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Abstract—In underwater subsea environments light attenuation,
water turbidity, and limitations of the optical devices make the cap-
tured images suffer from poor contrast and quality, proportional
degradation, low visibility, and low color richness. In recent years,
various image enhancement techniques have been applied to im-
prove the image quality, resulting in a new challenge, i.e., the quality
assessment of the underwater images. In this study, we introduce
an innovative and versatile blind quality assessment method for
underwater images without using any references. Our approach
leverages structural and contour-based metrics, combined with
dispersion rate analysis, to quantify image degradation and color
richness within an opponent color space. Specifically, we measure
the proportional degradation by computing the edge magnitude
using the directional Kirsch kernels, strengthened by image con-
tour and saliency maps. To assess the color quality, chrominance
dispersion rates and the overall saturation and hue are used to
capture color distortions introduced by enhancement methods. The
final quality score is obtained via a multiple linear regression model
trained on extensive data sets. Experiments on three benchmark
data sets have demonstrated the superior accuracy, consistency,
and computational efficiency of the proposed method for both raw
and enhanced underwater images.

Index Terms—Blind image quality assessment (IQA), dispersion
rate (DR)/color richness, image contour (IC), structural features,
underwater images.
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I. INTRODUCTION

UNDERWATER visual inspection plays a crucial role in
marine research and engineering, supporting condition

monitoring, asset and natural resource management, and en-
vironmental sustainability. However, optical images captured
underwater often suffer from degradation due to light scattering,
water turbidity, and suspended particles, leading to blurriness,
reduced color richness, and poor contrast [1], [2], [3]. These is-
sues significantly impact vision-based analysis including image
captioning [4] and monitoring [5], making reliable image quality
assessment (IQA) essential. While various enhancement [6], [7],
[8] and restoration [9], [10] techniques have been proposed, their
effectiveness is often judged using subjective evaluation [11],
which is costly and time-consuming. Therefore, developing
objective IQA methods tailored for underwater images is crucial
for ensuring more consistent, efficient, and automated quality
assessment that can guarantee high quality data acquisition.
This reliability is particularly important for autonomous vehicle
decision-making and serves as a necessary metric for developing
and benchmarking the enhancement methods.

Generally, IQA techniques, depending on the presence of
the reference/original image, are usually divided into three
categories: full-reference (FR), reduced-reference (RR), and
blind/no-reference (NR) methods [13]. FR methods usually eval-
uate the quality of distorted images by measuring the similarity
or distance between the features extracted from the reference and
distorted images, while blind/NR methods describe the images
with various features and rely on a machine learning model to
learn the mapping between the descriptors and the subjective
scores. In addition, RR methods predict the quality index with
limited access to the reference image, based on features available
in the reference images. Considering the lack of the reference in
an underwater environment, some well-known FR and RR meth-
ods become infeasible in this context, these include the structural
similarity (SSIM) index [14] and its variants including [15],
[16], [17], RR SSIM [18], and RR entropic differencing [19].

Although existing blind IQA methods, such as NR free
energy-based robust metric (NFERM) [20], NR quality assess-
ment using statistical structural and luminance features [21],
and visual quality evaluation using gradient and chromatic statis-
tics [22] have achieved promising results on natural images, they
cannot obtain consistent results with the human visual system
(HVS) on underwater images, due to the following reasons: first,
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Fig. 1. Examples of underwater images taken from the UWIQA data set [12] for illustrating their low color richness (i.e., blueish and greenish appearance) and
low visibility in some parts of the image (i.e., proportional degradation).

natural images are usually degraded during the transmission,
storing, or compression stages, where the conditions are less
complicated for modeling than imaging in the underwater sce-
narios. Actually, underwater images are often degraded because
of the low light and poor visibility nature of the subsea environ-
ments, leading to inconsistent and uneven degradations within
the image. Moreover, as shown in Fig. 1, the attenuation of lights
is another artifact that leads to distorted color (i.e., bluish or
greenish appearance), depending on the depth where the image
is taken. This is mainly because when the depth increases the
colors attenuate based on their wavelengths, where the red color
dissolves much faster than the green and blue ones, respec-
tively [23]. Furthermore, existing blind IQA methods are usually
designed to follow the natural scene statistics (NSS) model [24],
yet it performs differently in subsea environments [25]. Based
on the well-known NSS model [24], a variety of IQA vari-
ations have been designed, including the blind/referenceless
image spatial quality evaluator (BRISQUE) [26], natural image
quality evaluator (NIQE) [27], and the integrated local NIQE
(IL-NIQE) [28], however, their performance drops inevitably on
underwater images. Even the performance of the deep learning
methods, such as the discriminable image pairs inferred quality
(dipIQ) index [29], with the RankNet model to rank images,
is not as expected on underwater images. Therefore, quality
assessment of underwater images becomes a particular chal-
lenge, especially for quantitative metrics-based measurements,
before carrying out any further application-driven tasks, such as
detection, classification, and condition monitoring [30]. In this
study, we have proposed a new blind underwater image quality
evaluator, which effectively measures the quality of both raw and
enhanced images. The major contributions can be highlighted
as follows.

1) To assess image color richness and object visibility,
we convert images from red, green and blue (RGB) to
the CIELAB color space, enabling independent analysis
of brightness and chrominance degradations. Leverag-
ing the HVS’s sensitivity to color variations, we intro-
duce a chrominance dispersion rate (DR) that captures
brightness-to-color richness ratios, enhancing IQA per-
formance.

2) We propose a proportional degradation metric by com-
puting edge magnitudes using directional Kirsch kernels.

These edge maps are further refined with contour and
saliency information to highlight object boundaries, ensur-
ing a more perceptually relevant assessment of structural
integrity.

3) To quantify enhancement-induced distortions, we analyze
saturation and hue variations, providing a measure of color
purity and distinguishability postenhancement. Finally,
we integrate all extracted features using a multiple linear
regression model, demonstrating high accuracy, robust-
ness, and efficiency across diverse underwater IQA data
sets.

The rest of this article is organized as follows. In Section II,
we review the related works and examine commonly employed
attributes for assessing underwater image quality. Section III
presents the proposed quality evaluation metric. Section IV
provides analyses over components of the proposed metric and
compares the obtained experimental results. Finally, Section V
concludes this article.

II. RELATED WORK

A. Underwater Image Quality Attributes: An Overview

In subjective quality ratings, the low-level (i.e., physical and
detailed) information, such as the brightness, sharpness, and
contrast are combined with the high-level (i.e., general and
abstract) information including the naturalness, clarity, and ob-
jects’ 3-D depth measurement to perceive a quality score [31].
Accordingly, objective metric needs to consider these factors
for consistent and accurate evaluations. To this end, the afore-
mentioned quality-related features are widely explored with
respect to the unique characteristics of the corresponding images
(e.g., natural, screen content, underwater, etc.) [32], [33], [34],
[35], where different fusion strategies have been proposed to
integrate those features. For quality evaluation of underwater
images, sharpness, contrast, and colorfulness are the three highly
explored features, which represent the discrimination of shapes
or objects within an image, the clarity of the image, and the color
richness, respectively.

Yang and Sowmya [34] used the linear combination of the
asymmetric alpha-trimmed first-order and second-order statis-
tical values [36] in an opponent color space, the enhancement
measure estimation (EME) [37] over the grayscale edge map,
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and the logAMEE measure [38], to quantify the colorfulness,
sharpness, and contrast, respectively. In [39], colorfulness is
quantified similarly to the [34] with minor changes on the
opponent color space, and the contrast is measured as the sum of
the root mean square (rms) contrast value of the edge blocks over
the red intensity of all pixels. In [12], the variance of chroma,
refined rms contrast value of the edge blocks similar to [39], and
EME same as in [37] are considered as colorfulness, contrast,
and sharpness measures, respectively.

As discussed earlier, the values of the red color, in under-
water especially subsea images, decrease with the increasing
depth [35]. Hence, utilizing the red color in measuring the color-
fulness, contrast, and other chrominance-related attributes is not
working effectively as expected and limits the performance of
quality evaluation. Also, the sharpness degradations are among
the major reasons for performance drop in the vision-based anal-
ysis of underwater images. However, this is not fully investigated
in comparison to the chrominance degradations. Therefore, to
overcome these challenges we consider the brightness and color
richnesses of the image rather than its overall colorfulness to
investigate the effect of the edge and contour information in
measuring the sharpness.

B. Underwater Image Quality Metrics (UIQM)

Regarding blind underwater image quality assessment
(BUIQA), several handcraft feature-based methods have been
proposed, such as the UIQM [34], underwater color image
quality evaluation (UCIQE) [35], colorfulness, contrast, and fog
density (CCF) [39], frequency domain underwater image quality
metric (FDUM) [12], and underwater image fidelity (UIF) [25].
Moreover, recently a deep neural network (DNN)-based model,
namely, underwater ranker (URanker) [40], is also introduced
for BUIQA to mitigate the handcraft feature-based methods
challenges.

Inspired by the HVS’s properties, which perceives the chromi-
nance and luminance attributes (e.g., edges or object bound-
aries) in opponent color space, UIQM, proposed by Yang
and Sowmya [34], linearly combines the image’s colorfulness,
sharpness, and contrast in a weighted scheme to assess its corre-
sponding quality index. UCIQE [35], similar to the UIQM [34],
linearly combines the chroma, saturation, and contrast to mea-
sure the degree of the degradation as blurring, contrast, and
nonuniform color cast of the image. Following the studies [34],
[35], CCF [39] proposes to take the fog density into account and
combines it with other scores (i.e., colorfulness and contrast).
More recently, Yang et al. [12] considered both the low- and
high-frequency information of the underwater images to mea-
sure the proportional degradation. To this end, they combined the
colorfulness scores from both the spatial and frequency domains
with the sharpness and dark channel prior weighted contrast
measure. UIF [25] integrates the naturalness, sharpness, and
structure features to compute a feature domain representation
before applying a saliency-guided pooling strategy to deter-
mine the final quality score. The recently proposed URanker
method [40], utilizes a ranking-based model for BUIQA with

a conv-attentional image Transformer incorporated with his-
togram prior to embed the color distribution of the image.

Despite notable efforts, there remains a need for improvement
in the existing methods, especially to improve their robustness,
reliability, and adaptability across a broader range of underwater
imaging conditions and applications, as most existing methods
aim to characterize images from a general perspective. For
instance, UIQM [34] interprets underwater images using the
overall sharpness, colorfulness, and contrast. However, given
the challenges of deviated colors in underwater images, relying
solely on overall image information may not be optimal. For
quality assessment, effective evaluation of both the raw and en-
hanced images is crucial, where separately determination of the
color richness, distribution, and degradation for each color chan-
nel is needed. This is because for the raw images, the degradation
is channel-dependent as the color attenuation rate for the primary
colors, i.e., red, green, and blue, is not uniform. Therefore, our
study proposes a novel approach, which integrates the computed
structural degradation and the DR of each color channel in the
CIELAB color space with the overall saturation and hue of the
image. Specifically, the proposed method, inspired by [33] [41],
considers mainly the light attenuations of underwater images to
introduce a more precise and robust quality metric adapted to
the unique characteristics of underwater imagery.

III. PROPOSED METHOD

Proportional quality degradation and low color richness are
the two main deteriorations that are usually seen in underwater
images. Depending on the object–camera distance, water turbid-
ity, and lighting condition, the quality of underwater images de-
grades proportionally [42], where different regions of the image
are degraded with various ratios, resulting in visibility and clarity
changes of objects in the image. As a result of proportional
degradation, various attributes of the image, such as edges and
object boundaries, can be affected with their details blurred.
Moreover, due to light attenuation and scattering, underwater
images have low color richness, hence they are usually seen in
bluish or greenish appearances.

The artifacts mentioned above are commonly observed in raw
underwater images. Nevertheless, significant efforts have been
made in recent years to mitigate these issues and improve the
overall quality of captured images. While enhancement meth-
ods, especially in recent years with the emergence of reinforce-
ment learning [43], [44], [45], [46] and foundation models [47],
have demonstrated remarkable outcomes, they often face chal-
lenges, such as over-enhancement, which can lead to images
with excessive saturation or desaturation. Therefore, there is a
critical need to introduce a comprehensive approach capable of
assessing the quality of both raw and enhanced images.

In this section, to address the abovementioned issues and
improve the performance of the existing BUIQA methods, es-
pecially for raw underwater images taken in data acquisition for
condition monitoring of assets and natural resources, we present
a blind/no-reference metric for accurate, efficient, and consistent
quality assessment of underwater images. The proposed metric
evaluates the quality of underwater images in the CIELAB color
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Fig. 2. Framework of the proposed method for BUIQA.

Fig. 3. Illustration of the SIC feature-based scoring module for the L channel of an input image. The KEM is obtained and weighed by the fused WM (i.e., IC
and SM/GBVS) to form the SFM. The SIC score is computed by applying a weighted pooling on SFM and WM-based feature maps.

space to take both the luminance and chrominance information
of the image into account as well as giving a perceptual uni-
formity to the image meaning that the differences in the color
values correspond more closely to the perceived differences
in color by human vision [48], [49]. In general, our method
quantifies the proportional degradation using directional Kirsch
edge kernels and measures the brightness and color richness rate
(i.e., DR) of each channel separately. Moreover, it also computes
the overall saturation and hue of the image for accurate quality
evaluation of the enhanced images. As illustrated in Fig. 2, after
color space conversion, the channel-wise structural and image
contour (SIC)-based scores are derived followed by the DRs
and the overall saturation and hue from each channel. These
are then combined to train a multiple linear regression model to
determine the associated quality score of the image.

The SIC feature-based scoring module is shown in Fig. 3. As
shown, in this module, we first compute the image’s gradient
map by applying the Kirsch filters [50] in eight directions.
Also, besides the edge features, since image contours (ICs) and
salience areas are significantly compatible with HVS [33], [51],
we incorporate them to amplify the boundaries of the objects,

which are more in the center of HVS’s attention [52]. To this
end, we formed the image’s structural feature map (SFM) by
multiplying the image’s edge map by its weight map (WM)—
computed by fusion of the IC and saliency map (SM). Finally,
we have utilized a weighted pooling strategy, in which the WM
is used as a WM of SFM to obtain the final SIC feature-based
score.

From Fig. 3, it can be seen that after applying the contour and
SM on the edge map, the object closer to the camera (i.e., diver)
is still visible. This shows the effectiveness of our proposed
method in measurings the visibility of the objects, based on
the object–camera distance, and addressing the proportional
degradation. The following sections explain the directional edge
feature extraction, edge strength weighting, pooling strategy, and
quality regression stage used to determine the overall quality
score.

A. Directional Edge Features

Various studies [53], [54] have employed a variety of edge
features to describe images due to the significant sensitivity of
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the HVS to edges in forming the visual perception of the image.
In underwater images, a wide range of objects could be seen in
fixed (e.g., pipelines or energy infrastructures) or dynamic posi-
tions (e.g., divers, underwater species, or trash). Consequently,
the edges occur in different directions. Thus, we proposed to
use the nonlinear Kirsch operator to capture the edge strength
in eight predetermined directions. The notable advantages of
the Kirsch edge detector are fast computing operations and the
ability to produce more edge pixels [55], which is necessary for
underwater images to capture proportional degradation. In this
study, as mentioned earlier, the Kirsch operator [50] is used in
eight directions as follows to compute the gradient maps of each
channel (i.e., L, A, and B):

Gj
i (x, y) = |Ij(x, y)⊗Ki|, i ∈ {1, 2, 3, . . ., 8} (1)

where Ki is the ith Kirsch operator, ⊗ is the convolution op-
eration, and Gj

i (x, y) and Ij(x, y) are the ith gradient map
and intensity map of the jth channel (j ∈ {1, 2, 3} representing
the L, A, and B channels) for the pixel at position (x, y),
respectively

K1 =

⎡
⎢⎣+5 +5 +5

−3 0 −3

−3 −3 −3

⎤
⎥⎦ . (2)

Equation (2) shows the first Kirsch operator in the North com-
pass direction. The rest seven operators corresponding to the
North West, West, South West, South, South East, East, and
North East can be obtained by rotating the K1 by 45◦, pro-
gressively. In this study, to perceive the visibility of objects,
we compute the maximum gradient strength (i.e., edge map)
from the image’s jth channel, which has been proven to have
the maximum correlation with subjective scores [25]. Image’s
maximum gradient strength, namely, Kirsch edge map (KEM)
for the jth channel is computed as follows:

KEMj(x, y) = max{Gj
1(x, y), G

j
2(x, y), . . ., G

j
8(x, y)}. (3)

B. Edge Strength Weighting and Pooling

As discussed earlier, ICs are also highly considered in HVS’s
image perception. Generally, ICs are the object’s boundaries,
which can be computed from the edge map of the image.
As underwater images suffer from proportional degradation,
degrading the visibility of the objects and edges accordingly,
we have used the ICs to weigh the KEM. In this study, similar
to [33], [52], we employed a difference of Gaussians (DoG)
filter on a larger scale to smooth the edges (i.e., object bound-
aries/contours) of the image and utilize them to highlight the
object boundaries. IC of the jth channel of the image is defined
from its KEM as follows:

ICj
σ1,σ2

(x, y) = |DoGσ1,σ2
(x, y)⊗ KEMj(x, y)| (4)

DoGσ1,σ2
(x, y) = G(x, y;σ1)−G(x, y;σ2) (5)

where DoGσ1,σ2
(x, y) is the difference of two Gaussian func-

tions with close large-scale values of σ1, σ2 (i.e., standard devi-
ations), and G(x, y;σ) is the Gaussian kernel function as a 2-D

normal distribution of N(0, σ) given by

G(x, y;σ) =
1

2πσ2
e−

x2+y2

2σ2 . (6)

After obtaining the IC maps, considering that some portions of
the image may be blurred due to low-light conditions, water
turbidity, etc., the SM of the image is also utilized to further
strengthen the highly important areas in ICs. In [56] and [57],
the impact of saliency-guided methods has been demonstrated
in real-world IQA methods for improved performance. Our
experiments also show the effectiveness of the SM in assessing
the quality of the underwater images. As shown in the sample
images in Fig. 3, IC is well representing the objects’ boundaries,
while the SM reflects the regional importance. In other words, in
SM, objects closer to the camera are more visible than the distant
ones. Here, we have utilized the graph-based visual saliency
(GBVS) [58] to compute the SM as it highlights the informative
locations of the image by considering human eye movement
indices like fixation. The extracted KEM, IC, and SM from the
jth channel are fused by multiplication to form the SFM as
follows:

SFMj(x, y)=[KEMj(x, y)]α
j · [ICj(x, y)]β

j · [GBVSj(x, y)]γ
j

(7)
where α = (α1, α2, α3), β = (β1, β2, β3), and
γ = (γ1, γ2, γ3) are three vectors with positive parameters that
have been employed to adjust the relative importance of each
feature map corresponding to each channel. These three param-
eters are empirically set to α = (1, 1, 1), β = (0.8, 0.2, 0.8),
and γ = (1, 0.3, 0.7) to yield best performance. Moreover,
GBVSj(x, y) is the SM of the jth color channel.

In the HVS’s perspective, the visual gaze point in an image
is notably different from its neighbor points [59]. In fact, this
difference is a spatial decay from the gaze point caused by the
limited visual resolution of the human retina [60]. In other words,
HVS does not perceive the image pixels equally [52], thus we
employed a weighted pooling strategy to highlight the perceptual
importance of all pixels in the image for more effective BUIQA.
To this end, the extracted edge features (i.e., KEMs) are weighed
and pooled to evaluate the SIC feature-based score of each
channel as follows:

SIC_scorej =

∑
(x,y) SFMj(x, y)∑
(x,y) WMj(x, y)

(8)

WMj(x, y) = [ICj(x, y)]β · [GBVSj(x, y)]γ (9)

where WMj(x, y) is the jth WM computed by multiplying the
jth IC and the GBVS SM. As seen in Fig. 4, the obtained WMs
differ in channels and they can actually highlight the regional
importance based on the spatial location of the main target in
the image. The combination of the IC and GBVS SM for the
weighted pooling strategy significantly contributes to the overall
quality score. Note that, the WMA computed from theA channel
is more pleasant visually as we considered a lower weight, i.e.,
β2 = 0.2, for its IC map. Since the intensity values of both
the input image and its computed KEM lie within the range
of [0, 1], a lower coefficient amplifies these values, leading to
brighter regions in the final output. This weighting is applied

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Robert Gordon University. Downloaded on May 22,2025 at 15:10:01 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE JOURNAL OF OCEANIC ENGINEERING

Fig. 4. WM obtained from the L, A, and B channels by multiplying the IC and saliency/GBVS maps.

Fig. 5. (a) KEM and (b) IC feature maps of a sample image. From left to right: obtained feature maps corresponding to the L, A, and B channels.

because channel A represents green-to-red color information,
and due to their faster dissolution in water, they lose more crucial
information compared to other colors, necessitating a higher
weighting for accurate representation.

C. Dispersion Rate

As shown in Fig. 5, the extracted edge and contour features
from the luminance and chrominance channels can effectively
represent the image’s content and capture the color information
loss. However, the amount of the lost information in lumi-
nance and chrominance channels is unequal and thus affects the
extracted features. Therefore, to have an accurate method for
assessing the quality of the both raw and enhanced underwater
images, we proposed to extract the brightness and color richness
level of the image, namely DR, alongside the determined quality
scores (i.e., SIC_scorej , j = 1, 2, 3).

To assess an image’s quality and measure its color richness,
many researchers measured the image’s global colorfulness
based on the variance to the mean ratio of the chrominance
channels in an opponent color space [61], [62]. In this study,
inspired by [33], [62], and [63], we quantified the DR of each
channel of the underwater image separately in the CIELAB color
space. The DR specifically measures the variability of colors
relative to their mean values. For example, when computing the
DR for each channel in the CIELAB color space, it assesses the
variability or richness of each color attribute, such as luminance,

green to red, and blue to yellow. Analyzing the DR of each
channel aids in a more comprehensive evaluation of underwater
image quality in terms of color distribution. The DR is computed
as follows:

DRj = log

(
σ2
Ij

|μIj |0.2
)

= 2 log

(
σIj

|μIj |0.1
)

(10)

where σIj and μIj denote the standard deviation and mean
values of the jth channel of the image, respectively.

However, compared with the [62] and [63], instead of measur-
ing the image’s overall colorfulness, we assessed the DR of each
channel. Considering the characteristic of the CIELAB color
space, which gives us information about the red and blue color
differences, our proposed measure is capable of quantifying the
color distribution with regards to underwater images sensitivity
(i.e., light attenuation leading to the disappearance of red, green,
and blue colors, respectively). Equation (10) measures the DR
of intensity values corresponding to each channel with respect
to the mean intensity value of that channel. To demonstrate the
effectiveness of the proposed DR metric, two sample images
with greenish and bluish appearances are compared in Fig. 6.
For the greenish image to the left, as the A channel corresponds
to the green-to-red range, DRA is higher than DRB , as expected.
In contrast, for the bluish image to the right, the DRA channel
is lower than DRB due to the bluish appearance of the image.
In addition, since the bluish image contains brighter pixels at
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Fig. 6. DR analysis of two sample images with greenish and bluish appearances, showing the relationship between DRA and DRB .

the bottom, it results in a higher DRL compared to the greenish
image.

D. Overall Saturation and Hue

In addition to the previously introduced quality scores and
DR, it is important to characterize color degradation in images.
While the introduced DR effectively represents color variation
within an image, it alone is insufficient for assessing the quality
of the enhanced images as well as evaluating the efficacy of
underwater enhancement methods. These enhancement tech-
niques aim to restore the color information, but they may lead
to degradation or over-enhancement of the original image.

Drawing inspiration from [64], we have proposed a com-
prehensive approach to quantitatively measure the purity and
dominance of colors, by computing the overall saturation and
hue of the image. While color spaces like the HSV directly
provide a saturation map, they are not perceptually uniform.
This means that equal steps in hue, saturation, or value do not
correspond to equal perceived changes in color [65].

This additional analysis enhances our ability to evaluate the
impact of enhancement methods on color fidelity, leading to a
more effective quality assessment of underwater images. The
image’s saturation map is then formulated to measure how
balanced or unbalanced the color components are. If one com-
ponent is significantly lower than the others, the saturation value
decreases, indicating less color richness

Saturationmap = 1− 3×min(L,A,B)

L+A+B
(11)

where the minimum value across the channels can help us to
identify the colors with the least presence in a particular pixel.
Dividing this value by the sum of the three channels for each
pixel, gives us a measure of how dominant or significant a
particular channel is in relation to the overall color composition
of the pixel.

In this study, the average value of the Saturationmap is used
to denote the overall saturation of the image. Moreover, we
compute the hue map of the image as follows and consider its
average value as the overall hue

Huemap = arctan

(
φ

ζ

)
= arctan

(√
3× (L−A)

L+A− 2B

)
(12)

where φ = (L−A)/
√
2 and ζ = (L+A− 2B)/

√
6. Unlike

the common approaches to calculate the arctangent of the ratio
B/A, we used the φ and ζ, by referring to [66], to compute the
hue with respect to the green to red color information, which
dissolve faster than the blue color in underwater conditions. By
subtracting the A color channel from the luminance L, we can
assess the information contributed by green and red colors in the
content. Similarly, subtracting the B channel from the addition
of L and A assists in measuring the impact of blue and yellow
colors on the representation of underwater content. Also,

√
2 and√

6 are empirically set to normalize the obtained chrominance
maps.

E. Quality Regression

For effective and accurate quality evaluation of underwater
images, we proposed to linearly combine the SIC scores and
DRs obtained from each channel. To this end, we employed
multiple linear regression with a bias term to estimate the optimal
coefficients for the linear combination of the extracted SIC and
dispersion scores, along with overall saturation and hue. Given
that our model had only eight features, multiple linear regression
was utilized for its simplicity, interpretability, and effectiveness
in capturing linear relationships, while avoiding the risk of over-
fitting that more complex models like support vector regression,
though the latter may be explored in the future. Note that the final
feature vector for each image is formed by adding the bias term
and normalizing the computed scores similar to [67] through the
square root operation, thereby amplifying the influence of each
individual score. This approach contributes to a more robust and
subtle assessment of underwater image quality

feati = [b0,SIC_scores,DRs,Saturation,Hue] (13)

where b0 is the bias term set to 1, SIC_scores
is[
√

SIC_score1,
√

SIC_score2,
√

SIC_score3], and DRs is
set to [

√
DR1,

√
DR2,

√
DR3].

In this study, we have randomly divided each data set to the
training and testing subsets for 1000 times. Each time 80% of
the data are used to determine the coefficients for the linear
regression problem and 20% of the data are used to test the
performance of the proposed method.
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IV. EXPERIMENTAL RESULTS

The performance of the proposed method is evaluated on three
publicly available data sets, namely, underwater image quality
assessment (UWIQA) [12], underwater image data set 2021
(UID2021) [68], and the state-of-the-art (SOTA) UWIQA data
set [69]. In total four state-of-the-art blind natural image quality
assessment (BNIQA), five BUIQA methods, and one DNN
method are compared as well as the distortion-based directional
edge and gradient similarity maps (DDEGSM) [33] method,
ispired us toward directional edges, using three commonly used
evaluation metrics, i.e. Pearson linear correlation coefficient
(PLCC), Spearman’s rand-order correlation coefficient (SRCC),
and root-mean-squared error (RMSE). Detailed results and rel-
evant ablation studies are given as follows.

A. Description of the Data Sets

The UWIQA data set [12] has 890 raw underwater images in
different resolutions, which are selected from the [70]. Images
in the UWIQA data set contain diverse scenes and various
object categories such as coral, marine life (e.g., fish, turtles,
sharks), divers, infrastructures, etc. The subjective quality scores
of these images are determined by 21 observers with different
backgrounds, age groups, and genders. The mean opinion scores
(MOSs) are then computed by averaging the observers’ ratings
and mapping to 10 quality levels varying from 0.1 to 1.

In addition to the UWIQA data set which includes only raw
underwater images, to evaluate the performance of the proposed
method on enhanced underwater images, we conducted exper-
iments also on the recently proposed UID2021 data set [68].
UID2021 has six groups of images i.e., bluish (B), blue–green
(BG), greenish (G), hazy (H), low-light (LL), and turbid (T)
ones, and there are ten reference images for each group. In
UID2021, 15 underwater image enhancement and restoration
algorithms have been used to generate the enhanced images for
the reference images, leading to 150 enhanced and 10 raw images
being contained in each group, or 960 images in total.

Furthermore, we conduct experiments on another recently
proposed SOTA [69] data set, which contains 800 raw im-
ages and their enhanced versions, where the latter are gener-
ated by nine different algorithms, leading to a total of 8000
images with subjective MOSs. The nine enhancement algo-
rithms include attenuation coefficient prior attention block (AC-
PAB) method [71], dynamic histogram equalization or his-
togram partition (HP) [72], image blurriness and light ab-
sorption (IBLA) [73], fusion-12 [74], fusion-18 [75], two-step
approach enhancement [76], water-Net [70], fast underwater
image enhancement-generative adversarial network (FUNIE-
GAN) [77], and a commercial method (Dive+1).

B. Evaluation Metrics and Parameter Setting

As suggested in [78], we utilized three widely used metrics
including the PLCC, SRCC, and RMSE to evaluate the objective
quality assessment’s accuracy, monotonicity, and consistency,

1https://itunes.apple.com/us/app/dive-video-color-correction/
id1251506403?mt=8

respectively [33]. PLCC measures the linear correlation between
the objective and ground truth (i.e., MOS) quality scores, while
SRCC assesses the rank-order correlation. Also, the amount of
deviation between the objective and MOS values is computed
by the RMSE. Generally, higher PLCC and SRCC values (close
to 1), and smaller RMSE values indicate better performance.
These metrics are computed as follows:

PLCC =

∑n
i=1(Zi − Z̄)(Oi − Ō)√∑n
i=1(Zi − Z̄)2(Oi − Ō)2

(14)

SRCC = 1− 1

n(n2 − 1)
6

n∑
i=1

d2i (15)

RMSE =

√√√√ 1

n

n∑
i=1

(Oi − Ō)2 (16)

wheren represents the number of input images,Oi andZi are the
objective and subjective scores for the ith image in the data set,
and Ō and Z̄ are the mean values of the objective and subjective
scores, respectively, and di denotes the difference between the
ith image’s ranks in subjective and objective assessments.

In this study, we followed the same practice in [33] and [78] to
first remove the nonlinearity of the objective scores by applying
a nonlinear logistic regression with five parameters and then
compute the PLCC, SRCC, and RMSE metrics. The mapped
predicted score is computed as follows:

Qi = κ1

{
1

2
− 1

1 + exp [κ2(pi − κ3)]

}
+ κ4si + κ5 (17)

where pi is the perceived quality score of the ith underwater im-
age computed by the proposed method, Qi is its corresponding
mapped objective score, and κ1−5 are the model parameters in
the curve fitting process to minimize the sum of squared differ-
ences between the objective and ground truth quality scores.

The proposed method has the following parameters to be set,
two scales (i.e., σ1, σ2) for IC and three coefficients for feature
map fusion of each channel (i.e., α, β, and γ). To obtain the best
values for each parameter, we have conducted experiments on
a subset of the UWIQA data set. Similar to [33] and [52], we
have selected 200 random images out of the 890 available and
executed the proposed method over them to select the parameters
that led to higher SRCC values. Each time we adjust only one
selected parameter with all others fixed. To compute the IC
map we set the DoG filter scales to 2.1 and 2.0 (i.e., σ1 = 2.1
and σ2 = 2.0), and the DoG filter size as 11× 11, also we
have α = (1, 1, 1), β = (0.8, 0.2, 0.8), and γ = (1, 0.3, 0.7) for
feature map fusion in (7).

C. Performance Comparison

In Table I, the performance of the proposed method is com-
pared with four BNIQA methods (including BRISQUE [26],
NIQE [27], IL-NIQE [28], and dipIQ [29]) and five state-of-
the-art BUIQA methods (including UIQM [34], UCIQE [35],
CCF [39], FDUM [12], and URanker [40]) in terms of three
commonly-used metrics of PLCC, SRCC, and RMSE over the
UWIQA data set. Note that since the UIF and DDEGSM need
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TABLE I
COMPARISON OF THE PLCC, SRCC, AND RMSE FROM FOUR BNIQA, FIVE BUIQA, AND OUR PROPOSED METHODS ON THE UWIQA DATA SET

TABLE II
COMPARISON OF THE PLCC, SRCC, AND RMSE FROM FOUR BNIQA, SIX BUIQA, DDEGSM, AND OUR PROPOSED METHODS ON

SIX SUBSETS OF THE UID2021 DATA SET

both the raw and enhanced images, they could not been evaluated
because this data set only contains the raw images. The source
codes of these methods are obtained from their author’s websites.
The best and second-best values in terms of the three metrics
are highlighted in bold and italic, respectively. From Table I,
it is clear that the proposed method outperforms all compared
methods with the highest PLCC and SRCC and the lowest
RMSE values. More precisely, our proposed method surpassed
the second-best (i.e., FDUM) and the third-best (i.e., UCIQE)
methods by 9.65% and 26.80% in terms of PLCC and 9.25%
and 26% in terms of SRCC, respectively.

Moreover, Table II reports the performance of all com-
pared methods on the enhanced underwater images on the
UID2021 [68] data set. To assess the performance of our method,
we divided the entire data set into training and testing subsets,
opting for a unified approach instead of conducting separate
evaluations for each individual subset. As seen, there is not any
dominant method over all six subsets of the UID2021 data set.
Our proposed method demonstrates superior performance by

achieving the best results in three subsets, namely, blue–green,
green, and hazy, while also obtaining the second-best perfor-
mance in three other subsets, namely, blue, low-light, and turbid,
with a competative performance to the best method. Among the
compared methods, FDUM yields the best result on the Bluish
image subset. Moreover, on the low-light and turbid images,
UCIQE and UIQM outperform other methods. It is worth noting
that in these two subsets, our approach achieves a performance
level that is significantly higher than other compared methods
except UIQM and UCIQE, with the lowest RMSE value.

Furthermore, the performance of the compared methods and
ours are evaluated on the SOTA data set with the results reported
in Tables III–V, where the best and second-best methods are
highlighted in bold and italic, respectively. To evaluate the
performance of the proposed method on this data set, we have
separately evaluated the performance on raw and enhanced
subsets by divinding them into training and testing subsets
for 1000 times and reporting the median result on the testing
subset. Moreover, to mitigate potential bias in the results for
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TABLE III
COMPARISON OF THE PLCC, SRCC, AND RMSE FROM FOUR BNIQA, SIX BUIQA, DDEGSM, AND OUR PROPOSED METHODS ON THE RAW, AND ENHANCED

IMAGES USING ACPAB, HP, AND IBLA METHODS FROM THE SOTA DATA SET

TABLE IV
COMPARISON OF THE PLCC, SRCC, AND RMSE FROM FOUR BNIQA, SIX BUIQA, DDEGSM, AND OUR PROPOSED METHODS ON THE ENHANCED IMAGES

USING FUSION-12, FUSION-18, TWO-STEP, AND WATER-NET METHODS FROM THE SOTA DATA SET

the enhanced subset, we grouped all enhanced images from
various subsets. Subsequently, we conducted training and testing
on this merged set. Note that the UIF and DDEGSM meth-
ods results for the Raw subset are not reported, as these two
methods require both raw and enhanced images for assessment,
and they can only evaluate the quality of enhanced images.
Based on performance comparisons on the SOTA data set, our
proposed method demonstrates superior results on both raw and
enhanced images across six of the nine enhanced groups within
the SOTA data set: HP, IBLA, fusion-12, two-step, water-Net,
and Dive+. In addition, it achieves the second-best results on
the remaining subsets and the overall best result, as reported

in the ALL column of Table V. The overall result is assessed
by dividing the entire data set into training and testing subsets.
The obtained results provide evidence of the proposed method’s
excellence in assessing the quality of both raw and enhanced
images.

From Tables III through V the performance of our method
slightly drops over the enhanced images in ACPAB, Fusion-18,
and FUNIE-GAN subsets, while it has still close results to
the best method. This is mainly due to the over-enhancement,
blockiness, and inconsistent color correction shown in Fig. 7,
but it still has competitive results over these subsets compared
with other BUIQA methods. There is no superior method over
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TABLE V
COMPARISON OF THE PLCC, SRCC, AND RMSE FROM FOUR BNIQA, SIX BUIQA, DDEGSM, AND OUR PROPOSED METHODS ON THE ENHANCED IMAGES

USING FUNIE-GAN, DIVE+ METHODS AND ALL IMAGES FROM THE SOTA DATA SET

Fig. 7. Sample raw image taken from the SOTA data set [69] and from left to right its corresponding enhanced images produced by the ACPAB, Fusion-18, and
FUNIE-GAN methods, respectively. The enhanced images suffer from over-enhancement, blockiness, and inconsistent color correction.

all others on this data set. However, our method achieves the
top performance on raw images and six out of nine subsets of
the enhanced images, which is the highest among the compared
methods. From our observations, we have identified a limitation
in our method coming from cases where the enhanced images
exhibit a similar color distribution across the all images. In
these instances, the features we currently extract struggle to
differentiate between the images in a same group, resulting in
lower IQA results.

Also, Table V, reports the overall performance of each method
evaluated on all images within the SOTA data set, i.e., col-
umn ALL. Based on the results, our proposed method excels
in performance across all images within the SOTA data set,
establishing itself as the top-performing approach. This validates
the conclusion that our method exhibits superior generalization
ability compared to the other methods under consideration,
even the URanker DNN-based method. Notably, the URaner
method, while performing well in the ACPAB, fusion-18, and
FUNIE-GAN subsets and achieving competitive results in Raw,
HP, IBLA, fusion-12, fusion-18, two-step, and water-Net, falls
short of delivering consistently high performance across all
data set images. Considering these findings and the fact that
each enhancement method gives specific characteristics to the
resulting images, our proposed method emerges as a reliable and
robust metric for evaluating the quality of both raw and enhanced
underwater images.

D. Statistical Significance Test

To compare the statistical significance of our proposed
method with both the BNIQA and BUIQA models we have uti-
lized the commonly-used F-test, similar to [79] on the UWIQA
data set. For comparison, we compute the ratio between their
corresponding residual variances and denote it as F . If the F is
greater than a confidence level of 95% then we consider a signif-
icant difference between the performance of the two compared
methods. The corresponding result is shown in Table VI, where
an element with value “1” and green color means that the method
in the row is significantly better than the method in the column.
Meanwhile, an element with value “0” and red color means
that the method in the row is not significantly better. As seen
from the obtained results, the FDUM and our proposed methods
perform the best. The incorporated statistical significance test
has clearly shown that the FDUM and the proposed method
have the best performance compared with both the BNIQA and
BUIQA methods, which is in line with their overall performance
comparison made in the previous section.

E. Ablation Study

In this section, the effectiveness of the major components of
the proposed method is analyzed. We investigated the contribu-
tion of the CIELAB color space, the impact of the SIC, DR, and
overall saturation and hue scores to the overall performance, and
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TABLE VI
STATISTICAL SIGNIFICANCE COMPARISON OF THE PROPOSED, BNIQA, AND

BUIQA MODELS WITH THE F-TEST ON THE UWIQA DATA SET

TABLE VII
COMPARISON OF THE PLCC, SRCC, AND RMSE OF OUR PROPOSED METHOD

OBTAINED FROM DIFFERENT COLOR SPACES

the structural components used to compute the SIC scores (i.e.,
IC and GBVS).

1) Discussion of the Color Spaces: To validate the effective-
ness and consistency of the CIELAB color space in UWIQA,
we have conducted experiments by evaluating the performance
of the proposed method in various color spaces including RGB,
CIELAB (LAB), YUV, linearized RGB (LIN), hue saturation
value (HSV), and YC b Cr. As shown in Table VII, the per-
formance of the proposed method in the YC b Cr color space
is better than those in the RGB, YUV, LIN, and HSV color
spaces due to characteristic of the underwater images (i.e.,
nonuniform color cast). YC b Cr color space is well separating
the color information, i.e., the luminance and the blue and red
color differences, of the image. However, underwater images
are usually seen with more blue and green colors due to light
attenuation. Thus, since the CIELAB is separating the green
to red and blue to yellow colors, it helps the IQA model to
measure the amount of green and red color information loss
and blue color cast and consequently leads to better results for
underwater image quality evaluation, i.e. the best in Table VII.

2) Discussion of the SIC, DR, Saturation, and Hue Scores:
In this section, we analyzed the impact of the SIC and DR scores
extracted from each channel as well as the overall saturation and

hue of the image on the overall performance of the method on
the UWIQA data set. Table VIII reports the obtained PLCC,
SRCC, and RMSE scores for seven variants of the proposed
method using the SIC and DR scores. As discussed above in
the Section III-B, the proposed method obtains SIC scores in
three channels (i.e., L, A, and B). Therefore, in Table VIII we
have listed the individual performance of each SIC score and
their combinations. As seen, the SIC score obtained from the L
channel is the highest and among the chrominance channels (i.e.,
A and B), A leads to the highest correlation scores. Also, when
the obtained scores are combined together, the combination
of the L+B SIC scores leads to the best results, while the
L+A and A+B scores stand in the second and third place,
respectively.

Seamlessly, we conducted the same experiments for the DR
scores to see their impact on the overall performance. The results
show that combining the DR scores from the three channels
results in a better performance compared with using them indi-
vidually. Note that for the DR scores, channel B has the highest
correlation with subjective scores. Given that blue is the last
color to dissolve, and underwater images predominantly feature
this color more than any other, it can be inferred that DR scores
exhibit a strong correlation with both underwater images and
human visual perception. Overall, combining the DR scores with
the SIC scores, improves the results from 0.7155 to 0.7210 and
from 0.7227 to 0.7242 in terms of the PLCC and SRCC metrics.

Furthermore, to validate the effectiveness of the image’s over-
all saturation and hue on the proposed method’s performance,
we did ablation study in Table IX. In this table, various com-
bination channel-based SIC and DR scores with the saturation
and hue score are used to evaluate the quality of the images.
Based on the obtained results, although the overall scores has a
very low performance individually, their combination with the
channel-based scores, increases the performance of the method.

In addition to the previous analysis, it is essential to validate
the effectiveness of the IC and saliency component of the SIC
scores. Thus, the results from different combinations of the IC
and GBVS SM are compared in Table X. From the results, it
is obvious that the proposed method has significantly better
performance when the IC is utilized for weighted pooling rather
than the SM. However, combining the IC and GBVS together
has improved the performance of the proposed method.

3) Discussion of the Baseline Methods: The proposed ap-
proach draws partial inspiration from [25], [33], [41], [62],
and [63], with a focus on leveraging the DR and directional
edges. This choice is motivated by the role of directional edges
in facilitating the HVS’s identification of image content. In
addition, the DR, influenced by considerations of colorfulness,
provides a metric for assessing the vividness of luminance and
color within an image.

Given the common problem of color richness degradation in
underwater images, it becomes crucial to evaluate both color
information loss in original images and color refinement in
enhanced images. Consequently, the DR is employed to measure
these aspects, particularly relevant in the context of underwater
images facing challenges, such as low-light conditions and color
loss.
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TABLE VIII
COMPARISON OF THE PLCC, SRCC, AND RMSE FROM OUR PROPOSED METHOD AND ITS SIX VARIANTS ON THE UWIQA DATA SET

TABLE IX
COMPARISON OF THE PLCC, SRCC, AND RMSE FROM OUR PROPOSED METHOD AND ITS COMBINED VARIANTS OF CHANNEL-BASED SIC AND DR SCORES WITH

THE OVERALL SATURATION, AND HUE SCORES

TABLE X
COMPARISON OF THE PLCC, SRCC, AND RMSE FROM THE IC AND SALIENCY

(I.E., GBVS) COMPONENTS OF OUR PROPOSED METHOD ON THE

UWIQA DATA SET

To assess the effectiveness of the proposed method in com-
parison to baseline approaches, we conducted evaluations using
the available source code of the DDEGSM [33] and UIF [25]
methods, and the results are presented in Tables II–V. The
findings show a significant improvement in performance on all
three data sets, which contain both the raw and enhanced images,
demonstrating the efficacy of the proposed method in addressing
the challenges associated with low-light conditions and color
degradation in underwater images.

F. Computational Run-Time

In addition to the accuracy, consistency, and monotonicity of
the IQA methods, they are also expected to have a reasonable
computational complexity. Here, we have reported the average
run-time of the proposed and compared methods in Table XI on
the UWIQA data set. For a fair comparison, we have carried out
experiments on a computer with Intel Core i9-10885H CPU @
2.40 GHz and 32-GB memory using MATLAB R2022a. With
an average execution time of 0.5049 s, the computation of SIC
scores contributes approximately 0.44 s, while the calculations
of the DR, the overall saturation and hue account for 0.06 s with
almost equal contribution in between.

TABLE XI
COMPUTATIONAL RUN-TIME COMPARISON OF THE PROPOSED AND COMPARED

METHODS ON THE UWIQA DATA SET

Fig. 8. Run-time versus SRCC scatter plots of both the proposed and compared
methods on the UWIQA data set. The x-axis indicates the run-time and the y-axis
indicates the SRCC.

Moreover, to have a better illustration of the performance and
run-time efficiency, we plotted a 2-D plot of run-time versus
SRCC of our proposed and compared methods in Fig. 8. As
seen, our proposed method is the only method among the ones
with reasonable performance (> 0.50), i.e., UCIQE, FDUM, and
proposed, which has an efficient run-time and the best SRCC.
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V. CONCLUSION

In this article, we proposed a novel BUIQA method by
considering the proportional degradation and brightness/color
richness (i.e., DR) of the image. Based on the experimental
results, we observed the following: 1) the CIELAB color space
is highly compatible with underwater IQA as it preserves the
brightness/luminance information and the greed to red and blue
to yellow color information thus yielding better results; 2) con-
sidering both the image’s contour and saliency/GBVS maps in
quality evaluation can significantly improve the performance;
3) fusion of the channel-based SIC and DR scores with the
images overall saturation and hue makes the method capable
of balancing the contribution of the luminance and chromi-
nance channels on the overall score, resulting in better IQA
performance for both raw and enhanced images. Eventually,
the obtained results demonstrate the proposed method’s accu-
racy, consistency, monotonicity, significance, and efficiency in
comparison with current blind IQA methods.

Future work will develop more generic and robust image de-
scriptors using DNNs, similar to [80], [81], to handle variations
from enhancement, restoration, and color correction. Inspired
by semi-supervised [82] and self-supervised learning strate-
gies [83] and sensor modeling [84], we aim to reduce reliance
on extensive annotations to account for wavelength-dependent
attenuation, backscatter, and contrast loss, ensuring a compre-
hensive quality assessment of underwater images.
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