eval

uated on random DisCSPs, structured DisCSPs, and benchmark instances of the boolean 

satisfiability problem. Its performance was compared with DisPeL and an improved ver

sion of the Distributed Stochastic Algorithm on the same problems. The results showed 

that randomisation improves performance of the penalty driven strategy; Stoch-DisPeL 

consistently solved more problems than DisPeL and DSA-BIN, and it typically required 

fewer iterations in the process.



Chapter 7

Solving coarse-grained DisCSPs

7.1 Introduction

In previous chapters we discussed versions of DisPeL for solving problems where each agent 

has just one variable, a case for which there are limited realistic scenarios. In this chapter 

we consider the more realistic scenario where DisCSPs are coarse-grained with agents 

holding multiple local variables. In such cases, like timetabling or meeting scheduling.

besides the constraints between variables held by different agents there are also local 

constraints between variables within an agent. These kinds of problems can prove to be a 

real test for collaborative problem solving where agents have to find a balance between the 

emphasis they place on resolving either the internal or the external constraints. Placing 

slightly more emphasis on one group of constraints can compromise the collective ability 

of agents to reach agreement and solve problems.

In this chapter we present two distributed iterative improvement algorithms for solving 

coarse grained DisCSPs. First, we introduce an extension of Stoch-DisPeL, Multi-DisPeL, 

for agents with multiple local variables. We also discuss a modification of Eisenberg’s

Distributed Breakout for coarse-grained DisCSPs where we introduced new heuristics for 

controlling the growth of constraint weights and some randomisation. We show that these 

modifications improve the performance of the algorithm considerably.

The chapter is structured as follows. First, in Section 7.2, we brielfy discuss coarse

111
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grained DisCSPs and briefly review the literature on algorithms for solving them. In Sec

tion 7.3, we introduce the extension to Stoch-DisPeL, following that we also introduce the 

modifled breakout algorithm in Section 7.4. Finally, in Section 7.5, we present the results 

of empirical evaluations of both algorithms along with comparisons with other similar al

gorithms. Finally, in Section 7.6 we briefly highlight some possible extensions/variations 

for the new algorithm.

7.2 Background

In the model of DisCSP considered so far, we have always assumed that each agent owns 

exactly one variable, and that in a real-world setting information about each variable re

sides on a separate machine. At this lowest level of granularity, the amount of information 

about a problem available to agents is restricted to knowledge about the constraints they 

are involved in and value updates received from neighbouring agents during the search. 

As a result, there is a limited amount of computation that agents can perform locally and 

all the search effort is focused on the distributed collaborative activity.

There are, however, problems that come natmally in a different form / model from 

that described above i.e. DisCSPs which are made up of interconnected sub-problems. 

Each sub-problem, naturally distinct from other parts of the problem, is a CSP on its 

own comprising a set of variables and constraints between those variables, as well as 

constraints between some variables in the local CSP and variables in other sub-problems 

(as illustrated in Figure 7.1). Therefore, rather than represent variables, each agent in 

the DisCSP represents a sub-problem. Distributed lecture timetabling is an example of 

such coarse grained DisCSPs, where agents represent lecturers and each sub-problem is 

the set of courses taught by an individual. The constraints in the CSPs include those 

stating that an individual can not teach two different courses at the same time (intra

agent constraints), as well as constraints to prevent some clashes with courses taught by 

other lecturers (inter-agent constraints) either because of student coiu-se registrations or 

resource availability.

Agents in these DisCSPs inevitably are more complex, compared to the agents used so



Figure 7.1: An illustrative example of a coarse grained DisCSP, with 3 inter-connected 
sub-problems / agents.

far, since they each control more than one variable and as such have much more problem 

information available. Consequently, agents have the opportunity (or are required) to do 

more local computation in the search for a solution.

According to Yokoo and Hirayama [124], the amount of local computation (and the 

level of granularity) required by complex agents can vary along two extremes. At one 

extreme, a problem can be formalised as a fine grained DisCSP where each sub-problem 

becomes a variable. Therefore, each agent does all its local computation before hand by 

finding all possible solutions for its sub-problem which are taken as the “domain values” 

of the new variables. These local solutions are exchanged with other agents during the 

collaborative search. This approach was adopted in [120] on their work on distributed SAT 

solving. But, Yokoo and Hirayama argue that the obvious limitation of this approach is 

that when local sub-problems get large and complex, it may be impossible to find all local 

solutions initially.

At the other extreme, there is the option of treating each variable in a sub-problem as 

a virtual agent - in short, running a single variable per agent algorithm, where local com

putation is minimal and all effort is expended on the distributed search. Therefore, agents 

simulate all activities of these virtual agents including communications between them and 
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other real agents. But, Yokoo and Hirayama argue that this is wasteful because, according 

to them, the cost of local computation is significantly lower than that of communications 

between virtual agents. And they add that the solution lies somewhere in between, where 

agents can enjoy the flexibility of the flnest level of granularity and at same time exploit 

the clustering of local variables to speed up the search.

In distributed backtracking algorithms for DisCSPs with complex agents, most promi

nently Asynchronous Backtracking [50, 69] and Asynchronous Weak Commitment Search 

[124], the granularity of the single variable per agent case is still maintained and therefore 

variables are inadvertently treated as virtual agents; especially since these algorithms are 

direct extensions of earlier versions for fine grained DisCSPs. By taking each variable as a 

virtual agent, agents in those algorithms use a single strategy to deal with both inter-agent 

and intra-agent constraints as there is typically no distinction between the constraints. As 

such, deadlocks are still detected (and no-goods generated) from each variable rather than 

from entire sub-problems. At the same time, the amount of computation done locally 

within agents is still significant. Each agent will typically try, exhaustively in the worst 

case, to And a local solution that is consistent with higher priority external variables be

fore either extending the partial solution or requesting revision of earlier choices by other 

agents.

7.3 Multi-DisPeL: DisPeL for agents with multiple local

variables

7.3.1 Algorithm overview

The Distributed Penalty Driven Search for agents with multiple local variables (Multi- 

DisPeL) is based on Stoch-DisPeL. It is a distributed iterative improvement algorithm 

which relies on the penalty driven strategies introduced in Chapter 4 to resolve deadlocks. 

The key features of the algorithm are:

• As in Stoch-DisPeL, agents take turns to improve an initial random solution over 

successive iterations and communicate new assignments to their neighbours.
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In each iteration, each agent uses a steepest descent local search to improve the 

evaluations of its variables.

When the steepest descent search is stuck, penalties attached to the current assign

ments of inconsistent variables are used to modify cost landscapes.

Variables are treated as virtual agents whenever penalties are used where penal

ties are “sent” from individual variables involved in deadlocks to variables sharing 

constraints with them.

In the same vein as above, penalties are imposed by agents on local variables and 

requests for their implementation are also sent to the owners of external variables

connected to the originating variables.

Like Stoch-DisPeL, agents choose randomly between using a temporary penalty and 

increasing incremental penalties whenever they decide to implement penalties.

Penalties are used aggressively in Multi-DisPeL, compared to DisPeL and Stoch- 

DisPeL. We no longer require that agents have to detect that states are unchanged in 

two successive iterations. As that will slow down, or prevent, resolution of local deadlocks 

within an agent. Rather, penalties are used as soon as the steepest descent search, which 

agents use locally to improve the solution, is stuck. And, as a result of this, we ensure that 

in each iteration agents also have more opportunities to discard incremental penalties.

In each iteration, each agent uses a typical steepest descent local search to minimise 

the total number of constraints violated by its local variables. We modified the standard 

steepest descent search for agents in Multi-DisPeL to speed up the algorithm. Rather 

than computing and implementing the best improvements one after the other, agents make 

improvements as follows:

1. Find all possible improvements to the solution i.e. all assignments Vi that have the 

least cost in the domain dx^ of each variable Xi.

2. The best improvements which do not conflict i.e involving unconnected variables, 

are selected and implemented simultaneously.



7.3. Multi-DisPeL: DisPeL for agents with multiple local variables 116

3. Ties are broken in favour of variables with the largest number of constraints or the 

highest lexicographic IDs.

These modifications allow us to speed up the search by reducing the computational 

costs of the steepest descent search. Rather than throw away the computations carried 

out, agents can use the opportunity to implement all improvements that can be made in 

parallel - which, using the standard descent approach, would probably be implemented at 

a much higher cost since the improvements would have to be recomputed over and over 

again.

Although we use the steepest descent search locally, for all the experiments reported 

in this chapter, Multi-DisPeL’s structure does not necessarily restrict agents to using this 

strategy internally. We believe that other heuristics or local search modifications specific 

to particular problems may be used as alternatives, as long as these algorithms can take 

into account the information contained in penalties. For example, one may replace the 

steepest descent search with WalkSAT [102] when solving boolean satisfiability formulae; 

the penalties on truth values can still be used to drive the variable selection heuristics.

Another implication of the new framework, is that agents need not necessarily be 

homogeneous. Each agent has the opportunity to use a heuristic of its preference for its 

steepest descent search, or one best suited to its particular sub-problem as long as penalties 

form part of the evaluation function and contribute to driving the selected heuristic. We 

discuss this and other possibilities further in Section 7.6.2.

7.3.2 Agent Behaviour

Much of the activity in Multi-DisPeL takes place within agents although they exchange 

values and penalty requests amongst themselves. As such, in describing the new algorithm, 

we focus our attention on describing the actions (outlined in Algorithms 7.1 to 7.7) that 

take place locally within agents when they are active.

We assume that agents know the owners of variables constrained with their local vari

ables; as such we define an agent’s neighbours are those agents whose variables share at 

least one constraint with the variables belonging to the agent. We also assume that each 
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agent, as well as each variable, has a unique ID.

At initialisation, agents create an ordering using the Distributed Agent Ordering 

heuristic with their IDs, as done in DisPeL, whereby they partition their neighbouring 

agents into higher and lower priority agents. Based on this ordering, agents will therefore 

treat all variables belonging to higher priority agents as higher priority variables as well as 

taking variables belonging to lower priority agents as lower priority variables. And in the 

same fashion as DisPeL, each agent communicates with both sets of neighbours and takes 

its turn to improve the solution after receiving updates from all higher priority neighbours. 

During the initialisation process, agents also initialise their local variables with random 

instantiations and exchange these assignments with their neighbours.

During the search, agents take turns to improve the solution - each of them tries to 

reduce the number of constraints violated by the local variables they control. When it is an 

agent’s turn to act, it runs a steepest descent local search algorithm (Algorithm 7.2); where 

it repeatedly seeks out assignments for its local variables that improve the solution until it 

can no longer find any improvements and there are no opportunities to use penalties. The 

steepest descent search allows agents to rapidly improve their local solutions and when 

this search gets stuck (or is successful) agents discard penalties on consistent variables as 

well as those penalties distorting the cost landscapes of inconsistent variables (Algorithm 

7.4, line 3). If the local solution is not consistent, penalties are then used by the agents 

to resolve any outstanding deadlocks and to allow the steepest descent search to resume.

As mentioned earlier, penalties are used more aggressively in this algorithm. Agents 

are no longer required to check if variables are at quasi-local-minima (i.e. detect that 

neighbours’ values are unchanged in two successive iterations), as with the local steepest 

descent search a variable’s value may be changed more than once in a single iteration. 

Therefore, penalties are imposed on local variables as soon as an agent’s steepest descent 

search is stuck. The penalties are still used in the same way as in DisPeL and Stoch- 

DisPeL, so whichever penalty is selected is imposed on the first inconsistent variable and 

then on all its internal neighbours. Agents will inform lower priority agents that control 

other variables connected to the inconsistent variable to impose the same penalties on 
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those variables when the lower priority agents become active. The choice of what penalty 

to use i.e. temporary or incremental penalty, is a random one. When an agent’s steepest 

descent search is stuck, it scrolls through each of its inconsistent variables and chooses 

penalties to impose on those variables’ current assignments (Algorithm 7.4, lines 7-16).

The fact that agents do not distinguish between internal and external constraints can 

cause the steepest descent search to go on indefinitely i.e. an agent keeps trying to find 

a consistent local solution even though values of external variables prevent it from doing 

so. To prevent this, when the steepest descent is stuck agents do not impose any “new” 

penalties on variables whose assignments have changed in the current iteration or have 

been penalised in the current iteration (Algorithm 7.4, lines 8-10).

The steepest descent search terminates, in each iteration, when the local solution is 

consistent, no further improvements can be found, or agents can not impose any new penal

ties on the local variables. When this happens, agents send the new variables’ assignments 

to all affected neighbours, as well as any requests to impose penalties.

7.3.3 Theoretical Properties

Since Multi-DisPeL is based on similar ideas to DisPeL and Stoch-DisPeL, Multi-DisPeL shares 

some theoretical properties with these algorithms. Therefore, like DisPeL, Multi-DisPeL is 

sound and it terminates if and only if a solution is found. And in the same vein, there 

are no completeness guarantees since in Multi-DisPeL the search memory is short-lived 

and therefore can not be used to permanently rule out previously visited regions. Multi- 

DisPeL’s space requirements are also minimal, any additional information agents hold are 

related to either their variables’ domain values (e.g. the penalty vectors) or to their vari

ables (e.g. tokens to detect that a variable has been penalised in the current iteration). 

Hence, the space complexity increases only linearly with the problem size.
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Algorithm 7.1 Multi-DisPeL: Main loop
1: initialise
2: ordering <— empty
3: for i = 0 to OwnVars.size do
4: ordering ordering /\ var^
5: end for
6: loop
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25: end loop

messages <— acceptQ
while active do

for i — 0 to num{messages} do
processMessage(messa^ei)

end for
for i = 0 to Vars.size do

if vari is consistent then
reset v ar i.incremental Penalties

else if cost function for var^ is distorted then
reset vari.incrementalPenalties

end if
if varx-penalty Status null then 

implement penalty on varx
end if

end for
improveSolutionO
send variable assignments and penalty requests to all neighbouring agents 

end while

Algorithm 7.2 procedure improveSolution()
1: for i = 0 to Vars.size do
2: Xi.moved FALSE
3: end for
4: while true do
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17: 
18: end while

improvements getlmprovementsO
if improvements = then

penalty Imposed iniposePenalties() 
if -^penaltiesUsed then

break
end if

else
for i = 0 to improvements.size do

X impprovementsi.var
update assignment (x, improvementsi.value} 
x.moved <r- TRUE

end for
end if
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Algorithm 7.3 getlmprovements()

get V E di with the minimum
5 h{xi.currentvalue} — h{xi.v')
if > 0 then

impSet impSet U improvement{xi, v, 
end if

1: impSet 0
2: for z = 0 to Vars.size do
3:
4:
5:
6:
7-.
8: end for

be st Improvements <—
for all {improvement, Xi, Vi, Si) E impSet do

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24:

remove FALSE 
for all {improvement, Xj,Vj,6j) G impSet do 

if ^isNeighbour{xi,Xj} then continue 
if 5i < Sj then remove <— TRUE 
if — Sj then 

if {xi.numConstraints < Xj.numConstraints)\/ {xi.id > Xj.icL) then 
remove TRUE

end if
end if

end for
if -^remove then

bestimprovements bestimprovements U improvement{xi, Vi, Sj)
end if

end for
return bestimprovements
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Algorithm 7.4 imposePenalties()
penalty Imposed FALSE
for i = 0 to Vars.size do

if isConsistent(xi)\/ cost function of Xi is distorted then
Xi.resetIncrementalPenalties

end if
end for
for i = 0 to Vars.size do

if Xi.moved isConsistent{xi} V (xi.penalty Status null) then
continue

end if
r random value in [0..1]
if r < p then

Xi.penaltyStatus sentAddTempPenalty
else

Xi.penalty Status sentIncreaseIncPenalty
end if
penalty Imposed •«— TRUE 
implementLocalPenalties(5'efPen<2Ztj^7?eczpzents(a:j), Xj .penalty Status) 

end for
return penalty Imposed

Algorithm 7.5 getPenaltyRecipients(vara;)
1: recipientList
2; for
3:
4:
5:
6:
7-.
8: end for
9: return recipientList

empty
z = 0 to varx.constraints.length do 
if varx.penalty Sent = incr easel ncPenalty then

recipientList <— recipientList /\ varx-constraintsi.neighhours 
else if constraintViolated(vara;.c<mstraznf5i) then

recipientList <— recipientList K varx-constraintsi.neighbours 
end if
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Algorithm 7.6 procedure implementLocalPenalties(reczpientL25t,
1: for each Xi E. recipientList.size Pi Vars do
2:
3:
4:
5:
6:
7:
8:

9:
10:
11:
12:
13: end for

if penalty Sent = addTemp Penalty then 
if Xi.penalty Status — null then

Xi.penalty Status imposeTempPenalty
impose temporary penalty on x i. current Value 

end if
else

if Xi.penalty Status = null V Xi.penalty Status = imposeTempPenalty 
then

Xi.penaltyStatus increaseIncPenalty 
increase incremental penalty on Xi.currentValue

end if
end if

Algorithm 7.7 procedure processMessage( message )
1: update Agentview with message.variable, message.value 
2:
3
4
5
6
7
8
9

10
11
12
13

if message.penalty Request = null then
return

end if
for each vari constrained with message.variable do 

if message.penaltyRequest = increaseIncPenalty then 
var^.penalty Status <— increaseIncPenalty

else
if Vi.penalty Status increaseIncPenalty then

vari.penaltyStatus <— imposeTempPenalty 
end if

end if
end for
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7.4 Enhancing Distributed Breakout (DisBO) with weight

decay and randomisation

The distributed breakout algorithm (DBA) has been extended for coarse-grained DisCSPs 

by its original authors in the form of Multi-DB [48, 49], which was shown to be particu

larly effective at solving distributed SAT problems. Eisenberg, in [25], proposed another 

extension, DisBO, for his work on project scheduling. This version was largely based on 

DBA’s framework but differed in its emphasis on increasing weights only at real local 

optima. Eisenberg noted DisBO’s ability to identify unsolvable problems or difficult parts 

of a problem and therefore used it in the first phase of a hybrid algorithm where it was 

combined with distributed backtracking search to solve distributed scheduling problems. 

We have studied DisBO, and we propose some modifications to it. We show that the 

modifications improve its overall performance considerably.

DisBO differs from Multi-DB in that it has an additional third cycle for global state 

detection, since weights are only increased when the search is stuck at real local optima 

and not at quasi-local-optima. Therefore, in addition to the improve and ok? cycles, there 

is a detect-global-state cycle, which is used to determine that either a solution has been 

found, that the maximum number of cycles has been reached, or that the search is stuck at 

a real local minimum. But, the detect-global-state cycle is expensive, in terms of messages 

sent, because it requires agents to continuously exchange state messages until they have 

determined that all messages have reached all agents in the network. This was needed to 

get a snapshot of the state of the entire network without resorting to a global broadcast 

mechanism where each agent is assumed to know every other agent in the network.

DisBO limits the amount of computation done locally within each agent to allow agents 

to focus on the collaborative aspect of the problem solving activity. In DisBO, each agent’s 

variables are partitioned into two sets, private and public variables. The private variables 

are those variables that have no inter-agent constraints attached to them. The bulk of the 

local computation done by agents in DisBO are with these private variables, where in each 

improvement phase the agents repeatedly select values for these variables that minimise 

the weighted constraint violations until no further improvements are possible. The pub
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lie variables, on the other hand, are treated like virtual agents and DBA’s coordination 

heuristic is used to prevent any two public variables (even those within one agent) from 

changing their values simultaneously; except in the case that the concurrent changes do 

not cause the constraints between them to be violated.

In our modification to the algorithm (DisBO-wd), the weight update scheme in DisBO 

was replaced with a modification of the weight decay scheme from Prank’s work on SAT 

solving with local search [30]. This weight decay strategy uses weights much more aggres

sively than the standard breakout algorithms. Instead of modifying weights only when a 

search is stuck at local optima, weights on violated constraints are continuously updated 

after each move. At the same time, weights are also decayed at a fixed rate during the 

updates to allow the algorithm focus on recent increments. Prank argues that this strategy 

allows weights to provide immediate feedback to the variable selection heuristic and hence 

emphasise those variables in unsatisfied clauses. We modified the update rule further, so 

that weights on satisfied constraints are continuously decayed as well. Therefore, before 

computing possible improvements in DisBO-wd, agents update their constraint weights as 

follows:

Weights on violated constraints at time t are computed as = {dr * + Ir

Weights on satisfied constraints at time t are decayed as Wi^t = max{{dr * 1)

where:

dr is the decay rate (dr < 1).

Ir is the learning rate (/r > 0).

Several values for these parameters were tested in empirical investigations and we 

found that DisBO-wd’s performance was optimal on distributed SAT problems with the 

parameters set to dr = 0.99 and Ir = P, which were consistent with the findings in [30]. 

And, DisBO-wd performance was optimal with the parameters dr = 0.99 and Zr = 8 on 
^Results of this investigation are presented in Appendix A
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random DisCSPs.

With the new weight update scheme, we were able to reduce the number of DisBO’s

cycles from three to two, since it was no longer necessary to determine if the search was

stuck at real local optima. And while doing this, we also moved the termination detec

tion mechanism into the ok? cycle, thus bringing it in line with the original distributed

breakout framework.

We also included some randomisation in the algorithm, where the coordination heuris

tic was replaced with the random break from Wittenberg’s work on randomising DBA

[119] which is used for non-deterministic tie-breaking. In DBA when two neighbouring 

variables have the same improvement, the variable with the smaller lexicographic ID is

given priority to make its change. But, with the random break, in each improvement cycle

agents select and communicate random tie-breaking numbers for each variable, and when

there is a tie the variable with the lower number is given priority. Therefore, tie breaking

is not always in one direction [49].

Figure 7.2:
graph colouring problems of various sizes. Each point represents attempts on 100 problems.

Comparison of success rates of DisBO and DisBO-wd on random distributed

In Figures 7.2 and 7.3, we summarise empirical results from experiments compar

ing DisBO with our modified version (DisBO-wd). The experiments, which evaluated
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Figure 7.3:
Figure 7.2.

Average cycles required by DisBO and DisBO-wd to solve the problems in 

the algorithms’ performance on critically difficult distributed graph colouring problems 

(A: = degree = 4.7), show that DisBO-wd solved more problems than DisBO (Figure 

7.2), especially on the larger problems. Furthermore, DisBO-wd typically required fewer 

cycles on average to solve the problems (Figure 7.3). We also achieved similar results in 

comparisons on distributed SAT problems.

Other alternatives for improving DisBO were also considered; notably probabilistic 

weight resets and probabilistic weight smoothing [57], which both outperformed DisBO 

but were not as strong as the weight decay strategy.

7.5 Empirical Evaluation

Experimental evaluation of Multi-DisPeL was carried out using coarse grained versions 

of several DisCSPs including distributed graph colouring, boolean satisfiability formulae 

(SAT), and randomly generated DisCSPs. In each case, the algorithm’s performance was 

compared to two versions of Distributed Breakout (Multi-DB and DisBO-wd) and the

Asynchronous Weak Commitment Search algorithm (Multi-AWCS) [124]. We also include 
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Stoch-DisPeL in the comparisons using it as a primary benchmark for Multi-DisPeL.

The two distributed breakout algorithms (DisBO-wd and Multi-DB) were included in 

the evaluations, so that we continue the comparison of landscape modification strategies 

i.e. constraint weights against domain penalties. In DisBO-wd, as discussed in Section 

7.4, constraint weights are modified continuously during the search in a bid to keep the 

heuristics informed about persistent deadlocks. Multi-DB [48], was introduced by DBA’s 

authors and is based on DBA’s deadlock resolution strategy, where weights attached to 

constraints are used to modify the cost landscape whenever quasi-local-optima are encoun

tered. In Multi-DB, all agents act concurrently in the same manner as in DBA i.e. sending 

value updates in the ok? cycle and, finding and coordinating concurrent improvements 

in the improve cycle. To find possible improvements, agents are allowed to run a local 

search algorithm for a fixed number of steps to identify a set of local changes that reduce 

the cost of the current solution. These changes are exchanged with neighbouring agents, 

and those changes on variables with the best improvements are accepted; any ties are 

broken deterministically in favour of the agent with the lowest lexicographic ID. However, 

simultaneous value changes of two or more co-constrained variables are permitted where 

such changes do not increase the cost of the solution. Multi-DB works particularly well 

on distributed SAT problems, and it has been shown to outperform Multi-AWCS in that 

domain [48, 69]. Multi-DB is used only in the experiments on distributed SAT problems, 

whereas DisBO-wd is used in all experiments.

Unlike the breakout algorithms and Multi-DisPeL, the Asynchronous Weak Commit

ment Search is a complete algorithm and is not built around the idea of resolving deadlocks 

by modifying cost landscapes. Rather, it is an efficient^ combination of backtracking and 

iterative improvement search that deals with deadlocks through a combination of variable 

re-ordering and storage of explicit no-goods, which help the search avoid combinations of 

values that can not be part of a solution. While the algorithm has been shown to out

perform other distributed backtracking algorithms [124], it has the drawback of possibly 

requiring an exponential amount of memory in the worst case to store no-goods.
^With regards to the number of iterations taken on average to solve a problem.
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The same metrics, from Chapters 5 and 6, were used to evaluate the algorithms. Al

gorithms were compared on the percentage of problems solved within a maximum number 

of iterations (or cycles)^. As usual the number of iterations (of cycles) used was taken as 

the measure of efficiency; in the case of synchronous algorithms we can infer the number 

of messages exchanged between agents and approximate the number of constraint checks 

with the metric.

7.5.1 Creating coarse-grained DisCSPs

Publicly available problem instances, as well as randomly generated problems, were used 

to evaluate the algorithms in this chapter. These problems were partitioned into evenly 

sized inter-connected sub-problems for each agent using a simple partitioning algorithm 

which was designed to ensure that there was always a meaningful cluster of variables 

within each agent i.e. there are constraints between some of the variables belonging to an 

agent. Sub-problems for each agent (a^) were created as follows:

1.

2.

3.

4.

7.5.2

First, a randomly selected variable (xj) that is not already allocated to another agent 

is allocated to Uj.

A variable constrained with Xi is randomly selected and allocated to ai.

The process of randomly selecting one of the variables already allocated to ai and 

selecting a random neighbour of the variable for allocation to ai is repeated until the 

number of required variables for ai have been found.

In addition, with a small probability (p) a randomly selected variable is allocated to 

Oj, even if it is not connected with any of a/s existing variables.

Distributed graph colouring

To start off, we evaluated Multi-DisPeL on distributed graph colouring problems to study 

the relationship between search costs and the problem size, as well as the influence of agent 

Given its completeness and unlimited time, Multi-AWCS is guaranteed to solve all problems used since 
they all have solutions. But, in this case we are interested in its performance in bounded time. 
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size (i.e. the number of variables each agent controls) on its performance. Results from 

runs with Stoch-DisPeL, DisBO-wd, and Multi-AWCS on the same problems were used 

as a benchmark for Multi-DisPeL’s performance.

Critically difficult, but solvable, random distributed graph colouring instances (k = 

3, degree = 4.7) were used for the experiments. We generated problems of different sizes 

(i.e. with 100, 150, 200, and 250 nodes per instance) and 100 instances for each problem 

size. These problem instances were partitioned and solved with different numbers of agents 

(ranging from 2 to 25) so we could directly study the effect of agent size on performance 

of the coarse grained algorithms. In the experiments, each algorithm was limited to a 

maximum of lOOn iterations in each attempt. However, we use a maximum of 200n 

iterations for DisBO-wd, to count its two cycles (i.e. improve and ok?} separately and as 

such give it the same number of opportunities to change variable assignments as the other 

algorithms. We recorded the number of problems solved within the maximum number 

of iterations and the average and median number of iterations required. The results are 

presented in two sets, first we show a comparison of Multi-DisPeL and Stoch-DisPeL 

in Table 7.1. In Tables 7.2 and 7.3, we compare the performance of Multi-DisPeL with 

Multi-AWCS and DisBO-wd on the same problems looking at performance where variables 

are distributed evenly and unevenly amongst agents.

The results in Table 7.1 confirm that problem solving is quicker when agents do addi

tional computation when dealing with coarse-grained DisCSPs, as opposed to treating each 

variable as a virtual agent. Although both Multi-DisPeL and Stoch-DisPeL solve roughly 

the same number of problems, Multi-DisPeL has lower average search costs. The results 

also show that performance for Multi-DisPeL improves as agents control more variables, 

suggesting that agents are able to exploit the opportunity of more problem information 

to speed up the search.

In Table 7.2, we summarise the results comparing Multi-DisPeL with other coarse

grained algorithms (Multi-AWCS and DisBO) on the same problems from Table 7.1. Both 

Multi-DisPeL and Multi-AWCS solved about the same number of problems in each set, 

but performance for DisBO-wd degrades on the larger problems. It solves fewer problems
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Table 7.1: Performance of Multi-DisPeL and Stoch-DisPeL on distributed graph colouring 
problems.

algorithm n agents % solved average cost median cost
Stoch-DisPeL 100 - 100 236.5 111

150 - 100 686.4 300
200 - 99 1878.5 890
250 - 98 2201.2 1277

Multi-DisPeL 100 2 100 84.5 44
4 100 102.6 43
5 100 105.3 58
10 100 112.1 55

150 3 100 300.7 no
5 99 271.3 121
10 100 291.2 148
15 100 351.1 135

200 4 100 804.4 329
5 100 897.3 324
10 100 1135.4 373

250 5 99 1242.6 417
10 100 1660.5 529
25 97 1785.7 668

and its search costs are considerably higher. In Section 5.6 earlier, we already hinted at 

some of the reasons why the strategy of modifying landscapes with constraint weights and 

the technique of limiting the concurrent changes can adversely affect the performance of 

algorithms built around that framework; these effects are evident in the comparison results 

shown. The results also show that Multi-AWCS generally has lower average search costs 

than Multi-DisPeL, but Multi-DisPeL has lower median costs in all but one problem set.

We carried out further experiments on distributed graph colouring where we considered 

the case where all agents do not necessarily have the same number of variables, making 

the random problems slightly more realistic. So, we modified the partitioning algorithm to 

distribute an uneven number of variables to a random number of agents. Using critically 

difficult graph colouring instances (i.e. A: = 3, degree — 4.7), we evaluated the performance 

of Multi-DisPeL, Multi-AWCS, and DisBO-wd on the same problems from Table 7.2 in 

order to study how the algorithms are affected by the new distribution of variables to 

agents. The results, which are summarised in Table 7.3, follow similar patterns with the 

previous experiment with Multi-DisPeL having lower median search costs than Multi-
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Table 7.2: Performance of Multi-DisPeL, Multi-AWCS, and DisBO-wd on distributed 
graph colouring problems.

algorithm n agents % solved average cost median cost
Multi-DisPeL 100 2 100 84.5 44

4 100 102.6 43
5 100 105.3 58
10 100 112.1 55

150 3 100 300.7 110
5 99 271.3 121
10 100 291.2 148
15 100 351.1 135

200 4 100 804.4 329
5 100 897.3 324
10 100 1135.4 373

Multi-AWCS 100 2 100 57.0 35
4 100 114.9 77.5
5 100 123.24 91.5
10 100 162.83 129

150 3 100 222.9 178.5
5 100 288.3 198
10 100 341.0 276.5
15 100 313.1 223

200 4 100 563.5 422
5 100 556.0 431
10 100 704.4 527

DisBO-wd 100 2 100 966.4 725
4 100 982.6 606
5 100 1084.3 690.5
10 100 1019.8 816.5

150 3 98 4248.3 2436
5 97 4376.4 2274
10 98 4977.1 2482
15 99 3784.1 2176

200 4 85 10376.2 6526
5 82 11726.6 6686
10 83 10262.0 5956
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Table 7.3: Performance of Multi-DisPeL, Multi-AWCS, and DisBO-wd on distributed 
graph colouring problems with a random number of agents and an uneven distribution of 
variables to those agents, rx.x is the average number of agents in a problem set.

algorithm n agents % solved average cost median cost
Multi-DisPeL 100 r7.2 100 125.5 61

150 r9.6 99 304.1 129
200 rll.9 100 1056.0 348

Multi-AWCS 100 r7.2 100 120.8 98
150 r9.6 100 303.7 262.5
200 rll.9 100 672.0 557.5

DisBO-wd 100 r7.2 r 100 1099.6 568
150 r9.6 100 3872.3 2401
200 rll.9 89 11432.2 7414

AWCS. It appears that the uneven distribution of variables increases search costs, for 

both Multi-DisPeL and Multi-AWCS, and the costs are similar to the cases where agents 

hold a small number of variables (cf. Table 7.2).

In summary, the experiments show that Multi-DisPeL is clearly competitive on dis

tributed graph colouring compared to its ancestor, Stoch-DisPeL, and well against both 

Multi-AWCS and DisBO-wd. Compared to Multi-AWCS, Multi-DisPeL’s average search 

costs were slightly higher, but its median search costs are almost always lower than those 

for Multi-AWCS. In short, Multi-DisPeL is able to achieve similar levels of performance 

with Multi-AWCS without the additional overhead of creating new constraints (in form 

of no-goods) and not breaching privacy by connecting variables that were not previously 

linked in the original specification of the problems being solved.

7.5.3 Distributed SAT problems

In the second set of experiments, we evaluate the performance of Multi-DisPeL and the 

benchmark algorithms on distributed SAT problems. Satisfiable 3-SAT instances from the 

SATLib dataset were used for the experiments; made up of formulae with 100, 125, and 150 

literals. These were transformed into coarse-grained DisCSPs with the technique specified 

in Section 7.5.1. We did not run any experiments with Multi-DB and Multi-AWCS, 

rather we used results on experiments with the same instances from [48], published by 
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the algorithms’ authors, as benchmarks'^. All of the other algorithms (i.e, Multi-DisPeL, 

Stoch-DisPeL, and DisBO-wd) were run once on each instance, and were limited to lOOn 

iterations (where n is the number of literals in a formulae) before attempts were recorded 

as unsuccessful . The results in Tables 7.4, 7.5, and 7.6 show the percentage of problems 

solved, the average search costs, and the median search costs from the runs.

The results for Multi-DB are for a version with periodic random restarts, which Hi- 

rayama and Yokoo in [48] found solved more problems than the original version. Similarly, 

in the same work, the authors used a version of Multi-AWCS without no-good learning to 

keep their comparisons with Multi-DB fair. For Multi-DisPeL, we found that performance 

with the fixed parameter values for the temporary penalty (fixed at 3) and the probability 

of using the temporary penalty (fixed at 0.3) was less than optimal. And, therefore, we 

adjusted these parameters as follows: (1) the size of temporary penalty was fixed to 2; and 

(2) the probability of using the temporary penalty was increased to 50%. These parame

ter tuning made a huge difference to the algorithm’s performance in the SAT domain. In 

the same regard, the parameters for DisBO-wd were set to Zr = 1 and dr = 0.99 for the 

domain (cf. Section 7.4).

The results of the experiments on distributed SAT problems as plotted in Tables 7.4 to

7.6 show that both versions of the penalty driven search were very strong especially in terms 

of cost. Both algorithms (Stoch-DisPeL and Multi-DisPeL) do nearly as well as Multi-DB 

and DisBO-wd in terms of the percentage of problems solved. In fact, Stoch-DisPeL’s 

performance makes a strong case for using simple virtual agents to solve distributed SAT 

problems given that computational overhead may be lower in this case.

Compared to Multi-DB, DisBO-wd is very competitive especially on the smaller prob

lems. DisBO-wd solves as many problems as Multi-DB and its search costs are much lower 

on average. DisBO-wd also has a consistency in its search costs for each problem size that 

Multi-DB does not match. For example, average search costs in the 150 literal problems 

increase by about 350% as the number agents increase for Multi-DB. While on the same 
‘‘Variables are randomly distributed amongst agents in [48], so from each agent’s perspective the prob

lems may not be exactly the same.
®In [48], Multi-DB and Multi-AWCS were limited to a maximum of 250n iterations on their runs.
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Table 7.4: Performance of Multi-DisPeL and other algorithms on 1000 random distributed 
SAT problems with 100 literals distributed evenly amongst different numbers of agents.

algorithm agents % solved average cost median cost
Stoch-DisPeL - 99.1 626 200
Multi-DisPeL 2 99.2 297 93

4 98.7 455 118
5 98.1 487 136
10 98.7 593 154
20 97.7 576 145

Multi-DB 2 99.9 886 346
4 100 1390 510
5 100 1640 570

10 99.6 3230 1150
20 99.7 3480 1390

Multi-AWCS 2 99.9 1390 436
4 98.7 4690 1330
5 97.6 6100 1730
10 96.8 7630 2270
20 95.0 8490 2680

DisBO-wd 2 100 923 515
4 100 948 495
5 100 984 490
10 99.9 1003 516
20 99.8 993 510

Table 7.5: Performance of Multi-DisPeL and other algorithms on 100 random distributed 
125 literal SAT problems.

algorithm agents % solved average cost median cost
Stoch-DisPeL - 99 1074 360
Multi-DisPeL 5 95 874 263

25 96 911 303
Multi-DB 5 100 2540 816

25 100 6300 2330
Multi-AWCS 5 87 1.92 X 10^ 9290

25 80 2.55 X 10^ 1.58 X 10^
DisBO-wd 5 100 1727 725

25 100 1686 921
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Table 7.6: Performance of Multi-DisPeL and other algorithms on 100 random distributed 
150 literal SAT problems.

algorithm agents % solved average cost median cost
Stoch-DisPeL - 97 1320 353
Multi-DisPeL 3 97 1367 323

5 90 829 268
10 93 1214 292
15 95 1574 368

Multi-DB 3 100 2180 608
5 100 3230 1200
10 96 9030 2090
15 98 9850 3850

Multi-AWCS 3 81 2.43 X 10^ 1.11 X 10^
5 67 3.71 X 10^ 2.61 X 10^
10 61 3.94 X 10^ 3.60 X lO'^
15 61 4.23 X 10^ 4.17 X 10^

DisBO-wd 3 99 2078 874
5 99 2186 910
10 99 2054 1012
15 98 1893 898

problems, DisBO-wd’s average search costs remain within a 15% range of the minimum 

average without a clear degradation in performance as the number of agents increase. 

Clearly, while both DisBO-wd and Multi-DB, rely on modifying constraint weights to deal 

with deadlocks, DisBO-wd is less affected by the distribution of variables to agents.

Multi-AWCS is not as strong as the other algorithms in this domain. It solves the 

least number of problems and it has the highest search costs. As we pointed out, Multi- 

DisPeL and Stoch-DisPeL do perform quite well in this domain. Both algorithms have 

lower average and median search costs, even though the percentage of problems solved is 

marginally lower than Multi-DB and DisBO-wd.

7.5.4 Random distributed constraint satisfaction problems

Finally, we evaluated the algorithms’ performance on random DisCSPs. However, in this 

experiment Multi-AWCS is only used in the runs with the smallest sized problems. It is well 

documented (for example in [106, 72, 69]) that Multi-AWCS may require an exponential 

amount of memory to store no-goods during an attempt to solve a problem. The number 

of no-goods generated may increase exponentially on large problems, and since each no
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good may be evaluated at least once in each iteration, the length of time to complete 

each iteration increases dramatically as the search progresses. In our experience with the 

algorithm, we found that it typically ran out of memory on runs with large problems, 

especially for DisCSPs with 60 variables or more®, and the algorithm sometimes required 

considerable amounts of time to solve even a single instance.

The runs with random DisCSPs are similar to the earlier experiments (Section 6.5.1), 

this time we used three groups of problems with varying sizes and 100 problems in each 

group. Likewise, we consider the behaviour of the algorithms as the problem size in

creases as well as the impact of the number of variables each agent owns. The results of 

these experiments are summarised in Table 7.7 where we show the percentage of problems 

solved, and the average and the median iterations from successful runs on attempts on 

100 instances for each problem size.

The results in Table 7.7 are fairly consistent with the results of experiments on dis

tributed graph colouring. Both Multi-DisPeL and Multi-AWCS have lower search costs 

than Stoch-DisPeL and DisBO-wd, and DisBO-wd’s performance degrades considerably on 

the largest problems. But, in this case the search costs for Multi-AWCS increase abruptly 

as the number of agents in the coarse-grained DisCSPs increase. And, apart from the case 

where the 50 variables are partitioned amongst 2 agents, Multi-AWCS does worse than 

Multi-DisPeL.

Average and median search costs for Multi-DisPeL show a steady increase, within each 

problem size, as the number of agents increases. And at the lowest level of granularity, 

the average search costs are only 13% lower than Stoch-DisPeL on the largest problems; 

although the median search costs are much lower. This suggests that there is a case to 

use virtual agents (and an algorithm like Stoch-DisPeL) when there are just a handful 

of variables per agent and computational resources for each agent are at a premium 

Nevertheless, it is clear that in Multi-DisPeL, agents cure able to take advantage of the 

additional problem information from clustering of variables to shorten the time taken to 

find solutions.
^Experiments were run in a Java environment on a 3Ghz Pentium PC with 1GB of RAM.
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Table 7.7: Performance of Multi-DisPeL and other algorithms on random DisCSPs 
((n, d = 10,pl « 0.1,p2 = 0.5)).

algorithm n agents % solved average cost median cost
Stoch-DisPeL 50 - 99 771 423

100 - 94 1319 786
200 - 98 2425 1287

Multi-AWCS 50 2 100 186 90
5 100 738 288
10 98 995 527

Multi-DisPeL 50 2 99 250 109
5 99 307 124

10 99 309 146
100 2 94 611 260

4 99 905 308
5 97 856 276
10 94 928 449

200 4 97 1209 474
5 95 1382 534
10 95 2190 727
20 94 2137 846

DisBO-wd 50 2 98 1770 951
5 94 1927 1336
10 99 1855 1104

100 2 90 5468 3754
4 79 5251 3922
5 83 4996 2922
10 88 4695 3065

200 4 57 11778 11482
5 62 13454 8060
10 65 16832 14432
20 57 13289 9544
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7.5.5 Summary of results

Results of the experiments in this chapter are consistent with those presented in Section 

5.6, when comparing Multi-DisPeL and DisBO-wd. As we had argued earlier, our penalty 

based strategy is a more effective diversification scheme for dealing with local optima. The 

results in this chapter give additional support for this conjecture. In all problem classes, 

Multi-DisPeL solved more problems than DisBO-wd and it required fewer iterations. But, 

DisBO-wd is quite competitive compared to Multi-DB, which is the other algorithm that 

relies on constraint weights to deal with local optima; but unlike DisBO-wd, weights in 

Multi-DB are allowed to grow unbounded. DisBO-wd’s search costs were always lower 

than those for Multi-DB in the SAT problems where each agent has just a few variables 

although, not doing as much local computation meant that it could not take advantage 

of the additional information available when the number of variables per agent was large. 

Nevertheless, the results do support the proposition that retention of constraint weights 

can have negative effects on the cost landscape, as argued in [81, 111].

Compared to Multi-AWCS, Multi-DisPeL had higher search costs in the experiments 

with distributed graph colouring problems but lower median costs. Multi-DisPeL was 

very competitive in the other problem sets. However, Multi-DisPeL had a much lower 

space complexity than Multi-AWCS; it does not create any new constraints and no new 

links are created between unconnected agents. Therefore, in Multi-DisPeL the number of 

messages sent by each agent in each iteration is fixed; whereas as more links are created 

in Multi-AWCS traffic increases as problem solving progresses, as well as the amount of 

processing each agent does.

7.6 Algorithm variations

7.6.1 Pre-processing local sub-problems

Search efficiency in Multi-DisPeL can be improved by taking advantage of the information 

agents have of local sub-problems to pre-process a problem. And such pre-processing can 

be used to reduce the search space of problem or to determine if a problem is unsolvable 
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in the first place. For example, if the size of an agent’s local problem is not prohibitive, it 

can perform a complete tree search on it before participating in the collaborative search. 

And if the tree search indicates that the local sub-problem is unsolvable, the agent can 

relax some of its local constraints where possible or inform other agents of the futility of 

embarking on a collaborative search.

Alternatively, agents can also perform arc-consistency on the local sub-problems before 

the search begins to filter out values that can not be part of a valid solution. And as with 

a full search, arc-consistency may also indicate that a sub-problem, and by extension the 

whole problem, is unsolvable. The combination of tree search and consistency maintenance 

techniques can be used by agents to give stronger guarantees of local consistency.

7.6.2 Heterogeneous agents

As we mentioned in Section 7.3.1, agents are not necessarily restricted to using a steepest 

descent search heuristic to improve their local sub-problems in Multi-DisPeL. Especially 

as agents only exchange information about the assignments for their local variables and 

the requests to implement penalties. Other heuristics can be used locally as long as 

penalties can be directly incorporated in the cost functions of such methods and agents 

can easily determine when to implement new penalties. For example, the case of using 

either WalkSAT or the memory based Novelty [71] as an alternative is straightforward; the 

modified cost functions can be used to drive the variable selection heuristic and penalties 

can be imposed when a fixed number of tries have been completed.

Each agent can also choose a heuristic best suited to its individual sub-problem or its 

processing capacity. And where agents have certain preferences, local heuristics may be 

geared towards such preferences. Alternatively, in an exaggerated case, agents can even 

switch between heuristics during a search process. Most likely in hybrid cases where each 

agent also has a local learning algorithm and therefore, as a search progresses, the best 

heuristics for their sub-problems are identified and used more often.



7.7. Chapter summary 140

7.7 Chapter summary

We presented Multi-DisPeL in this chapter which extends Stoch-DisPeL for coarse-grained 

DisCSPs. Like Stoch-DisPeL, Multi-DisPeL is a distributed iterative improvement algo

rithm that utilises penalties on individual domain values to modify cost landscapes and 

to deal with local optima. In Multi-DisPeL, each agent takes turns to improve the so

lution where it runs a steepest descent algorithm locally without distinguishing between 

internal or external constraints. When this local attempt is stuck penalties are imposed 

on local inconsistent variables as well as on external variables connected to them in the 

same fashion with Stoch-DisPeL.

In Section 7.4, we introduced DisBO-wd which is a modification of the variant of 

Distributed Breakout for a agents with multiple local variables presented in [25]. The 

weight update mechanism in DisBO was modified, taking a leaf from [30], so that weights 

on constraints also decay as well. All weights are updated in each iteration irrespective of 

whether agents are at quasi-local-optima or not. We found that, with the changes, DisBO- 

wd performed better than DisBO. DisBO-wd solved more problems and it required fewer 

iterations to solve problems. Compared to Multi-DB, DisBO-wd is quite competitive in 

the SAT domain. DisBO-wd has much lower complexity than Multi-DB, but it was able 

to solve the same percentage of problems as Multi-DB and its search costs were lower.

We also presented results of empirical evaluations of Multi-DisPeL, comparing it first 

with Stoch-DisPeL and with other coarse-grained algorithms. The results show that Multi- 

DisPeL is quite competitive especially when the number of variables each agent holds is 

high. Although it is based on the same strategy with Stoch-DisPeL, agents in Multi-DisPeL 

are able to use the additional problem information available to them to improve search 

efficiency. Multi-DisPeL also fared well against Multi-AWCS, Multi-DB, and DisBO-wd 

in the experiments.



Chapter 8

Summary and suggestions for

future work

In this final chapter, we outline the contributions of this study and summarise the key 

ideas and results (Section 8.1). And we also make suggestions for further work with the 

algorithms introduced in this thesis (Section 8.3).

8.1 Contributions

8.1.1 Landscape modification with penalties

A mechanism for modifying cost landscapes with penalties on domain values in distributed 

iterative improvement search was presented in Chapter 4. We argued that landscape 

modification with weights on constraints, which is prominent in local search, can not 

effectively induce search exploration in problems where the landscapes are dominated by 

plateaus. With an example, we showed that a finer grained approach with penalties on 

domain values can puncture plateaus and create new peaks in the landscape, and thus 

give the search more opportunities to continue its downhill descent. We also presented 

a mechanism for solution perturbation with penalties on domain values, introducing a 

temporary penalty for doing this. We showed that this has the advantage of not causing 

as many previously satisfied constraints to become violated; compared to perturbing a 
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solution with random decisions or with constraint weights.

8.1.2 Distributed Penalty Driven Search

Based on the ideas of modifying cost landscapes and perturbing solutions with penalties 

on domain values, we introduced the Distributed Penalty Driven Search (DisPeL) for 

solving DisCSPs (Chapter 5). DisPeL is a synchronous distributed iterative improvement 

algorithm where agents start off with a random initialisation and take turns to make 

sequential improvements by selecting values in the domain that minimise the sum of 

constraint violations and penalties. Agents resolve deadlocks with a two phased strategy, 

where when a deadlock is first encountered the temporary penalty is used and in repeat 

visits to the same deadlock incremental penalties attached to domain values are steadily 

increased. We also showed that while the incremental penalties are effective at modifying 

cost landscapes, they can also divert a search away from promising regions if they are 

retained for too long or are allowed to grow unbounded.

8.1.3 Stochastic Distributed Penalty Driven Search

The two phased resolution process is implemented in a deterministic fashion in DisPeL, 

which makes it vulnerable to the effects of bad random initialisations. To overcome this, a 

variation to DisPeL is presented in the form of the Stochastic Distributed Penalty Driven 

Search (Stoch-DisPel) (Chapter 6). In Stoch-DisPeL, agents decide randomly to use either 

the temporary penalty or the incremental penalty when they encounter deadlocks. We 

showed that with this modification, the risk of suffering from the effects of bad initialisation 

is minimised but it may also mean that opportunities of good initialisations may soTnetimes 

be missed.

8.1.4 Distributed Penalty Driven Search for Agents with Multiple Local Vari

ables

Both DisPeL and Stoch-DisPeL were specifically designed for problems where each agent 

owned just a single variable. We noted that in realistic scenarios DisCSPs are likely to be 
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made of connected CSPs, where each agent represents a CSP with multiple variables. Dis

tributed Penalty Driven Search for Agents with Multiple Local Variables (Multi-DisPeL) is 

introduced which extends the ideas from DisPeL and Stoch-DisPeL for the aforementioned 

problems (Chapter 7). In Multi-DisPeL, agents still take turns to improve a solution and 

they perform steepest descent search with their local variables in doing this. Agents im

plement penalties on their local variables and request that owners of external variables 

also implement the same penalties on those variables connected to the deadlocked local 

variables.

8.1.5 Other contributions

• DisCSP model of the Car Sequencing Problem. In Section 5.6.3, we describe 

the car sequencing problem as a DisCSP for the evaluation of DisPeL. In the model, 

agents represented slots on the schedule and the domain of each agent’s variable was 

the number of different models of cars available. Global enumeration constraints for 

each model were introduced, to ensure that the right number of cars was placed on 

the schedule. To the best of our knowledge, this was the first attempt at solving this 

problem within the DisCSP framework.

• Improvements to Distributed Stochastic Algorithm (DSA). We described a 

modification to DSA [27, 128, 5] in Section 6.5, where we allowed only agents with 

inconsistent variables to make non-improving decisions to help the algorithm better 

deal with local optima. We found that this change (which we called DSA-BIN) 

improved DSA’s performance by allowing it overcome the limitations highlighted in 

[49] and thus improving the ability to find zero cost solutions.

• Improvements to Eisenberg’s Distributed Breakout (DisBO). DisBO [25] 

was modified to create DisBO-wd in Section 7.4. Dis-BO’s weight update mechanism 

was replaced with the multiplicative and decay mechanism from [30] which allowed us 

to reduce the number of DisBO’s different cycles from three to two, with significant 

cost implications. The new weight update mechanism was modified further so that 

weights on satisfied constraints were continuously decayed as well. We found that
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DisBO-wd outperformed DisBO both in terms of the percentage of problems solved 

and cost of finding solutions.

8.2 Summary of results

The three new penalty driven algorithms were extensively evaluated on different prob

lems and their performance compared with similar distributed iterative improvement al

gorithms. In Chapter 5, we compared DisPeL with the Distributed Breakout Algorithm 

(DBA) on distributed graph colouring problems, car sequencing problems, and random 

non-binary DisCSPs. The objective was to compare the different cost landscape modifi

cation mechanisms employed by both algorithms: penalties on domain values for DisPeL 

and constraint weights for DBA. Results showed that DisPeL solved more problems and 

the number of iterations typically required was significantly lower than that for DBA.

Stoch-DisPeL was shown to outperform DisPeL in Chapter 6, as well as our own 

improved version of the Distributed Stochastic Algorithm (DSA-BIN). In the experiments 

with random binary DisCSPs and distributed boolean satisfiability formulae, Stoch-DisPeL 

solved more problems within the allotted time and its search costs were lower.

Finally, the empirical evaluations in Chapter 7 show that Multi-DisPeL dominates 

Stoch-DisPeL in problems where each agent has a large number of variables. The eval

uations in that chapter also included comparisons with coarse grained versions of other 

distributed iterative improvement algorithms, including Distributed Breakout and Asyn

chronous Weak Commitment Search. The results of the evaluation show that Multi-DisPeL 

is quite competitive with respect to those algorithms; in most cases its search costs are 

significantly lower than those incurred by the other algorithms.

In summary, all evaluations carried out have shown that although the new algorithms 

are incomplete, the solve a very high percentage of reasonably large DisCSPs, with up to 

200 variables, within reasonable time.
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8.3 Suggestions for further work

Dynamic agent ordering: Published work on distributed backtracking algorithms 

has shown that dynamically changing the ordering of variables during the search 

can improve performance of such algorithms, by reducing the amount of redundant 

search carried out by agents. In our algorithms, the agent ordering determines the 

direction penalties flow; as such, it will be useful to study how agents ordering can 

be changed dynamically during the search and how such changes can be used to 

improve search efficiency.

Solving Distributed Constraint Optimisation Problems (DisCOPs): We presented 

algorithms for solving distributed problems where the objective is find the first so

lution in which all constraints are satisfied. However, there are a lot of real life 

problems where such solutions do not exist, and the problem solving challenge is 

to find a solution with the least number of constraint violations or one that opti

mises a particular evaluation function. Extending the penalty driven algorithms for 

such problems would be beneficial given that they scale up quite well. However, 

the challenges of using these algorithms in distributed optimisation include correct 

termination and possibly making the algorithms complete to provide guarantees of 

solution optimality. Further research on extending the DisPeL algorithms for opti

misation can also consider problems with soft constraints or problems where agents 

have preferences for particular values in their domains; in both cases the quality of 

valid solutions are still evaluated by defined functions that have to be optimised.

• Solving dynamic DisCSPs: In dynamic DisCSPS, the problem specification is not 

fixed; during a search constraints may be added or retracted, or agents may join in 

or drop out of the collaborative process. Key challenges include agent coordination 

issues and how to deal with new information without abandoning existing solutions. 

The DisPeL algorithms should fare well for such problems, especially since all forms 

of search memory held by agents are ephemeral. As such, agents are not predisposed 

towards the initial problem specification. Nevertheless, there are still lots of chal
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lenges in adapting our new algorithms for dynamic problems and other opportunities 

for improving efficiency on such problems.

• Multi-context search; The idea of solving DisCSPs with concurrent parallel searches 

has been around for a few years, but it has been attracting a lot of attention lately as 

a promising area of research. As agents take turns to act in the DisPeL algorithms, 

they may have a lot of idle time on their hands. This idle time can be exploited and 

used to carry out multiple searches; either each with different initialisations or each 

search being on a different ordering of agents. Either way, multiple searches will allow 

the algorithms to minimise the risks of having bad initialisations or unfavourable 

agent orderings. However, to fully benefit from parallel searches, information has to 

be shared between the different processes. A possibility for future work is to explore 

means for using information from penalties imposed on values in one search to guide 

other searches.

• Hybridisation and multi-algorithm search: Agents idle time can further be exploited 

by allowing agents use that time to run processes of another algorithm to solve the 

same problem. Running and sharing information with complete search algorithms 

can provide interesting challenges, especially where such complete algorithms are 

running asynchronously. For example, agents can use no-goods generated by the 

complete algorithms to guide the iterative improvement search. And, the complete 

algorithm can use information agents collect to guide their value selection. Another 

interesting hybrid, is a parallel run of a DisPeL algorithm with a distributed asyn

chronous consistency maintenance algorithm where the problem is iteratively made 

arc consistent with the information revealed during a search.

• There are also opportunities to explore other esoteric issues, like for example solving 

problems with global constraints that can not be decomposed into aggregations of 

smaller constraints, strengthening local inference so that agents make better deci

sions, and studying how the algorithms can scale up to deal with problems with 

thousands of variables. Further work can also consider making agents pro-active 
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where each agent can learn about and possibly estimate states of its neighbours 

during a search and with that information improve its decision making.

• Exploring our ideas in centralised settings; To the best of our knowledge, the penalty 

mechanism introduced in this study is entirely new and it has not been explored 

in centralised CSP solving. A possibility for future work is to compare how the 

mechanism stacks up against existing local search algorithms and if, for example, 

our penalty reset policy can be used to improve other such algorithms. These ideas 

may also be considered for problem solving on computing grids or clusters, of course 

with a relaxation of the DisCSP privacy assumptions.

8.4 Thesis summary

In this thesis, we investigated the idea of dealing with local optima by using penalties 

attached to domain values to modify cost landscapes. Our primary objective, as stated 

in Section 1.1, was to enhance the performance of iterative improvement algorithms for 

solving DisCSPs. This objective was achieved with the creation of three new algorithms 

(DisPeL, Stoch-DisPeL, and Multi-DisPeL) and the modifications of two existing algo

rithms (DSA-BIN for DSA and DisBO-wd for DisBO). The three new algorithms were 

based on the idea of resolving deadlocks with two types of penalties - one for perturb

ing a search and the other for modifying cost landscapes. We argued that modifying 

cost landscapes with penalties is a more effective option, as the impact on landscapes are 

more dramatic. This allows for quicker resumption of search exploration and as a result, 

improves overall search efficiency. The new algorithms were extensively evaluated on dif

ferent types of problems and compared with existing distributed iterative improvement 

algorithms. The results reported here showed that the new algorithms were significant 

improvements. They solved more problems within the limited time allowed and they 

typically incurred significantly lower costs in the process.



Appendix A

Determining optimal parameter

values for DisBO-wd

We introduced DisBO-wd a modification of DisBO [25], in Section 7.4. The weight update 

mechanism of DisBO is replaced with the scheme for continuous weight updates proposed 

in [30]. This new scheme introduces two new parameters into DisBO-wd i.e. the learning 

rate (Zr) and the decay rate (dr). The learning rate controls how fast weights on violated 

constraints grow in DisBO-wd, while the decay rate biases the search towards the most 

recent weight increases.

In his work on SAT solving with a modified GSAT [101] algorithm, Frank [30] found 

that the decay rate was optimal at dr = 0.999, more problems were solved within an allot

ted time than with the value set to 0.95 and 0.99. He also found that the learning rate was 

optimal at Zr = 1 compared to runs with the values 8, 16, and 24. However, DisBO-wd 

differs from GSAT in many respects especially given the amount concurrent changes that 

take place in distributed search. Therefore, we had to carry out an experiments to deter

mine optimal values for the parameters in the distributed algorithm. We used distributed 

SAT instances and random DisCSPs for this experiment, evaluating DisBO’s performance 

on 100 instances in each case, with the parameters set to Ir = [1,2,3,5,8,10,12,16] and 

dr = [0.9,0.95,0.98,0.99]. In Tables A.l and A.2, we summarise the results from this ex

periment, showing the percentage of problems solved, the average and the median search 
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costs incurred where we limited DisBO-wd to 10,000 iterations on each attempt on the 

SAT problems and 12,000 iterations on each attempt on the DisCSPs.

dr Ir % solved average cost median cost
0.9 1 60 85 28

2 82 178 90
3 84 151 108
5 94 303 141
8 88 273 139
10 92 300 129
12 92 233 176
16 88 314 145

0.95 1 88 208 111
2 98 304 144
3 100 303 130
5 100 329 195
8 100 259 161
10 98 338 181
12 100 314 136
16 100 358 233

0.98 1 100 236 119
2 100 375 198
3 100 247 174
5 100 263 213
8 100 286 202

10 100 439 176
12 100 380 219
16 100 386 174

0.99 1 100 186 130
2 100 252 127
3 100 243 189
5 100 235 139
8 100 373 235
10 100 312 213
12 100 318 207
16 100 269 213

Table A.l: Performance of DisBO-wd on Distributed SAT problems with different values 
for its parameters (Zr and dr).

The results in Table A.l summarise attempts to solve 50-literal SAT instances from the 

SATLib problem set. These results are in agreement with the findings in [30], the optimal 

values for DisBO-wd match those previously reported. As dr increases, DisBO-wd solved 

more problems but there is no clear relationship between the search costs and the decay 
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rate. With the learning rate, it is clear that the search costs increase with the value of 

that parameter.

dr Ir % solved average cost median cost
0.9 1 29 1598 462

2 79 1160 550
3 95 2298 1458
5 99 2412 1648
8 100 2416 1658
10 96 2472 1876.5
12 93 2080 1606
16 94 2260 1286.5

0.95 1 87 1304 663
2 100 1986 1030.5
3 100 2226 1414.5
5 98 1952 1114
8 93 1922 1238

10 95 1876 1104
12 96 2048 1232
16 100 2050 1182.5

0.98 1 95 1834 1163
2 98 1590 1050
3 96 1568 916
5 99 1822 1024
8 99 2114 1038

10 96 1476 984
12 100 1752 1082.5
16 98 2018 1152

0.99 1 97 1668 978
2 97 1748 1120
3 97 1506 832
5 93 1528 826
8 99 1554 858
10 100 1682 828.5
12 96 2152 1432.5
16 97 2454 1376

Table A.2: Performance of DisBO-wd on 100 random DisCSPs (< n = 60,d = 10, pl = 
0.1,p2 = 0.5 >) with different values for its parameters (Zr and dr).

The results in Table A.2 show that the parameters influence DisBO-wd differently with 

the random DisCSPs. Performance, in terms of search cost, again show improvements 

for high values of dr, this suggests that overall the search benefits from retaining some 

information of not too recent weight increases for as long as possible and they are not 
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quickly dominated by newer weight increases. However, it appears that the learning rate 

Ir has a different effect on performance in this domain. The algorithm generally does not 

fare too well with the smallest and largest values for this parameter. The results, although 

not clear cut, show that DisBO-wd is optimal with the values 3,8, or 10 (at dr = 0.99), 

where the average search costs are minimal and the percentage of problems solved are 

significantly high. But, we arbitrarily chose {Ir = 8 and dr = 0.99) for the experiments 

with the algorithm because it solved slightly more problems than with Ir = 3 and the 

search costs were lower than with Ir = 10.
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