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Abstract

This thesis describes the application of the knowledge refinement tool Krust to the 
design system Tfs, whose task is tablet formulation for a major pharmaceutical company. 
Krust has already been successfully applied to a variety of classificatory problems, and 
a generic refinement framework is being developed. This thesis explores the differences 
in knowledge content and problem-solving steps for design rather than diagnosis systems, 
and how this affects the refinement process. It describes how novel components found in 
the design system were included within Krust’s underlying knowledge model, and how 
Krust’s refinement mechanisms were extended to apply to the design system by adding 
new operators to the existing tool-sets. Following this necessary adaptation of Krust, new 
mechanisms were introduced whereby inductive learning from proofs of related examples 
is used to constrain and guide Krust’s refinement generation.

The concept of a generic refinement tool is introduced. In the course of the work 
described here, Krust’s knowledge and operator representations have developed in a way 
that facilitate its future application to different shells. The successful application of Krust 
to Tfs is used to show that Krust has grown nearer to being a truly generic tool, and 
provides evidence that the construction of such a tool is both feasible and desirable.

Lastly, the role of knowledge refinement within software development is explored. Tra­
ditionally, refinement has been applied only to debugging, but the thesis shows how re­
finement can also play a role in software maintenance. In the course of its development, 
Tfs has undergone both routine debugging, and also maintenance, when the formulation 
task was altered by a change in company policy. It was thus possible to test the extent 
to which Krust was able to reproduce automatically the changes that were originally 
made manually to Tfs, and hence to evaluate Krust’s effectiveness in both debugging 
and maintenance roles.
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Chapter 1

Introduction

This chapter presents the background, motivation and objectives of the work described 

in this thesis. First, it explains the nature and purpose of knowledge base refinement 

(section 1.1). It then points out weaknesses in existing refinement tools (section 1.2), and 

outlines a program of work for developing a tool which overcomes some of these weaknesses 

(section 1.3). It shows that the refinement tool Krust is an appropriate starting point 

for the development of such a tool, and it then introduces an industrial application, the 

tablet formulation system, which will be used to evaluate the tool. It next outlines the 

main work of the thesis: the application of Krust to the tablet formulation system, and 

the implementation of inductive operators within Krust.

There follows a discussion of the different ways in which refinement can assist in soft­

ware development, and methods for the evaluation of the effectiveness of a refinement tool. 

The chapter then concludes with a synopsis of the thesis (section 1.4).

1.1 Knowledge-base refinement

When a knowledge base (KB) is first elicited, by whatever combination of interviews, 

knowledge acquisition tools and induction, it is unlikely to perform to the standard of a 

domain expert — hence the need for refinement. In the absence of an automatic tool, 

refinement traditionally requires the intensive use of both domain expert and knowledge 

engineer. Hence any tool which reduces the human input to this task will be useful; 

even an interactive, only partially automatic tool can offer a significant saving in human 

resources.

1



1.1. Knowledge-base refinement 2

There are two approaches to the refinement of a knowledge-based system (KBS).

• Static analysis scans the KB for missing or inconsistent knowledge.

• Dynamic analysis runs the KBS on examples to identify faulty behaviour and then

suggest suitable repairs.

The work described in this thesis falls under the heading of dynamic analysis. Formally, 

the process of dynamic refinement of KBSs may be expressed as follows. It requires a 

KBS containing a set of rules R, and a set of examples E for which the correct system 

behaviour is known. It may be assumed that the KBS performs incorrectly for some of 

the examples, or else no refinement is necessary. The goal of knowledge refinement is 

to construct a modified rule-base R' which performs more accurately on E than R does 

(ideally with 100% accuracy, but in practice this is rarely attainable). It is also usual to 

make the assumption that R is not grossly inaccurate, so that the changes to be made 

to it are relatively small, or “conservative”; and given a choice between refinements, the 

more conservative is usually preferred. The justification for the desire for conservatism is 

the requirement that the rules in the refined KB should be comprehensible and acceptable 

to the expert who helped to create the original KB.

Typically, knowledge refinement has been applied to classificatory systems, and the 

only significant aspects of “system behaviour” are the classes to which the KBS assigns 

examples. However, at least one refinement system allows the user to specify the order 

in which the KBS should perform certain actions; if the actions are performed in the 

wrong order, this is regarded as incorrect system behaviour (Murphy & Pazzani 1994). 

Furthermore, if a KBS generates more complex output than a simple class value, any 

deviation from the desired output will be regarded as incorrect behaviour.

Because of the complexity of the refinement task, there is currently no refinement tool 

which claims always to find the best possible refinement; that is, to generate a refined rule­

base which will produce the most correct behaviour for the entire example set. Rather, 

all tools employ some sort of heuristic search which in practice is found to generate useful 

refinements, but is not guaranteed to find the optimal one. This explains the existence 

of a wide variety of different refinement tools, each using slightly different operators and 

search techniques.
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1.2 Weaknesses in existing refinement tools

Existing knowledge refinement tools have a number of limitations.

• The KBSs to which they have been applied are mostly artificial, or “toy”, and the 

faults in these rule bases have been artificially introduced, rather than occurring 

naturally in the course of development.

• The KBSs to which they have been applied solve classificatory problems, e.g., fault 

diagnosis. A number of KBSs solve a significantly different type of problem, that 

of design, but I am not aware of any application of a refinement tool to a design 

system, apart from the work described in this thesis.

• The tools refine backward-chaining rules only, with the exception of Clips-R (Murphy

& Pazzani 1994).

• Each tool is applicable only to a single expert system shell.

These weaknesses are to some extent related. The origins of knowledge refinement 

in the debugging of PROLOG programs may be responsible for the fact that almost all 

refinement systems are applicable only to backward-chaining rules. This in turn means 

that the KBSs being refined will be mostly classificatory, since expert systems which 

perform design tasks are more naturally written using forward-chaining rules.

1.3 Objectives of the thesis

The objectives are derived from the weaknesses just identified in existing refinement tools. 

The principal objective is the development of a more practical refinement tool which could 

be applied to an expert system developed and used in industry, and which could assist with 

software development by identifying and suggesting fixes for faults. Secondary objectives 

are:

• to demonstrate that the tool is able to refine a design system, as well as classificatory 

ones, and

• to create a generic, extensible refinement tool, capable of refining a variety of different 

shells.
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Given these goals, some decisions had to be made. First of all, a refinement tool could 

be created from scratch, or an existing tool adapted. Since the objectives were to extend 

the power of current tools in various ways, it would clearly be a more efficient use of time 

to start with an existing tool. The Krust refinement tool (Craw 1991) proved a suitable 

starting point for the proposed work, for the reasons given below.

A useful distinction between types of refinement systems is made by Craw, Sleeman, 

Boswell & Carbonara (1994), who distinguish Knowledge Base Refinement (KBR) from 

Theory Revision (TR). For the purposes of the present discussion, the most important 

features separating the two are

Domains: KBR refines potentially noisy expert systems, whereas TR refines KBS which 

are more complex, possibly involving recursion, but which are noise-free.

Control Strategies: KBR refines expert systems using a variety of control and conflict 

resolution strategies, whereas TR is usually applied only to PROLOG programs.

Testing: KBR tools typically require fewer examples than TR tools.

It follows that a KBR tool would be more appropriate to my goals than a TR tool, and 

Krust’s properties place it clearly among the KBR tools. Moreover, Krust has several 

other features, such as its knowledge and operator representations, which fitted it for 

application to industrial systems, and for development into a generic refinement tool. 

Moreover, Krust has been found to be competitive with other systems when applied to 

a number of artificial problems. Consequently, I concluded that my goals could best be 

achieved by building on previous Krust projects, further developing Krust in such a 

way that it could be applied to an industrial expert system.

The next step was obtaining an expert system to apply Krust to, ideally a design 

system. I was fortunate in obtaining just such a system from Zeneca Pharmaceuticals: the 

Tablet Formulation System (Tfs). In addition, the software firm Logica PLC provided the 

Product Formulation Expert System Shell (Pfes); this is the language and environment in 

which Tfs was written. Pfes is a forward-chaining, task-based shell designed for solving 

design and formulation problems. The domain of Tfs, tablet formulation, is the task of 

choosing inert substances, or excipients, which need to be mixed with a drug in order to 

create a tablet having the required physical properties. The task is one of constructing a 
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formulation which simultaneously satisfies a number of constraints, often conflicting, and 

is therefore a design problem. Tfs has been in regular use by formulators at Zeneca for 

some years, so satisfies the requirement for a “real” expert system.

1.3.1 The adaptation of Krust to the tablet formulation system

Given the choice of Krust as a starting point, and the tablet formulation system as an 

application, the manner in which the objectives of the thesis may be achieved can be 

stated more precisely; Krust must be extended in a generic fashion so that it can be used 

to refine Tfs.

The goal of developing a generic tool could be at least partially fulfilled by developing 

a consistent and extensible framework for knowledge and operator representation. The 

generic nature of the resulting tool could then be proved by its effectiveness on at least 

two environments: the shell for which Krust was originally designed (Prolog) and the 

new shell, Pfes. Moreover, in the course of the work described in this thesis, Krust 

was extended by others to apply to the Clips and PowerModel shells, thus further 

justifying my claim that my work fitted in with the general goal of developing a generic 

tool.

1.3.2 The implementation of inductive operators for Krust

The review of related work revealed a weakness in knowledge base refinement systems, 

and Krust in particular: that they are less able than theory revision systems to make 

use of induction. Krust in particular had no inductive operators at all. This reduced the 

rules and conditions that Krust was able to learn, and hence the faults that it was able to 

fix. Therefore, the decision to base my work on Krust imposed an additional goal if the 

resulting refinement system were to be competitive: that of adding inductive operators to 

Krust.

Krust’s weakness in the area of induction was overcome by the addition of a number 

of refinement operators which were able to learn from multiple examples, and to create 

rules and conditions which could not have been learned by the original Krust.
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1.3.3 The role of knowledge refinement in software development

The purpose of obtaining an industrial expert system was to evaluate the effectiveness of 

my work on Krust; I hoped to show that Krust could be extended to apply to a new 

shell, in this case Pfes, and that it would then be able to assist in software development 

by identifying and fixing faults. At the time when I first made contact with Zeneca 

Pharmaceuticals, several versions of Tfs existed. One version, Tfs-1b, simply fixed bugs 

in the previous versions. A later version, Tfs-2, implemented a significant change in the 

specification of the formulation task. Development of Tfs was then almost complete, and 

Zeneca would not allow access to the very latest version, Tfs-3, so that Krust could 

not be employed during the actual development of Tfs. However, the existence of older 

versions provided a realistic solution. Krust could be applied to the older versions, to 

determine whether it was able to fix the bugs that had actually occurred in the course of 

development.

Moreover, the experience with Tfs lead to an expansion of my ideas on the role of 

knowledge refinement within software development. It is generally believed that the role 

of knowledge base refinement within software development is that of debugging. It became 

apparent during the work described here that refinement could also assist with software 

maintenance. Debugging is concerned with fixing faults where the behaviour of a KBS 

differs from its specification; maintenance is the harder task of modifying a KBS to match 

a new or changed specification. The degree of change to a specification for which the 

associated software modification is to be regarded as maintenance is arguable, and to 

some extent subjective. For the purposes of this thesis, a change in specification will be 

regarded as requiring maintenance, and not just debugging, if it requires a significant time, 

of the order of several man-months at least, to complete, and is regarded by a domain 

expert as a major change in the way the software carries out its task.

The successful application of knowledge refinement to software maintenance would 

constitute a significant advance.

1.3,4 Evaluation

The decision to emphasise the applicability of my work to industrial systems affected 

the choice of an appropriate method of evaluation. Evaluation methods originating in 
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the machine learning community, such as repeated partitioning of an example set into 

training and testing examples, followed by cross-validation, become less useful. A more 

appropriate test is the ability to fix real faults which occur during the development of 

the system. When refinement is employed in a maintenance role, the test is its ability to 

modify the KBS to match the new specification.

The choice of a design system as a target for refinement introduces a further difficulty. 

Evaluation is harder for design systems than for classificatory systems, because there is 

typically no one best solution for a design problem. This makes it more difficult both 

for a refinement system to select the best refinement, and for the user to evaluate the 

effectiveness of the refinement tool. One solution lies in the involvement of a domain 

expert in evaluation.

1.4 Synopsis

Chapter 1 has summarised the aims of this thesis. Chapter 2 reviews related work in 

knowledge base refinement, and also includes some reference to machine learning. The 

refinement and learning systems described are mainly symbolic, since these are most rel­

evant to my own work, but hybrid symbolic/neural-net systems are also described, for 

purposes of comparison.

Chapter 3 then introduces the tablet formulation system which will be used to evaluate 

my work on Krust. This chapter discusses formulation and design problems in general, 

and distinguishes them from the classificatory problems to which refinement systems have 

more usually been applied. It explains why formulation problems are hard, and how KBSs 

might be of use in solving them. It then introduces the Product Formulation Expert 

System (Pfes), a shell designed for writing formulation tools, and the particular problem 

of tablet formulation. Finally, it describes the Tablet Formulation System itself.

Chapter 4 provides a necessary introduction to my own work by describing the orig­

inal Krust program in some detail. Given my long-term aims of developing a generic 

refinement tool, able to fix faults in industrial expert systems, I explain why Krust was 

an appropriate starting point for this work. The next two chapters contain the bulk of 

my own work. Chapter 5 describes how I modified Krust to make it applicable to Tfs. 

The principal areas of Krust where modification was required were communication with 
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the KBS, knowledge representation, and refinement operators. I describe how I extended 

Krust’s capabilities in these areas in a generic way, so that the lessons learned will make 

it easier to apply Krust to other shells in future. Chapter 6 describes how I further 

extended Krust’s abilities by adding inductive operators, thus overcoming a significant 

weakness which had been identified by the literature review.

Chapter 7 describes some clustering techniques, and how example clustering is useful 

at various points in Krust’s refinement procedures. Some of these techniques are used 

in the evaluation of Krust, which is described in chapter 8. This chapter discusses the 

difficulties of evaluating refinements to a design system, and describes and justifies my 

experimental design. It then presents the results obtained when Krust was applied to 

two versions of TfS: Tfs-1a and Tfs-Ib. The first task is one of debugging, and the 

second task is one of maintenance, and therefore harder. Both qualitative results, such a 

description of the refinements generated, and statistical results concerning the accuracy 

of the refined KBs, are presented.

The remainder of the thesis is devoted to comparison with other work, and conclu­

sions. Chapter 9 compares my work with the program Either, chosen as a representative 

symbolic refinement program, and Clips-R, which refines Clips programs, and tackles 

many of the same problems as my own work on a Pfes application. Finally, chapter 10 

presents conclusions, and suggestions for future work.



Chapter 2

Related work

2.1 Introduction

This chapter presents a summary of current work in knowledge refinement. First, the pro­

grams to be discussed are listed and classified. The principal division is into symbolic and 

hybrid systems. The word symbolic refers to systems which represent knowledge explicitly 

in the form of rules and facts, and distinguishes such systems from sub-symbolic ones that 

use neural nets or genetic algorithms. The word symbolic does not exclude the presence 

of numeric elements in rules and facts. Hybrid systems are those that combine symbolic 

and sub-symbolic techniques. The principal hybrid systems, and the only ones considered 

here, use artificial neural nets as their sub-symbolic technique.

These two classes are then considered separately. The symbolic algorithms are treated 

in more detail, since they are more relevant to my own work, which is purely symbolic. 

The chapter concludes with a summary of weaknesses in existing work, which provides 

motivation for my own work.

2.2 Systems discussed in this chapter

Figure 2.1 classifies the systems to be discussed. It shows that the majority are symbolic 

refinement systems. In addition to these, several machine learning systems are included. 

The reason for the inclusion of Foil (Quinlan 1990) and FOCL (Pazzani & Kibler 1990) 

is that both include generalisation and specialisation operators which are comparable 

with those used by refinement systems, and moreover they both function as modules

9
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Figure 2.1: Classified algorithms

Hybrid systems

Kbann
Rapture J

within a refinement system (RS). The inductive logic programming (ILP) systems are 

included because both they and many RSs include operators for inducing rules, but the 

ILP operators are significantly different from those of other systems.

The discussion of Clips-R (Murphy & Pazzani 1994) appears not in this section 

but in chapter 9. The reason is that Clips-R, which refines Clips KBSs, is the only RS 

apart from Krust which is applicable to forward-chaining rules. Moreover, it includes two 

inductive operators. A complete account of Clips-R therefore needs to compare Clips-R’s 

techniques with the techniques I have used to adapt Krust to refine a Pfes application, 

and with the inductive operators I have implemented. The account can therefore most 

usefully be presented after the description of the work done on Krust.

Most of the programs shown in figure 2.1 learn or refine domain rules. It will become 

apparent that they are somewhat limited in their handling of control mechanisms or meta­

rules, which suggests the desirability of overcoming that limitation in future work. The 

exceptions are the three programs described as “systems which use meta-knowledge”.
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These three programs. Dolphin (Zelle & Mooney 1993), Teiresias (Davis & Lenat 1982) 

and Odysseus (Wilkins 1990, Wilkins, Clancey & Buchanan 1986, Wilkins & Tan 1989), 

either learn or make use of control rules in some way.

The hybrid systems differ from the others in that they combine symbolic reasoning 

with the use of neural nets. All these systems work by translating a KB into a neural net, 

training the net, then translating the trained net back to obtain a refined KB. Section 2.5 

will show that the fundamental weakness of neural nets in knowledge engineering, the lack 

of an explicit knowledge representation, has still not been completely overcome. These 

algorithms are peripheral to the work described in this thesis, but some useful comparisons 

with purely symbolic algorithms can be drawn.

2.3 Symbolic refinement systems

This section compares and contrasts the principal symbolic refinement systems. It first 

presents a common framework within which the systems may be described, and identi­

fies the main tasks carried out by a symbolic refinement system. It then compares the 

approaches taken to each task by the different systems.

2.3.1 A generic refinement algorithm

Rule-based systems are liable to two sorts of errors: rules may fire when they should 

not, leading to false positives; or they may fail to fire when they should, leading to false 

negatives. At the highest level, all symbolic RSs iterate repeatedly through the following 

operations, in order to identify and fix both types of error (see Figure 2.2).

• Blame Allocation identifies which rules or conditions might be responsible for the 

erroneous behaviour of the KB.

• Refinement Generation generates one or more refinements for each of the poten­

tially faulty rules or conditions, with the aim of fixing the erroneous behaviour.

• Refinement Selection chooses the best refinement (s).

• Refinement Implementation creates a new KB or KBs corresponding to the 

selected refinement (s).
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Here a “refinement” is defined to be a combination of changes, where each change 

results from the application of a single operator, such as condition addition or deletion.

The nature of refinements therefore varies from system to system, though in practice there 

is considerable overlap between the operators provided by each system (section 2.3.3).

-►

Blame 
Allocation

- Blame may be assigned at the level of 
rules, or individual condition.
There is an opportunity for bias, e.g., 

p preferring to blame leaf rules.
►

a n a

Refinement 
Generation

I Add change to existing refinement 
Refinement Selection I
(May include provisional implementation, 
for purposes of testing)

Refinement
Implementation

Continue refining
Select one or more new examples
--------------------------- --------------------------------

Spec/Gen loop
(first time round, specialise; 
second time round, generalise)

Figure 2.2: A generic symbolic refinement algorithm

Figure 2.2 has two main messages. First, the importance of the four operations: blame 

allocation, refinement generation, etc., listed down the centre of the figure. Secondly, that 

differences between algorithms can be expressed in terms of the order in which loops 

are nested. For example, systems vary in the complexity of the refinement generated at 

each pass down through the central series of arrows (refinement generation, selection and 

implementation). Some ensure before implementation that a refinement designed to fix 

a false negative does not introduce any new false positives as a side-effect; others permit 

such side-effects, and fix them in later iterations. This difference is reflected in Figure 2.2 

in the relative proportion of iterations around the left-hand clockwise and right-hand 
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anti-clockwise loops.

Note that any particular algorithm need not make use of all the loops (indeed, none 

of the programs described does), and that the Spec/Gen loop could logically occur within 

the example selection loop, as well as outside it.

A second related distinction is in the handling of multiple misclassified examples. 

Most RSs handle examples one at a time, but, as most also use accuracy as one of their 

heuristics, they prefer refinements which fix several examples at once. Either’s (Ourston 

& Mooney 1994) creation of a “minimal cover”, that is, a minimal set of repairs which will 

fix all failing examples, shows how a degree of parallel processing of examples is possible.

A final point of difference between RSs is the account they take of control strategies. 

Most RSs ignore the control strategy altogether, considering the conclusion of a KB to 

be that which is provable from its rules under the inference mechanism of propositional 

or first order logic, as the case may be. These RSs are therefore unable to handle shells 

which assign significance to the order in which conclusions are deduced, as determined by 

their conflict resolution mechanism, or which use certainty factors to choose a preferred 

conclusion. Among the mainstream symbolic refinement systems, only Krust (Craw 

& Sleeman 1990, Craw & Sleeman 1991) takes account of the KB’s conflict resolution 

strategy, and it can handle only a limited class of strategies. In addition, a few systems 

either use or learn control rules, in a rather restricted manner (section 2.3.5).

One RS, Rtls (Ginsberg 1988b), introduces two further operations not shown in fig­

ure 2.2; these are pre and post-processes which need to be applied before and after refine­

ment. Before Rtls is applied, the KB must be reduced or flattened (Ginsberg 1988b), and 

once Rtls has refined the flattened KB, it must then be retranslated into an unflattened 

form (Ginsberg 1990). Flattening here implies the removal of all intermediate results, 

so that a flattened KB consists of rules which express classes in terms of observables. 

Consider for example the following KB.

T1

T2

P-

q-

p a.

P b.
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q c.

Suppose that a, b and c are observables, ti and T2 are classes. Then the process of flattening 

creates the following rules.

ay b.

T2 c.

The advantage of the initial flattening of the KB is that it reduces the complexity of the 

reflnement process. The one drawback of this approach is the difficulty of retranslating the 

refined KB into an unflattened form. This is the problem that also poses the greatest diffi­

culty for hybrid systems (section 2.5). There is no unique way of doing the re-translation, 

and the algorithm currently employed does not guarantee that the retranslated KB will 

behave in the same way as the KB output from Rtls. Ginsberg (1990) claims experi­

ments have shown that in practice any changes introduced during re-translation result in 

an improvement in the performance of the KB, but he has been unable to prove that this 

will always be the case.

The section now considers in turn the various successive phases of knowledge refinement 

as shown in figure 2.2, and for each phase compares the different approaches taken by the 

refinement programs being considered.

2.3.2 Blame allocation

Figure 2.3 shows how the analysis of the proof tree and partial proof tree for a single exam­

ple permits the assignment of blame to rules and conditions for both a false negative and a 

false positive. Each circle and rectangle represents a rule condition and/or conclusion. To 

the left of the figure is a proof of the incorrect conclusion generated by the system; the 

grey circles represent conditions and conclusions which participated in this proof, and are 

therefore potentially to blame. To the right of the figure is a partial proof of the desired 

conclusion H^-, it is not a complete proof, because some of the conditions necessary for 

the proof of are themselves not provable (represented as diamonds). These unprovable 

conditions are potentially to blame for the failure of the partial proof of H^. Note that 

there is one currently unprovable condition which is shared between both proofs — this



OCondition/Conclusion which is 
provable
Condition/Conclusion which is

\Z not provable

Places to Refine

Figure 2.3: Solution graphs

illustrates the problem of potentially conflicting refinements, which will have to be dealt 

with later, at the refinement selection stage.

Figure 2.3 is incomplete as a depiction of the blame allocation process, in two ways:

1. it illustrates blame allocation for a single example only, and

2. for rules containing variables, blame needs to be spread further than is shown here.

Blame allocation for multiple examples

Figure 2.3 illustrates how it is possible to determine which rules and conditions may be 

responsible for the incorrect behaviour of a KBS. This process is commonly described as 

tagging. The grey conditions, and all the rules whose conclusions are grey, are potentially 

responsible for the incorrect conclusion of the proof-tree, so are said to be tagged. The 
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simplest use of rule and condition tagging is to generate refinements for each tagged 

feature, as Krust does. A more sophisticated approach is to carry out the analysis for 

a number of different proofs, and combine the results in some way. Forte (Richards & 

Mooney 1995) simply adds the number of taggings for each condition over the set of all 

proofs, and attempts to refine the most tagged conditions first; thus the blame allocation 

will influence the eventual refinement selection. Either tackles the same problem as 

Forte in a more sophisticated way, by finding the minimal sets of features which can 

be used to fix all the examples. This approach has the disadvantage that it requires the 

computation of all possible repairs for each example, from which the best repair must be 

selected. Consequently, Neither (Baffes & Mooney 1993), one of Either’s successors, 

reduces the search by modifying Either’s approach; Neither selects a single best repair 

for each example, and then implements these repairs in the order determined by their 

effectiveness for the theory as a whole.

A3 (Wogulis 1994) also takes a more sophisticated approach than Forte to blame 

allocation, but its approach is different from both Either and Neither. A3 associates 

each revision point not with the number of faulty examples with which it is implicated, 

but with the number of faulty examples which it can correct if the error at that point is 

fixed, so A3’s example set for each point is a subset of Forte’s. A3 determines whether 

a change to the revision point can fix an associated example by making an assumption for 

the associated goal that is the opposite of the outcome supported by the theory, and then 

re-executing the KB. That is, if the goal succeeds, A3 re-executes the KB but causes the 

goal to fail, and vice versa. However, there is one danger in this approach; it will only 

identify errors that can be repaired by a single modification to the theory.

Finally, a comparison can be made with neural net algorithms. These in effect per­

form blame allocation and refinement generation simultaneously; more significantly, the 

symbolic algorithms use only faulty examples for blame allocation, whereas the network 

algorithms use positive examples to increase their belief in the correctness of a rule, as 

well as using negative examples to reduce it.

Blame allocation for first order rules

Given a KB written in first-order logic, a situation can arise where the range of potentially 

faulty conditions is more extensive than that shown in Figure 2.3. If a rule in a partial
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proof of fails to fire because one or more of its conditions fails, then the candidates 

for refinement include not only the failing conditions, but also any conditions which bind 

variables included in the failing conditions. For example, in Figure 2.4, predicate p{X, y) is 

under suspicion for the failure of q{Y'}, even though the condition p(X, Y) itself succeeded.

a(X)p(X, Y), q(Y). <

p(X, Y) q(Y)

This condition may be responsible for the rule’s 
failure, even though the condition succeeded.

Figure 2.4: Blame allocation in first-order rules

It is possible to extend the example in Figure 2.4 to a situation in which a variable 

binding is responsible for a failure not in the same clause, but one or more clauses later. 

Consider for example rules 2.1 and 2.2.

w(X),a(X).

a(X) :

(2.1)

(2.2)

Suppose the top-level goal is u(A’), with X unbound, and that v{X} ought to succeed. 

Suppose however that v{X} fails because q{X, Y) fails, causing a(X) to fail. Possible 

culprits for the incorrect behaviour should include not only the predicate p, which caused 

y to be bound, but also w, which caused X to be bound.

Consider next a modified version of this example.
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n(A) w{X),a{X).

a(X) p{X,Ylq{Y}.

This is identical to the previous example, except that the predicate q does not take X as 

an argument. However, even though predicates w and q no longer share an argument, w 

could still be responsible for the failure of q, since it does bind X, and thus constrain the 

value bound to Y by the call to p{X,Y)

These examples illustrate the difficulty of performing blame allocation within proofs 

in first-order logic.

2.3.3 Refinement operators, and refinement generation

Once blame has been allocated as described in the previous section, a refinement system 

must attempt to modify the faulty rules, using a set of refinement operators. There 

are only a limited number of basic ways in which rules can be refined; any more complex 

refinement operators must be built from these primitives (the program Neither described 

below, is an exception). The primitive operators are:

Specialisation operators:

• Delete rule

• Add condition

• Specialise condition

Generalisation operators:

• Add rule

• Delete condition

• Generalise condition

Two points should be noted about these primitive operators. 
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• The capacity of a refinement system to specialise or generalise conditions is a conse­

quence of the type of conditions used — currently only Krust, Either and Neither 

manipulate rules whose conditions are liable to refinement. Either refines condi­

tions of the form ki < x < k^. Krust refines both double-bounded inequalities such 

as these, as well as single bounded inequalities such as x < k and x > k. Krust also 

refines conditions which test the value of hierarchically-structured attributes. (This 

is described in more detail in chapter 4. See figure 4.1 for an example).

• Neither can refine what are known as m-of-n conditions. An m-of-n condition is a 

set of n conditions; the m-of-n condition is defined to be true if and only if at least 

m of the component conditions are true. The ability to refine m-of-n conditions 

enables Neither to make use of a refinement operator which is specific to that type 

of condition; this operator raises or lowers the threshold m and thus specialises or 

generalises the condition. This enables Neither to perform well in domains such 

as protein-folding which are well described by m-of-n conditions, doing better than 

systems like Krust which do not make use of this representation. However, the 

presence of this representation and its associated operators is independent of other 

tasks within the refinement process, so that it would be relatively simple to add 

m-of-n rules to any of the other refinement systems. Until competing systems are 

provided with a “level playing-field” in terms of their knowledge representation and 

associated operators, it is impossible to assess to what extent their relative success 

is due to their underlying algorithms.

• The learning algorithms Foil (Quinlan 1990) and Focl start with an empty rule 

set, and so employ only the “add rule” and “add condition” operators.

All the algorithms except Krust use repeated applications of these operators to per­

form more complex refinements. Most use a hill-climbing approach, which brings with it 

the risk of getting stuck on local maxima. Forte is the one exception; if deleting condi­

tions one at a time fails to produce a correct rule, it will then attempt to delete several 

conditions simultaneously. However, it adopts a different approach when adding condi­

tions. If adding conditions singly fails to produce a correct rule, then rather than trying 

to add multiple conditions simultaneously, which would lead to a combinatorial explosion, 

it instead adopts a technique unique to Forte called relational pathfinding. This is a
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*

somewhat specialised technique applicable in domains where the initial theory contains a 

number of primitive relations between constants from which it is assumed that the target 

relation (s) may be constructed. Consider for example a “human relationship” domain 

containing a number of facts of the form parent(X, Y), brother(X, Y). Suppose Forte 

is required to learn the concept of uncle(X,Y) from examples of the form uncle{ui,ni). 

The method of relational pathfinding starts from each rii and tries to find a sequence of 

relationships which will lead to the associated Uj. If the relationships are expressed as 

a graph, then pathfinding amounts to seeking a path through the graph from rii to Uj. 

When such a path has been found, the primitive relationships making up the path may 

be combined to form a rule defining the new relationship, in this case, uncle(X,Y}. For 

example, figure 2.5 shows the path linking nephew s to uncle b. Once Forte has found 

this path, it will use the two relationships making up the path to create the rule

uncle{X,Y} : 

brother {X, P), 

parent{P, Y).

brother(b, p)
• Pb •

parent(p, s)

s

Figure 2.5: Relational data expressed as a graph

At a higher level, any initial over-generalisation in Forte is detected and fixed im­

mediately by combining the generalisation with further specialisation operators, and vice 

versa. The latter case is handled by generating a set of rules, each more specialised than 
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the initial over-general rule, and replacing the initial rule with the more specialised ones.

Rule addition

Although Forte claims to have a rule-addition operator, this is really a rule-modification 

operator; FoRTE takes a copy of an existing rule and then applies condition deletion and 

addition. DuCTOR (Cain 1991) on the other hand has a true rule addition operator. It 

obtains the conditions for a new rule by constructing a set of attributes that discrimi­

nates false negatives from true negatives, and removing those attributes that are used 

elsewhere in the proofs. Either uses a similar approach, but uses IDS 3 to perform the 

induction, and is thus better able to handle noise than DuCTOR, which simply identifies a 

discriminant set of attributes. The point to be noted here is that any algorithm lacking an 

inductive component is at a disadvantage when needing to apply an “add condition”, and 

still more, an “add rule” operator. For example, Krust totally lacks the “add condition” 

operator, and its “add rule” operator is crude; the conditions of the new rule are simply 

the conjunction of all the properties of the refinement example which caused the rule to be 

learned. Induction is not an essential component in condition addition. However, condi­

tion addition without induction is liable to lead to a combinatorial explosion because of the 

large number of possible new conditions to be considered. Since Krust differs from most 

other systems in that it implements and tests a larger number of possible refinements, it 

is particularly vulnerable to this problem, and so omits the condition addition operator 

altogether.

The inter-dependencies between the loops of Figure 2.2 are well illustrated by Audrey 

(Wogulis 1991). Audrey completes all its specialisation before starting on generalisation, 

and is the only algorithm that requires the “Spec/Gen” loop — this control sequence could 

be regarded either as permitting or as being necessitated by the crudity of Audrey’s 

original specialisation operator, which is simply rule deletion. A later version, Audrey 

II (Wogulis & Pazzani 1993), was able to use condition addition, but retained the control 

structure of Audrey.
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2.3.4 Refinement selection

Refinement selection is to some extent dependent on the preceding two operations. For 

example, the earlier versions of Either preferred to refine leaf rules. Although this is a 

bias that appears to affect refinement generation, for efficiency it is actually implemented 

as soon as possible; that is, at the blame allocation stage. Likewise, Ductor orders the 

rules in the proof of a false positive in what the authors call “rule post-ordering” at the 

refinement stage, in order that refinements to leaf-rules should be generated and selected 

first.

Similarly, the choice of refinement operators reflects a bias towards a particular type 

of refinement. The types of refinement preferred by many systems indicate an apparent 

conflict between the desire for radical refinements at the refinement generation stage as 

opposed to the desire for conservative refinements at the initial blame allocation stage. For 

example, several systems choose rule deletion as a specialisation operator before condition 

addition; and Neither prefers to generalise m-of-n rules by reducing the threshold, rather 

than deleting conditions, on the grounds that threshold reduction is “more aggressive”, 

i.e., less conservative. A possible justification for this is that at the later refinement 

generation stage, unlike the blame allocation stage at which conservatism is preferred, it 

may be possible to evaluate the refinement in terms of misclassified examples fixed and 

new errors introduced; and a less conservative change may be justified if it scores well in 

these terms. After all, a truly conservative system would change nothing, so the policy of 

conservatism should not be taken too far.

In the case of systems that use sequences of primitive operators in the refinement 

generation stage, the separation between refinement generation and selection is less clear. 

For example, systems such as Forte use hill-climbing to specialise a rule by adding a 

sequence of new conditions, and stop when they reach a plateau of whatever heuristic 

function is employed — thus the heuristic contributes to both refinement generation and 

selection.

Further heuristics may also be introduced at a later stage in the process such as 

accuracy on the training set, and/or on a further example set (a pruning set} noted as 

being particularly important, such as Krust’s “chestnuts” (section 4.7).

Clarus (Brunk & Pazzani 1995) is unusual in using what the authors call “lexical 
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cohesiveness” as well as accuracy as a criterion for evaluating proposed new rules. The 

effect of this is to prefer rules where the meaning of the terms in the conditions and 

conclusion is closely related. For example, the rule

military_deferment(P) ;- 

enlist(P, O), 

armed_for ces (O).

would be preferred to

military _deferment(P) 

bankrupt(P), 

continuously-enrolled(P).

on the grounds that the meanings of the words “military”, “deferment”, “enlist”, “armed” 

and “forces” are more closely related than “military”, “bankrupt”, etc. The “close­

ness” of the meanings of individual words is derived from the lexical database Wordnet 

(Beckwith, Fellbaum, Gross & Miller 1991).

2.3.5 Use of proofs, partial proofs, and control rules

All refinement systems make use of proofs and partial proofs at the blame allocation stage, 

as indicated in Figure 2.3. However, the following programs are of particular interest 

because of the way in which they make use of explicit control or meta-rules, either as 

input to the refinement process, or in its output. Krust is included here because of 

its ability to take into account control information; this distinguishes it from the other 

symbolic refinement systems so far discussed. (A more detailed account of Krust is 

presented in chapter 4).

Krust refines backward-chaining rules, where conflict-resolution is performed by rule or­

dering. Thus Krust must take account of this mechanism at the blame-allocation 

stage. In addition, Krust is able to use this control mechanism at the refinement 

generation stage by changing the rule ordering, thus enabling rules to fire that pre­

viously did not, and vice versa.
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Dolphin (Zelle & Mooney 1993) is described by the authors as learning control informa­

tion. However, the information is expressed as extra conditions (“guards”) which are 

added at the start of a rule, so in the terms of this survey, it may be regarded as a 

refinement system with a single refinement operator: condition addition. However, 

the purpose of the addition is not, as with the other systems, to achieve greater 

accuracy, but greater efficiency by preventing rule firings that do not lead to a so­

lution. The extra condition does not alter the system’s conclusion, it merely allows 

it to reach the conclusion more quickly. This is a modern illustration of the point 

made by Bundy, Silver & Plummer (1985) that what is “really” control information 

may be included in rules in a form syntactically indistinguishable from object-level 

conditions, so that tools which are only designed to refine object knowledge may end 

up refining control information as well.

Teiresias and Mycin (Davis & Lenat 1982). Teiresias is a tool which assists in the 

interactive refinement of KBSs written using the shell Mycin. Two forms of meta­

rules are used by the Mycin/Teiresias combination; Mycin makes use of its own 

meta-rules to assist in conflict resolution during the execution of its object rules, 

and Teiresias makes use of rule models to critique new rules suggested by the 

domain expert. Rule models are induced automatically from the Mycin rule-base, 

and recognise common patterns in the rules, such as the fact the attribute A always 

appears in conjunction with attribute B. Surprisingly, Teiresias does not take any 

account of Mycin’s meta-rules when refining Mycin rule-bases.

Odysseus (Wilkins 1990, Wilkins et al. 1986, Wilkins & Tan 1989) is very much one of a 

kind, and illustrates a different approach to the use of control information from that 

of the other programs surveyed. Odysseus is an apprentice learning program, which 

attempts to explain an expert’s behaviour by means of a proof tree constructed from 

meta-rules. When it is unable to construct such a tree, it assumes that one or more 

meta-rules failed to fire because one or more of their conditions were themselves

unsatisfied. The conditions of meta-rules are a mixture of object and meta facts; 

Odysseus makes the assumption that the failure of the meta-level proof is due to 

the lack of one or more necessary object level facts or rules, and adds to its object­

level knowledge whatever facts are necessary to make the proof succeed. If there is
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Table 2.1: The use of control information by various refinement systems

Use of control information Refinement of control infor­
mation

Krust Rule priorities affect proofs, and 
hence blame allocation.

Can refine a KB by changing rule 
priorities

Dolphin Can add object conditions 
which make rule execution more 
efficient.

Teiresias Meta-rules guide proof, but are 
not used in refinement.
Rule models guide rule creation. Rules are a source for rule models.

Odysseus Meta-rules actually form the 
proof, and guide the creation of 
new rules.

Does not refine meta-rules di­
rectly, but adds object rules 
which change the behaviour of the 
meta-rules.

a choice of facts at this stage, Odysseus uses a somewhat obscure set of heuristics 

to choose between them, depending on the nature of the failed meta-rule.

Thus, in terms of the framework presented earlier, Odysseus effectively possesses 

only one refinement generation operator, together with obscure, and possibly domain­

specific, refinement selection criteria. It is of interest, however, in that it is the only 

example of a system which carries out refinement of object-rules in order to change 

the behaviour of an expert system consisting of meta-rules.

Conclusions concerning the use of control information

Table 2.1 summarises the use of control information by the RSs discussed in this section. 

The right-hand column lists the ways in which the RSs can directly or indirectly manip­

ulate control structures. It will be seen that the systems use and manipulate the control 

mechanism in a variety of different ways.

• Krust directly manipulates the control mechanism (priority) of the KBS which it 

refines.

• Odysseus indirectly manipulates an explicit control mechanism

• Dolphin indirectly manipulates an implicit control mechanism
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• Teiresias refines KBSs which use meta-rules, while neither learning from nor mod­

ifying these meta-rules. It does make use of a different kind of meta-rule, the rule 

models, but it constructs these itself from the KBS’s object-rules.

2.4 Inductive Logic Programming (ILP)

The distinguishing feature of ILP is its ability to learn new predicates, given background 

knowledge and training examples. This overcomes two disadvantages of earlier inductive 

techniques such as ID3 3 (Quinlan 1986) and CN2 (Clark & Boswell 1991), which are 

unable to make use of background knowledge, and which are constrained by a fixed vo­

cabulary of attributes. It also has the effect of reducing the number of examples needed 

to learn a concept.

The general inductive problem is as follows (Muggleton 1992). Given a set of observa­

tions O and background knowledge B, find a hypothesis H such that:

BAH HO

The choice of H in this relation is severely under-constrained. Two ways of constraining 

H are to require it to be the least general hypothesis relative to B (Plotkin 1971), or to 

produce the maximum information compression; that is, the maximum reduction in the 

size of the theory.

The remainder of this section illustrates how the learning of rules can perform infor­

mation compression in propositional logic. It goes on to show how propositional operators 

can be generalised to first-order logic, and that the generalised operators can be seen as 

reversing steps in a resolution proof. The creation of new rules by inverse resolution (IR) is 

a fundamental technique in ILP. Moreover, it is possible to construct a common framework 

for IR and Plotkin’s relative least general generalisation (Muggleton 1992).

The following examples of the DUCE (Muggleton 1987) absorption and intra-construction 

operator illustrate both information compression and the learning of new predicates. Given 

the two rules:



2.4. Inductive Logic Programming (ILP) 27

a m, q, r, s.

b : — n,q,r, s.

the absorption operator identifies the common conditions q, r, s and creates the new rule

new

This allows the original theory can be re-written in a more compact form:

a m, new.

b : — n, new.

new

A second operator, intra-construction, works as follows. Given the two rules

a

a n,q

it creates the new rule

new m

new n

thus allowing the theory to be rewritten

a new, q.

new m

new n

Duce works with propositional logic, and employs 6 operators. Marvin (Sammut

& Bannerji 1986) extends the work into 1st order logic, but uses just one of Duce’s 
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operators: the absorption operator just illustrated. Muggleton & Buntine (1988) show 

that a number of Duce’s operators can be represented as inverting a step in a resolution 

proof, and in the CiGOL program build on this idea by implementing relational versions 

of Duce’s other operators.

The following example shows how the effect of the second of the Duce operators just 

described, intra-construction, can be obtained by inverting two resolution steps. First a 

more general inverse resolution operator, the ‘W’ operator, is introduced. Then a special 

case of the application of this operator is shown to correspond to the intra-construction 

operator.

Figure 2.6: Two resolution steps with common clause A

Figure 2.6, taken from Muggleton (1992) illustrates the ‘W’ operator. The figure shows 

two resolution steps; Ci and C2 resolve on a common literal I within A to produce Bi and 

B2 respectively. The Oc,ii • • • are the substitutions resulting from the resolution steps. 

The ‘W’ operator constructs the clauses A, CijCq given Bi and B2, so could be described 

as inverting the resolution steps.

There follows an example of the application of the ‘W’ operator (figure 2.7), which 

shows that it represents a Ist-order version of the DuCE intra-construction operator il­

lustrated earlier. Here the common literal I is the condition light(W). First one of the 

resolution steps is described. This step become clearer if the clauses involved are repre­

sented in disjunctive normal form. The first two clauses then become 
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light{W} V -icoZour(iy, rose)

choice{wine, ly) y -^light{W} V -icosZ(iy, cheap}

which resolve to give

choice{wine, ly) V -icolour(W, rose} y -^cost{W, cheap}

This in turn may be represented as the rule

choice{wine, IT) : —

coZour(iy, rose}, 

cost{W, cheap}.

The second resolution step is similar.

light(W)
colour(W, rose),

light(W)
colour(W, white).light(W), 

costfW, cheap).

choicefwine, W)

choice(wine, W) 
colour(W, rose), 
cost(W, cheap).

choice(wine, W)
colour(W, white), 
costfW, cheap).

Figure 2.7: An example of intra-construction

The intra-construction operator works by inverting these resolution steps. It therefore 

starts with the two rules
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choice^wine, W) : —

col our (W, rose).

cost{W, cheap).

choice{wine, W) : —

colour{W, white), 

cost{W, cheap).

and replaces them with the three rules

choice{wine, PF) : —

light{W), 

cost{W, cheap).

light(W) : -

colour^W, white),

light^W) : —

coZour(iy, rose).

It will be seen that this operation has the same form as the Duce intra-construction 

operator described above. The induced predicate light(W) in this example corresponds 

to the proposition new in the first example, and the predicates colour{W, white) and 

colour(W, rose) correspond to the propositions m and n.

Currently ILP is developing as a field in its own right, and its techniques are not being 

used in refinement systems. However, they have been shown to be effective in real-world 

applications - domains include a satellite power supply and protein folding (Muggleton 

& Feng 1990), which suggests that they could be a useful alternative to the inductive 

operators currently employed by refinement systems.
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2.5 Hybrid algorithms

The approach taken by the algorithms described in this section is to translate a symbolic 

theory into a neural net, train the net by back-propagation or some similar algorithm, 

and then translate the net back into a theory. Typically, it is the final translation phase 

that is most difficult, for reasons that will be explained below. In this section, the two 

hybrid algorithms Kbann (Towell, Shavlik & Noordewier 1990) and Rapture (Mahoney 

& Mooney 1993) are compared. Some comparisons are also drawn with Ptr+ (Koppel, 

Segre & Feldman 1994).

2.5.1 Rule to net translation

The initial rule to net translation is similar in Kbann and Rapture. Figure 2.8 shows

how the following two rules are translated in the two systems:

Q a, b, c. (2.1)

d, e.Q (2.2)

In Kbann, the unit bias for each intermediate node (nta — (/), where n is the number of 

inputs) is chosen so that the intermediate node will be activated if and only if all its inputs 

are activated, thus representing a conjunctive condition. The bias for the conclusion node 

q is chosen so that it will be activated if either of its inputs are activated, thus representing 

a disjunctive condition.

On the other hand, the minimum and probabilistic-sum functions used by Rapture 

are non-standard for neural nets, but correspond more closely with one standard way of 

reasoning with uncertain information in rule-based systems. The probabilistic sum used 

for combining disjunctive conditions is expressed by the formula x 4- y — xy, where x and y 

are the two inputs, so that no thresholding is required, since the probabilistic sum provides 

the required non-linearity.

However, the most significant difference between Kbann and Rapture is that in 

Kbann, low-weighted links are added between every pair of nodes in successive layers 

which are not already connected. This permits Kbann to learn any necessary new rela­

tionships without modifying the net, by simply increasing the weight of the new links. On
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Arc Weight Threshold of weighted sum

KBANN

0) = 3,0 = 2.3, chosen empirically

RAPTURE

Figure 2.8: Rule to net translation in Kbann and Rapture

the other hand. Rapture does not create these extra links. It is therefore possible that 

the initial net is unable to learn the desired concept, in which case new nodes are added.

Ptr+

Ptr+ is included with the hybrid algorithms, although it does not strictly-speaking create 

a neural net, since it nonetheless uses a network representation. It represents a theory 

as a network, where each clause, and each literal in the head and body of a clause, is 

represented by a node, and arcs join each clause to each literal contained in the clause.

Each arc has an associated value P which represents confidence that the edge is correct. 

Correct examples using an arc increase the value of P, and incorrect examples decrease 

it. If the value of P falls below a given threshold, this is regarded as evidence that the 

associated rule or condition needs repair.

A defect in Ptr+ is that it cannot represent proofs of theories containing shared 

intermediate concepts, e.g., multiple uses of the same rule with different bindings. Brunk 

(1996) chapter 7 explains how this could be fixed by representing the theory as an and/or 

tree; a rule which is used in multiple contexts would appear several times as different 
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subtrees within the main tree.

2.5.2 Rule extraction

The differences between Rapture’s and Kbann’s approach to net construction require 

them to take different approaches to rule extraction. Since Rapture adds nodes and 

links only when this is required by the learning process, its authors believe that there is 

a direct correspondence between the final version of the net and a new theory — that 

is, that the old nodes continue to correspond to their original literals, and that any new 

nodes correspond to their associated literals even after further modifications to the net 

subsequent to their creation.

For Kbann, on the other hand, the large number of links means that a direct trans­

lation back to rules is impossible. Instead, rule extraction is performed by searching, at 

each node, for sets of incoming links whose summed weight guarantees that the node’s 

bias will be exceeded. This approach makes the assumption that after the learning process 

is complete, all nodes will have activation level near 1 or near 0, and, as with Rapture, 

that the meaning of the nodes in terms of the original theory is not altered by the learning 

process. The drawbacks of this approach by Kbann, none of which is shared by Rapture, 

are that

• the translation back to rules is not deterministic.

• the behaviour of the rules obtained will not be identical to that of the net, and

• the complexity of the search is exponential in the number of input features.

Craven & Shavlik (1994) present an alternative approach to rule extraction from a 

neural net created by Kbann. This approach regards rule extraction as a learning task in 

which the target concept is the function computed by the network, and the attributes are 

the network’s input features. Craven presents an algorithm for constructing a disjunctive 

normal form (DNF) expression corresponding to the classificatory behaviour of a neural 

net. In contrast to the previous approach, which requires extensive searching, this method 

largely treats the network as a black-box, so that it can approximate the network to 

an arbitrary degree of accuracy, and does not need to make any assumptions about the 

meanings of intermediate units.
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2.6 Weaknesses in existing work

Prom the foregoing survey, the following problems, or at least areas which would benefit 

from further work, have been identified.

Handling multiple examples. All the programs surveyed deal with multiple examples 

in slightly different ways. The least efficient approach is to deal with examples one 

at a time, as Krust and Foil do; this approach has the added disadvantage that 

the accuracy of the final result depends on the order of example presentation. The 

solutions proposed for Foil are the use of either beam search or check-pointing. 

Check-pointing would be applied whenever two or more steps scored roughly equally 

according to whatever heuristic was being used. If the step chosen lead to an un­

satisfactory result, it would be possible to back-track to the checkpoint and choose

one of the other options. Both these techniques could be applied equally well to

refinement systems, though as yet neither has been.

The techniques could also be applied to systems that adopt a hill-climbing approach 

to the application of operators such as condition deletion or addition. The use of

heuristics by such systems to choose the best condition at each stage makes them 

more efficient than those that are totally dependent on the order of example pre­

sentation, but the heuristics are not guaranteed to recommend the correct choice on 

every occasion, so the presence of techniques for back-tracking and making alterna­

tive choices could improve accuracy, at the cost of greater search.

Applicability. The systems described in this chapter are limited in their applicability.

Each system is applicable to a single type of KBS only, usually one made up of

Prolog rules. Apart from Clips-R, they can only refine backward-chaining rules.

This limits their applicability to industrial applications, where the use of forward-

chaining rules is more common. Moreover, the systems have mainly been evaluated in 

relatively simple domains, where corruptions have been introduced manually. Con­

sequently, their ability to refine industrial KBSs remains unproven.

Control mechanisms and proof quality. A conspicuous gap in the work described

above, with the partial exceptions of Dolphin and Odysseus, is the lack of at­

tention paid to proof structures and proof quality; it is quite possible for a KB 
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to arrive at the correct conclusion by an incorrect chain of reasoning, but current 

refinement systems look only at a KB’s conclusions. Moreover, patterns in proof 

structures could also provide further information to guide the refinement process.

Secondly, it has been noted that the refinement systems surveyed are generally unable 

to deal with systems containing forward-chaining, nor to take account of conflict 

resolution strategies. A partial exception is Krust, which can refine rules where 

conflict is resolved by rule ordering.

These two areas of interest are closely related, since control and conflict resolution 

strategies (or meta-rules) guide the construction of proofs, and conversely any rule 

which attempts to critique a proof is by definition a meta-rule.



Chapter 3

The Tablet Formulation

Application

This chapter introduces the Product Formulation Expert System (Pfes) and the Tablet 

Formulation System (Tfs) which is written in Pfes. First it discusses formulation prob­

lems in general, and describes how knowledge-based systems may be employed to assist in 

formulation. It goes on to describe the PFES shell which is designed for writing formula­

tion systems. It then introduces a specific formulation problem, that of tablet formulation. 

Finally, it describes Tfs.

3.1 Formulation problems

Formulation usually begins with the presentation of some form of product specification 

of the requirements to be met, and ends with the generation of one or more formulations 

which meet the requirements (Alvey 1987).

The nature of the specification varies. It may be expressed in terms of performance 

levels to be met in a number of pre-defined tests. In other cases it will be much more 

vague; for example, that the product should be appropriate for a particular market sector. 

The formulation comprises a list of ingredients and their quantities, together with some 

process variables where this is appropriate; for example, the temperature at which the 

ingredients must be combined.

When a formulator attempts to solve a formulation problem by hand, he chooses 

36
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ingredients which he believes can be combined, taking into account interactions between 

them. He may need to add subsidiary ingredients to counter unwanted side-effects. He is 

likely to be guided in his choices by reference to previous formulations or historical test 

results.

This approach, of working from specification to formulation, describes many formu­

lation processes, e.g., that of lubricating oils, agro-chemicals, plastics, dyes, explosives, 

glues, paints, food-stuffs, cleaning-agents and health-care products. In addition, other 

more varied tasks can also be modelled this way, such as the construction of investment 

portfolios, or project teams.

3.2 Pfes

This section introduces the Product Formulation Expert System (Pfes). It first describes 

the motivation for creating the system. It then gives an overview of Pfes, describing its 

architecture, control structures, and knowledge representation mechanisms.

3.2.1 The role of knowledge-based systems in formulation

Pfes was a Knowledge Based System Demonstrator project within the Alvey program, 

undertaken by a consortium consisting of Shell Research Ltd., Schering Agrochemicals 

Ltd., and Logica. The project investigated the applicability of KBSs in providing support 

for the formulation process. The following possible roles for such a system were envisaged; 

section 3.3.4 will show that the Tfs application succeeded in performing many of these 

roles for the particular task of tablet formulation.

1.

2.

3.

4.

5.

A decision support tool to assist the expert formulator.

A training aid for less experienced formulators.

A tool to assist experienced formulators in straightforward tasks, freeing them for 

more creative work.

A rationalisation tool for formulation knowledge and practice within an organisation.

A knowledge communication aid, for making a formulator’s knowledge explicit and 

available to himself and other formulators.
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6. A model building tool.

7. A database access tool.

The expected benefits of using a formulation system were as follows:

1.

2.

3.

4.

Elicitation of the formulation knowledge is made easier, since the framework into 

which the knowledge is structured is well-matched to formulation concepts.

The human formulator can remain directly involved in the project after implementa­

tion has started, again because the framework matches his approach to the problem.

Maintenance is made easier, since the framework makes it more straightforward to 

identify valid and appropriate modifications.

Explanations and traces generated by the system are comprehensible to the human

formulator.

3.2.2 Overview of Pfes

This section describes the Pfes shell itself. Pfes is a tool for writing formulation systems, 

which, as has been shown, can be applied to a wide range of problems. However, since 

the main reason for discussing Pfes is to introduce the tablet formulation application, all 

the examples of Pfes features, such as objects and rules, will be drawn from the tablet 

formulation domain. The following sections describe first how knowledge is represented 

within Pfes, and then how that knowledge is used by tasks and rules.

The overall architecture of Pfes is shown in figure 3.1. The formulation process is 

driven via the generation of a hierarchy of tasks, where each task represents some well- 

defined activity. The control level deals with the mechanics of running and passing control 

to these tasks. It is the task level where the actual formulation activity takes place, and 

where the hierarchy of tasks is generated dynamically. The purpose of the task hierarchy 

is to permit the formulation problem to be broken down into self-contained sub-problems. 

Tasks can plan about and directly manipulate only their immediate sub-tasks, which 

enforces the modular nature of the decomposition. Each task has an associated forward­

chaining rule-set, whose action carries out the task.

An example of a Tfs task is Add Excipients, which invokes the five sub-tasks
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choose filler
choose binder
choose lubricant
choose disintegrant
choose surfactant

Finally, the physical level stores background knowledge about the formulation domain, 

and is accessed from the task level via a query interface.

An example of Tfs background knowledge is the following database entry for the

chemical mannitol.

(defobject mannitol 

(yp 90.199997) 

(yp-fast 161.0) 

(SRS 78.5) 

(solubility 166) 

(IS-A filler)

MIXES-WITH MAGNESIUM-GARBONATE CALCIUM-PHOSPHATE

calcium-dihydrogen-phosphate))

3.2.3 Knowledge encoded in Pfes systems

Three types of knowledge are encoded in Pfes systems:

1. knowledge about how to build a formulation by adding components, setting levels,

etc.;

2. knowledge about when and in which order the different aspects of formulation should

be carried out;

3. knowledge about the components, processes and applications used in a formulation.

together with their physical properties.

Physical knowledge is represented by objects, with properties represented by attributes.

For example, figure 3.2 shows the Pfes object calcium-phosphate.



Figure 3.1: The architecture of Pfes

CALCIUM-PHOSPHATE
IS-A: filler
YP: 957.2
YP-FAST: 957.2
SRS: 0
SOLUBILITY: 0
MIXES-WITH: MANNITOL MAIZE-STARCH LACTOSE MICROCRYSTALLINE-CELLULOSE
BONDING: INORGANIC

Figure 3.2: A Pfes object

Note that although, in terms of the system architecture, this knowledge lies in the 

physical level, and is in fact stored in a separate database, a transparent interface is 

provided which allows Pfes to treat the items in the database as objects at the task level.

This means that a rule can determine, say, the solubility of calcium phosphate by means 

of the condition
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SOLUBILITY of CALCIUM PHOSPHATE iS <S>

where calcium phosphate here is the name of an object, and solubility is one of its 

attributes.

The attribute is-a is used to group individual objects together under class objects. All 

objects must have a value for this property, thus building up a class hierarchy. Figure 3.3 

shows part of the class hierarchy for Tfs.

Pfes-Object

Physical-Pfes-Object

Component Component-Property

Filler Lubricant Binder Disintegrant Surfactant Drug
Lactose^^C^cium

Phosphate

\ A 1\ PVP Gelatin Croscarmelose

Magnesium
Stearate

Solubility Strategy

Figure 3.3: Part of the class hierarchy for Tfs

Two of the most important objects in Pfes are the specification and formulation

objects. The specification object contains the requirements that must be satisfied by the 

formulation. As Pfes executes, it constructs within the formulation object a description 

of the ingredients and quantities to satisfy the specification. In addition, the elements 

within Pfes which manipulate the knowledge, viz., tasks, rule-sets and rules, are also 

objects, but as their role is rather different, they are described in the next section.

3.2.4 How the knowledge is used

The process of formulation can be broken down into self-contained activities or tasks.

These are organised into a hierarchy under one primary task, which in the case of Tfs 

is called formulate. Each task has a rule-set associated with it, and rules can themselves 

invoke tasks. As a result, Pfes’s task-tree is created dynamically each time Pfes is run, 

and may vary depending on the initial specification. This contrasts with other systems, 

where the tasks are fixed and only the data varies. In the case of Tfs, the task-tree does 

not vary greatly from case to case; possible variations arise when a particular excipient 

type such as surfactant is not required, so that the associated task, choose surfactant.
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Formulate
Initial Formulation

Get Specification
Add Excipients 
Evaluate Tablet
Save Formulation Details

Formulate
Initial Formulation

Get Specification
Get Drug Details
Get Stability Data

5 Check Stability Data 
Get Dose 
Set First Strategy

Add Excipients
Evaluate Tablet
Save Formulation Details

Formulate
Initial Formulation

Get Specification
Get Drug Details
Get Stability Data

Check Stability Data
Get Dose
Set First Strategy

Add Excipients
Choose Filler
Choose Binder
Choose Lubricant
Choose Disintegrant
Choose Surfactant

Evaluate Tablet
Save Formulation Details

Figure 3.4: Successive expansions of Tfs’s task hierarchy

is never invoked. Figure 3.4 gives three snapshots of the task tree for Tfs, showing how it 

grows when Tfs is run for one particular case. The initial task is Formulate. This creates 

a subtask Initial Formulation, which in turn creates four subtasks: Get Specification,

Add Excipients, Evaluate Tablet, and Save Formulation Details.

Tasks can communicate with each other by means of agendas. An agenda is a named 

list. Once an agenda has been created, it is available to any of the tasks that run subse­

quently until either the agenda is explicitly deleted or the formulation process is complete.

Information can be posted onto an agenda by one task for further tasks to use. Typi­

cally, agendas are used to pass data between routines that generate values and those that 

subsequently test or filter them.

3.2.5 Rule-sets and rules

Each Pfes task has an associated rule-set, consisting of a number of if-then rules. This 

section first describes the types of conditions and conclusions which may appear in PFES 

rules, and then describes Pfes’s control and conflict-resolution strategies.
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Rule elements

Pfes rule elements, that is, rule conditions or conclusions, may be divided into the fol­

lowing three classes (Logica 1988).

• Object-Attribute-Value triples

• Agenda operations

• Lisp forms

Some examples of each type of rule element are now presented. In these examples, 

items in angle brackets, such as <weight>, are variables.

Object-Attribute-Value triples have the same meaning as the OAV-triples which Krust

reasons about (section 4.1.2). When they occur as conditions, they take the form

<ATTRIBUTE> haS value <VALUE> in <DBJECT>

When they occur as actions, they take the form

set the value of <attribute> in <object> to be <value>

Agenda operations read and write items from and to an agenda. Here are two typical 

agenda operations.

add <VALUE> to <END> of <AGENDA>

where <end> may be top or bottom. This adds <VALUE> to the top or the bottom

respectively of <agenda>.

add <VALUE> <posiTiON> <value2> on <agenda>

where <POSITION> may be before or after. This adds <VALUE> to the agenda, 

either directly before or directly after <VALUe2>, which must already be on the 

agenda. There exist equivalent reading operations, which read items from the top 

or bottom of the agenda, or from next to some named item.

Comparisons take the form
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<VALUE> is <COMPARATOR> <EXP>

<COMPARATOR> may take any of the values >, >, <, <, =.

Lisp forms A limited number of Lisp functions are available. These are arithmetic op­

erators, max and min functions, and truncation operators.

Interface operations read data from the user, and display information on the screen.

These are not described here, since they are irrelevant to the automated refinement

of Pfes applications.

Figure 3.5 shows a typical rule, first in its LISP representation, then as it is displayed 

in the Pfes graphical interface.

Rule execution

When a task is scheduled, the interpreter orders the rules in the associated rule-set firstly 

by priority and second by specificity. The interpreter then attempts to fire each rule in 

turn. If a rule’s conditions are satisfied, and the exceptions, if any, are not, then the rule 

fires, and the rule’s conclusion is executed. If at any point a condition fails, the interpreter 

searches the list of rules in the same way as before. Some conditions may succeed multiple 

times with different bindings; the interpreter will repeatedly retry successful rules as long 

as the bindings of at least one variable continues to change. For example, the first condition 

of the rule get-stable-fillers succeeds multiple times as it reads successive items off

an agenda.

Rule GET-STABLE-FILLERS
If

<FILLER> is on STABLE-FILLER-AGENDA
Then

add <FiLLER> to bottom of filler-agenda

The rule will therefore fire once for each item on the filler-agenda.
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(DEFOBJECTD IST-GUESS-WEIGHT
(IS-A RULE)
(PRIORITY 0)
(MEMBER-OF-RULESET GET-DOSE-ACTION-RULESET)
(TASK GET-DOSE)
(ROLE ACTION)
(CONDITIONS

(F-S-ATTRIBUTE-HAS-VALUE FORMULATION DRUG <DRUG> <>)
(F-S-ATTRIBUTE-HAS-VALUE FORMULATION <DRUG> <DOSE> <>)) 

(ACTIONS
(LISP-TO-VALUE (ROUND-TO-NEAREST

(/ <DOSE> (-F 0.1 (*  0.00221 <DOSE>))) 5) <WEIGHT>) 
(SET-ATTRIBUTE-VALUE SPECIFICATION TARGET-TABLET-WEIGHT

<WEIGHT> < >))
(EXCEPTIONS)
(BECAUSE ’’weight = 100 * dose /(0.221 * dose -F 10) eqn(l)”))

Rule IST-GUESS-WEIGHT
IF

DRUG has value <DRUG> in the FORMULATION
<DRUG> has value <DOSE> in the FORMULATION

THEN
set <WEIGHT> to the result of (ROUND-TO-NEAREST

(/ <DOSE> (+ 0.1 (*  0.00221 <DOSE>))) 5)
set the value of TARGET-TABLET-WEIGHT in the SPECIFICATION to be <WEIGHT> 

BECAUSE
’’weight = 100 * dose /(0.221 * dose -I- 10) eqn(l)”))

Figure 3.5: A Tfs rule, first in internal form, then in pretty-printed form
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3.3

3.3.1

Tablet formulation and the Tfs system

The tablet formulation problem

Well over half of all the medicines used in the UK are in the form of compressed tablets 

(Rowe 1993). This form is convenient both for the manufacturer and the patient. When 

tablets are manufactured, a number of inert components known as excipients are added to 

impart necessary properties, such as strength and stability, to the tablet. The following 

types of excipients are commonly required.

Filler: provides the bulk of the tablet, which would otherwise be too small to be easily 

handled.

Binder: prevents the tablet breaking or crumbling during storage.

Lubricant: prevents the tablet from sticking to punches and dies when being stamped.

Disintegrant: causes the tablet to break down after being swallowed by the patient.

Surfactant: is a wetting agent which may be needed if the tablet is otherwise water- 

resistant.

The task of tablet formulation is normally performed by a limited number of experts 

with specific knowledge and often years of experience. Their knowledge is not easily 

documented, so that the experts often spend considerable time in training new personnel. 

Other disadvantages of the reliance on experts are that personal preferences can result in 

inconsistencies of approach, and that irreplaceable knowledge may be lost when experts 

retire. An expert system for tablet formulation would solve these problems by providing 

a means of capturing available knowledge and implementing a consistent approach, and 

could be updated in the light of new practices. This was the motivation for building the 

Tfs system, which has become one of the few formulation KBSs in regular commercial 

use (Frank, Rupprecht & Schmelmer 1997).

3.3.2 The Tfs system

Tfs’s knowledge is encoded in Pfes tasks, rules and objects. A typical object, task 

tree and rule have already been presented (figures 3.2, 3.4 and 3.5). The objects, which 
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represent chemical properties of excipients and drugs, are stored in a database which may 

be accessed by the rules.

From the user’s point of view, the operation of Tfs proceeds as follows. The user 

provides a drug’s name and its desired dosage. Tfs then uses these values, together with 

other information read from a database, to generate the specification; that is, necessary 

properties of the tablet to be formulated, such as its weight, size, and various physical 

properties. Tfs then generates a formulation consisting of the most appropriate material 

from each excipient type, and the quantity of each required. Figure 3.6 shows an example 

of the user input, specification and resulting formulation for one particular example.

User Input:
Drug: Drug-A
Dose: 60 mg
No of fillers: 2

Specification:
full-stability: Yes 
drug-filler-concentration: 0.9 
minimum-tablet-weight: lOOmg 
maximum-tablet-weight: 800mg 
target-tablet-weight: 260mg 
start-strategy: strategy-A 
filler-concentration: 66.9% 
typical-disintegrant: Maize-starch 
disintegrant-concentration: 0.05 
tablet-weight: 252.2mg 
total-concentration: 97% 
tablet-diameter: 8.73mm
... various other properties...

Formulation:
Tablet weight: 250mg
Fillers: Lactose 66.7%,

Calcium phosphate 2.4%
Binder; Gelatin 4.1%
Lubricant: Stearic acid 1.0%
Disintegrant; Croscarmelose 2.1%

Figure 3.6: An example of user input, specification and formulation

3.3.3 History of Tfs

The first version of Tfs was created by Zeneca in 1988 and labelled Tfs-1a. This has 

been described by its users as a prototype, but still a useful system. A later development 

resulting from some internal modifications and bug fixes, and in use for two years, was

Tfs-Ib. The last version, Tfs-2, incorporated a number of further modifications including 
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one fundamental change, discussed below, and was completed in 1991.

The fundamental change resulted from the introduction of three categories of excip­

ients, where category 1 included the most preferred excipients, and category 3 the least 

preferred. Formulators were required to use excipients in category 1 if possible, only 

picking excipients from the later categories if this was necessary to create an acceptable 

formulation. The purposes of the introduction of these categories were:

1. Harmonisation of inventories.

2. Cost-saving.

3. Greater consistency of products. Natural products, which may vary slightly from 

batch to batch, are relegated to category 3, and so are rarely used.

As a result, the Tfs rule-base had to be modified to implement this policy. This was 

a significant task, and required several man-months of effort.

3.3.4 Benefits of TFS

The creation of Tfs has provided Zeneca with the following benefits (Turner 1991).

• The creation of a permanent database of formulation expertise.

• The provision of a training aid for both novice and experienced formulators.

• The guarantee of a consistent approach to formulation.

• The provision of a common starting point for discussing and managing changes in 

formulation practice.

• Acceleration of the formulation process, and reduction in usage of materials. (When 

Tfs is used for formulation, the number of different formulations which need to be 

tested in the laboratory is reduced).

• The release of experienced staff for more innovative work, rather than the creation 

of relatively standard formulations.

• Identification of critical areas of formulation which required further research or ra­

tionalisation.
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These compare well with the benefits envisaged by the Pfes project for an automated 

formulation system.

3.4 Summary

This chapter has shown that design and formulation are hard problems, and have to 

be tackled in a different way from problems of diagnosis and classification. The Pfes 

shell, which has been created to solve formulation problems, has a number of features 

which distinguish it from other general purpose expert system shells; in particular, its 

dynamic task structure, and its use of agendas to exchange information. A particular 

Pfes application, Tfs, has proved very successful, but the paucity of other automated 

tablet formulation systems indicates the difficulty of this problem. These features show 

that the automated refinement of Tfs is a demanding task for a refinement tool, and will 

constitute a significant contribution to the field.



Chapter 4

Krust

This chapter describes the knowledge base refinement system Krust. It first addresses 

the history and development of Krust, and explains which version is principally to be 

discussed. The remainder of the chapter is devoted to an account of how Krust works. 

Section 4.1 describes Krust’s knowledge representation: the kind of rule conditions and 

conclusions it is able to represent and reason about. Section 4.2 describes how Krust 

obtains information about the behaviour of the KBS which it is refining. Section 4.3 

presents an overview of the operation of Krust. This operation is divided into a number 

of stages, each of which is described in greater detail in subsequent sections.

Once the description of Krust is complete, there follows a brief discussion on the 

nature and requirements of a generic refinement tool, and some conclusions about the 

strengths and weaknesses of Krust compared with other refinement tools. These last two 

sections provide motivation for my own work on applying Krust to Tfs, described in 

chapter 5.

This chapter discusses the original version of Krust which is described in more detail 

in Craw (1991). This version was applicable to PROLOG KBs only. Since then, my work 

and that of other researchers has developed Krust into a generic refinement tool, applica­

ble to Tfs, Clips and PowerModel (Palmer 1995). I shall therefore indicate here which 

features of Krust’s knowledge representation and operators made the program amenable 

to development into a generic tool. Chapter 5 describes my work on the application of 

Krust to Pfes, and makes clear the extent of Tfs’s influence on the tool in its present 

form.

50
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4.1 Knowledge representation

This section explains why Krust needs to represent the knowledge in a KB, and what 

kinds of knowledge can be represented.

4.1.1 The knowledge skeleton

The knowledge skeleton is Krust’s internal representation of the rules and facts in a 

knowledge base. The knowledge skeleton is used to augment the information available to 

Krust about actual rule firing behaviour, by allowing it to reason about the consequences 

of changes to the rules. This section explains the difference between these information 

sources, and why both are necessary.

First of all, Krust needs to know which rules in a KBS actually fired, and which did 

not. This information can be determined directly from the KBS. The information is used 

to determine that some rules fired which should not have done, and vice versa. Since 

the information is derived from the KBS itself, there is no requirement for a knowledge 

skeleton at this point.

However, Krust next needs to determine how to change the rules in order to produce 

correct behaviour. It has to reason about chains of rules, where a change to one rule 

will affect the behaviour of others. Communication with the KBS is no use here, since 

Krust needs to reason about interactions between rules which did not occur in the original 

running of the KB. It is at this point that the knowledge skeleton is used. The purpose 

of constructing the knowledge skeleton is therefore not to run a simulation of the shell, 

but rather to provide the extra information needed to reason about the possible effects 

of changes to the rule-base. Krust can determine from the KBS which rules actually 

fired, but during refinement it must also reason about potential rule-firing behaviour. For 

example, it may need to determine which rules in the KB have a conclusion which matches 

a given rule condition. This kind of information has to be derived from the knowledge 

skeleton.

4.1.2 Rule elements

In the original Krust, the only permitted rule element (rule condition or conclusion) is the 

object-attribute-value (OAV) triple; for example, colour of wine is red, where colour
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is the attribute, wine the object, and red the value. However, Krust’s representation 

also allows it to associate data-types and constraints with each OAV triple, so this is not 

as restrictive as it might first appear. The following attribute types are permitted:

Discrete: A finite unordered set, such as {red, white, rose}.

Linear: A finite or infinite ordered set, such as the integers, or the set {small, medium, 

large}

Tree: A partially-ordered set, where X > Y if X is an ancestor of Y in the associated

tree.

The constraints that may be represented depend on the attribute types. The only 

possible constraint on a discrete attribute is equality. For example, colour of wine 

red. On the other hand, a linear attribute can be upper-bounded, lower-bounded, 

both; thus Krust can represent conditions such as cost of meal < 30 or 20 < cost

meal < 40. Finally, the only constraints that can be placed on a tree attribute are upper 

bounds. For example, the constraint origin of wine is europe (see figure 4.1) requires 

the origin of the wine to lie on or below the node labelled “Europe”.

is

or

of

Figure 4.1: A tree-structured attribute

The type declarations are included in meta-knowledge which may be associated with 

any KB to which Krust is to be applied; the actual values of the bounds appear in the 

rule conditions themselves. Note that for integer and real-valued attributes, the upper 

and lower bounds are simply an alternative way of expressing conditions which could 

more conventionally be expressed by comparisons of the form Vai < Bound, or Bounds < 

Vai < Bounds- However, the ability to reason about tree-structured attributes, and 

ordered sets other than integers and reals, is a distinguishing feature of Krust.
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The usefulness of this representation for a refinement tool lies in two of its features:

• it permits the tool to select the minimal change to an OAV triple which will give 

the desired behaviour;

• it permits the tool to make use of any available background knowledge about prop­

erties of the attributes.

4.2 Communication with the KB

Krust seeks to modify the rules in the KB so that they will behave differently, thereby 

generating some new conclusion. It therefore needs to know which rules currently fire. 

More precisely, it requires answers to the following queries.

1. Is rule R satisfied, and what variable bindings result?

2. If rule R is not satisfied, which condition(s) cause it to fail?

In the original version of Krust, this information was obtained via a query sent from 

Krust to the Prolog process, an approach which relies on Prolog’s ability to instan­

tiate variables in an arbitrary query. The query took the form of an OAV triple, in which 

the value could be bound or unbound. In the case of a bound value, the result was a 

yes/no value, depending on whether the corresponding Prolog fact could or could not 

be proved by the current PROLOG KB. In the case of an unbound value, the result was 

again a yes/no result, together, in the case of a yes, with the first binding obtained for 

the value in the variable slot. For example, the query sweetness of wine is dry would 

be transformed into the Prolog form sweetness (wine, dry) and would return yes if 

this result could be proved, no otherwise. The query sweetness of wine is _S^ would 

be transformed into sweetness(wine, _S) and might return yes, with _S bound to dry, 

say, or no, with no bindings.

Krust can combine such queries about individual conditions to determine whether 

a rule as a whole is satisfied. To do so, Krust submits each of its conditions in turn 

as queries. When a query binds a variable, that binding is retained if the same variable 

occurs in later queries. Thus the sequence of queries determines whether the rule as a 

whole can fire, and if not, which conditions caused it to fail.
^In Krust, variables start with an underscore.
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4.3 The operation of Krust

Figure 4.2 outlines how Krust operates. Its input is a KBS, and a refinement example, 

which will drive the refinement process. The refinement example consists of the input 

data describing a particular problem, together with the desired output for that problem, 

usually obtained from an expert. Krust’s first action is to run the KBS for the given 

input. If the output matches the expert’s, then no refinement is required. Otherwise 

Krust will attempt to change the rules in the KBS so that it will solve the refinement 

example correctly.

Figure 4.2: The operation of Krust
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There follows an outline of the various steps in the refinement procedure. These steps

are then described in more detail in sections 4.4 to 4.8. The first step is rule classification, 

which is a specialised form of blame allocation; it consists of describing the incorrect 

behaviour of a KBS’s end rules. The end rules are those rules which can occur at the root 

of the KBS’s proof tree, and are directly responsible for the KBS’s conclusion. Roughly- 

speaking, classification consists of determining

• which rules fired but should not have done, and

• which rules did not fire and should have done.

These rule classifications are passed to the refinement generator, which generates re­

finements designed to fix the incorrect rule behaviour. A refinement is a slightly abstract 

description of one or more changes, where each change is expressed as the specialisation 

or generalisation of a particular condition, or a change to rule priority. For example, a 

single refinement might consist of the two instructions: generalise the first condition of

Rulel, and decrease the priority of Rule5. The output of the refinement generator is a list 

of such refinements.

The refinements are then passed to the refinement filter, which removes refinements 

which are redundant or contain contradictory elements. The surviving refinements are 

passed to the refinement implementation module. This module carries out the changes 

corresponding to each refinement and creates one or more actual modified KBs for each 

refinement. These KBs are then tested, using the refinement example and others, and 

undergo further filtering. Finally, the remaining KBs are passed to the judgement module, 

which selects the best according to various user-definable criteria. The output from the 

whole procedure is the single “best” KB which performs correctly for the refinement 

example.

4.4 KBS control and rule classification

Krust’s rule classification is dependent on the control and conflict-resolution strategies 

of the KBS which it is refining, so before describing rule classification, it is first necessary 

to discuss briefly these properties of a PROLOG KBS.
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4.4.1 Control

The control-strategy of a Prolog KBS is depth-first backward-chaining. The need for 

a conflict-resolution strategy arises when several rules exist whose conclusions unify with 

the rule condition which Prolog is currently trying to prove. These rules are known as 

the conflict set. Prolog’s strategy is to select the rules from the conflict set in the order 

in which they appear in the KB; if the first rule does not fire, then the second one is tried, 

and so on. This is a special case of the numerical priority assigned to rules in systems 

like Clips; the behaviour of PROLOG rules could be modelled by numerical priorities if we 

assign a priority of 0 to the last rule in the KB, a priority of 1 to the last rule but one.

and so on.

Another property of a KBS which must be considered is the criterion for inference to 

stop. In Prolog it is possible to submit a query, receive a successful response, and then 

force back-tracking to get further responses. However, Krust regards the first response 

only as the PROLOG KBS’s “output”. As a result, the relative priorities of the end-rules in 

the KB are of particular importance. Recall that the end-rules are those that are directly 

responsible for the system’s conclusion, or in the case of a Prolog database, are those 

that match the query. The importance of end-rule priority may be illustrated by means 

of the following simple KB.

p(a) ■ - Q- (4.1)

p(6) : — r. (4.2)

9 : — X. (4.3)

Q ■ - y- (4.4)

r : — z. (4.5)

y- (4.6)

z. (4.7)

Given a query ?- p(X). the initial conflict set consists of rules 4.1 and 4.2. Prolog 

considers rule 4.1 first, so attempts to prove condition q. The conflict set for q consists of 

rules 4.3 and 4.4. Rule 4.3 can not be satisfied, since x can not be proved, but rule 4.4 
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can. Hence q is proved, rule 4.1 fires, and the value p(a) is returned. Because inference 

stops as soon as the first end-rule fires, the lower-priority end-rule, rule 4.2, never fires, 

even though its condition can be satisfied.

4.4.2 Rule classification

The purpose of Krust’s rule classification is to describe the incorrect behaviour of a 

KBS’s end rules. The behaviour of an end-rule in a backward-chaining KBS’s rules is 

determined by two factors: whether the rule’s conditions are satisfied, and the relative 

priority of other rules whose conditions are also satisfied. It is these two factors which are 

taken into account by Krust’s classification step.

In the following discussion, a rule is satisfied if its conditions are provable. Let E be the 

expert’s conclusion, and S the system’s conclusion for a particular refinement example.

We assume that S E, or there is no need for refinement. Then the rule classes are 

defined as follows.

The Error-Causing rule is the satisfied rule which wins the conflict resolution, and 

concludes S.

A target rule is one which would conclude E if it fired.

Target rules may be further divided as follows, depending on the reasons they failed 

to fire.

No-Fire rules have a high enough priority to fire, but their conditions are not satisfied.

Can-Fire rules are those whose conditions are satisfied, but failed to fire because of their

low priority.

NoCan-Fire rules have too low priority to fire, and in addition their conditions are not

satisfied.

Finally, the class Potentially-Error-Causing describes end rules which do not con­

clude E, whose conclusions are satisfied, and have a lower priority than the error-causing 

rule, but a higher priority than one or more Can-Fire or NoCan-Fire rules. The signifi­

cance of this class is that Potentially-Error-Causing rules must be prevented from firing if 

they preclude the firing of a target rule.
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4.5 Refinement generation

The refinement generator builds a set of refinements designed to correct the erroneous 

behaviour of the end rules identified by the rule classifier. Its output is a list of refinements, 

where each refinement is a conjunction of rule changes and rule priority changes. Roughly 

speaking, each refinement is designed to prevent the Error-Causing and Potentially-Error- 

Causing rules from firing, and to allow one of the target rules to fire instead. More 

precisely, the rule changes for the various classes of rules are shown in figure 4.3, taken 

from Craw (1991), p. 60, with slightly modified terminology. In the following discussion,

• to enable a rule means to cause its conditions to be satisfied so that it will fire if its

priority is sufficiently high, and

• to allow a rule means to modify both its conditions and its priority as necessary so 

that it will fire.

The meanings of disable and disallow are defined similarly. (To disallow a rule means to 

prevent it from firing either by causing one of its conditions not to be satisfied, or by 

decreasing its priority). It is also useful to talk about enabling or disabling an individual 

rule condition.

Disabling a rule R can be carried out in one of two ways: by strengthening any one 

condition C oi R until it is no longer satisfied, or by simultaneously disabling all satisfied 

rules which conclude C. The process of enabling a rule is complementary to this. A rule 

can be enabled by simultaneously enabling all of its unsatisfied conditions Cj. A condition 

Ci can be enabled either by weakening it until it is satisfied, or by enabling any one rule 

which concludes Ci. Note that disabling and enabling, which are solely concerned with 

the satisfiability of rule conditions, are defined recursively, but that operations on rule 

priority are confined solely to the end rules. This reflects the importance of the priority 

of end-rules in Prolog as explained in section 4.4.1. Since KBS inference stops as soon 

as one end-rule fires, these rules can be prevented from firing by lowering their priority, 

but that this is not the case for rules lower down the proof tree.

We next consider how the refinements in figure 4.3 need to be combined in order to 

correct the behaviour of a rule-set as a whole. For example, to cause a NoCan-Fire rule 

to fire, it is necessary to weaken its premises, but it might also be necessary at the same
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Figure 4.3: Refinements for the rule classes

Class Change Mechanism for change

No-Fire rule Allow by weakening the premises

Error-Causing rule Disallow by strengthening a premise 
OR

by decreasing its priority

Can-Fire rule Allow by increasing its priority

NoCan-Fire rule Allow by weakening its premises 
AND

by increasing its priority

time to disable Potentially Error-Causing rules.

When describing combinations of refinements, it is helpful to introduce the concept 

of the cartesian conjunction of a set of refinements, which is related to the concept of a 

Cartesian product in set theory. Suppose Refi are sets of refinements. Then the cartesian 

conjunction of Re/j is the set of all conjuncts Ainj, where rij E Ref^. The need for such 

a combination may be illustrated by means of the following simple example. Suppose it 

is necessary at the same time to disable rule and to enable rule R2- Let Ref,^ be the 

refinements which disable Ri, and let Ref 2 be the refinements which enable R2. Then a 

refinement which does both may be obtained by picking any one refinement from Ref and 

combining it with any one refinement from Ref 2- In other words, the set of refinements 

which disable Ri and enable R2 is the cartesian conjunction r^j A r2k, where rmn S R^fm

The following table lists for each class of end rule the refinements needed to correct its 

behaviour. In addition, there is a single refinement at the end, “create a new rule”, which 

does not correspond to any end rule. The table is taken from Craw (1991), pp. 62-64, 

slightly modified. The final set of refinements generated by Krust is the disjunction of 

the refinements generated for each target and error-causing rule.

No-Fire: For each unsatisfied condition Ci, either weaken the condition until it is satis­

fied, or enable any one rule whose conclusion satisfies the existing condition. This 

generates sets of refinements Refj^. Return the cartesian conjunction of Ref^.
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Error-Causing: Change the conclusion of the Error-Causing rule to E.

Can-Fire: Generate the cartesian conjunction of the following three sets of refinements:

• increase the priority of the Can-Fire rule just above the highest priority Can-

Fire rule,

• disable the Error-Causing rule or decrease its priority below the Can-Fire rule,

• disable or decrease the priority of all Potentially Error-Causing rules with pri­

orities between the Error-Causing rule and the Can-Fire rule.

Then add the final single refinement to the above conjunction: increase the priority 

of the Can-Fire rule just above the Error-Causing rule.

NoCan-Fire: Generate two sets of refinements: one for the rule treated as a No-Fire rule.

and one for the rule treated as a Can-Fire rule. Return the cartesian conjunction of

these two sets.

(No associated rule type): Build a new rule

where the Fi are the known facts for the refinement case.

It will be seen that the procedure for generating a new rule produces the most specific 

rule possible which will apply to the refinement case. Such a rule is not normally a very 

useful one. Krust was unable to do any better because it lacked inductive operators 

which could use multiple examples to learn a more general rule. This lack also prevented 

Krust from learning new rule conditions. Chapter 6 describes how I have to some extent 

remedied this deficiency by adding various inductive operators.

4.5.1 Refinement filtering

At this point, Krust removes those refinements which, for various reasons, are unlikely to 

be useful. It bases its decisions on the nature of the refinements themselves considered in 

isolation, not on the effectiveness of the refined KBs, which have not yet been generated. 

There are three types of refinement filter.
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Inconsistency and redundancy removal. An inconsistent refinement is one contain­

ing two conflicting rule-changes, such as specialising and generalising the same rule 

condition. A redundant refinement is one whose changes are a strict super-set of 

some other refinement’s changes.

Meta-knowledge. This filter removes refinements to rules believed to be “good”, pro­

vided some measure of goodness exists. An example of a goodness measure is that 

used by Seek (Ginsberg 1988a), which assigns a gen_weight and a spec_weight to 

each rule, according to the number of generalisation and specialisation refinements 

generated for that rule. Rules with weights below a certain threshold are considered 

“good”.

Heuristic. This class of filters was intended to permit the introduction of any other 

criteria for refinement deletion not covered by the previous two classes. For example, 

domain-specific knowledge might be introduced at this point. However, the only 

heuristic filter currently available is a non-domain-specific one which prefers simple 

refinements to complex ones. It sorts refinements into order depending on their 

complexity (number of changes), and if the number of refinements is greater than a 

user-defined threshold, it deletes the most complex refinements.

4.6 Refinement implementation

The output of the refinement generation process is a set of general and slightly abstract 

instructions for making rule changes: for example, generalise condition C in rule Rl, 

move rule R2 above rule R3, change the conclusion of rule R4. The purpose of the 

refinement implementation stage is to turn these instructions into actual rule changes. 

There may be many ways of implementing any particular instruction; for example, to 

generalise a condition involving comparison with a threshold, it is possible to change the 

threshold, change the comparison operator, or remove the condition altogether. Moreover, 

the possible changes depend on the nature of the condition itself. Consequently, Krust 

uses a collection of refinement operators where each operator is associated with one or 

more refinement types, and where each operator may be restricted to certain condition 

types (figure 4.4). This tool-set is a feature of Krust which is naturally extensible to 
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new shells, since new operators can be added to apply the existing refinements to new rule 

elements.

To Generalise: Remove Condition
Adjust Value
Adjust Operator

To Specialise: Delete Rule
Adjust Value
Adjust Operator

To Allow: Increase Priority

Figure 4.4: The Krust refinement operator toolset

The attribute types described in section 4.1.2 permit Krust to use a finer generalising 

and specialising mechanism than the rule/condition deletion/addition approach of some 

older refinement systems. Instead, Krust changes the value in OAV conditions just 

enough to have the desired effect for the particular refinement task. If no suitable change 

can be found, then Krust is still able to apply the remove condition operator (the ultimate 

generalisation) or the delete rule operator (the ultimate specialisation).

4.6.1 Changing conditions

This section describes how Krust refines a comparison by altering the bound within the 

OAV condition. Krust first queries the KB to determine the value actually taken by the 

attribute when the KBS is applied to the refinement case. Then, to specialise a condition, 

it adjusts the bound in the rule condition just far enough to prevent the condition from 

being satisfied; alternatively, to generalise the condition, it adjusts the bound just far 

enough to allow the condition to be satisfied. For example, suppose Krust wishes to 

specialise the condition cost of meal < 30. It queries the KB to determine that the 

value of cost of meal for the refinement case is 25. It makes the minimal change to the 

condition which will prevent it being satisfied by the refinement case, so generating the 

modified condition cost of meal < 25.

This approach can be applied unambiguously to single-bounded numerical and ordered 
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attributes. A few special cases remain to be dealt with.

Double-bounded attributes. Krust adjusts whichever of the two bounds requires the 

least change.

Tree-valued attributes. Krust generalises a tree-valued condition by moving to the 

least general ancestor node that causes the condition to be satisfied. For example, 

consider the geographical hierarchy shown earlier, and reproduced here in figure 4.5. 

Suppose the condition origin of wine = France fails, because the origin of wine is 

Greece. Krust will generalise the bound to be the least general ancestor of Prance 

and Greece, viz., Europe.

Figure 4.5: A tree-structured attribute

Specialisation is harder, since there may be no unique minimal specialisation which 

causes a condition to be unsatisfied. For example, suppose the condition origin 

of wine = Europe succeeds, with the origin being France. Then three possible 

specialisations exists (to Spain, Greece or Portugal), and Krust will generate one 

replacement rule for each specialisation. This is equivalent to replacing the original 

condition with the disjunction origin of wine = Spain OR origin of wine = 

Greece OR origin of wine = Portugal.

Discrete attributes Since discrete attributes have no order or other structure, a condi­

tion on a discrete attribute can be specialised only by replacing it with the condition 

False, or equivalently, deleting the entire rule, which is what Krust actually does. 

The condition is generalised by generating a new rule for each possible value of the 

attribute which is satisfied. (This is a complementary operation to specialising a 

tree-structured attribute). For example, suppose possible values of Colour are red, 

white, rose. Then suppose Krust is required to generalise the condition colour of
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wine = red. Krust first determines for which values of _C the condition colour

of wine = _C is satisfied. If these are white and rose, Krust replaces the original 

rule with two copies, one containing the condition colour of wine = white, and 

one containing the condition colour of wine = rose.

4.7 KB filtering

By this point, Krust has generated a number of refined KBs. It now applies a set of 

filters to remove the least successful, based primarily on their performance on particular 

training examples. Currently, two KB filters are provided.

The refinement case filter. This rejects any KB which does not solve the refinement 

case correctly. (The procedure for generating refinements does not guarantee that 

refined KBs will necessarily behave correctly even for the original training case, 

because of rule interactions.)

The chestnut filter. The user is allowed to select priority examples, or “chestnuts”, 

which the refined KBs must solve correctly. The chestnut filter rejects any KBs 

which do not solve all the priority examples correctly.

Priority examples were intended as a mechanism for representing important or typ­

ical cases within a domain. However, the priority example filter can also be used 

to assist with the iterative running of Krust on a sequence of refinement examples 

(figure 4.6). The figure shows Krust being run on a series of examples Cj. The 

initial faulty KB is KBq. At each step, Krust is given as input KBj_i and refine­

ment example ej, and generates a best refined KB KBj. This KB is then used as 

input to the next iteration. After each iteration, the refinement example Cj is added 

to the priority cases. The effect of this is to ensure that the chestnut filter rejects 

refinements which “undo” or otherwise interfere with refinements selected during 

earlier iterations.

4.8 Judgement

Krust’s final step identifies the most suitable from the remaining refined KBs. At this 

point, Krust makes use of a set of further pre-classified examples, or judging examples, in
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Figure 4.6: The iterative operation of Krust

addition to the original refinement example, and the priority examples mentioned earlier. 

The initial set of generated refinements may be huge, but the number is reduced by the two 

filtering processes. Therefore, it is worthwhile using a fairly intensive empirical evaluation 

for the selection process. In addition, it turns out in practice that an evaluation based 

purely on the KBs’ accuracy on the judging examples often fails to produce a unique best 

KB. Consequently, Krust uses a SEEK-like procedure to assign blame to each rule in each 

refined KB, and then calculates the blame for each KB as the average blame for its rules. 

Craw (1991) reports that this metric may be used to distinguish KBs of equal accuracy, 

but is rarely in disagreement with the accuracy ranking. She also suggests that other 

KB metrics might be used to evaluate the remaining KBs instead of the blame metric 

described here, or alternatively, it may be convenient for the user to make the decision 

about which KB is the most suitable.
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My own work on Krust has been directed towards the requirements of a design appli­

cation, for which it turned out that selecting the best KB is less of a problem than for the 

classificatory systems to which Krust was originally applied. Consequently, I have not 

needed to extend Krust’s judgement mechanism, but have instead reverted to a simple 

accuracy measure.

4.9 Krust as a generic refinement tool

Krust was originally developed as a tool for refining expert systems written in Prolog. 

In the course of its development, it was modified to handle further shells, and the goal 

arose of creating a tool whose framework and structures could handle multiple shells in 

a “tidy” way. The concept of a generic refinement tool was thus developed. A generic 

refinement tool should satisfy the following three requirements.

• It should be applicable to a variety of commercial shells.

• It should have a unified framework; i.e., it should not just be a collection of separate 

refinement tools.

• The framework should be extensible to apply to new shells.

The two principal features required in order to satisfy these requirements are:

• the ability to create an internal representation, or “knowledge skeleton”, for each 

rulebase, using a common knowledge representation for rule elements; and

• extensible toolsets of filters and refinement operators.

It is clear that Krust in its original form does not entirely satisfy these requirements, 

since it is applicable to only one shell. However, its use of an internal representation, and 

its use of tool-sets, facilitate its development into a generic refinement tool.

4.10 Conclusions

Craw et al. (1994) draw a distinction between Knowledge Base Refinement (KBR) and 

Theory Revision (TR), and shows that these two areas have different goals, and different 

strengths and weaknesses. The framework provided by this paper is useful for discussing 
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the strengths and weaknesses of Krust, comparing it with other systems, and providing 

motivation for the work described in later chapters.

The principal distinctions between the KBR and TR systems are

Domains. KBR refines potentially noisy expert systems, whereas TR refines KBS which 

are more complex, possibly involving recursion, but which are noise-free.

Control Strategies. KBR refines expert systems using a variety of control and conflict 

resolution strategies, whereas TR is usually applied only to Prolog programs.

Refinement operators. KBR generally includes more expressive operators than TR; for 

example, the ability to decrease or extend a numeric range.

Machine Learning Techniques used. KBR systems use techniques related to explanation­

based learning (Boswell 1986), so require relatively few examples, but require access 

to either an oracle or additional background knowledge. TR systems tend to use 

induction, so require many examples.

Testing. Most TR systems require many examples; KBR systems need few examples, but 

require access to an oracle or background knowledge to perform refinement.

The principal conclusion of Craw et al. (1994) is that KBR systems are more compatible 

with actual KBSs than are TR systems.

It will be seen that according to this categorisation, Krust is a KBR system. Its 

strengths and weaknesses are largely those of KBR systems in general. However, two 

features distinguish Krust from both KBS and TR systems. Firstly, it generates many 

refinements initially and then selectively removes those refinements or refined knowledge 

bases that are shown to be ineffective. Filtering includes both the use of meta-knowledge 

and actual testing of the refined KBs. The generation and testing of large numbers of 

KBs increase the chance of Krust’s finding the correct refinement, allow it to detect 

unexpected interactions between refinements, and ensure that the refinements eventually 

returned give the correct results for the actual KBS. Secondly, it has a number of features 

listed in section 4.9 which facilitate its development into a generic refinement tool.

The strengths and weaknesses of Krust may thus be summarised as follows.
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Strengths

• Its ability to learn from a small number of examples is helpful for industrial appli­

cations, where classified examples are typically scarce.

• Its knowledge representation mechanism permits relatively small changes to individ­

ual rule conditions, such as adjustments to numeric thresholds, and adjustments to 

terms within a generalisation/specialisation hierarchy.

• It takes account of a KBS’s control mechanism and conflict resolution strategy.

• Its hierarchical knowledge representation, with very general knowledge element types 

at the top of the hierarchy, makes it easy to extend the representation to include the 

knowledge elements from a variety of expert system shells.

• Its toolset of refinement operators is naturally extensible when new rule element 

types are introduced.

• Its ability to communicate directly with the shell interpreter gives Krust access to 

the actual behaviour of the KB. This makes Krust better able to take account of rule

interactions than systems such as Either, which perform their filtering immediately 

after the refinement generation phase. An alternative approach would be to simulate 

the KB’s behaviour, but this is less reliable. In addition, it would make it harder 

to extend Krust to new shells, since a new simulator would have to be written for 

each.

Weaknesses

• Its lack of inductive operators prevents Krust from learning new rule conditions, 

and greatly restricts its ability to learn new rules.

• Krust relies on a single example for most of the refinement procedure, using other 

examples only for KB filtering and judging at a late stage. The use of multiple 

examples at an earlier stage might be expected to improve its learning ability.

The features of Krust described above show that it is an appropriate choice for 

starting point for the development of a refinement tool which will be
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• applicable to real KBSs as used in industry, and

• suitable for development into a generic tool, which is applicable to a variety of 

different KBS environments.

The following chapters show how my work has built on Krust’s strengths and ad­

dressed its weaknesses, in the following ways.

• Krust’s knowledge representation is extended to incorporate rule-elements from 

other KBSs, specifically Pfes.

• The communication mechanism is adapted to cope with a situation where a KBS

can not be queried directly.

• Inductive operators are introduced. These overcome two weaknesses in the present 

Krust; they enable Krust to learn rules and conditions which previously it could 

not have learned, and they allow it to make use of multiple training examples at an 

earlier stage of the refinement process.



Chapter 5

Adapting Krust for use with Pfes

This chapter describes the modifications and developments I have made to Krust in 

order to apply it to the Pfes shell. Many of the properties of Pfes which required the 

adaptation of Krust, such as the use of arithmetic expressions and a database of facts, 

are shared with other shells, so that the techniques I used to solve them are applicable 

outside this particular application. The following extensions to Krust are described.

• A new mechanism was implemented for communicating between Krust and Pfes

KBSs, since the method used for PROLOG KBSs was not applicable (section 5.1).

• A mechanism was introduced for deriving a refinement problem from Pfes’s complex 

output (section 5.2).

• The behaviour of forward-chaining rules was analysed, and it was determined that 

no modification was required to Krust’s refinement procedure (section 5.3).

• Krust’s knowledge representation was extended to take account of features of Pfes 

not previously encountered (section 5.4).

• Krust’s refinement methods were modified to handle these new features of Pfes

(section 5.5).

A summary of the work described in this chapter has been published as Boswell, Craw

& Rowe (1996).

70
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5.1 Communication between Krust and Pfes

Krust needs to communicate with Pfes to obtain information about the KBS’s be­

haviour. The original Krust communicated with a KBS by submitting queries in the 

form of rule conclusions. It received two items of information in response: whether the 

conclusion was provable by the KB; and if it was provable, then what variable bindings 

resulted. However, Pfes does not allow the submission of such queries; the only possible 

interaction is to submit the standard input and run the program to generate a formulation.

Consequently, communication with Pfes had to be handled in a different manner.

1.

2.

3.

(GET-DRUG-DOSE 60 C
(f-s-attribute-has-value formulation drug <DRUG> O)

((<DRUG> . DRUG-A) (<> . WORLD-ROOT)) T)
(GET-DRUG-DOSE 60 C

(F-S-ATTRIBUTE-HAS-VALUE SPECIFICATION TRY-NUMBER <N0> <>)
((<N0> . 1) (<DRUG> . DRUG-A)) T)
(GET-DRUG-DOSE 60 A (GET-USER-ANSWER DOSAGE-QUESTION NIL <D0SE> <>) 
((<D0SE> . 10) (<N0> . 1) (<DRUG> . DRUG-A)) T)

4.

5.

6.

(WEIGHT-TOO-LOW 77 C
(F-S-ATTRIBUTE-HAS-VALUE SPECIFICATION 

MINIMUM-TABLET-WEIGHT <MIN-WEIGHT> <>)
((<MIN-WEIGHT> . 100) (<> . WORLD-ROOT)) T) 

(WEIGHT-TOO-LOW 77 C
(F-S-ATTRIBUTE-HAS-VALUE SPECIFICATION

TARGET-TABLET-WEIGHT <WEIGHT> <>)
((<WEIGHT> . 100) (<MIN-WEIGHT> . 100) (<> . WORLD-ROOT)) T) 

(WEIGHT-TOO-LOW 77 C (IS <WEIGHT> LESS-THAN <MIN-WEIGHT> <>)
((<WEIGHT> . 100) (<MIN-WEIGHT> . 100) (<> . WORLD-ROOT)) NIL)

Figure 5.1: A small part of a Pfes trace file

The solution lay in the use of Pfes’s tracing mechanism. Pfes is able to generate a 

trace file recording details of its activity, and it turns out that the information previously 

derived from queries can also be extracted from this file. Figure 5.1 shows a small selection 

from a trace file. (The numbers on the left were added later). Each entry in the trace 

describes a single attempt to satisfy a rule element. The entry records whether the attempt 

succeeded or failed, as well as the bindings of all variables which appear in the rule element.

Entries contain the following items.
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Rule name.

Index number. When Pfes attempts to fire a rule, it tests each condition in turn, 

and each test generates an entry in the trace file. The series of tests associated 

with a single attempt to fire a rule are assigned an index number. For example, 

the first three entries in figure 5.1 represent a successful attempt to fire the rule 

GET-DRUG-DOSE, and they all have index number 60. This indicates that there have 

been 59 other rule firing attempts before the firing of get-drug-dose.

Element type. ‘C’ for condition, ‘A’ for action.

Rule element. The condition or conclusion.

Bindings. The bindings of all variables occurring in the condition.

Result. T or NIL, standing for success or failure. Note that actions always succeed.

The first three records show the two conditions of rule GET-drug-dose succeeding, 

and the rule’s action being executed. The next two records show the first two conditions 

of the rule WEIGHT-TOO-LOW succeeding. The last record shows the last condition of 

WEIGHT-TOO-LOW failing, because a weight of 100 is not less than a MIN-WEIGHT of 

100.

This is exactly the type of information that Krust requires about the behaviour of a

KBS.

• Is rule R satisfied, and what variable bindings result?

• If rule R is not satisfied, which condition(s) cause it to fail?

Pfes’s trace file can provide answers to both these questions, with one small exception. 

When a rule fails to fire, the entries in the trace for that rule will include details of the 

first unsatisfied condition only, since later conditions will never have been tested. This 

potential difficulty, and its solution, is discussed in section 5.5.1.

The nature of the trace file means that Krust can now determine more directly 

whether a rule has fired. When communicating with a PROLOG database, Krust could 

determine whether a rule had fired only by testing each condition in turn. However, 
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when reading a PFES trace, Krust can simply search for entries representing the action 

statement of the given rule. For example, the rule classification routine uses a predicate 

(succeeded-with-bindings rulemame bindings)

which determines whether rulemame succeeded with the given bindings. If this predicate 

is called with the following arguments

(succeeded-with-bindings get-drug-dose ((_dose . 10)))

then Krust looks for entries in the trace file in which an action from rule get-drug-dose 

has been executed with <dose> bound to 10. Entry 3 in figure 5.1 records such an action, 

so the function returns T.

A second Krust function which returns information about KBS behaviour has the 

form

(notjfires rulemame bindings)

This returns the first condition to fail for each unsuccessful attempt to fire rulemame. It 

also returns the bindings for all variables in each failing condition. Thus, if it is called 

with the following arguments

(notTires weight-too-low nil) 

it will return the condition

is <WEiGHT> less-than <min-weight> 

with variable bindings

(<WEIGHT> . 100) (<MIN-WEIGHT> . 100)

This information is used by Krust to determine the condition in WEIGHT-TOO-LOW which 

should be generalised in order that the rule may fire, and also what degree of generalisation 

is necessary. For example, the rule weight-too-low could be enabled to fire by changing 

the comparison operator less-than to less-than-or-equal.

5.1.1 Communication between different platforms

Krust runs on a Sun workstation and PFES on a PC, so some form of networked com­

munication is required between the two programs. The data to be transmitted consists of 

a small number of files, each of which must be written by one of the programs and read 

by the other (problem input, trace, formulation and refined KBs). For this reason, I used 

PC-NFS to enable communication between the programs; it permits PFES to read files 

written by Krust, and vice versa.
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Figure 5.2: Interaction between Sun and PC during the running of Krust

Figure 5.2 shows the interaction between Sun and PC for a single run of Krust. 

First, an example is selected - Example 1 in the figure. This is then passed to the faulty 

version of Tfs, and to an oracle. The two resulting formulations are compared, and the 

differences used to generate input to Krust. In addition, the faulty Tfs generates a trace 

file. While Krust is running, it generates queries about the behaviour of Tfs which 

are answered by searching through the trace file. Once Krust has generated a set of 

refined KBs, it needs to test them on the refinement and judging examples, so it passes 

the KBs to the PC. The PC then runs these refined KBs on the examples, and passes the 

resulting formulations back to Krust. Finally, Krust compares these formulations with 

the oracle’s formulations, and is thus able to select the best refined KB.

5.2 Pfes’s output - selecting the refinement problem

One consequence of Pfes’s formulation task is that its output is a compound answer, in 

contrast to the single result typically output from a diagnostic system. For convenience, 
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the example of problem input and output from Chapter 3 is reproduced here as figure 5.3, 

which shows the complexity of the output. My experience with Tfs-1A revealed that its 

output typically differs from the correct values at only one or two points, but some exam­

pies can have as many as 12 points of difference. On the other hand, such a large number of 

differences was commonly observed for Tfs-1b. Krust’s standard procedure for handling 

multiple faults is to generate refinements for each fault independently, and then combine 

them by taking the cartesian conjunction (section 4.5) of the sets of refinements for each 

fault (Palmer & Craw 1995).

The resulting refinements are then passed to Krust’s usual refinement filtering pro­

cedure to remove conflicting and redundant refinements. However, even after filtering an 

excessive number of refinements are produced by this procedure, so I have adopted an 

alternative approach to the refinement of multiple faults in Tfs.

User Input:
Drug: Drug-A
Dose: 60 mg
No of fillers: 2

Specification:
full-stability: Yes 
drug-filler-concentration: 0.9 
minimum-tablet-weight: lOOmg 
maximum-tablet-weight: 800mg 
target-tablet-weight: 260mg 
start-strategy: strategy-A 
filler-concentration: 66.9% 
typical-disintegrant: Maize-starch 
disintegrant-concentration: 0.05 
tablet-weight: 252.2mg 
total-concentration: 97% 
tablet-diameter: 8.73mm
... various other properties...

Formulation:
Tablet weight: 250mg
Fillers: Lactose 66.7%,

Calcium phosphate 2.4%
Binder: Gelatin 4.1%
Lubricant: Stearic acid 1.0%
Disintegrant: Croscarmelose 2.1%

Figure 5.3: An example of user input, specification and formulation

This approach takes advantage of the fact that Tfs calculates the values in the spec­

ification and formulation in a fixed order, and that later values are frequently dependent 

on earlier values. Consequently, if an early value is incorrect, it is likely that all the values 
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dependent on it will also be incorrect. Therefore there is no point in generating refine­

ments for all the related faults. The sensible procedure, for an automated debugger as for 

a human one, is to fix the independent values first, and if other faults are still observed, 

deal with them in subsequent iterations.

The following procedure is used to determine the independent incorrect attribute(s). 

A dependency chain linking attributes a and z is defined to be a sequence of rules 

Ri,R2, ..., Rn where includes a condition referring to the value a, R^ includes a 

conclusion setting the value of z, and for each pair R^, Rk+i the conclusion of Rk matches 

a condition of Rk+i- The existence of such a chain indicates that the value of a may affect 

the value of z, so we call z a dependent attribute. Given a set of faulty attributes A, for 

each Qi e A Krust removes from A all attributes which depend on np It then uses those 

that remain as input to the refinement process. For example, given the input

Dose 360 mg, Drug A, Number of fillers 2

the outputs of Tfs-1A and the oracle differ in many respects (figure 5.4). However, all 

these attributes depend on TARGET-tablet-WEIGHT, so that discrepancy for the refine­

ment case submitted to Krust has the following form.

System: TARGET-TABLET-WEIGHT of SPECIFIGATION = 400

Oracle: target-tablet-weight of specification = 450

Incidentally, it may seem surprising that the system and oracle have different values for 

the number of fillers, since this attribute is included in the user input. The explanation 

is that the user chooses the preferred number of fillers; the formulator may override this 

choice if necessary, and on this occasion the oracle has done so.

5.3 Forward-chaining rules

This section discusses the effect of Pfes’s task-based control, and its rule chaining di­

rection, on the rule classification and refinement process. First it shows that the process 

of refinement is independent of Pfes’s tasks, and to a large extent independent also of 

the rule chaining direction. It then describes the different ways in which forward-chaining 

rules from the same conflict set can interact, and shows how these different interactions 

affect refinement.
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Figure 5.4: Differences in the output of Tfs-1A and the oracle

Specification Attribute System value Oracle value
Target-Tablet-Weight 400 450
Drug-Concentration 9/10 4/5
F iller- Concentration 0.0 0.1
Current-Strategy Strategy-L Strategy-A
Acceptable-Stability (80 150) (90 150)
Acceptable-Yield-Stress (240 600) (80 160)
Acceptable-Srs (0 10) (5 25)
No-Of-Fillers 2 1

Formulation Attribute System value Oracle value
Tablet-Weight 388.0 427.5
Tablet-Weight 390 430
Filler-List (lactose 0.0) (calcium-PHOSPHATE 0.105)
Binder (gelatin 0.041) (gelatin 0.021)

5.3.1 The role of tasks in refinement

Pfes is a task-based system, where each task has an associated rule-set. This section 

shows that rule chaining is independent of the division of rules into rule-sets, so that the 

refinement process need not take account of Pfes’s tasks.

A rule Ri is said to chain with a rule if the conclusion of rule R^ satisfies a condition 

of rule Rule chaining in PFES is accomplished by the setting and reading of attribute 

values, or by the writing and reading of agenda items. For example, a rule which adds an 

item to an agenda chains with a rule which reads an item from the same agenda. Since 

attribute values and agendas are independent of tasks, it follows that Krust’s analysis of 

rule-chaining can ignore the fact that rules are assigned to different tasks. For example, a 

rule in task CHOOSE-FILLER includes the action:

set the value of acceptable-stability to be <target-stability> 

and another rule in task apply-filler-STRATEGY includes the corresponding condition:

ACCEPTABLE-STABILITY haS value <MIN-STABILITY>
The allocation of these two rules to different tasks means that the second rule will not 

be able to fire until task apply-filler-strategy has been invoked, which may happen 

before or after task choose-filler is completed. Nonetheless, once the second rule is 

given a chance to fire, it is able to read the value written previously by the first rule. 

Therefore, for purposes of refinement, the first rule may be regarded as chaining with the 
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second.

5.3.2 The refinement of forward-chaining rules

The rules within each of Pfes’s rule-sets are executed by forward-chaining. Pfes is there­

fore a data-driven system. In contrast, the Prolog KBSs to which Krust was originally 

applied were backward-chaining, or goal-driven. However, since Krust’s analysis of a 

KBS’s behaviour is goal-driven, Krust works backwards from the conclusion to the initial 

facts regardless of the order in which the rules were originally executed. For example, 

suppose a rule base contains the fact A, rule 1: A —)■ B and rule 2: B —> (?_, where 

C- is an erroneous conclusion. Under forward-chaining, rule 1 will fire first, then rule 2. 

However, the trigger for refinement is the conclusion <7-, since that is the only aspect of 

the system’s behaviour initially known to be wrong. The blame allocation process will 

then work backwards from (?_ to rule 2 and then rule 1.

However, although refinement can proceed backwards from the goal, regardless of 

the firing direction of the rules, there are situations in which the behaviour of forward 

and backward chaining rules differ. When dealing with backward-chaining rules, Krust 

makes the assumption that inference will stop when an end-rule fires, so that adjusting the 

relative priority of end-rules is a useful operation. However, no such cessation applies to 

other rules, which will fire as required to achieve any given goal, so changing their priority 

serves no purpose. The rule behaviour for forward chaining rules is slightly different. 

To examine this, it is useful to introduce the concepts of potentially clashing rules and 

self-disabling rules.

5.3.3 Potentially clashing rules

Potentially clashing rules are those for which there exists a rule condition which matches 

each of their conclusions. For example, consider the following three rules.

Rule INSDLUBLE-FILLER-RULE
If

Then
set the value of binder in formulation to be gelatin
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Rule INSOLUBLE-DRUG-NOT-FILLER
If

Then

set the value of binder in formulation to be pvp

Rule SOLUBLE-INGREDIENTS-RULE
If

Then

set the value of binder in formulation to be maize-starch

The conclusions of these rules all match the condition

BINDER has value <binder> in formulation 

so the rules are potentially clashing.

In principle, the behaviour of potentially clashing rules under forward-chaining can be

of four types, depending on the rule-element types which form their conclusions.

Overwriting. This describes rules whose conclusions write to a slot which can hold only 

one value, so that each rule in turn overwrites the value written by the previous rule. 

This is possible in Pfes, but does not occur in Tfs.

Successive. This describes rules whose conclusions are effectively writing to a multiple­

value slot, so that each rule causes values to be appended to the values contributed 

by earlier rules. Examples of this type are rules that conclude ADD ... to bottom

OF AGENDA in TFS.

Reverse successive. This category is similar to ‘successive’, except that the values being 

written are stored in a stack rather than a queue, so that the value written last is

read first. For example, the conclusion ADD . . . TO TOP OF AGENDA in Pfes would

behave in this way, but does not occur in Tfs.

5.3.4 Self-disabling rules

A self-disabling rule is defined as a rule whose conclusion matches one of its exceptions. 

These occur frequently in Tfs, for example.
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Rule INORGANIC-FILLER-RULE
If

<stability> is after gelatin on stability-agenda

<STABiLiTY> is greater-equal 90

Then
set the value of binder in formulation to be gelatin

Unless
BINDER has value <any> in formulation

Here the conclusion sets the value of binder, and the exception checks whether the value 

of binder has already been set. inorganic-filler-rule is one of a set of self-disabling 

rules for choosing a binder. When any one of them fires and sets a value for the binder, 

all the other rules are disabled.

Consider next the behaviour of a group of potentially-clashing rules which are also self­

disabling. As soon as one of the rules fires, all the others will be disabled. Consequently, 

only the highest priority rule in the group that is satisfied will fire. Note that this behaviour 

is similar that to a group of potentially-clashing end-rules under backward-chaining, where 

again only the highest-priority rule will fire.

5.3.5 The refinement of potentially-clashing rules

The effect of rule priority on the behaviour of potentially-clashing forward-chaining rules 

depends on the type of their conclusions. For rules with successive conclusions, as defined 

in section 5.3.3, and for self-disabling rules, high priority rules take precedence, so Krust’s 

original algorithm is still appropriate. For overwriting and reverse successive rules, low 

priority rules would take precedence, though this phenomenon does not in fact occur in 

Tfs, so Krust has not yet been adapted to handle such rules.

5.4 Rule element representation

One goal in the development of Krust is the creation of a generic refinement tool, appli­

cable to a variety of KBSs. When Krust is applied to a KBS, it has to build an internal 
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representation of the rules in the KBS, in order to reason about the way in which the 

rules may interact. Krust therefore requires a generic knowledge representation schema, 

within which any rule from a currently refinable KBS can be represented. This section 

describes Krust’s knowledge representation schema.

5.4.1 Terminology

First it is necessary to introduce some terminology. It is assumed that rules to which 

Krust is applied will have the following form.

If Conditioni

Condition2

Condition,!

Then Conclusioni

Conclusion2

Conclusion,,!

Each condition and conclusion is said to be a rule element^ and is made up of one or 

more knowledge elements. The reason why two different terms are required is that not 

all knowledge elements are rule elements in their own right. A rule element is therefore a 

special class of knowledge element; one that can form a rule condition or conclusion. For

OAV Triple-----
If FTemp of Cell -- ?Ftemj)

Assignment-----► ?CTemp = 5*  (?FTemp -32) / 9
_ . ?CTemp > 35Comparison

Then
OAV Triple-----► Condition of Cell = Overheating

Arithmetic

Figure 5.5: A rule, broken down into knowledge-elements

example, figure 5.5 shows a rule broken down into knowledge elements. (The meaning of 

the various knowledge element types mentioned in figure 5.5 is discussed below). The rule’s 

second condition is the assignment ?CTemp = 5 * (?Ftemp - 32) / 9. This is itself a 
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knowledge element, and contains within it a smaller knowledge element, the arithmetic 

expression 5 * (?Ftemp - 32) / 9. The assignment forms a rule condition in its own 

right, so is a rule element. However, it would be meaningless to include an isolated 

arithmetic expression as a rule condition or conclusion, so arithmetic expressions are not 

rule elements.

5.4.2 The knowledge element hierarchy

The goal of Krust’s knowledge representation is to classify the knowledge elements which 

occur in KBS rules, and to arrange them in a meaningful hierarchy.

Knowledge Element

Assignment Expression

Figure 5.6: Krust’s basic knowledge elements

Although it first appears that there is a wide variety of representations used by these 

tools, there are in fact only a limited number of roles that a knowledge element can play. 

Three basic classes of rule elements have been identified, corresponding to these roles 

(figure 5.6).

Tests are conditions that can succeed or fail, for example, comparisons. All other condi­

tion types, such as assignments and calculations, should always succeed.

Expressions are knowledge elements that return a value.

Assignments have the obvious meaning.

A fourth role, that of causing a variable to be bound, is a useful concept in the refinement 

generation process (see, for example section 5.5.4) but does not appear in the hierarchy, 

since it is a property of the way a rule element is used, rather than of the rule element 

itself.

These roles can be further sub-divided, giving the hierarchy shown in figure 5.7. It will 

be seen that tests and expressions both have a number of sub-types; these are described 

below.
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Tests are currently of two types: comparisons and goals.

Comparisons are equations or inequalities.

Goals are rule elements that can be involved in chaining. For example, a conclusion 

that sets a value can chain with a condition that uses that value, so both are 

classified as goals. There are two types of goal: OAV triples, and orderedJerms.

OAV triples have been simplified since the original Krust implementation; 

they no longer include upper and lower bounds. Instead, such bounds 

are now represented by separate comparison conditions. For example, the 

condition that the stability of filler is greater than 90 could previously have 

been represented by a single upper-bounded OAV:

stability of filler > 90

Krust now represents this condition as an OAV followed by a comparison:

stability of filler is <stability>

<stability> < 90

Ordered terms consist of a keyword followed by arguments, as in Clips. 

Two ordered terms unify if they have the same keyword and arity, and the 

corresponding arguments unify. For example, consider these two ordered 

terms.

agenda-attribute(property-agenda, <filler>, <stability>)

agenda-attribute(property-agenda, lactose, 96.9)

They both have arity 3, keyword agenda-attribute, and their arguments
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unify, with <filler> bound to lactose, and <stability> bound to 96.9. 

Hence the two ordered terms unify.

Expressions are knowledge elements that return a value. This class is divided into 

KRUSTExps and KBSExps. The meaning of these terms is summarized here; further 

details are supplied in section 5.4.5.

KRUSTExps are those which can be be evaluated within Krust.

KRUSTExps are divided into Arithmetic Expressions and Lfunction-calls.

Arithmetic Expressions make use of the four operators -b, —, x, /.

Lfunction_calls are expressions which can be translated into Lisp.

KBSExps include all those expressions which can not be evaluated within Krust.

They are passed back to the original KBS for evaluation. KBSExps are intended 

to deal with the situation where an expert system shell allows calls to procedural 

code, such as C functions, in rule elements.

All the knowledge elements appearing in figure 5.7 have now been defined. An example of 

a rule, broken down into knowledge elements, appears here for convenience as figure 5.8, 

which is a copy of figure 5.5. There are two aspects of the hierarchy which require fur­

ther explanation: the degree to which rule elements are actually nested, and the use of 

KRUSTExps and KBSExps by Tfs.

OAV Triple---- <
If FTemp of Cell == ?Ftemp

Assignment-----► ?CTemp = 5 ’ (?FTemp -32) f 9
„ ?CTemp > 35Comparison — Then
OAV Triple-----► Condition of Cell = Ox'erheating

Arithmetic

Figure 5.8: A rule, broken down into knowledge-elements

5.4.3 Nested knowledge elements

In principle, each rule element can consist of an arbitrarily deeply nested structure of 

knowledge elements. In practice, most rule elements consist of a single knowledge element. 
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with no nesting. The exceptions are assignments and arithmetic expressions. The right­

hand side of an assignment can itself be an expression, and arithmetic expressions are 

defined recursively. Consider for example, the following Tfs rule condition

(lisp-to-value

(*  100 (/ (- <TABLET-YP-FAST> <TABLET-YP-SLOW>) <TABLET-YP-SLOW>))
<TABLET-SRS>)

The effect of this condition is to perform the calculation

100 * (<TABLET-YP-FAST> - <TABLET-YP-SL0W>) / <TABLET“YP-SL0W>

and then to store the result in the variable <tablet-src>. It is therefore translated into 

the following Krust assignment, where the right-hand side of the assignment is itself an 

arithmetic expression.

_TABLET-SRC = 100 * (_TABLET-YP-FAST - _TABLET~YP-SLOW)
/ _TABLET-YP-SL0W

5.4.4 Authorship of the knowledge hierarchy

The only knowledge element used by the original Krust was the OAV triple. Since then, 

other knowledge elements were introduced to serve the needs of other KBS development 

tools: Clips, PowerModel and Pfes.

The initial application of Krust to subsets of Clips and PowbrModel, and the 

development of the knowledge hierarchy shown in figure 5.7, were carried out by other 

members of the research group. This work, however, covered only a small proportion of 

the knowledge elements found in Clips and PowerModel.

I was responsible for the addition of the Lfunction_call knowledge element, and the 

representation of Pfes agenda operations as ordered terms. In addition, I was responsi­

ble for the more recent extensions of the knowledge hierarchy described in section 5.4.6. 

These permit the representation of more complex CLIPS rule elements, which could not 

be represented within the hierarchy shown in figure 5.7.
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5.4.5 The use of KRUSTExps and KBSExps by TFS

The fact that Pfes is unable to accept individual queries means that Krust can not pass

KBSExps to Pfes for evaluation, so all value-returning expressions must be represented 

as KRUSTExps. However, this is not a problem, given that Krust is written in Lisp and 

Pfes rules use a Lisp-like syntax; in particular all value-returning expressions in Pfes 

rules are written in Lisp.

If Pfes had not been written in Lisp, then two approaches to handling Pfes expres­

sions might have been considered.

• Extend the Pfes interface so that expressions can be passed to the KBS for evalu­

ation. This would have required assistance from the Pfes developers.

• Provide Krust with an interpreter for Pfes expressions.

Pfes’s use of Lisp facilitated Krust’s handling of PFES expressions, but one small 

difficulty remained. This was caused by Tfs’s use of a few simple functions which are 

built-in in Pfes but not Lisp. There were two possible solutions to this; to translate the 

Pfes functions into Lisp, or to provide Krust with definitions of these functions. I could 

find no compelling reason to prefer one approach over the other, and in fact adopted the 

second. An example of such a Tfs function is min-val, which takes as argument a list of 

numbers and returns the minimum, min-val is used for example in the Tfs condition

is <MiN-SRS> equal-to (min-val <range>)

This condition is translated into a Krust comparison, where the right-hand side of the 

comparison is an Lfunction_call.

<min-srs> = lfunction_call(min-val, <range>)

Since min-val is not a Lisp function, Krust must be provided with a definition of this 

function which can be executed when required, min-val can easily be defined using the

Lisp function min.

5.4.6 Further development of the knowledge hierarchy

The hierarchy shown in figure 5.7 has grown during the course of the development of 

Krust, and it is expected that further terms will be added in the future as new KBS 

shells require. However, the use of a hierarchy allows new rule elements to be added
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within a consistent framework, and encourages the implementation of procedures which 

take advantages of properties shared between different elements. This can be illustrated 

with reference to recent work which I have carried out as part of the KRUSTWorks^ project, 

which aims to develop Krust further as a generic tool. This work has required Krust to 

be applied to the Clips and PowerModel shells. These include a number of novel rule 

elements which were not dealt with in the course of the initial work on these applications by 

other members of the Krust group. Two such elements from Clips, whose representation 

within Krust I have recently implemented, are unordered facts, and field 

within patterns.

Clips unordered facts are represented by a template name, followed by 

key word/value pairs, for example

constraints

a series of

(excipient (name mannitol)

(yp 90.2)

(solubility 166))

OAVs andSince unordered facts can chain, but do so in a slightly different way from 

ordered_terms, they are represented within the knowledge hierarchy by a new sub-class of 

goal called av.tuple. In addition, a new method has been written to define chaining for 

av-tuples.

The second novel type of rule element, field constraints, appear as tests within Clips 

patterns. For example, the following pattern

(temperature water ?t & : (> ?t 60))

matches facts of the form

(temperature water n)

where n > 60. This pattern can be represented in Krust by a comparison whose left-hand 

side is an OAV, as follows:

(temperature of water is ?t) > 60

This did not require any extension of the knowledge hierarchy, but it did require modifi­

cations to those operators that apply to comparisons.

^KRUSTWorks: Developing a Toolkit for Automated Knowledge Refinement. EPSRC grant GR/L.38387
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Thus, experience with Pfes, Clips and PowerModel has shown that Krust’s 

knowledge hierarchy is readily extensible to handle the wide variety of rule elements found 

in different shells.

5.4.7 The Pfes database

The knowledge in PROLOG KBSs that can be refined by Krust is divided into two parts: 

the KB, consisting of a set of rules, and a set of facts associated with each example. The 

situation with Pfes is more complex, since the knowledge is stored in three parts: rules, 

the facts associated with each example (the drug, dosage and number of fillers), and a 

database of chemical facts, or background knowledge. The rules and facts correspond to 

those in the PROLOG KBSs, but the knowledge in the database is new.

As an example of the records appearing in the database, here is the entry for the filler

MANNITOL.

(defobject mannitol

(yp 90.2)

(yp-fast 161.0)

(SRS 78.5)

(solubility 166)

(IS-A filler)

MIXES-WITH (magnesium-CARB ONATE CALCIUM-PHOSPHATE

calcium-dihydrogen-phosphate))

In order to represent these facts within Krust’s existing framework, they are trans­

lated into rules with an empty condition list. For example, the first few facts in the above 

database entry are translated into the following Krust rules.

Rule mannitol_rule1

If
Then

YP of MANNITOL =90.2

Rule mannitol_rule2

If
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Then
YP-FAST of MANNITOL = 161.0

Rule mannitol_r,ule3

If

Then
SRS in MANNITOL =78.5

The presence of these conditionless rules, derived from database entries, permits the cre­

ation of a new refinement implementation operator designed to deal with the situation 

where a fact is missing from the database. This is described in section 5.5.1.

5.4.8 Agendas

There is a group of rule elements that appear at first to be unique to Pfes, and therefore 

potentially difficult to represent within a common framework. These agendas^ are untyped 

lists, where items can be written and read from the top or bottom of the list. Additionally, 

items can be read from directly below any other item on the list. Agendas are used 

to pass data between rules which generate values and those which subsequently test or 

filter them. For example, the following rule copies fillers from STABLE-FILLER-AGENDA to

FILLER-AGENDA.

Rule GET-STABLE-FILLERS
If

<FILLER> is on STABLE-FILLER-AGENDA
Then

add <FiLLER> to bottom of filler-agenda

The following rule then removes fillers whose concentration is too high, thus functioning 

as a filter.

Rule REMOVE-EXCESSIVE-FILLERS
If

<FILLER> is on FILLER-AGENDA

^Pfes agendas have no connection with the standard scheduling connotation.
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MAX-LEVEL has value <level> in <filler>

FILLER-CONCENTRATION haS value <CONC> in SPECIFICATION
<CONC> is-greater-than <level>

Then

remove <filler> from filler-agenda

Agendas can thus be seen as a mechanism for storing data, usually data that has passed 

some test. This suggests that the procedural commands for adding items to an agenda, 

and then reading them off it, might be translated into declarative statements making use 

of attributes and values. For example, both the statements

<FILLER> is on AGENDA
and

add <FiLLER> to bottom of agenda 

could be represented by an OAV triple such as

agenda of <FiLLER> is true
Whatever representation for agenda operations is used must chain in the same way the 

operations themselves do. The OAV representation satisfies this requirement. For example 

the Pfes action

add <FiLLER> to bottom of agenda 

chains with the Pfes condition

<FILLER> is on AGENDA
and the Krust OAV representations (now the same for both action and conclusion) chain 

in the same way.

In practice, however, it turns out that there is a need to record more information 

than this, so rather than an OAV, an ordered term must be used. These too can be 

selected so as to chain in an appropriate way. The need for more information arises from 

the fact that other agendas have a more complex structure, so that a single agenda can 

store, for example, both excipients and their stabilities. The number of different structures 

actually employed within Tfs is fairly limited. Two of the most common types are shown 

in figure 5.9. Each example shows the contents of an agenda at some point during the 

running of Tfs, together with the Pfes rule elements that write to and read from the 

agenda, and the Krust representation of these elements.
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Snapshot of FILLER-AGENDA

CELLULOSE LACTOSE CALCIUM-PHOSPHATE

Pfes Read/Write Operations on FILLER-AGENDA

Conclusion: add <FILLER> to bottom of FILLER-AGENDA 
Condition: <FILLER> is on filler-agenda

KRUST representation of each operation
on-agenda(FILLER-AGENDA, <FILLER>)

Snapshot of PROPERTY-AGENDA

CELLULOSE 46.2 LACTOSE 158.8 CALCIUM-CARBONATE 851.1

Pfes Read/Write Operations on PROPERTY AGENDA

Conclusions: add <FILLER> to bottom of property-agenda 
add <STABILITY> to bottom of PROPERTY-AGENDA

Conditions: <FILLER> is on PROPERTY-AGENDA
<STABILITY> is after <FILLER> on PROPERTY-AGENDA

KRUST representation of each of these paired operations
On-agenda(PR0PERTY-AGENDA, <FILLER>) 
agenda-unIabelled-attribute(PROPERTY-AGENDA, <FILLER>, <STABILITY>)

Figure 5.9: Agendas and their PFES operations

The Filler-Agenda is simply a list of excipients; their presence on the agenda indicates 

that they have passed a stability test.

The Property-Agenda again shows a list of excipients, but now each excipient has an 

associated floating-point number, representing the value of a mechanical property.

In each of these cases, the rule elements which read and write the agenda items can 

be represented in Krust as ordered terms, as shown in figure 5.9. However, the trans­

lation process is complicated by the fact that the semantics of the Pfes conditions have 

sometimes to be determined by their context, whereas in the Krust representation the 

semantics have to be explicit in each individual rule element. This requirement is imposed 

by the needs of the refinement procedures, which work with the Krust internal represen­

tation. For example, the fact that <STABILITY> is a property of <filler> is implicit 

in the Pfes statements which write a filler to the agenda, followed by its stability. The 

translator has to recognise that when two successive actions occur in the conclusion of a 
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Pfes rule, one writing an excipient and the other a number, then the number is to be 

regarded as an attribute of the excipient. This semantics can then be made explicit in the 

Krust representation, where the agenda-unlabelled-attribute statement includes both 

the filler and its stability as arguments. One consequence of this is that Pfes commands of 

the type add <item> to bottom of <AGENDA> have different Krust representations, 

depending on whether <item> represents an excipient or an attribute.

The patterns currently recognised by the translator are listed below. All the patterns 

are ways of writing a series of excipients to the agenda, where each excipient is optionally 

followed by a series of numbers representing values of properties of that excipient.

• The rule contains a single action to write a value to an agenda, so that the elements 

on the agenda will all be of the same type. This corresponds to the situation in

FILLER-AGENDA,

• The rule contains a pair of successive actions, both writing values, where the second 

value is numeric. The fact that the value is numeric is identified by the fact that the 

Pfes variable representing it includes the strings CONG or WEIGHT.

• The rule contains three successive actions, where the second and third both write 

numeric values. This is an extension of the previous case; this time, both the second 

and third items written are values of properties of the first item.

• The rule contains a sequence of actions, where the second and succeeding even 

numbered actions write a fixed string, rather than a variable, to the agenda. These 

strings may be regarded as labels for the values that follow.

Corresponding patterns may be observed in the conditions of rules that read from the 

agendas. In each case, both reading and writing actions may be translated into Krust 

ordered terms, in a similar way to the examples shown in figure 5.9.

It will be seen that these patterns are application-specific and require the use of a little 

application-specific meta-knowledge to recognise; this is unfortunate, but the difficulty is 

caused by the flexible nature of the agenda structure, which makes it difficult to predict in 

advance how it is going to be used. A human seeking to understand the code would have 

the benefit of comments and meaningful variable name; an automatic translator requires 

background knowledge and examples of programming cliches.
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5.4.9 Rule translation

During the extension of Krust to apply to Clips and PowerModel, another member 

of the research team developed a tool to assist with the development of rule translators 

(Palmer 1995). The user must provide grammar rules describing the syntax of a given 

KBS’s rules, together with functions which will create the appropriate Krust representa­

tion for individual knowledge elements. The tool then uses these grammar rules to build 

a translator for the KBS. Other members of the team have built translators for a subset 

of Clips, Prolog and PowerModel rules using this tool.

However, the tool could not be applied to Pfes rules, because the elements in a Pfes 

rule object can appear in an arbitrary order. Instead, I was obliged to write a separate 

translator by hand. However, the work involved in writing a PFES-specific translator was 

not much greater than would have been required to write grammar rules for use by the 

parser.

5.5 Extension of refinement procedures to handle Pfes rule

elements

Pfes includes a number of features which were not possessed by the PROLOG KBS’s to 

which Krust was originally applied. This section describes changes and additions which 

I have made to Krust’s refinement procedures in order to handle these features. The 

features, and the corresponding extensions to Krust, are as follows.

• Pfes’s use of a fact database requires the creation of an add fact operator. When 

a gap in the database is identified, this operator creates the required new fact.

• The use of variables in Pfes’s rules requires the addition of a new class of target­

rule: wrong-fire. I describe how wrong-fire rules are refined, and give an example. 

This example also illustrates how the refinement process is able to reason about 

arithmetic expressions.

5.5.1 Refining the fact database

The presence of a database of facts introduces two new faults which can arise in a KB: 

a missing fact, and an incorrect fact. This section describes the refinement operator 
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add_f act which can learn a missing fact. The mechanism for dealing with incorrect facts

is described in section 5.5.3, followed by an example in section 5.5.4.

Pfes facts are represented within Krust as rules having no conditions, where the 

conclusion is an OAV. For example.

Rule lactose_rule4

If
Then

SRS of LACTOSE =21.3

Facts are read by rule conditions which chain with the conclusions of these rules, and bind 

a variable as a result. For example, the condition

SRS of LACTOSE = <SRS>
would chain with the above lactose_rule, binding <SRS> to 21.3.

The immediate effect of a missing fact will be that the rule condition which should 

chain with it will fail. If this prevents a rule from firing which ought to have fired, the 

result will be incorrect output from the KBS. Suppose a rule R fails to fire because a 

missing fact prevented condition C from being satisfied. Then if R is an end-rule, this will 

lead directly to incorrect output from the KBS, with R itself being classified as a no-fire 

rule. Alternatively, the failure of R may lead to the failure of a whole chain of rules, where 

the last rule in the chain becomes a no-fire rule. In either case, the result of 7?’s failure is 

the appearance of a no-fire rule.

When Krust tries to fix this no-fire rule, it will generate refinements to enable R, 

which it can do either by generalising (7, or by enabling a rule whose conclusion matches 

C. The new add_fact operator is therefore associated with ‘generalise’. Given a failed 

condition C in rule 7?, the add Tact operator will create a new fact which will match C. 

Moreover, it will choose the new fact in such a way as to satisfy subsequent conditions in 

R.

To limit the use of the add_fact operator, the user must provide it with a list of 

the attributes which are included in the database (a new form of meta-knowledge); the 

operator will generate a new fact only if the missing attribute appears in this list.

The remainder of this section uses an example to explain how the add_fact operator 

creates a fact which enables a previously unsatisfied rule. An example of a fault requiring 
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the application of this operator is shown in figure 5.10. This shows the rules responsible 

for a fault in which Tfs incorrectly recommends the filler Calcium Phosphate. The reason 

is that the max-level of Calcium Phosphate is missing from the database, so that the 

second rule, rbmove-excessive-FILLERS, fails to fire and hence fails to remove Calcium

Phosphate from the filler agenda. Hence Calcium Phosphate remains on the agenda to be 

read by get-insoluble-filler.

An experiment is therefore created to generalise the failed condition

MAX-LEVEL has value <level> in filler 

and since max-level appears in the list of database attributes, the add_fact operator 

can be applied. The purpose of add_fact is to choose a value that will enable the failing 

rule to succeed, so it has to consider the constraints imposed on this value by subsequent 

conditions. The operator performs the following actions.

1.

2.

3.

Identify the variable which stores the value when it is read from the database. Here

this is <LEVEL>.

Identify all comparison tests which apply to this variable. Here there is only one 

such test: <conc> is greater-than <level>.

For each such comparison, locate all other variables appearing in the comparison, 

and identify the rule condition where they were bound. Here, the only other variable

is <CONC>, which was bound in the condition filler-concentration has value

<CONC> .

4. For each of these other variables, determine their values. For variables that were

bound before the failing condition was reached, this can be done by looking at 

the trace for the current rule, REMOVE-excessive-FILLERS. For variables that were

bound later, such as <CONC>, the trace for the current rule is no use, since execution 

stopped at the failing condition. Instead, Krust attempts to determine a binding by 

looking at the trace for the rule(s) whose conclusion matches the binding condition. 

E.g., to determine the value of <CONC>, Krust looks for rules which set the value 

of FILLER-CONCENTRATION. It then determines from the trace entries for these rules

the value to which filler-concentration was set. If the trace indicates that no

such rule fired, it follows that the binding condition would have failed, so no binding
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value can be deduced.

In general, such constraints will not be sufficient to determine a single value for the new 

fact, so an additional constraint is imposed: that the change caused by adding the new 

fact be the most conservative. In this case, the most conservative value for max-level is 

the largest, since the larger the value, the closer the KB’s behaviour will be to that where 

the value is missing, viz., that the excipient is never removed.

The addition of new facts is an appropriate area for the application of induction to 

impose further constraints on the new fact. An inductive add_fact operator is described 

in section 6.2.

IF
Get-Insoluble-Filler

reqd-filler-solubility has value insoluble 
<FILLER> is on FILLER-AGENDA
SOLUBILITY has value <SOL> in <filler 
SLIGHTLY-SOLUBLE has value <SLIGHTLY-S
<SOL> is less-than (MIN-VAL <SLIGHTLY-SOLU^LE>) 

THEN refine filler to be <filler>

UBLE>

Remove-Excessive-Fillers
IF <FILLER> is on FILLER-AGENDA

MAX-LEVEL has value <level> in <filLer> 

 

FILLER-CONCENTRATION has value <CONC> 
<CONC> is greater-than <level>

THEN remove <filler> from filler-agenda

Database
MAX-LEVEL of Calcium Phosphate.... ?

Figure 5.10: Rule chain for wrong filler example

5.5.2 Variables

This section explains how the use of variables in a KBS requires the introduction of a 

new class of target rule: wrong-fire rules. There follows an account of how Krust refines 

wrong-fire rules, which is then illustrated by an example from Tfs.

For propositional KBSs, Krust identifies two basic rule classes: error-causing - rules 



5.5. Extension of refinement procedures to handle Pfes rule elements 97

which fired and gave the wrong conclusion, and no-fire - rules which gave the right conclu­

sion but did not fire. In order to apply Krust to PFES, which uses predicates including 

variables as arguments, I have extended these by adding a new rule class, wrong-fire, to 

describe rules which fired and gave the wrong conclusion, but could have given the right 

conclusion if they had fired with a different set of variable bindings.

A wrong-fire rule is therefore identified during rule classification by the following fea­

tures:

• its conclusion matches both the expert and the system conclusion, and

• the bindings with which it fired match the system conclusion but not the expert 

conclusion.

For example, suppose the input to Krust is

System: TARGET-TABLET-WEIGHT OF SPECIFICATION = 400

Oracle: target-tablet-weight of specification = 450

Then an example of a wrong-fire rule is IST-GUESS-WEIGHT, with conclusion

TARGET-TABLET-WEIGHT Of SPECIFICATION = <WEIGHT>

which fires with <weight> bound to 400.

5.5.3 The refinement of wrong-fire rules

There are two actions which can be taken to correct the behaviour of a wrong-fire rule.

• Disable it and allow some other target rule to fire - in other words, treat the wrong­

fire rule exactly as if it were error-causing, or

• Make some change to the KB which allows the wrong-fire rule to fire with the correct 

bindings.

To change the KB to allow the wrong-fire rule to fire correctly, Krust does two things: it 

identifies the rule-element at which the incorrect binding is originally set, and then changes 

the rule element appropriately. There may be more than one such rule-element, in which 
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case a refinement is generated for each. The procedure for identifying the element where 

the value is set is described below, first informally, then more precisely.

Informally, Krust follows the reasoning chain backwards to a point at which a value 

is hard-wired into a fact, or occasionally a rule conclusion. It then changes the fact 

or conclusion as required. This procedure is complicated when Krust encounters an 

arithmetic expression. When this happens, Krust generates a number of experiments:

• to change any one of the inputs to the arithmetic expression to give the desired 

result;

• to change the arithmetic expression itself to give the desired result.

More formally, the algorithm is as follows. Suppose the incorrect binding for variable 

V in the wrong-fire rule R is S (System) and the correct binding for V is O (Oracle). 

Then we define a procedure

find-binding-condition(J?, V, S, O').

1. Let C be the condition in rule R where V is bound.

2. The next step depends on the type of C.

Goal, with value uninstantiated. Let R! be the rule whose conclusion C chained 

with C and bound V to S', and let V' be the term in C which unifies with V.

If V' is bound, terminate and return C' as the binding condition, with O as 

the corrected value. Here C is likely to be the conclusion of a fact rule, but 

it may not be. Otherwise, apply the procedure f ind-binding-condition(R', 

V, S, O).

Assignment. Return a list of binding conditions, where the first binding condition 

is the assignment statement itself, and the remaining binding conditions are 

obtained by back-propagation through the assignment statement, as follows. 

Let the assignment be

Varn = f{Vari, Var2, ■.., Var„_i)

Then the variables Vari, Var2, •.., Varn-i must be bound earlier in the rule, 

which must therefore contain earlier binding conditions as follows.
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If Condition binding Vari

Condition binding Var2

Condition binding Varn-i

Varn = /{Vari,Var2,...,Varn-i)

The desired value for Varn is O, so Krust back-propagates O through the 

arithmetic expression f. Krust solves the equation

o = /{Vari, Var2,yar„_i)

for each in turn of the Vari,l < i < n — 1, -while holding the other Vari^^j 

constant. In other words, it makes the assumption that only one of the Vari 

is incorrect, and calculates the value for this Vavi that will yield the desired

value for Varn- Let the original value held by Vari be Si, and the solution 

to the equation for Vari be Oi- For each of these Vari, Krust then applies 

f ind-binding-condition(R, Vari, Si, Oi) recursively.

At the moment, the equation-solver is a simple one, and will only handle ex­

pressions including the operators -F, —, x and /, and where each variable occurs 

only once in the expression.

The procedure find-binding-condition just defined returns a list of pairs: binding 

rule-element and corrected value. Each rule-element is either an OAV where the value is 

instantiated, or an assignment. Where the condition is an OAV, the corrected value is a 

replacement for the original value. Where the condition is an assignment, the corrected 

value is the value that should be returned by the expression on the right-hand side of the 

assignment. For example, bindings returned by find-binding-condition might be.

Rule: DEPAULT-BINDER-LEVEL

Conclusion: set the value of binder in formulation to be 0.041

Corrected value: 0.021

Rule: SET-BINDER-CONC
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Condition: <ADJUSTED-CONC> = <CONC> / <TOTAL-CONC>

Corrected value: 0.02

Krust then uses the output of find-binding-condition to generate refinements, one 

for each rule-element. For each element that is a goal, Krust rewrites it, substituting 

the corrected value for the original one. For each condition that is an assignment, Krust 

calculates a new arithmetic expression for the right-hand side of the assignment. However, 

there is not enough information in a single refinement example to derive a new arithmetic 

expression, so Krust uses values from other examples suffering from similar faults. This 

is an example of the use of induction, and is described in section 6.1.

The remainder of this section is devoted to an example of how Krust corrects a wrong­

fire rule by correcting the conclusion of one of its antecedent rules; that is, a rule occurring 

earlier in a rule chain leading to the wrong-fire rule.

5.5.4 An example of the refinement of a wrong-fire rule

This section illustrates how Krust fixes a particular fault involving a wrong-fire rule. The 

system and oracle both choose gelatin as the binder, but they differ with respect to the 

concentration of gelatin required; the system value is 0.041, and the oracle’s value is 0.021. 

The fault submitted to Krust is therefore

System: GELATIN has value 0.041 in FORMULATION

Oracle: gelatin has value 0.021 in formulation

The chain of rules leading to this conclusion shown in figure 5.11. These rules interact 

as follows. Once gelatin has been chosen as binder (by other rules), rule default-binder-level 

sets the concentration of gelatin to be 0.04. Rule set-binder-cdnc then adjusts this 

value slightly, dividing the concentration by the total-concentration, and obtaining 

a value of 0.041. The rule then writes gelatin and its adjusted concentration onto the 

tablet-report-agenda. Finally, rule update-formulation reads the binder concentra­

tion from the agenda and sets the concentration of gelatin in the formulation to be 0.41.

Krust identifies the rule update-formulation as a wrong-fire rule, so tries either to 

disable or correct it. In order to correct it, Krust invokes find-binding-condition with 

arguments
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Update-Formulation
IF

THEN

<COMPONENT> is on TABLET-REPORT-AGENDA
<CONC> is after <COMPONENT> on <tablet-report-agenda 
set the value of <COMPONENT> in FORMULATION to be <CONC>

Set-Binder-Conc

IF BINDER has value <EXCIPIENT> in FORMULATION 
<excipient> has value <CONC> in formulation 
TOTAL-CONCENTRATION has value <TOTAL-CONC> in FORM 
<ADJUSTED-CONC> - <CONC> / <TOTAL-CONC>

THEN add <EXCIPIENT> to bottom of TABLET-REPORT-AGENDA
add <ADJUSTED-CONC> to bottom of tablet-report-agenda

Default-Binder-Level
IF BINDER has value <binder> in formulation
THEN set the value of <BINDER> in FORMULATION to be 0.04
UNLESS <BINDER> has value <VALUE> in FORMULATION

Figure 5.11: Rule chain for wrong binder weight example

Rulename: UPDATE-FORMULATION

Variable: <CONC>

System value: 0.041

Expert value: 0.021

The procedure finds that the binding condition for <conc> in rule UPDATE-formulation

is

<CONC> is after <component> on tablet-report-agenda

This condition is a goal, which chains with the conclusion of rule set-binder-conc

add <ADJUSTED-CONC> to bottom of tablet-report-agenda

so find-binding-condition is reinvoked recursively with new arguments 

Rulename: SET-BINDER-CONC

Variable: <ADJUSTED-CONC>

System value: 0.041

Expert value: 0.021
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The procedure next looks for the binding condition for <ad justed-conO in SET-BINDER-

GONG. The binding condition is the assignment

<ADJUSTED-CONC> = <CONC> / <TOTAL-CONC>

Consequently, find-binding-condition generates a refinement experiment for the as­

signment statement itself, and also propagates the expert value (0.021) back through the 

arithmetic expression. To do so, it solves two equations to correct the bindings for <caNC> 

and <TOTAL-CQNC> respectively.

<CONC' > = <TOTAL-CONC> * 0.021
and

<TOTAL-CONC' > = <CQNC> / 0.021

The values of <C0NC> and <total-CONC> are obtained from the trace.

Krust then applies the procedure find-binding-condition twice, to the variables 

<CONC> and <TOTAL-CONC>. It turns out that the value of <total-CONC> derives 

eventually from the dose of drug, which is supplied by the user. This value can not be 

changed, so the application of find-binding-condition to <TOTAL-CONC> does not 

lead to a refinement. However, the application of find-binding-condition to <CONC> 

is more successful. Krust obtains the corrected value for <CONC> by solving the first 

of the two equations above, having determined from the trace that the actual value of 

<TOTAL-CONC> is 0.97.

<C0Nc'> = 0.97 * 0.021 
=> <coNc' > = 0.02

The binding condition for <CONC> in rule set-binder-cqnc chains with the conclu­

sion

set the value of <binder> in formulation to be 0.04
in rule set-binder-level. This conclusion is an OAV with its value bound, so procedure 

find-binding-condition terminates and returns the condition

set the value of <binder> in formulation to be 0.04
with a corrected value, derived above, of 0.02. The corresponding refinement generated 

by Krust is to change the value 0.04 in the rule conclusion to 0.02.



5.6. Generality of the work described in this chapter 103

This concludes the discussion of changes required by Krust in order to apply it to the 

Tfs application. The chapter concludes by considering how general is the work described, 

and how easy it would now be to apply apply Krust to a different Tfs application. The 

next chapter will describe additional inductive techniques which were implemented with 

a view to improving Krust’s performance.

5.6 Generality of the work described in this chapter

This chapter has described the work needed to apply Krust to a particular application, 

Tfs. However, because of the generic approach taken during the development of Krust, 

in particular, the common knowledge representation used for representing rules, Krust 

is now to a large extent applicable to any Tfs application. There will be no need to 

adapt the core routines of blame allocation, refinement generation and implementation, 

and filtering when applying Krust to a new such application. However, a number of 

application-specific modifications were made to Krust during its adaptation to Tfs, and 

attention was drawn to these earlier in this chapter. These are the aspects of Krust 

which would have to be re-implemented.

The rule translator. This is in all respects but one a Pfes translator, rather than a 

Tfs translator. The only TFS-specific elements are the rules which translate agenda 

operations. These work by recognising certain particular sequences of operations 

within the PFES rules. To do so, they require domain-specific knowledge specifying 

which attributes are numeric, and which are symbolic. To adapt the translator to 

a new application, it would be necessary to provide it with knowledge about the 

attribute types in that application. It might also be necessary to add new rules to 

recognise different sequences of agenda operations.

The translator is written “defensively”, so that if it encounters a sequence of agenda 

operations which it does not recognise, it will signal an error and terminate. This 

indicates to the knowledge engineer that new rules must be added to the translator 

to handle the new situation. Similarly, if knowledge about attribute types is absent, 

then the translator may not be able to translate certain agenda operations, and will 

again signal an error and terminate. The defensive approach was adopted on the 
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grounds that is preferable for the translator to signal an error when encountering a 

novel situation, rather than to proceed and risk generating incorrect output.

Input and output. The Tfs application has three inputs: drug, dosage, and number of 

fillers. When Krust was adapted for use with Pfes, two modifications were made.

• The KBS testing module of Krust was modified so that, when it ran a refined 

KBS on a given formulation problem, it wrote the problem inputs to a file.

• The Pfes shell was modified so that it read its input from the above file, rather 

than from the user via a GUL

This interface would not work unchanged for a different Pfes application, with 

different input variables. In order to run Krust on a new Pfes application, it 

would be necessary to make minor adjustments to the above features of the KBS 

testing module and the Pfes shell, so that the problem inputs were written to file, 

and then read and assigned to the appropriate Pfes variables.



Chapter 6

Induction

This chapter presents two applications of induction within the Krust system. The more 

significant of these, which constitutes the bulk of the chapter, is the use of inductive oper­

ators for refinement implementation. The second application uses induction for refinement 

filtering. The applications share a common approach: that of learning from the traces of 

multiple related examples.

The new inductive operators learn from multiple training examples, permitting Krust 

to generate more accurate refinements, and to fix faults which it previously could not have 

fixed. Chapter 4 identified the absence of inductive refinement operators as a significant 

weakness in Krust, and sections 5.5.1 and 5.5.3 drew attention to situations where re­

finement could be facilitated by the use of information derived from multiple training 

examples. These observations provide motivation for the work described in this chapter.

In the absence of inductive operators, Krust generates refinements for a single re­

finement example at a time, subsequently using other examples for filtering and judging. 

This chapter introduces a new approach whereby Krust constructs sets of related exam­

ples, together with their traces, and then uses these examples and traces to constrain the 

refinement implementation process. In this way, Krust is able to make use of training 

examples other than the refinement example at an earlier stage than before. The approach 

may be summarised as follows.

• Select as positive examples those examples and their traces that exhibit a particular 

fault, and as negative examples those that do not.

• Identify features distinguishing these two groups.

105
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• Use these features to guide refinement implementation.

The following inductive operators are described.

inductive_change_formula uses curve-fitting to correct an arithmetic expression in a 

rule condition (section 6.1).

inductive_add_fact adds a new fact to the database (section 6.2). It is an improved 

form of the add_fact operator described in section 5.5.1.

inductive_adjust_value adjusts the threshold value in a comparison condition. It is an 

improved form of the adjust_value operator used by the original Krust.

inductive_split_rule makes two or more copies of a rule, and adds extra conditions to 

some of the copies, thus changing the order in which the rules select excipients 

(section 6.4).

The technique of refinement filtering uses a similar approach, but for a different purpose 

(section 6.5). As with the inductive operators, features are identified which distinguish 

faulty from non-faulty traces. However, the task for which these features are used is to 

identify rules which could not be responsible for the fault, and so filter out refinements to 

these rules.

A summary of the work described in this and the previous chapter has been pub­

lished as (Boswell, Craw & Rowe 1997). A shorter summary, giving greater emphasis to 

Krust’s representation of knowledge and proofs, and to the role of refinement in software 

development, has been published as (Craw, Boswell & Rowe 1997).

6.1 Learning formulae from multiple examples

This section describes how the operator inductive_change_formula can alter an arith­

metic expression occurring in a rule condition. This operator complements work described 

in the previous chapter. Section 5.5.3 stated that a wrong-fire rule might be corrected by 

changing either a rule conclusion or an arithmetic expression, and went on to explain how 

a rule conclusion can be corrected, but postponed discussion of arithmetic expressions. 
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since their correction requires induction. The current section describes the use of induc­

tion in fixing arithmetic expressions, and thus completes the account of how Krust fixes 

wrong-fire rules.

Recall that the function find-binding-condition works backwards from an incorrect 

result and returns a list of rule elements at which the error may have originated (sec­

tion 5.5.3). As just stated, these can be either rule conclusions or assignments. The 

operator inductive_change_formula is invoked whenever find-binding-condition re­

turns an assignment to an arithmetic condition, for example

y — X X X + 1

Currently, the operator is applicable only to expressions including just one variable on 

the right-hand side of the assignment {x in this example). The reason for this is that the 

operator uses curve-fitting to learn a new function, and it is not thought feasible to use 

this technique to learn a function of more than one variable, because of the size of the 

search space.

When inductive_change_formula is applied to a condition y = f{x), it performs the 

following steps, each of which is described in greater detail later.

1.

2.

3.

4.

5.

Select sets of positive examples, which are defined to be those training examples 

which exhibit the same fault as the refinement example, and negative examples, 

which do not exhibit the fault.

For each positive example e, determine the value y which will lead to the expert 

solution, and the value to which x was bound. Let these values be y^, and Xf, respec­

tively.

Determine a threshold value xq for x which separates positive from negative exam­

ples. (Situations where no such threshold exists are discussed in the more detailed 

account).

Apply a curve fitting technique to the pairs (rCg, j/e) to derive a function g such that 

ye « g^Xe} for all e.

Replace the faulty rule with a pair of new rules. Each new rule includes an added 
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condition comparing x with the threshold calculated in step 3., so that one will 

fire for positive examples and one for negative examples. The rule for negative 

examples is otherwise unchanged. The rule for positive examples has the condition 

y = replaced with a new condition y = g{x). The effect of this change is that 

the refined KB will treat negative examples of the fault as before, but will apply 

the new equation to positive examples of the fault. The following rule template 

illustrates the process, for the case where the positive examples have x > xq.

Old rule

If

y =

Then

New rules

If

X < Xq

y = f{x)

X > Xq

Then

If

Then

Currently the application of the inductive_change_formula is restricted in the following 

way. At step 2, Krust will not back-propagate values through one arithmetic expression 

in order to correct an arithmetic expression occurring earlier in the chain. For example, 

suppose Krust seeks to correct the following sequence of rule conditions, each consisting 

of an assignment.

X = 2

y = x'^ + 1 

z = 2xy
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These lead to the result z = 10. Suppose the desired result is that z = 20. Then to correct 

this result, Krust will generate refinements in the following ways (figure 6.1)

Apply inductive_change_formula to the final condition z == 2 x y. (Refinement 1 

in figure 6.1).

• Back-propagate the value z = 20 through the two equations to the setting condition 

a; = 2 and replace this condition with a new, corrected, condition a; = 3. (Refinement 

2 in figure 6.1).

Original calculation

Result: z=10

Desired result: z=20

This tenn is NOT currently refined

corrected to x= 3

Refinement 2

Figure 6.1: Refinements made to chained calculations

corrected to z= g(y)

Refinement I

However, Krust will not back-propagate the value through the last equation z = 2 x y 

so that inductive_change_formula can be applied to the condition y = x'^ + 1. (dotted 

lines in figure 6.1). The reason for this lies in the separation of the refinement generation 

process from the refinement implementation process. Back-propagation is carried out at 

the refinement generation stage. Therefore, if inductive_change_formula were to be 

applied to an intermediate condition such as y = x"^ -|- 1, it would need to repeat the back- 

propagation process (the dotted path in the figure) for all the other positive examples. 

This would require that the refinement generation procedure pass details of all intermediate 

calculations to the implementation operator, to enable it to perform the back-propagation 

process itself. There is currently no mechanism in Krust for this information to be passed 
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to an implementation operator, through it would be feasible to expand the current data 

structures to permit it.

The four steps taken by inductive_change_formula are now described in more de­

tail. In this description, the ‘faulty condition’ is the assignment statement to which in- 

ductive_change_formula is being applied, and the ‘faulty rule’ is the rule containing 

this condition. Field F is the field of the system output which is incorrect, and which 

Krust is currently trying to fix.

1. Select example sets. The positive examples of the fault are characterised by the 

following properties.

• The example shows an error in the field F.

• The faulty rule fires in the example trace.

• The value set by the faulty condition appears in the erroneous output.

A more general form of this last condition would be to require that the same 

reasoning chain, from faulty rule to output, could be found in the example 

trace as for the refinement case. However, the restriction on the application 

of inductive_change_formula described above means that it is sufficient to 

consider the special case where the value set by the faulty condition appears 

directly in the output.

Negative examples of the fault are characterised by the following properties.

• The example shows a correct value in field F.

• The faulty rule fires in the example trace.

• The value set by the faulty condition appears in field F.

The negative examples are needed if the faulty rule is firing correctly in some cir­

cumstances and incorrectly in others. If the faulty rule always fires incorrectly, then 

no negative examples will be found.

2. Determine Xg and yg for each example. The value of Xg can be determined from 

the trace. Since there is a direct sequence of variable unifications between yg and the 

output (i.e., as explained above, Krust will not back-propagate through arithmetic 

expressions), the value of yg is currently obtained directly from the oracle’s output.
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3. Determine threshold. If there are no negative examples, then this step is omitted. 

If negative examples do exist, the operator currently requires that a threshold value 

must separate positive from negative examples. If positive and negative examples 

are mingled in some more complex way, so that no such threshold exists, then the 

operator will not generate a refined KB.

4. Curve fitting. The technique used is that of least squares polynomial approxima­

tion. This requires the solution of n -(- 1 simultaneous equations in n -)- 1 unknowns, 

which is carried out by Gaussian elimination (Atkinson & Hartley 1983). Currently, 

the polynomials used are cubics.

5. Create new rules. This process has already been explained in the earlier outline. 

One special case needs to be dealt with: if there are no negative examples, then 

just one new rule is created, by replacing the old expression y = /{x} with a new 

expression y — g(x).

6.1.1 An example of the use of inductive_change_formula

This operator proves useful in fixing a particular fault in Tfs. The fault occurs in ex­

amples for which the value of dose is high, and its symptoms are that many attributes 

in both specification and formulation are incorrect (figure 5.4). The method of selecting 

independent attributes described in section 5.2 indicates that all the incorrect attributes 

are dependent on the attribute TARGET-TABLET-WEIGHT, so a typical input to Krust for 

this fault is

System: TARGET-TABLET-WEIGHT OF SPECIFICATION == 400

Oracle: TARGET-tablet-weight of specification == 450

Krust determines that the rule IST-GUESS-weight is wrong-fire.

RULE IST-GUESS-WEIGHT
IF DRUG has value <DRUG> in the FORMULATION

AND

AND

<DRUG> has value <DOSE> in the FORMULATION

<WEIGHT> = ROUND-TO-NEAREST-5(100 * <DOSE>

/(0.221 * <DOSE> + 10))

THEN
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set the value of TARGET-TABLET-WEIGHT in

SPECIFICATION to be <WEIGHT>

Within this rule, the value of target-tablet-weight is set by the condition

<WEIGHT> = ROUND-TO-NEAREST-5(100 * <DOSE>

/(0.221 * <DOSE> + 10))

Krust therefore applies the operator inductive_change_formula to this condition. Its 

aim is trying to find the correct equation which relates <WEIGHT> to <DOSE>; these 

correspond to y and x respectively in the algorithm outline. Its first step is to select 

positive and negative examples. Positive examples are those for which the rule IST- 

GUESS-WEIGHT fires and calculates an incorrect value for TARGET-tablet-weight. It 

turns out that the value of <DOSE> (a^e) is 360 for all positive examples, and the value 

of <TARGET-TABLET-WEIGHT> (ye) is 450. Negative examples are those for which IST- 

GUESS-WEIGHT fires and calculates a correct value for target-tablet-weight. The 

values taken by dose in the negative examples cover all the values in the example set less 

than 360, viz., 310, 260, 210 ... 10. (This “example set” referred to here is one that was 

generated in order to evaluate the effectiveness of Krust. Inputs for the examples were 

selected in such a way as to cover evenly the space of possible inputs. This process is 

described in detail in section 8.1.1).

It appears that a step of 50 between values of <DOSE> was too coarse for refining this 

particular fault, so further examples were generated with <DOSE> varying from 310 to 

360 in a step size of 1. (Tfs will not create formulations when the dose is greater than 

360). This experiment had two conclusions.

• Positive examples of the fault occur when the dose is greater than 350.

• The correct target-tablet-weight when the dose lies in the range 351 to 360 is a

constant 450.

Consequently, the use of extra examples allowed Krust to determine the threshold be­

tween correct and incorrect rule behaviour more precisely, but not to induce an inter­

esting” polynomial. The curve-fitting routine naturally calculated the new function g to 

be
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RULE
IF

AND
AND
AND

RULEl
DRUG has value <DRUG> in FORMULATION
<DRUG> has value <DOSE> in FORMULATION
<DOSE> is greater-equal 351
<WEIGHT> = 450 + 0 * <DOSE> + 0 * <DOSE>2

+ 0 * <DOSE>3
THEN
set the value of TARGET-TABLET-WEIGHT in

SPECIFICATION tO be <WEIGHT>

RULE
IF

AND
AND
AND

rule2
DRUG has value <DRUG> in FORMULATION 
<DRUG> has value <DOSE> in FORMULATION 
<DOSE> is less-than 351
<WEIGHT> = (ROUND-TO-NEAREST-5(100 * <DOSE>

/(0.221 * <DOSE> + 10))
THEN
set the value of TARGET-TABLET-WEIGHT in

SPECIFICATION to be <WEIGHT>

Figure 6.2: Two rules learned by inductive_change_formula

The values of dose available in the original positive and negative examples implied a

threshold value of dose somewhere between 310 and 360. The threshold was chosen within

that range so as to minimize the change to the KB; in other words, to minimize the number

of occasions on which the new function will be used. The value chosen was therefore 360.

For the extended example set, a more accurate threshold of 351 was obtained. Thus the

effect of the refinement, when using the extended example set, was to replace the rule

IST-GUESS-WEIGHT by the two rules shown in figure 6.2

The domain expert subsequently informed me that the correct formula for target­

tablet-weight, for high values of dose, included a cubic polynomial, but that the value

calculated by the polynomial was then rounded to the nearest 5mg. This explains why.

for a narrow range of doses, only a single value of target-tablet-weight was obtained.
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6.2 Using traces to learn facts

The example in section 5.4.7 showed a situation in which a new fact was to be learned, 

but where the refinement example on its own provided few constraints on the new value.

This section describes the operator inductive_add_fact, which uses information from 

other training examples to provide further constraints on the new fact. As in the previous 

section, the manner in which the operator works is first described briefly, then each of the 

steps is discussed in more detail. Finally, an example is given where the operator corrects 

a fault in Tfs.

inductive_add_fact is similar in application to the add Tact operator described in 

section 5.5.1. It implements the refinement instruction to generalise a condition. It is 

applied only to conditions which are OAV Triples, where the triple refers to an attribute 

of a type that is stored in the fact database. Examples of such conditions are

SOLUBILITY of <DRUG> is <DRUG-SOLUBILITY>
YP of <FILLER> is <YP-SLOW>
YP-FAST of <DISINTEGRANT> is <DISINTEGRANT~YP~FAST>

Let the unsatisfied condition be C, and the rule containing this condition be R. C 

is necessarily an OAV triple, and its object element will usually be a variable. Let the 

value taken by that variable when the condition fails for the refinement case be O. (If the 

object is a constant, then let O be that constant). O is thus the object for which a fact is 

missing from the database. In the case of Tfs, O is always either an excipient or a drug. 

For example, if the unsatisfied condition is

YP of <FILLER> is <YP-SLOW>

which fails when <filler> is calcium phosphate, then the object in the OAV Triple 

is <FILLER>, and O is calcium phosphate. inductive_add_fact performs the following 

steps.

1. Select sets of positive examples, which exhibit the same fault as the training example, 

and negative examples, which do not exhibit the fault.

2. Derive bounds on the value to be learned from the two sets of examples. The bounds 

derived from the positive examples are selected so that the new fact should enable 
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the previously unsatisfied rule R for each positive example. The bounds derived 

from the negative examples are selected so that the new fact should not enable R 

for any of the negative examples.

3. Choose a value V that lies within the bounds. If the bounds do not determine a

unique value, choose a value such that adding the new fact will constitute the most 

conservative change to the KB.

4. Add the new fact to the database.

The most complex of these steps is the first: the selection of positive and negative 

examples. The assumption behind the addition of the new fact about object O is that, for 

the refinement example, rule R failed to fire for O, but should have fired. The evidence 

that R should have fired is that object O appears in the oracle’s formulation but not in 

the system’s. Hence, positive examples of the fault must satisfy the following conditions.

• Condition C in rule R failed for object O, and prevented rule R firing for object O.

• Object O appears in field F of the oracle’s formulation.

• Object O does not appear in field F oi the system’s formulation.

It is of course possible that, for some example, rule R will fail incorrectly for some object 

O, but that if it had succeeded, object O would have been correctly filtered out at some 

later stage. In that case, the behaviour of the system as a whole will be correct, since the 

faulty behaviour of R is masked by the later rule, so the example can not be identified as 

a positive example of the fault.

Negative examples on the other hand, are those for which rule R correctly fails to 

fire for object O. The correctness of R's failure to fire for O may be determined from 

the observation that object O does not appear in the oracle’s formulation. Thus negative 

examples must satisfy the following conditions.

• Condition C in rule R failed for object O, and prevented rule R firing for object O.

• Object O does not appear in field F oi the oracle’s formulation.

There is the possibility of one further complication which requires an alteration to 

these conditions. Until now, only monotonic rules have been considered, where the firing
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of one rule can enable a subsequent rule, but can never disable it. However, there are 

conclusions in PFES which are non-monotonic. For example, if the conclusion

remove-from-agenda <agenda> <item> 

is executed with <item> bound to, say talc, it will prevent the condition on-agenda 

<AGENDA> <iTEM> from firing for talc.

If the rule-chain from the rule R includes a non-monotonic rule, then the positive and 

negative examples must be redefined. The assumption that a missing fact prevents rule 

R from firing is unchanged, but the effect on the KB’s output, and hence the definition of 

positive and negative examples, is altered. As before, positive examples of the fault are 

those for which the failure of condition C prevented rule R from firing for object O. But 

the effect is reversed; it causes O to be recommended in the formulation when it should 

not have been. Hence a positive example must now satisfy these conditions.

• Condition C in rule R failed for object O, and prevented rule R firing for object O.

• Object O does not appear in field F of the oracle’s formulation.

• Object O appears in field F of the system’s formulation

The conditions for negative examples are now.

• Condition C in rule R failed for object O, and prevented rule R firing for object O.

• Object O appears in field F of the oracle’s formulation.

• Object O appears in field F of the system’s formulation.

This concludes the description of how inductive_add_fact selects positive and nega­

tive examples. The remaining steps are more straightforward, but some details remain to 

be explained.

2. Deriving bounds on the new fact. Since the positive examples are examples of 

the same fault as the refinement example, they constrain the new fact in the same 

way. Suppose the rule condition matching the missing fact is

attribute of object is A

and a subsequent rule condition including A is A < t. Then attribute of object is 

chosen so that the rule will fire, so it has to satisfy the condition
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attribute of object < t

Hence a condition which is an upper bound leads to an upper bound on the new fact, 

and similarly for lower bounds. On the other hand, negative examples are those for 

which the rule correctly failed to fire, so the new fact must be chosen in such a way 

that the subsequent condition is not satisfied. Hence the direction of the bounds 

are reversed: given the same condition A < t, the negative examples impose a lower 

bound on A.

3. Choosing the most conservative value. The most conservative value is the 

value whose addition constitutes the minimal change to the KBS. The way this is 

interpreted in the case of a new fact is to choose a value which causes a minimal 

change to the rule currently being refined; that is, the rule which failed to fire for a 

particular object because of a missing fact. The most conservative value is thus the 

one which minimises the occasions on which the rule will fire, while still causing it 

to fire for all the positive examples. If the subsequent condition on A is an upper 

bound, then the most conservative value for A is the highest value lying within the 

bounds derived from the examples; if the condition is a lower bound, then the most 

conservative value is the lowest value lying within the bounds.

6.2.1 An example of the use of inductive_add_fact

The use of inductive_add_fact is now illustrated with reference to the fault described 

earlier in section 5.4.7, in which a missing fact causes Tfs to recommend the filler Calcium 

Phosphate incorrectly. For convenience, the figure illustrating the rule chain is reproduced 

again here (figure 6.3).

As before, Krust determines that the condition

MAX-LEVEL has value <level> in <filler> 

fails to fire for calcium phosphate, because the max-level of calcium phosphate is missing 

from the database. In the terms in which the algorithm was described above, the object O 

is calcium phosphate, and the attribute A for which a value is missing from the database 

is MAX-LEVEL.

The inductive_add_fact operator, which replaces addJfact, proceeds as follows.

It first selects positive and negative examples. Since the rule-chain contains the non­



6.2. Using traces to learn facts 118

Get-Insoluble-Filler
IF reqd-filler-solubility has value insoluble

<filler> is on filler-agenda 
solubility has value <SOL> in <filler 
slightly-soluble has value <slightly-s 
<sol> is less-than (min-val <slightly-solu'^le>) 

THEN refine filler to be <filler>

UBLE>

Remove-Excessive-Fillers
IF <filler> is on filler-agenda 

max-level has value <level> in <filLer> 

 

filler-concentration has value <conc> 
<CONC> is greater-than <level>

THEN remove <filler> from FILLER-AGENDA

Database
max-level of Calcium Phosphate. 9

Figure 6.3: Rule chain for wrong filler example

monotonic conclusion

remove <filler> from filler-agenda 

the second pair of definitions are used. Positive examples are those for which remove- 

EXCESSIVE-FILLERS failed to fire for calcium phosphate, and where calcium phosphate ap­

pears as filler in the system formulation but not the oracle formulation. Negative examples 

are those where again remove-excessive-fillers failed to fire for calcium phosphate, 

but where calcium phosphate appears in both the system and oracle formulations.

The positive examples then impose an upper bound on the max-level of calcium phos­

phate, in just the same way as the refinement case does, (section 5.5.1). Conversely, 

the negative examples impose a lower bound on the max-level. This is because remove- 

excessive-fillers correctly failed to fire for the negative examples; the value of max-level 

must be chosen to be sufficiently high that it does not cause the rule to start firing for 

these examples.

In practice, the available examples constrain the max-level of calcium phosphate to lie 

between 11.5% and 58%. The constraints can be used in one of two ways: they can either 
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be shown to an expert, who can then be asked to provide the new fact or else adjudicate 

on any inconsistencies (e.g., caused by noise); or else Krust can choose the value from 

within the constraints whose insertion constitutes the most conservative change. In the 

current example, this will be the greatest value that lies within the bounds induced from 

the examples; i.e., 57%.

6.3 Using traces to adjust a threshold

The inductive_adjust_value operator adds an inductive element to adjust_value in 

the same way that inductive_add_fact added an inductive element to add_fact. The 

behaviour of adjust_value was described in section 4.6.1, and may be summarised as 

follows. Its role is to alter the threshold in a comparison condition such as x < threshold, 

or r > threshold. Krust first queries the KB to determine the value actually taken by 

the attribute x when the KBS is applied to the refinement case. Then, to specialise a 

condition, it adjusts the threshold in the rule condition just far enough to prevent the 

condition from being satisfied; alternatively, to generalise the condition, it adjusts the 

threshold just far enough to allow the condition to be satisfied.

The inductive_adjust_value operator uses information derived from additional ex­

amples to determine the best adjustment to the threshold value in a condition. It works in a 

similar way to inductive_add_fact, though one difference is that inductive_adjust_value 

can be used either to generalise or to specialise a condition in some rule R. It performs 

the following steps.

1. Select sets of positive examples, which exhibit the same fault as the training example, 

and negative examples, which do not exhibit the fault.

2. Derive bounds on the new value of the threshold from the two sets of examples. The 

precise role of positive and negative examples depends on whether the operator is 

generalising or specialising a condition. If generalising, then the bounds derived from 

the positive examples are selected so that the new fact should enable the previously 

unsatisfied rule R for each positive example. The bounds derived from the negative 

examples are selected so that the new fact should not enable R for any of the negative 

examples. On the other hand, if the operator is specialising a condition, then the 
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bounds derived from the positive examples are selected so that the new fact should 

disable the previously satisfied rule R for each positive example. The bounds derived 

from the negative examples are selected so that the new fact should not disable R 

for any of the negative examples.

3. Choose a new threshold value T that lies within the bounds. If the bounds do

not determine a unique value, choose T to be as close as possible to the original 

threshold.

The only step that needs further explanation is the first: the selection of positive and 

negative examples. The details depend on whether inductive_adjust_value is being used 

to generalise a unsatisfied condition or specialise a satisfied one. In either case, let the 

condition being refined be condition C in rule R, and let the attribute whose incorrect 

value is driving the refinement process be A.

Generalisation. Here positive examples of the fault are those for which

• the system output for attribute A is incorrect, and

• rule R failed because condition C was unsatisfied.

Negative examples of the fault are those for which

• the system output for attribute A is correct

• rule R failed because condition C was unsatisfied.

When generalising, the operator attempts to adjust the threshold in condition C so 

that it is satisfied for the positive examples but not for the negative examples.

Specialisation. Here positive examples of the fault are those for which:

• the system output for attribute A is incorrect, and

• rule R succeeded.

Negative examples of the fault are those for which

• the system output for attribute A is correct

• rule R succeeded.
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When specialising, the operator attempts to adjust the threshold in condition C so

that it is no longer satisfied for the positive examples, but remains satisfied for the

negative examples.

6.3.1 An example of the use of inductive_adjust_value

This operator proves useful in fixing a particular fault in Tfs-1b. This fault is similar to 

the fault in Tfs-1A where, for certain values of dose, an incorrect value of target-tablet- 

weight is calculated. In Tfs-1b, the following two rules are used to calculate target-tablet-

weight. 

RULE 1st-guess-weight-<=350mg

IF DRUG has value <DRUG> in the FORMULATION

AND <DRUG> has value <DOSE> in the formulation

AND

AND

<DOSE> is less-equal 350

<WEIGHT> = (ROUND-TO-NEAREST-5(100 * <DOSE>

/(0.221 * <DOSE> + 10))

THEN

set the value of TARGET-TABLET-WEIGHT in

SPECIFICATION to be <WEIGHT>

RULE 1st-guess-weight->350mg

IF DRUG has value <DRUG> in the FORMULATION

AND <DRUG> has value <DOSE> in the FORMULATION

AND

AND

<DOSE> is greater-than 350

<WEIGHT> = ROUND-TO-NEAREST-5(3.1317 + 0.375 * <DOSE>

- 0.000544 * <DOSE>2 + 2.53 * 10“'' * <DOSE>3)

THEN

set the value of TARGET-TABLET-WEIGHT in

SPECIFICATION to be <WEIGHT>

The effect of this pair of rules is to calculate target-tablet-weight using the formula in
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the first rule for values of dose less than or equal to 350mg, and to use the second rule 

for larger values of dose. However, the value of target-tablet-weight calculated by these 

rules is incorrect for certain values of dose around 310mg. When presented with such 

an example, Krust classifies the first rule as wrong-fire and the second rule as no-fire. 

The refinements generated for the KB include an experiment to specialise the condition 

<DOSE> < 350 in the first rule and to generalise the condition <DOSE> > 350 in the 

second rule. In both cases, the inductive_adjust_value operator is applied. The result 

of the two applications is to adjust the threshold value from 350 to 310 in both rules. The 

effect of this change is that the second formula for target-tablet-weight comes into effect 

at a dose of 311mg, instead of 351mg.

6.4 Using traces to learn new rule conditions

This section first explains the motivation for introducing an operator that learns new 

conditions, and the nature of the problem which such an operator is intended to solve. It 

then explains how the operator works, and uses a Tfs example to illustrate the kind of 

refinement produced by the operator.

The motivation for creating an operator to learn new rule conditions was two-fold. 

First, Krust’s inability to do this has been identified as a weakness in comparison with 

Either. Without such an operator, Krust can specialise a rule only by specialising a 

condition within it, or removing the whole rule. Consequently, there are some faults which 

Krust can not fix. Secondly, such an operator is required to enable Krust to carry 

out automatically the transformation of Tfs-1b into Tfs-2. The reason is that Tfs-2 

incorporated a policy change whereby each excipient was assigned a numeric category, and 

low-category excipients were preferred to high category ones, as described in section 3.3.3. 

Such a change can most simply be implemented by adding conditions to existing rules: 

conditions which test an excipient’s category, and perhaps other attributes. Therefore a 

new operator is required which is capable of learning new rule conditions. The operator 

should be designed so that it is capable of upgrading Tfs-1b as described, but not written 

to solve only that particular problem.

An operator inductive_split_rule has been implemented to satisfy these require­

ments. It uses the inductive approach outlined at the beginning of this section, and taken 
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by the inductive operators already described. inductive_split_rule is applicable when the 

system formulation contains an incorrect object. In the case of Tfs, this object will be an 

excipient. Krust’s existing refinement procedures will generate specialisation experiments 

for all rules whose firing contributed to the incorrect conclusion. inductive_split_rule

can therefore be treated as a specialisation operator. However, it is applicable only to rules 

which fired for the incorrectly-recommended object. For example, inductive_split_rule 

is applicable to the rule MOST-STABLE-BINDER if and only if the rule fires with variable 

<BINDER> bound to the value of binder which appears in the system formulation, and

that value is incorrect.

Rule MOST-STABLE-BINDER
IF <BINDER> is on STABILITY-AGENDA

AND check-is-a <binder> binder

THEN

set the value of binder in formulation to be <binder>

UNLESS

BINDER has value <value> in formulation

Given a faulty rule 7?, the operator performs the following actions. As before, the 

procedure is first given in outline, then each of the steps is described in more detail.

1. Select positive and negative examples of the fault.

2. Identify the variable V in the faulty rule which is bound to an object which appears

in the system formulation.

3. For each positive example of the fault, let the object to which V is bound be a 

positive example of a faulty object. For each negative example of the fault let the 

object to which V is bound be a negative example of a faulty object.

4. For each positive and negative example, create an attribute vector containing all 

attributes of the formulation problem. In the case of Tfs, these will be drug prop­

erties, dosage, number of fillers, together with properties of the object (excipient) 

identified in step 3.
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5. Run an attribute-based learning program on the attribute vectors, to determine 

properties which distinguish positive from negative objects. Currently Krust uses 

IDS (Quinlan 1986).

6. Identify in the output of the learning program those conditions which select neg­

ative examples. These are negative examples of the fault, so are in fact correctly 

recommended objects.

7. Make a copy of rule R, with two modifications: the priority of is 1 greater

than that of R, and Ri contains the extra conditions calculated in step 6. If the 

conditions are disjunctive, it will be necessary to make several copies Ri of R, one

for each disjunct.

The effect of the additional rule(s) will be that the set of rules R U Ri will fire for the 

same objects as the original rule R, but that the preferred objects (negative examples) 

will be chosen before the others. The steps of the above procedure are now described in

more detail.

1. Select examples. Given a refinement case in which rule R fires with V bound to 

an object O which appears in field F of the formulation, and is incorrect, positive 

examples of the fault are those which share all these properties of the refinement 

case. Negative examples of the fault are those in which rule R fires with V bound 

to an object O which appears in field F of the formulation, and is correct.

2. Identify variable V. This was recorded as a separate step in order to clarify the 

earlier description of the algorithm, but in practice the variable V is identified in 

the course of step 1.

3. Identify positive and negative objects. This requires no further comment.

4. Create attribute-vectors. The attributes used to construct attribute vectors are 

formed from the problem input, the properties of all objects in the problem input, 

the object chosen by rule R, and the properties of that object. These constitute the 

‘observables’ in the formulation problem. In the case of a Tfs problem, the following 

attributes are included.
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The problem input. This consists of the drug, dose, and number of fillers. How­

ever, the drug itself is not included in the attribute vector, though its properties 

are. The reason is that Tfs is intended to design tablets for any drug by taking 

into account the chemical properties of that drug; it does not make sense to

include rules which fire only for some particular named drug. Therefore, only 

the dosage and number of fillers are included in the attribute vector.

Properties of objects in the problem input. The drug properties are included

in the attribute vector.

The object chosen by rule R. This will be an excipient.

Properties of the object. Properties of the excipient.

5. Induction. The next step consists of running IDS on the attribute vectors. The

resulting decision tree is expressed in Lisp as a nested list, which may be conveniently

processed by Krust.

6. Condition selection. The operator identifies in the output of the learning algo­

rithm those conditions which select negative examples. These will be formed from 

the various paths from the root of the decision tree to the negative leaf nodes, and 

will thus be in disjunctive normal form, Ci V . Cn, where Ci = ci A ... Cjj^.

For example, given the decision tree shown in figure 6.4, the following two conjuncts

will be selected.

STABILITY of DRUG is greater-than 10
SRS of BINDER is less-than-equal 50

STABILITY of DRUG is less-than-equal 10
YPS of BINDER is greater-than 21

7. Creating new Pfes rules. The conditions derived from the decision tree can not in 

general be inserted directly into Pfes rules, since many of the branching conditions 

have to be represented by multiple PFES conditions. The difficulty lies in the fact 

that Pfes requires two conditions to test the value of an attribute: one to store the 

value in a variable, and one to test the value of the variable. For example, testing 

that the srs of talc is higher than some threshold requires the two conditions
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Figure 6.4; Decision tree induced by IDS

SRS of TALC is <SRS>
<SRS> is greater-than threshold

The details of how conditions are represented depends on the attributes concerned. 

For each type of attribute, the list below illustrates how a test of the value of the 

attribute can be as a sequence of Tfs conditions. In each case, the comparison 

chosen is “value is less-than 42”, which should be understood as representing a

typical comparison.

No-of-fillers. This condition can be represented as follows

NO-OF-FILLERS of FORMULATION is <NUMBER> 
<NUMBER> is less-than 42

Drug properties. A drug property, such as solubility, can be tested as follows.

DRUG of FORMULATION iS <DRUG>
SOLUBILITY of <DRUG> iS <SDLUBILITY> 
<SOLUBILITY> is less-than 42

Dosage is a special case of a drug property, since it is represented in Tfs as 

the value of the drug attribute. In other words, if the drug is DRUG-A, and 

the dose is 310, then this will be represented by the OAV Triple drug-a of
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formulation is 310. Hence the conditions necessary to test the value of dose

are

DRUG of FORMULATION is <DRUG>
<DRUG> of FORMULATION iS <D0SE>
<D0SE> is less-than 42

Excipient properties Tests on excipient properties are simplified by the fact that 

the faulty rule necessarily includes a variable which holds the name of the 

excipient for which it fires. For example, the rule most-stable-binder stores 

the excipient for which it fires in variable <binder>. Therefore, to test, for 

example, the srs of this excipient, the following conditions are used.

SRS of <BINDER> is <SRS> 
<SRS> is less-than 42

Excipient stabilities. These are represented in Tfs as an agenda, rather than as 

attributes, so that conditions which refer to these stabilities have to read the

values from the agenda. The agenda consists of a sequence of excipient, stability 

pairs, so that to determine the stability of an excipient, it is necessary to read 

the agenda value immediately after that excipient. A test on the excipient for 

which MOST-STABLE-BINDER fires would therefore appear as follows.

<STABiLiTY> is after <binder> on stability-agenda

<STABiLiTY> is less-than 42

The effect of the new rules

The above account has described how new rules are created. Now the effect of these rules 

is described. Considered as a set, the rules will fire for the same objects as before. (In 

the case of Tfs, the objects are excipients). However, they will fire first for those objects 

which satisfy the induced conditions, which were chosen in such a way as to select the 

preferred objects. Where the conclusion of the original rule is successive or overwriting 

(section 5.3.2), the effect will be that the preferred objects are written first, for example, to 

an agenda. Where the original rule is self-disabling, as for example most-STABLE-binder 

is, the effect will be that only one of the rule-set RU Ri will fire, and will do so for a 

preferred object.
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6.4.1 The use of application-specific knowledge

This section examines the manner in which inductive_split_rule had to be tailored to 

the Tfs application, and the implications for the general applicability of the technique.

The previous section showed that creating attribute vectors for use by ID3, and then 

translating ID3’s output back into Pfes rule conditions, was a complex process, requiring 

detailed knowledge of the manner in which Tfs was implemented. However, it should 

be noted that this complexity was a direct consequence of the somewhat inconsistent 

manner in which attributes are represented in PfeS; if the application had been developed 

with automated refinement in mind, then it is likely that attributes would have been 

handled more consistently. The conclusions from this experience are that Pfes allows 

the programmer considerable freedom in knowledge representation, and that inconsistent 

or idiosyncratic programming styles will necessarily require the use of application-specific 

knowledge to allow an automated refinement tool to communicate with the application.

6.4.2 An example of the use of inductivejsplit-rule

Finally, an example is given of the application of the operator inductive_split_rule to 

Tfs. In one case, Tfs recommends the filler lactose, and the oracle recommends the filler 

magnesium carbonate. One of the rules responsible for choosing the filler is GET-ANY- 

FILLER, so inductive_split_rule is applied to this rule.

Rule get-any-filler (Priority 0)
IF on-agenda stability-agenda <FILLER>
THEN

set the value of filler in FORMULATION tO be <FILLER>
UNLESS

FILLER has value <any> in FORMULATION

When ID3 is run on the resulting attribute-vectors, it turns out that there exist two 

equally informative attributes, so that ID3 generates one of two trees, selected at random. 

The conditions which predict negative examples are either

YP-FAST of FILLER = <YP-FAST>
<YP-FAST> is less-than 451.3
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or

CATEGORY Of FILLER = <CATEGORY>
<CATEGORY> is less-than 1.5

When the first condition is generated, the following new rule is created with higher priority 

than GET-ANY-FILLER.

Rule RULEl (Priority 1)
IF

AND

on-agenda stability-agenda <filler>

YP-FAST of FILLER = <YP-FAST>
AND <YP-FAST> is less-than 451.3

THEN

set the value of filler in FORMULATION tO be <FILLER>
UNLESS

FILLER has value <any> in FORMULATION

6.5 Using traces for refinement filtering

This section describes the second application of induction: refinement filtering. More 

effective refinement filtering is desirable, because it allows incorrect refinements to be 

removed without implementing and testing them. This is particularly important in the 

case of slow applications like Tfs, where testing a KB is a time-consuming process.

The refinements generated by Krust are derived from a single example of the system’s 

incorrect conclusion and its proof, together with the expert’s conclusion. Therefore, if 

Krust also considers other proofs that are similar to the faulty proof yet lack the fault, it 

may obtain new information useful to the refinement process. The particular application 

considered here is to filter out refinements that are unlikely to fix the fault. A trace 

comparator is described which takes a pair of traces, and compares the firing behaviour 

for each of the rules for which Krust proposes a repair. The procedure for filtering is as 

follows.

1. Let R be the set of rules which Krust is refining.
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2. Select sets of examples F and C, where examples F exhibit the fault (that exhibited 

by the current training example) and C do not.

3. Run the comparator for each rule S R and for each pair of examples {fi,Cj} G 

FxC. We define the comparator function diff(rfc, /j, Cj) to be 1 if the firing behaviour 

for rule differs for examples fi and cj, 0 otherwise.

4. Then we say that the behaviour of rule is relevant to the fault iff 3 j such that 

Vf diff(rfc,/i,Cj) = 1.

Note that the appearance of a fault in one example and not in another may arise in 

two ways:

• it could be that a certain rule r fires in one case and not in the other, or

• it could be that r’s firing behaviour is the same in both cases, but that this behaviour 

is faulty in the first case but correct in the second case.

The comparator will detect the difference in the first case, but not in the second. Hence 

we cannot choose as a criterion of relevance that the behaviour of r should differ for all 

faulty/non-faulty pairs.

6.5.1 Experimental results for refinement filtering

This section describes a simple experiment which demonstrates the effectiveness of refine­

ment filtering. The procedure adopted was as follows:

1.

2.

3.

Apply Krust to a number of different refinement examples.

For each example, record which refinements were generated, and which was selected 

by Krust as being the best.

For each example, apply the refinement filter. The filter will be regarded as useful 

if it rejects some unsuccessful refinements but does not reject the successful one.

The experiment was performed for three refinement examples, each demonstrating a 

different fault in Tfs-Ia. (The technique has not been applied to Tfs-Iu). A more 

detailed description of these faults and how they were fixed will be found in section 8.5.1.
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For the purposes of the present discussion, it is sufficient to note that Tfs-1a exhibits three 

different types of fault, each characterised by the particular attribute which is incorrect

in Tfs-Ia’s output.

Fault 1: Wrong binder weight.

Fault 2: Wrong filler.

Fault 3: Wrong target-tablet-weight.

For fault 3, Krust generated refinements to a single rule only, so the algorithm was not 

required. The results of the experiment for the other two faults are summarised in tables

6.1 and 6.2. The second column in each of these tables indicates which rules were involved 

in the chaining process that lead to the faulty conclusion, and the third column shows 

which rules the trace comparator identified as potentially relevant to the fault. The tables 

show that, for both faults, the technique could be used to filter out some refinements that 

were indeed unrelated to the faulty conclusion, while not rejecting any that were relevant. 

The apparently poor behaviour for fault 1, where the technique highlighted only one of a 

possible three irrelevant rules, may be explained as follows. Fault 1 is a rarely-occurring 

fault, and all the examples of this fault happen to share certain other attributes: viz., they 

use no surfactant, and the drugs involved are soluble. These attributes are reflected in 

the firing behaviour of the rules related to these attributes (Insoluble-Drug-Rule and 

Initial-Surfactant-Level), so that the comparison algorithm also identified these rules

as potentially relevant.

Rule Involved in 
faulty conclusion

Trace comparator 
indicates relevance

Get-Soluble-Filler
Insoluble-Drug-Rule V
Get-Insoluble-Filler V V
Remove-Excessive-Fillers V V
Initial-Surfactant-Level V

Table 6.1; Trace comparator applied to fault 1: Wrong filler

6.5.2 Effectiveness of refinement filtering

The experiment just described shows that for one group of examples, trace comparison 

can be used to reduce the number of refinements which have to be implemented and
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Table 6.2: Trace comparator applied to fault 2: Wrong binder level

Rule Involved in Trace comparator
faulty conclusion indicates relevance

Default-Binder-Level V x/
Update-Formulation
High-Dose-Binder-Level
Try-Dose-Again
Find-Stable-Surfactant
Default-Surfactant

tested. Further experiments would be necessary to show convincingly that the technique 

is both reliable and effective. However, I did not proceed to further test or develop 

the technique, because my work on the evaluation of Krust, described in chapter 8, 

showed that Krust did not generate large numbers of refinements when applied to Tfs, 

so that an improvement in refinement filtering was not as important a goal as I had 

anticipated. Nonetheless, I believe the technique described in this section is interesting, 

since it illustrates an alternative application of induction, and that it would be useful in 

situations where Krust did generate an excessive number of refinements.

6.6 Summary

This chapter has presented a common framework for the construction of inductive opera­

tors, and described four such operators. All these operators work by identifying features 

distinguishing traces which exhibit a certain faulty behaviour from traces that do not. 

These operators make more effective use of the training examples than Krust’s original 

operators, which learn only from the single refinement example. Moreover, they allow 

Krust to learn new rule conditions for the first time, thus allowing it to fix faults which 

it was previously unable to fix.

Secondly, the same framework has been used to provide a mechanism for refinement 

filtering. Here, the particular feature selected to distinguish faulty from non-faulty traces 

is the firing behaviour of particular rules; it has been shown that it is possible to deduce 

from differences in firing behaviour whether a particular rule may be responsible for a 

given fault.
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Clustering

This chapter describes the ways in which Krust uses clustering techniques to select ex­

amples for use at various stages of the refinement process. It is structured as follows.

• Background and motivation (section 7.1).

• How clustering could be used at various stages of the knowledge refinement process 

(section 7.2).

• Mechanisms for clustering (section 7.3).

• How a hierarchical clustering algorithm can be applied to Tfs examples (section 7.4).

• A simpler clustering technique for Tfs examples (section 7.5).

The chapter shows that a hierarchical clustering algorithm can be useful in some situations, 

but that a simpler technique is sufficient for the needs of Krust when applied to Tfs.

7.1 Motivation

Clustering is a process of grouping objects into classes of similar objects. It requires a 

measure of similarity to be defined between any two objects; classes can then be defined 

as collections of objects whose intraclass similarity is high and interclass similarity is low 

(Michalski & Stepp 1990).

The reason for considering clustering in the context of knowledge refinement is that 

it might provide Krust with an intelligent mechanism for selecting examples. At various 
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stages of refinement, Krust needs to select an example, or a set of examples, as one of 

the inputs to a procedure. For instance, a refinement example must be selected from the 

training set before Krust can be run at all. Later on, sets of examples must be chosen for 

use by the inductive operators and for the final selection process. For those parts of the 

refinement procedure which are particularly time-consuming, it may be desirable to save 

time by using fewer than the full number of examples available. For instance, a single run 

of Tfs can take between two and ten minutes. Consequently, it is desirable to reduce, if 

possible, the number of examples used by Krust in the judging phase, where the number 

of Tfs runs required is the product of the number of judging examples and the number 

of surviving refined KBs.

The simplest way of reducing the size of an example set is to select a random subset of 

examples, but it would be preferable to make a more intelligent selection. This could be 

done by first clustering the examples according to some definition of similarity, and then 

making a selection from the clusters. Depending on the purposes for which the examples 

were to be used, examples could be selected evenly from all clusters, or else from those 

clusters deemed particularly relevant.

In the context of knowledge refinement, there are several situations, listed below, for 

which the most useful clustering would be one in which examples belong to the same 

cluster if and only if they suffer from the same fault or faults, where a fault is defined to 

be a single error in the rule-base. Since the errors in the rule-base are initially unknown, 

however, the best that can be done is to use sources of information such as the system 

inputs and output to construct an approximation to this ideal clustering.

In the case of Tfs-Ia, the clustering task is relatively trivial and can be performed 

either by hand or mechanically, just by considering which fields in the system’s formulation 

for each example are incorrect. Figure 7.1 shows typical differences; in each pair, the first 

item is the system output and the second that of the oracle. There are three types of 

error:

Wrong quantity of binder (examples 1,2,5,6,29).

Wrong filler (examples 5, 33).

• Numerous errors in specification (examples 206, 207).
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Figure 7.1: Differences between the system and oracle outputs for Tfs-1A

Example Attribute System Value Expert Value
1 Binder Gelatin 0.041 Gelatin 0.021
2 Binder Gelatin 0.041 Gelatin 0.021
5 Filler Calcium Phosphate 0.573 Calcium Carbonate 0.585

Binder Gelatin 0.041 Gelatin 0.021
6 Binder Gelatin 0.041 Gelatin 0.021

29 Binder Pvp 0.039 Pvp 0.020
33 Filler Calcium Phosphate 0.554 Magnesium Carbonate 0.565

Binder Pvp 0.039 Pvp 0.020
206 Target-Tablet-Weight 400 450

Drug-Concentration 9/10 4/5
F filer- Concentration 0.0 0.1
Current-Strategy Strategy-L Strategy-D

207 Target-Tablet-Weight 400 450
Drug-Concentration 9/10 4/5
Filler-Concentration 0.0 0.1
Current-Strategy Strategy-L Strategy-A

However, to generate appropriate clusters in situations where many examples suffer 

from multiple faults, further inputs to the clustering process could be considered, such as 

the example traces, or even the outputs from Krust’s rule classification and refinement 

modules. Whether the extra computation is justified depends on the potential gains and 

the need for accuracy in clustering. This point is discussed later on, with reference to 

inductive operators (section 7.4).

7.2 Purposes of clustering

Clustering is applicable at a number of points in Krust’s refinement procedures.

1. To select refinement examples for krust.

In Tfs-1A, an automated clustering algorithm is not strictly necessary for the se­

lection of training examples. This is because it is possible to distinguish individual 

fault symptoms, and determine which examples are suffering from a single fault, and 

which from multiple faults. For example, figure 7.1 shows that many examples have 

approximately twice the correct quantity of binder, but are otherwise correct. This 

suggests that example 5, which has incorrect filler as well as too much binder, is 
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suffering from two separate and unrelated faults. However, examples 206 and 207 

(and many others) have faults lying in the same specification fields. This suggests 

that these examples are suffering from a single fault with multiple consequences. 

Examples suffering from single faults are likely to be easier to fix than ones suffering 

from multiple faults, and it is possible that refinements which fix all the single faults 

may together fix the multiple fault examples as well. Therefore, a sensible initial 

procedure for selecting refinement examples is to choose a sequence of examples 

where each suffers from a single, different, fault.

In general, however, it may be hard to distinguish examples suffering from single 

faults from those suffering from multiple faults. In this case, the decision of whether 

to devote resources to a clustering algorithm that can identify single-fault examples 

will depend on how much harder it is for Krust to generate appropriate refinements 

for multiple-fault examples than for the single faults. In any case, it may still be 

preferable to deal with the single fault examples first.

2. To select appropriate test examples for judging refined KBs.

Given a clustering close to the ideal one, that is, one which corresponds to the 

underlying faults in the KB, it would be expected that a correct refinement would 

fix most or all of the examples in the refinement example’s cluster, and few others. 

The time taken by the judgement phase could be reduced by selecting examples 

mainly from this cluster, and from the cluster holding correctly-solved examples, 

but using only a few examples suffering from unrelated faults. For this purpose, it 

would not matter if the clustering were not 100% correct.

3. To select appropriate examples for induction. Refinements involving the in­

duction of new facts or rule conditions require multiple examples. The inductive 

operators themselves are able to select appropriate positive and negative examples 

(chapter 6), but it may be desirable to reduce the number of examples which are 

available to them in order to speed up the process. This could be done by clustering 

the examples into fault types, and selecting examples for the inductive operators 

evenly from these clusters.
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7.3 Mechanisms for clustering

The previous sections have explained how an example clustering mechanism could be used 

by Krust. Here, various approaches to clustering are outlined.

All clustering methods require that a distance function be defined between all pairs 

of items in the set to be clustered. Clustering methods can be divided into the simpler 

non-hierarchical and the more complex hierarchical (Rasumssen 1992). Non-hierarchical 

methods partition a set into a given number of subsets; hierarchical methods produce a 

nested data set in which pairs of items or clusters are successively linked until every item in 

the data-set is connected. Hierarchical methods are usually agglomerative, or bottom-up, 

building small clusters and gradually linking them. The alternative, divisive methods, are 

rarely used.

All the hierarchical agglomerative clustering methods can be described by the following 

algorithm:

While more than one cluster remains

Identify cind combine the two closest items (clusters or points)

This algorithm requires that the distance between two clusters be defined in some way, in 

terms of the distances between items in the respective clusters. Different versions of the 

algorithm are distinguished by the way in which this distance is defined. There are three 

commonly used definitions.

The single link method. Cluster distance is defined as the minimal distance between 

an item in one cluster and one in the other.

The complete link method. Cluster distance is defined as the maximal distance be­

tween an item in one cluster and one in the other.

The group average link method. The average of all pairwise links is used.

The complete link method tends to form small, tightly bound clusters (Rasumssen 1992). 

For this reason, when a hierarchical clustering algorithm was implemented for Tfs ex­
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amples, the complete link method was chosen (section 7.4). In addition, a simpler non- 

hierarchical method was also implemented (section 7.5.)

7.4 Applying clustering to knowledge refinement

This section describes the application of a hierarchical clustering method to Tfs examples. 

Before a clustering algorithm can be applied to a set of objects, a numerical measure of 

distance between objects has to be defined. In the case of Tfs, it turned out to be easier to 

define first a measure of similarity, and then define distance to be the inverse of similarity. 

For Tfs examples, the information from which this measure must be calculated lies in the 

system and oracle values for all the attributes appearing in the formulation. Given a pair 

of examples, for each attribute i there are four values to be considered.

Expert System

Example A EA,i SA,i

Example B EB,i SB,i

The simplest measure of similarity is to count the number of fields in which the exam­

ples have the same correctness: for each attribute, score one point if the values are either 

both correct or both wrong, and sum these values over all the attributes. This measure is 

expressed formally by the definition 7.1.

Similarity^, s = = Sa,!^ = {EB,i = SB,i)

However, there are other features which may also indicate that examples share a fault. For 

example, the oracle value may be the same for a group of examples, perhaps because a rule 

that would have generated that value failed to fire in all cases. Alternatively, if the system 

value is the same for a group of examples, a rule generating that value may have fired 

incorrectly. For example, section 5.5.1 described a fault which caused Tfs to recommend 

the filler Calcium Phosphate on several occasions when it should not have done. The 

symptom of this fault was that the system value of filler was Calcium Phosphate; the 

oracle’s value for filler varied. The following similarity measure extends definition 7.1 by 

adding terms which recognise if the system or oracle values for some field are the same for 
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a pair of examples.

Similarity^,= SA,i) = {EB,i = Sb^)) +

(7.2)

This measure is superior to definition 7.1 in that it could, for example, distinguish examples 

of the Calcium Phosphate fault just described from other examples also affecting the filler.

A hierarchical clustering algorithm was implemented using the complete link method, 

and the similarity measure 7.2. This algorithm was run on the Tfs-Ia examples. Fig­

ure 7.2 shows a typical hierarchical structure, or dendrogram, generated by the algorithm 

for a subset of the examples. Various different partitions of the example set can be derived 

from the dendrogram, depending on the distance threshold at which the process of com­

bining clusters is stopped. Given a sufficiently high threshold, the partition will consist of 

a single cluster holding all the examples; given a sufficiently low threshold, each example 

will lie in a cluster of its own. The grey bar in figure 7.2 shows the range of thresholds that 

will lead to a partition where each cluster corresponds to a particular fault, or combination 

of faults.

Figure 7.2: Dendrogram for some Tps-la examples
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It will be seen that the hierarchical clustering method has the disadvantage of providing 

more structure than is needed for selecting examples; moreover, there is no obvious way of 

choosing a threshold value that will generate an appropriate example partition from the 

tree. One approach might be to use, say, the ratio of average inter-cluster distance and 

average intra-cluster distance. However, for selecting refinement and judging examples 

for Tfs, the hierarchic method just described was in the end not employed, because the 

simpler non-hierarchic method defined below (section 7.5) proved sufficient. Consequently, 

methods for selecting an appropriate threshold for partitioning the hierarchical clustering 

were not investigated further.

It will be noted that the inductive operators described in chapter 6 also perform a kind 

of clustering, since they require sets of positive and negatives examples of the fault they are 

trying to fix. In their case, greater precision is required, since a single incorrectly classified 

example could lead to an incorrect result, which is not the case when using clustering to 

select refinement or judging examples. Consequently, these inductive operators use further 

information about rule firings derived from the trace, in addition to the system and oracle 

outputs. However, the computation required for this is minimised by using the system 

and oracle outputs first to select candidate positive and negative examples, thus reducing 

the number of traces that need be examined.

To summarise, an ideal clustering is one in which clusters correspond to faults in 

the KB. If 100% accuracy is not required, then a clustering mechanism using a distance 

function based purely on system and oracle outputs is sufficient. If 100% accuracy is 

required, extra information from the traces can be used, but the computation required is 

greater.

7.5 A simpler clustering method

The hierarchical clustering mechanism described in the previous section suffered from 

a number of drawbacks, as explained, so a simpler, non-hierarchical method was used 

instead. Moreover, a simpler distance measure was used than either of the ones defined in 

section 7.4. The reason for this is that these measures generated an inconveniently large 

number of clusters when applied to Tfs-1b. The simpler distance measure d{Ei,E2') 

between examples Ey and E2 is defined as follows. d{Ei,E2} = 0 if the errors in the 
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system output for the two examples lie in exactly the same fields, 1 otherwise. Thus, if 

two examples both have incorrect filler, but are correct in all other aspects, the distance 

between them will be 0.

This definition needs to be extended slightly to take into account fields which include

both an excipient and its quantity. For such fields three cases are considered:

1. both values are correct;

2. the excipient is correct, but the quantity is wrong;

3. the excipient is wrong.

The case where the excipient is wrong but the quantity is correct is not considered, since 

the quantity depends on the choice of excipient; if the excipient is wrong, then it is only 

by chance that the quantity could be correct. For excipient/value fields, examples are 

regarded as suffering from the same fault if and only if they both lie in the same error­

class for that field. For instance, an example exhibiting a correct binder but wrong binder 

quantity does not lie in the same error class as an example exhibiting an incorrect binder. 

d{Ei,E2) is now defined to be 0 if and only if Ei and E2 have the same type of fault for 

each output field. The effect of this distance measure is to associate together examples 

which differ in exactly the same attributes, without regard to the actual values of these 

attributes.

Now that a distance measure has been defined, it is possible to define a clustering 

mechanism. Non-hierarchical clustering can be carried out by assigning examples to cells 

in an n-dimensional array, where each cell represents a particular fault type, or combination 

of fault types, as follows. An n-dimensional array is created, where each dimension of the 

array corresponds to an attribute in Tfs’s output. For example, if just two attributes. 

Binder and Target-Tablet-Weight, are considered, the following array will be created.

Binder

Target-Tablet-Weight

For attributes referring to excipients, such as Binder, the length of the axis is 3, corre­

sponding to correct excipient and quantity, wrong quantity, and wrong excipient. For 
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other attributes, the length of the axis is 2, corresponding to correct value, and wrong 

value.

Target-Tablet-Weight

Binder

Correct Wrong quantity Wrong binder

Correct

Wrong

Each cell of the array will hold examples whose errors correspond to the co-ordinates of 

that cell. Here some examples have been placed in the array, to illustrate how this works.
Binder

Target-Tablet-Weight

Correct Wrong quantity Wrong binder

Correct 1 3,4

Wrong 2

Example 1 in the above array is correct in all respects, example 2 has the wrong target- 

tablet-weight and the wrong quantity of binder, and examples 3 and 4 have the correct 

target-tablet-weight but the wrong binder.

The array is used at two stages during the refinement process: to select refinement 

examples, and to select judging examples. A procedure is required for selecting a subset 

of the training examples for use in judging, because judging requires the running of Tfs, 

which is very time-consuming. Otherwise, the entire training set could be used.

The procedure for selecting refinement examples is as follows. Let those cells which 

are occupied, and which do not hold correctly solved examples, be G, 1 < i <p. The cell 

which holds correctly solved examples is omitted, since these are of no use as refinement 

examples.

for i = 1 to p

Select an example e at random from cell Ci

Run Krust on example e

end

This selects a single refinement example in turn from each cell containing at least one 

faulty example.

The algorithm for selecting a subset of examples for judging aims to select an equal 

number of examples from each occupied cell in the array, to the extent that the number 
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of examples in each cell permit this. Let the occupied cells be Ci, 1 < i < q. Then the 

selection algorithm to select n examples is as follows.

Let example-set = {}

While I example-set | < n

for i = 1 to q

If

If

cell Ci contains at least one example, then 

remove one example at random from cell Ci

and add it to example-set 

example-set | = n then exit

end 

end

This picks examples one at a time from each occupied cell, starting again at the beginning 

as necessary, until the required number of examples have been selected.

7.6 Summary

This chapter has shown how example clustering can be used by Krust, and presented two 

clustering methods. The next chapter describes the evaluation of Krust when applied 

to Tfs-Ia and Tfs-1b; this evaluation uses the simpler clustering method described in 

section 7.5.



Chapter 8

Evaluation

Traditionally, developers of refinement systems have adopted evaluation techniques bor­

rowed from the machine learning community. Typical techniques include testing whether 

the tool can fix artificial corruptions in a KB, and running the tool on a large number 

of examples in order to produce learning curves. Work described elsewhere demonstrates 

Krust’s ability to refine small or artificial KBSs, or KBSs with artificial corruptions (Craw 

& Hutton 1995, Palmer & Craw 1996). This work uses traditional evaluation methods to 

show that Krust is competitive with other systems when applied to KBSs of this type.

However, traditional evaluation methods are less appropriate to the work described in 

this thesis. Instead, the thesis aims to show that Krust is of practical use in software 

development, since it can fix real bugs which actually occur in an application. This 

chapter first uses the history of Tfs to illustrate a typical software development cycle, 

and explains where knowledge refinement can be applied within that cycle (section 8.1). It 

then outlines traditional evaluation methods (section 8.2), and goes on to show how these 

methods can be adapted to make them more suitable for evaluating Krust’s effectiveness 

as a practical tool (section 8.3). Finally, it describes an experimental design for evaluating 

Krust’s effectiveness in refining Tfs (section 8.4) and presents results for Tfs-1a and 

Tfs-1b (sections 8.5 and 8.6).

8.1 The role of refinement in software development

Figure 8.1 shows the place of Tfs-Ia, Tfs-1b and Tfs-2 within the development of Tfs. 

The first version, Tfs-Ia was created from scratch by traditional means of knowledge 
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elicitation, such as interviewing experts, and protocol analysis. Tfs-1b was created by a 

process of debugging; that is, making small changes to fix faults in Tfs-1A. Tfs-2 was 

created as a result of more substantial modifications which were required by a change in 

the specification of the formulation process. Tfs-3 was created as a result of an even more 

substantial redesign of the system, when the requirements of Tfs changed.

< Tfs-3 .Redesign
".... *•*«■■■■■

Figure 8.1: Stages in the development of Tfs

Traditionally, Al techniques can be used at two stages in the above typical software 

development cycle. Machine Learning can be used to assist in knowledge elicitation, and 

knowledge refinement can be used to assist with debugging. However, this thesis aims to 

show that the role of knowledge refinement can be extended by applying it also in the 

maintenance stage.

The most straightforward way to evaluate Krust’s applicability to Tfs would have 

been during Tfs’s development. Krust might have been used to assist with the debugging 

of Tfs-IA and with the maintenance work on Tfs-1b. However, this was not possible, 

since Tfs-2 was already complete before my project started. However, the existence of all 

three versions of Tfs enabled the evaluation to be carried out retrospectively, and made 

it possible to judge how closely Krust replicated the manual development process. The 

details of how this was done are described in the next section.
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8.1.1 The use of Tfs as an oracle

Discussions of faulty behaviour of a KBS have described the fault in terms of differences 

between the behaviour of the system and the behaviour recommended by an oracle. Typ­

ically the oracle is a human expert. However, the fact that I had access to a number 

of different versions of Tfs allowed a different approach: to regard each version of Tfs 

as an oracle with respect to the previous versions. Thus, when Krust was applied to 

Tfs-Ia, Tfs-1b was used as an oracle. Tfs-1A was used to generate the specification 

and formulation for a particular tablet, and these were compared with the oracle values 

generated by Tfs-1b. Similarly, when Krust was applied to Tfs-1b, Tfs-2 became the 

oracle.

Figure 8.2 illustrates how the procedure for evaluating Krust fits into the development 

of Tfs. Krust’s first role is the debugging of Tfs-Ia. Guided by cases from Tfs-1B, 

and traces from Tfs-IA, it seeks to fix the bugs in Tfs-1A, and to generate a KB which 

behaves in the same way as Tfs-1b. Next, using cases from Tfs-2 and traces from

Tfs-1b, it seeks to re-create the changes to Tfs-1b which were originally performed as 

maintenance, and to generate a KB which behaves in the same way as Tfs-2.

T • * »

Cases

Tfs-2

Figure 8.2: How Krust was applied to different versions of tfs
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Since I was provided with copies of Tfs-1a and Tfs-1b, it would have been possible, 

when refining Tfs-Ia, to run the appropriate version of Tfs whenever the system or 
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oracle outputs for a particular example were required by Krust. However, this would 

have been very slow and inefficient, since it would have lead to the same examples being 

run many times. Moreover, outputs from Tfs-2 could not be acquired in this way, since 

I was not provided with a copy of this version, but had to visit Zeneca in order to run it.

For these reasons, I chose instead to generate results from all versions of Tfs for a large 

number of examples, and store them for later use.

Krust requires outputs from both the system being refined and from the oracle, but 

it requires traces from the system only. Indeed, it would be inappropriate to allow Krust 

access to the oracle traces, since these convey information about the refined KB which 

Krust is trying to generate. Normally, of course, the oracle is an expert, not a piece of 

software, so that oracle traces will not be available. Consequently, outputs were generated 

for Tfs-Ia, Tfs-1b and Tfs-2, and traces for Tfs-1a and Tfs-1b.

The sets of inputs for the examples was selected so as to cover the input space evenly.

The range of inputs was as follows:

Drug: A, E, F, G, H, I, K, M, N, P, R, S, or T^

Number of fillers: 1 or 2

Dosage: Any value from 10 to 360mg

Successive values of dose were selected with a step size of 50 mg, giving 8 different values of 

dose. All possible combinations of drug, number of fillers and dosage were then generated, 

giving a total of 208 sets of inputs. Outputs and traces as specified above were generated 

for all these inputs. These were used as shown in figure 8.2, and provided the data needed 

by Krust to drive and guide the refinement of Tfs-1A and Tfs-1b.

8.1.2 The provision of category information

When Krust was applied to Tfs-1b, with Tfs-2 as oracle, the aim was to automate the 

process of implementing the new policy of choosing low-category excipients where possible. 

It was therefore necessary to provide Krust with information about which excipients lay 

in which categories. This was not unreasonable, since the developers who performed the 

task manually were provided with the same information.

^The actual names of the drugs were replaced by letters, for reasons of confidentiality
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The category information was added to the Tfs-1b database, and was presented in the 

same way as the existing chemical data. For example, the fact that lactose is a category 

one excipient was represented by the fact

CATEGORY Of LACTOSE iS 1

8.2 Traditional evaluation methods for learning algorithms

This section summarises traditional evaluation methods. The summary will provide the 

background for the next sections, which describe how traditional methods can be modified 

to make them more applicable to current needs, where a refinement tool is to be evaluated 

for the tasks of software debugging and maintenance.

A typical learning algorithm takes as input a set of pre-classified training examples 

L, and generates as output a procedure or structure R which may be used for classifying 

further examples. R may be, for example, a decision tree, rule set, or trained neural net.

The simplest approach to evaluating such an algorithm A, given a set E of classified 

examples, is as follows:

Iteration i

Randomly partition E into learning and testing sets Li and Ti 

Apply A to Li to learn Ri.

Evaluate the accuracy of Ri on Ti; that is, determine

what proportion of Ti are classified correctly by

A possible enhancement to this is, for each division of E into Li and Tj, to partition the 

learning examples L into equal subsets Lj,i, £1,2, • • • Li^n^ and apply the algorithm in turn 

to the sets Ljj, U Li^2i • • • > UTi,2 U ... Li^m, evaluating the accuracy for each, thus 

obtaining a typical learning curve as shown in figure 8.4.

This approach can be most efficiently implemented for incremental learning algorithms 

for which the results of processing set Li followed by set L2 are the same as the results of 

processing the combined set Ti U L2.

8.2.1 The non-incremental nature of Krust

Given a learning set Li consisting of examples fi,i, Zi,2 • • • li,mi, Krust’s approach is to select 

each lij in turn as a training example, and to use the complete example set for filtering
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L2

Li

Figure 8.3: Incremental Learning

Number of training examples

Figure 8.4: Associated learning curve

and induction. When Krust processes Li, only the examples in Li will be available for 

filtering and induction. However, when Krust processes Ly U L2, the extra examples in 

L2 will become available for use with the refinement examples from Li. Therefore, for 

each augmentation of the example set, Krust will have to start from scratch, rather than 

continuing from where it left off. It follows that Krust is not an incremental learning 

algorithm. Hence the approach to testing depicted in figures 8.3 and 8.4 is not particularly 

efficient for Krust, and may not be feasible for large or slow applications. This restriction 

is not unique to Krust; it applies to any refinement tool. It would not apply to a tool 

that learned from a single example at a time, while making no use of any other examples, 

but I am not aware of any such refinement tool.

8.3 How evaluation methods can be adapted to the needs

of Krust

This section describes and justifies the ways in which the usual procedure for applying 

Krust to a KBS were modified during Krust’s evaluation on Tfs. The following modi­

fications were made.

• The oracle’s formulations were provided by versions of Tfs, not by a human expert.

Krust did not iterate over a sequence of examples.

Clustering was used to select refinement and judging examples.
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The reason for the first modification has already been explained. The purpose of the 

other two modifications was to reduce the need to run Tfs, which can take between 2 and 

10 minutes for a single run. Details of these two modifications now follow.

8.3.1 Modification of Krust’s iterative procedure

In the past, Krust has dealt with multiple refinement examples in an iterative manner.

Examples are selected one at a time for input to Krust. After each run, the best KB is 

retained and the refinement example added to the priority examples. Thus the best refined 

KB generated by each run is used as input to the next run, so that Krust generates a 

series of KBs, each more accurate than the one before.

The disadvantage of this approach when applied to Tfs arises because of Krust’s use

of traces. Traces are required both for the refinement example, and for any examples used 

for induction; unfortunately, after the first iteration of Krust has lead to the generation 

of a new KB, all the old traces become obsolete. Generating a complete set of new traces 

for all the training examples is possible but would consume much time and file-space. 

One possible compromise would be to generate a new trace for each refinement example, 

but to retain the old traces for induction, (figure 8.5). The result of this would be to 

save considerably on time and space. at the expense of an increasing loss in accuracy in

induction as the iteration proceeded.

T; j is the trace obtained by 
running KB, on example j

2nd Training Example
with new trace from KB 1r

1st Training Example

Filtering/Induction 
examples and traces

Figure 8.5; Applying Krust iteratively to Tfs

Filtering/Induction examples 
with old traces from KBq

A better approach would be that shown in figure 8.6. Here Krust is run separately 

for each refinement example h, I2, ■ • ■ In, starting in each case with the original KB, KBq.
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The result is a set of KBs, KBi, KB2,... KBn, where each refined KB, KBi, is generated 

by applying refinement n to KBq. Once this has been done, the refinements corresponding 

to each new KB can be combined into a single KB which incorporates all of them.

This approach has two potential problems. First, two or more of the refinements rj 

might be incompatible. For example, one refinement might specialise a condition, and 

another might generalise the same condition. Secondly, it is possible that two refinements, 

while not being incompatible, might nonetheless interfere with one another, so that, while 

rj(KjBo) fixed example Zj, the combined refinement Vjri^KBo) did not. Currently, Krust 

recognises the first of these problems. It constructs the combined refinement by applying 

the constituent refinements one at a time, and if it encounters a refinement which is 

incompatible with a previous refinement, it simply fails to apply it. Consequently, the 

presence either of incompatible or of interfering refinements may mean that the combined 

refinement fails to fix one or more of the refinement cases. The simplest way to deal with 

this situation would be to test the resulting KB on all the refinement cases, and to identify 

cases on which the KB fails. Further iterations of the procedure shown in figure 8.6 could 

then take place, starting from the refined KB just generated, and using the previously 

failing cases as refinement examples. In pathological cases, it might be necessary to revert 

to a purely serial procedure, as shown in figure 8.5.

In practice, when the technique of parallel refinement shown in figure 8.6 was applied to 

the Tfs applications, no interference between refinements took place, so further interations 

proved unnecessary.

8.3.2 The selection of judging examples

Because of Pfes’ slowness, it is desirable to reduce the number of examples used in judging. 

The selection method described at the end of section 7.5 was used, whereby equal numbers 

of examples are selected from each fault class (including examples which exhibit no fault). 

In total, 1/6 of the available training examples were selected for use in judging.

8.4 Experimental design

The experimental design for evaluating Krust followed the approach in section 8.2, but 

did not incorporate the technique of incremental evaluation. The example set was re-
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Tj is the refinement operator 
which transforms KBq into KB^

KBi=ri(KBo)

\ 
\

rafKBo) - __ __ Combined refinement:
rn..r3r2ri(KBo)

r2(KBoX

Refined KBs

Figure 8.6: An alternative to iteration

rn(KBo)^

peatedly partitioned into training and testing sets. After each partition, the training set 

was clustered according to fault type, using the simple non-hierarchical mechanism de­

scribed in section 7.5. For the purposes of example selection only, clusters sharing the 

same independent incorrect attribute were merged. For example, in the case of Tfs-Ia, 

the partition included a cluster where the only fault lay in the target-tablet-weight, and 

a second cluster where faults lay in both target-tablet-weight and filler. For examples 

from either cluster, the independent attribute, which is used to drive refinement, is target­

tablet-weight. Consequently, the two clusters were merged. After the merging process, one 

example was then selected in turn from each cluster, and used as a refinement example by 

Krust. The best refined KB generated from each run was then evaluated on the testing 

set. Furthermore, once one example of each fault had been processed, the refinements 

associated with the best KB from each run were combined and implemented, as shown 

in figure 8.7. The resulting KB was then itself evaluated on the testing examples. This 

algorithm is described more formally in figure 8.8.

The following method was used for evaluating each KB on the testing set. For each
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Iterate

Figure 8.7: The evaluation of Krust on an example set

example, the formulation generated by the KB was compared with the oracle’s formulation, 

and the number of errors counted. Any field that was not correct in both excipient and 

quantity was regarded as one error. The error-rate for the KB was then calculated as

total errors 
number of fields in formulation x number of examples

Note that this measure makes use of the formulation only, whereas Krust’s filtering and 

judging modules use both formulation and specification. The reason for including only 

the formulation in the evaluation measure is that the formulation constitutes the useful
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For i = 1 to r
Partition the example set randomly into a training and a 
testing set, in a ratio of 2:1.

Partition the training set into fault classes, as described in 
section 7.5. Let the classes be C^,! < k < p, where class Ci 
contains fault-free examples.

Let the judging set be l/ujudging 
distributed evenly over all the 
algorithm at the end of section

of the entire training set, 
fault classes, using the 
7.5

by implementing the refinement Rij. 
Kij on the testing set.

For j = 2 to p ;; thus omitting the fault-free class 
Select an example eij at random from Cj.
Run Krust on example Cjj, generating best KB Kij, 
obtained
Evaluate

End
Create a new
Evaluate Ki on the testing set.

End

KB Ki by combining the refinements Rij, j — l...p

Figure 8.8: Algorithm for evaluating Krust

output of Tfs, so that the accuracy of a Tfs KB should be judged solely by the accuracy 

of the formulation which it generates. Expert formulators who use Tfs do not generally 

even look at the specification. On the other hand, the specification is an intermediate 

result, which can provide useful information when debugging, as opposed to using, Tfs. 

It is therefore reasonable for Krust to have access to both specifications and formulations 

when debugging Tfs KBs.

8.5 Evaluation of Krust as applied to Tfs-1A

The experiment depicted in figure 8.7 was run with 10 iterations. The partitioning pro­

cedure revealed the following fault types. Examples of these were shown in the previous 

chapter (figure 7.1).

• Wrong quantity of binder.

• Wrong filler.
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• Numerous errors in specification and formulation. For each such example, the one 

independent attribute was target-tablet-weight.

After the merging process described in the previous section, three clusters remained, one 

for each fault type. In principle, a set of training examples might have been selected 

which contained no examples of a particular fault type. In practice, this never happened; 

examples of all three faults were present in each iteration.

8.5.1 Experimental results

When the experiment had been run, the single best refined KB generated for each example 

was examined. The most important observation was that given any one example of a 

particular fault type, Krust was able to generate a refined KB which fixed the refinement 

example, and most other examples of that type. The manner in which each fault type 

was fixed is shown in table 8.1. The details of the repairs for each fault type are given in 

sections 5.5.4, 6.2.1 and 6.1.1.

Moreover, the domain expert confirmed that in each case the fix was the correct one, 

or an acceptable alternative. Furthermore, the KB which combines the refinements for all 

the different faults gives results which correspond almost exactly with the oracle.

There were just two respects in which the changes which Krust recommended to Tfs- 

lA did not correspond precisely to those introduced in Tfs-Ib. First, Krust was unable 

to arrive at the precise value for the maximum level for calcium phosphate which was used 

in Tfs-Ib. This was because the available training examples did not sufficiently constrain 

the choice of maximum level. Secondly, Krust was unable to learn the formula used 

by Tfs-1b for calculating target-tab let-weight for high values of dose. This was because 

the new formula applied to only a very limited range of doses, and furthermore the new 

formula used a polynomial to calculate the target-tablet-weight, and then rounded the 

result to the nearest 5mg (this is described in more detail in section 6.1.1). Consequently, 

the data available were insufficient to learn the new polynomial. However, the alternative 

formula learned by Krust generated the same results as the Tfs-Ib formula for all the 

available examples.

A statistical summary of the accuracy of the refined KBs is given in table 8.2. Each 

row of this table summarises the performance of Krust on one example of each fault type.
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Table 8.1: Summary of how Krust fixed the three faults

Fault 1 Wrong binder weight. RHS of default-binder-level changed from 0.04 
to 0.02

Fault 2 Wrong filler The missing value of max-level of calcium 
phosphate was added to the database. This 
caused calcium phosphate to be rejected when 
it exceeded the max level.

Fault 3 Wrong target-tablet-weight A new rule was learned for calculating target- 
tablet-weight for high values of dose.

The successive columns represent the different fault types; each entry shows the error-rate 

for the best refined KB resulting from a refinement example of that fault type. The final 

column shows the error-rate of the KB which combines these refinements.

Mean 
Std. Dev.

Error rates for KB
Original KB Best KB, when refinement 

case is taken from the given
KB combining 
refinements

fault class

Fault 3Fault 1 Fault 2
0.210 0.048 0.186 0.171 0.019
0.222 0.092 0.198 0.186 0.048
0.244 0.101 0.213 0.193 0.043
0.232 0.094 0.205 0.181 0.046
0.213 0.063 0.213* 0.164 0.027
0.225 0.065 0.225* 0.176 0.027
0.220 0.099 0.200 0.176 0.046
0.208 0.082 0.208* 0.181 0.043
0.232 0.089 0.208 0.186 0.043
0.246 0.080 0.246* 0.188 0.046
0.225 0.081 0.210 0.180 0.039
0.0133 0.0175 0.0163 0.0087 0.0105

* the original KB was returned as best.

Fault 1: Wrong binder weight
Fault 2: Wrong filler
Fault 3: Wrong target-tablet-weight

Table 8.2: Error rates for refined Tfs-IA KBs

The error rates vary between columns, but do not vary greatly within each column. 

The reason is that when Krust is given a refinement case exhibiting a particular fault, 

it will generate a refinement fixing that fault, but no others. Therefore, the error rate for 

the refined KB will depend on the frequency of the fault; the more frequent the fault, the 
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lower the error rate. Thus, because the binder fault is the most common, the remaining 

error rate for KBs which fix this fault is the lowest. Conversely, the filler fault is the least 

common, so KBs which fix only this fault have the highest remaining error rate.

The improvement for the separate fault types, and for the combined refinements, is 

significant at the 95% level. The mean error rate obtained by combining the three refine­

ments in each row is small (3.9%), compared to the mean error rate for the original KB 

(22.5%) but non-zero. The reason that an error rate of zero is not obtained is the inability 

of Krust to learn precisely the value for the maximum level of calcium phosphate, as 

described earlier.

Having discussed some overall properties of the results, the remainder of this section 

is concerned with more detailed observations about Krust’s repairs for the various fault 

types.

The wrong-filler fault had a second interesting property, in addition to the difficulty of 

learning the correct value for the missing fact. As stated earlier, Krust always generates 

a KB which fixes the refinement case. However, this KB is not always returned as the 

best KB. There were four occasions when the KB containing the “correct” refinement for 

the wrong-filler fault had the same accuracy as the original KB, so the original KB was 

returned by Krust. Two factors combined to produce the poor performance of the refined

KB.

• There were very few examples of the fault (fault 2, wrong filler) in the training set, so 

that the improvement in overall accuracy resulting from fixing this fault was small.

• When some examples of fault 3 (wrong target-tablet-weight) were used as judging 

examples, the refined KB performed worse than the original KB. This is because 

an error in the target-tablet-weight seriously disrupts the rest of the formulation 

process, so that changes to the KB can have an unpredictable effect on the result.

This illustrates the potential importance of the choice of judging examples in the refine­

ment process, which is discussed in detail in (Palmer & Craw 1996).

The number of refinements generated depended on the fault, but there was almost no 

variation between runs. Table 8.3 shows the numbers of filtered refinements and refined

KBs for each fault type. In the entire run, there was a single exception to these figures; 

one example of fault 1 generated only 9 refinements, and 6 refined KBs. The numbers of
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Table 8.3; Numbers of refinements at different stages of the refinement process

Fault 1 Fault 2 Fault 3
^refinements after filtering 27 40 31
#refined KBs before filtering 6 9 6
#refined KBs after filtering 1 1 1

refinements after filtering are of the same order as those produced by applying the original 

Krust to the wine advisor, which were; average 19.05, minimum 5, maximum 38, over 

the entire set of runs recorded by Craw (1991). The number of refined KBs before filtering 

was not recorded by Craw (1991), so no comparison can be made. However, there is a 

considerable difference between the wine advisor and Tfs-IA in the number of refined

KBs after filtering. For Tfs-Ia, there is only ever one KB which performs correctly for 

the refinement case. For the wine advisor, the average number is 8.42. It is likely that 

this difference arises from the fact that the wine advisor is a classificatory system, whereas 

Tfs is a design system. The output of Tfs is much more complex than that of the wine 

advisor. Consequently, it is much less likely that an incorrect Tfs KB will generate the 

correct output for the refinement example than that an incorrect wine advisor KB will. 

Consequently, the refinement case filter is much more effective for Tfs than for the wine 

advisor.

8.5.2 Feedback from evaluation by expert

When the domain expert presented me with Tfs-1A, he told me that it contained three 

faults. He thought that one should be easy to fix, one would be hard, and that Krust 

would probably not be able to fix the third! Our experiences show that Krust was able to 

fix all three faults. The results of this experiment demonstrate that Krust has succeeded 

in performing the role for which it was intended; to fix faults actually occurring in a KBS.

8.6 Evaluation of Krust applied to Tfs-1b

It was expected that the refinement of Tfs-1b would prove to be a harder problem than 

Tfs-Ia, because the upgrade from Tfs-1b to Tfs-2 involved a significant change in 

the system’s specification. Consequently, it was not surprising that, although Krust 

generated a number of correct changes to Tfs-1b, it was less successful overall than 
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when applied to Tfs-IA. This section first describes how the experiment was carried 

out. It then presents some typical refinements generated by Krust for various types of 

faults, together with comments from our expert pharmacist. He confirms whether or not 

the changes introduced by Krust bring Tfs-1b closer to Tfs-2; where they do not, he 

assesses to what extent Krust’s refinement are reasonable alternatives. Statistical results 

are then presented in the same form as for Tfs-1A. Finally, conclusions are drawn about 

the effectiveness of Krust, and how its performance might be improved.

8.6.1 Experimental Design

The number of discrepancies between system and oracle output was much greater for Tfs- 

Ib than for Tfs-Ia. There were very few examples for which the formulations were entirely 

in agreement, and in many cases they differed in a number of attributes. Because of this 

complexity, only examples having single incorrect attributes were used in the evaluation. 

Errors were observed for four different excipient types; filler, binder, disintegrant and 

surfactant, and in the target tablet weight.

Krust was applied to Tfs-Ib in a similar way as to Tfs-Ia. Ten iterations were 

performed, and in each iteration Krust was run on 5 different refinement examples, where 

each example exhibited a fault in a different attribute. For each refinement example, the 

best refined KB was evaluated on the testing examples. The best refinements for each 

fault were then combined in a single KB, and this also evaluated on the testing examples.

8.6.2 The difficulties of the maintenance task

The differences between Tfs-Ib and Tfs-2 were of two types: minor adjustments that 

could be regarded as bug-fixes, and more substantial changes that could better be described 

as maintenance. The claim that the addition of excipient categories constitutes software 

maintenance, and not simply debugging, is justified for the following reasons.

• The changes took several xnan-months to carry out.

• The expert regarded the changes as constituting a “paradigm shift” in the way in 

which formulation was carried out.

• The changes meant that the formulations generated by Tfs-2 differed from those 

generated by Tfs-Ib for the great majority of possible inputs.
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Krust was able to make a number of minor adjustments correctly, but was less suc­

cessful at generating the more substantial changes. An important reason for this lay in 

the nature of the formulation problem. In general, there is no one best formulation, but 

rather a number of equally good ones. This poses problems for judging and evaluation, 

since the only criterion for evaluating a formulation is by comparing it with the oracle’s. 

Consequently Krust has no way of distinguishing a refinement which leads to a good 

alternative formulation from a refinement which is entirely wrong. This makes it hard 

to select the best refined KB. As a result, Krust will often generate a refinement that 

the expert agrees to be reasonable, but Krust rejects it on the grounds that it does not 

perform in the same way as the oracle on the refinement example. As a result, Krust is 

often unable to recommend a refined KB, so returns the original KB as best. Evaluation 

of Krust’s performance is difficult for the same reason; a simple comparison with the 

oracle does not tell the whole story.

It will be noted that the refinement of Tfs-Ia was affected less by this problem, 

since Krust was able to refine Tfs-Ia in such a way that its behaviour corresponded 

very closely to that of Tfs-1b. This may be explained by the fact that the refinements 

required by Tfs-Ia were simpler. In particular, less use was made of the inductive opera­

tors, since neither inductive_adjust_value not inductive_split_rule were needed in the 

refinement of Tfs-1A. The approach taken by the inductive operators renders them par­

ticularly liable to the problem of generating alternative good solutions, since they work by 

identifying features which distinguish correct from incorrect behaviour over a number of 

examples; they therefore identify a whole range of good behaviour, where good behaviour 

may correspond to the choice of any one of a number of suitable excipients.

There follows a description and evaluation of the refinements actually generated by 

Krust, classified by fault type. For faults where Krust was unable to generate re­

finements which duplicate the behaviour of Tfs-2, the description concentrates on the 

refinements generated by the inductive operators, particularly inductive_split_rule.

8.6.3 Target-tablet-weight

In Tfs-1b, as in Tfs-Ia, the target-tablet-weight is a function of dose only. Two different 

formulae are used, depending on whether the dose is less than or greater than 350 mg. 

The following two rules perform the calculation.



8.6. Evaluation of Krust applied to Tfs-1b 161

RULE 1st-guess-weight-<=350mg

IF DRUG has value <DRUG> in the FORMULATION

AND <DRUG> has value <DOSE> in the FORMULATION

AND <DOSE> < 350

AND <WEIGHT> = ROUND-TO-NEAREST-5(100 * <DOSE>

/(0.221 * <DOSE> + 10))

THEN

set the value of TARGET-TABLET-WEIGHT in

SPECIFICATION to be <WEIGHT>

RULE 1st-guess-weight->350mg

IF DRUG has value <DRUG> in the FORMULATION

AND <DRUG> has value <DOSE> in the FORMULATION

AND <DOSE> > 350

AND <WEIGHT> = ROUND-TO-NEAREST-5(3.1317 + 0.375 * <DOSE>

- 0.000544 * <DOSE>2 + 2.53 * 10“'’^ * <DOSE>3)

THEN

set the value of TARGET-TABLET-WEIGHT in

SPECIFICATION to be <WEIGHT>

For examples exhibiting a target-tablet-weight fault, the recommended refinement consists 

of two applications of the inductive_adjust_value operator. This operator is used to 

specialise the threshold condition to <DOSE> < 350 in the first rule, and to generalise 

the equivalent condition in the second rule. The effect of these changes is to lower the 

threshold at which the second rule is applied from 350 mg to 310 mg.

The expert confirmed that the changes made in the rules which calculate target-tablet­

weight were correct. The refined rules generated by Krust are the same as those used by

Tfs-2.

8.6.4 Surfactant

For all the examples of incorrect surfactant, the nature of the fault was that Tfs-Ib 

recommended some surfactant, but the oracle indicated that no acceptable surfactant
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could be found. The refinement selected by Krust for all such examples was to delete 

the rule default-surfactant.

RULE DEFAULT-SURFACTANT

IF FORMULATION has attribute <SURFACTANT>

THEN

set the value of SURFACTANT in

FORMULATION to be <SODIUM-LAURYL-SULPHATE>

UNLESS

SURFACTANT has value <VALUE> in FORMULATION.

The effect of this rule is to choose sodium lauryl sulphate as a surfactant, provided that 

a surfactant is required, and that none has yet been chosen. Deleting this rule causes 

Tfs-1 b’s behaviour in choosing surfactants to match that of the oracle, so that in certain 

circumstances it fails to recommend any surfactant.

The expert confirmed that this refinement was correct; the rule DEFAULT-SURFACTANT 

is not present in Tfs-2.

8.6.5 Binder

For the binder and other fault types, the refinements generated by Krust were less suc­

cessful, and were mostly unable to duplicate the exact behaviour of the oracle. Unless 

stated otherwise, it may be assumed that all the refinements listed below were rejected 

because they did not perform identically with the oracle for the refinement case. For 

binder faults, the refinements generated by Krust are listed in some detail, to illustrate 

the behaviour of the inductive operators. The refinements for later faults are presented 

more briefly.

For the examples where the fault lay in the binder, Krust generated a number of 

refinements using the inductive_split_rule operator, and on some occasion the induc- 

tive_adjust_value operator as well. On one occasion, the first of these operators gen­

erated a KB which gave the same result as the oracle on the refinement case. The in- 

ductive_split_rule operator was applied to the rule most-stable-binder, and created 
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four copies of the rule, each of which had extra conditions, most-stable-binder sets the

binder to be the one which appears at the top of the stability agenda.

RULE MOST-STABLE-BINDER

IF <BINDER> is on <STABILITY-AGENDA>

<BINDER> is-a BINDER

THEN

set the value of BINDER in

FORMULATION to be <BINDER>

UNLESS BINDER has value <VALUE> in FORMULATION.

inductive_split_rule creates four new rules by adding the following sets of conditions to

the MOST-STABLE-BINDER rule.

STABILITY of MANNITOL < 100.9

STABILITY of MAIZE-STARCH < 101.1

STABILITY of CALCIUM-PHOSPHATE < 39.54

STABILITY of CALCIUM-DIHYDRO-PHOSPHATE < 92.15

NO-OF-FILLERS of SPECIFICATION < 1.5

DOSE of SPECIFICATION > 235

CATEGORY of <BINDER> <2.5

STABILITY of MANNITOL < 100.9

STABILITY of MAIZE-STARCH < 101.1

STABILITY of CALCIUM-PHOSPHATE < 39.54

STABILITY of CALCIUM-DIHYDRO-PHOSPHATE > 92.15

DOSE of SPECIFICATION > 235

CATEGORY of <BINDER> <2.5

STABILITY of MANNITOL < 100.9

STABILITY of MAIZE-STARCH < 101.1

STABILITY of CALCIUM-PHOSPHATE > 39.54

CATEGORY of <BINDER> <2.5

STABILITY of MANNITOL > 100.9
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The behaviour of these new rules is as follows. The first new rule will attempt to fire 

for each in turn of the binders on the stability agenda. The rule will succeed if all the 

conditions are satisfied, and will select the successful binder to be included in the formu­

lation. If the first rule does not succeed for any binder, the second rule will be tried, and 

so on. The exception clauses mean that as soon as a binder has been chosen, none of 

these binder-selecting rules can fire further. The effect of the rules is thus to select binders 

which satisfy one of the above sets of conditions in preference to those that do not.

Note that a condition such as stability of mannitol < 100.9 refers to the stability 

of mannitol with respect to the current drug, so is a drug property. Such a condition might 

initially appear meaningless in a rule designed to choose the best binder. However, on 

further inspection it turns out that the induced rules do make sense. Their effect is to 

prefer binders with category < 2.5 in certain circumstances only. These circumstances are 

that the current drug has certain chemical properties, which are revealed by the relative 

stability of certain excipients with respect to that drug. Nonetheless, it must be admitted 

that a human expert would not normally use as a drug property the stabilities of excipients 

not included in the formulation.

For other binder faults, Krust generated a successful refinement which was much 

simpler. This was to elevate the priority of the rule default-binder over that of most-

stable-binder.

<BINDER>

RULE DEFAULT-BINDER
IF

THEN

FORMULATION has attribute 

set the value of BINDER in

FORMULATION to be <PREGELATINISED-STARCH>

UNLESS

BINDER has value <VALUE> in the FORMULATION.

RULE MOST-STABLE-BINDER

IF <BINDER> is on <STABILITY-AGENDA>

<BINDER> is-a BINDER

THEN
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set the value of BINDER in

FORMULATION to be <BINDER>

UNLESS

BINDER has value <VALUE> in the FORMULATION.

The effect of MOST-STABLE-BINDER is to choose the binder with the highest stabil­

ity. The effect of DEFAULT-BINDER is to choose pregelatinised-starch if no other binder 

has been recommended. This effect of promoting the default rule is therefore to choose 

pregelatinised starch much more frequently. This fixes a number of examples in which the 

oracle chooses pregelatinised starch, but Tfs-1b does not.

Finally, Krust was also able to fix a number of faults by altering the conclusion of the 

rule SOLUBLE-INGREDIENTS-RULE. This rule asserts that in certain conditions, the binder 

should be maize starch. Krust changes the conclusion to choose the binder pvp.

The expert’s assessment

The expert confirmed that Krust was correct to learn the condition that category of 

binder < 2.5, and that this corresponded to the new policy of preferring binders with 

category 1 or 2. However, he said that the additional conditions based on the stabilities 

of unrelated excipients were not sensible, especially when excipients were included which 

were not even binders. However, given the presence of large numbers of different excipients 

in the database, it was not surprising that patterns in the data would sometimes emerge 

which would cause such conditions to be learned. He suggested that expert knowledge was 

needed to identify in advance which attributes were potentially relevant and which were 

not. The need for expert knowledge arose again when discussing filler faults.

The expert confirmed that changing the right-hand side of soluble-ingredients- 

RULE from maize starch to pvp is reasonable, and that it brought the behaviour of Tfs-Ib 

closer to that of Tfs-2. However, it would have been better to learn a more general rule 

which made use of excipient categories.
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8.6.6 Disintegrant

Krust used the inductive_split_rule operator to generate a number of refinements 

for disintegrant faults. The operator generates fewer new rules, and adds fewer condi­

tions, than when applied to binder faults. A typical refinement is to the rule GET-best-

DISINTEGRANTS.

RULE GET-BEST-DISINTEGRANTS
IF <DISINTEGRANT> is On DISINTEGRANT-AGENDA

STABILITY of <DISINTEGRANT> > 90

THEN

set the value of DISINTEGRANT in

FORMULATION to be <DISINTEGRANT>

The effect of this rule is to choose the first disintegrant on the DISINTEGRANT-AGENDA 

that has stability greater than 90. The inductive_split_rule operator creates a higher- 

priority copy of this rule with the added condition

EFFIGIENCY-RATING of <DISINTEGRANT> > 9

The effect of this new rule is to select disintegrants with high efficiency in preference to 

the rest, provided that they also have sufficiently high stability. On another occasion, the 

inductive_split_rule added a different condition:

INITIAL-LEVEL of <DISINTEGRANT> < 0.045

For a different refinement example, also suffering from a wrong binder, Krust gen­

erated an alternative refinement to the rule GET-best-disintegrants. In this case, the 

inductive_adjust_value operator increased the stability threshold from 90 to 102, so 

that the second rule condition appeared as

STABILITY of <DISINTEGRANT> > 102

Finally, on several occasions, Krust deleted the rule default-disintegrant, but 

this did not cause Tfs’s behaviour to match that of the oracle.
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The expert’s assessment

The expert confirmed that adding a condition to get-best-disintegrant to prefer dis- 

integrants with high efficiency was a reasonable change to make. Adding the condition 

that the initial-level of the disintegrant should be low was also understandable, since the 

higher the efficiency of a disintegrant, the lower its initial-level. Therefore, selecting dis- 

integrants with low initial-level is an indirect way of obtaining efficient ones. However, a 

human formulator would be more likely to use efficiency directly as the criterion.

The increase in the stability threshold was not approved by the expert. He agreed that 

high stability excipients were generally preferable, but said that there was nothing to be 

gained by raising the threshold above the present value of 90. However, he agreed that 

the resulting change in the disintegrant selected by Tfs was an improvement.

Finally, the expert confirmed that the refinement which deleted the default-disintegrant 

rule was correct. However, the presence of other faults in Tfs-1b meant that the rule dele­

tion on its own was not sufficient to produce correct behaviour.

8.6.7 Filler

The nature of the refinements generated by Krust for filler faults depended on whether 

the formulation was for one or two fillers. For one filler formulations, Krust applied 

inductive_split_rule on a number of occasions. It also recommended deletion of the rule 

INSOLUBLE-FILLER-RULE as an alternative refinement. This rule asserts that if the drug 

is soluble, the filler must be insoluble.

For two-filler formulations, the inductive_split_rule operator generated a number of 

refinements to the rule choose-A-filler-pair. As for the binder faults, the conditions 

added include a number of references to the stability of various excipients with respect to 

the drug being formulated.

The expert’s assessment

The expert initially thought that Krust was correct to delete INSOLUBLE-FILLER-RULE, 

and he confirmed that this change resulted in a better choice of filler in a number of 

cases. However, it turned out that insoluble-filler-rule does still exist in Tfs-2, but 

that for the examples in question it is overridden by other Tfs-2 rules. These new rules 
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insist that certain physical properties of the tablet, viz. tablet-yp and tablet-srs, should 

not exceed certain thresholds. When the requirements of these tablet-property rules are 

incompatible with insoluble-filler-rule, the tablet-property rules takes precedence.

Krust is currently unable to learn such rules, since it does not use intermediate results 

such as tablet-yp as input to the induction algorithm. Consequently, deleting insoluble- 

filler-rule was the nearest it could come to the correct refinement. The expert pointed 

out that Krust would have benefited from knowing that tablet properties are an important 

intermediate result which is used by Tfs-2.

The new tablet-property rules made Krust’s task harder in another way. When the 

expert first looked at the Tfs-2 formulations, he was very surprised at the number of 

category 3 fillers which were included. It turned out that these were explained by the 

tablet-property rules, which take precedence over the policy of preferring low category 

excipients. These category 3 fillers in Tfs-2’s formulations made it harder for Krust 

to induce rules which prefer low category fillers, since category did not appear to be 

a good attribute for predicting which fillers would be recommended. This explanation 

is confirmed by the observation that during earlier experiments using small numbers of 

examples, Krust was able to learn the condition that the category of filler should be < 2. 

This was possible because the example set happened not to include any of the misleading 

examples for which Tfs-2 recommended a category 3 filler. This observation suggests 

that the performance of the inductive operators might be improved if expert information 

were provided about which examples were typical and which were outliers.

The expert made a further point about Tfs-2’s rules for selecting fillers. The rules for 

the two filler case are particularly complex, because the relative ranking of pairs of fillers 

of different categories have to be calculated. For example, is it better to choose a category 

1 filler and a category 3 filler, or two category 2 fillers? This further explains Krust’s 

poor performance in this area.

The principal conclusions from the results for filler faults are that Krust needs an 

expert to suggest which attributes are appropriate for inclusion in new rule conditions, 

and that the presence of one serious fault in Tfs can make it harder to fix other faults.
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8.6.8 Statistical results

Table 8.4 summarises the results for the application of Krust to Tfs-Ib. Starred entries

indicate that the original KB was returned as best.

Error rates for KB

Run

Original KB Best KB, when refinement case is 
taken from the given fault class

KB combining 
refinements

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5
1 0.341 0.300 0.307 0.341* 0.341* 0.341* 0.275
2 0.287 0.263 0.273 0.287* 0.287* 0.287* 0.251
3 0.312 0.278 0.300 0.285 0.312* 0.312* 0.258
4 0.309 0.295 0.295 0.283 0.309* 0.309* 0.278
5 0.331 0.304 0.316 0.331* 0.331* 0.331* 0.297
6 0.326 0.326* 0.307 0.307 0.326* 0.326* 0.295
7 0.321 0.304 0.307 0.321* 0.321* 0.321* 0.297
8 0.316 0.316* 0.297 0.316* 0.316* 0.316* 0.297
9 0.353 0.324 0.338 0.353* 0.353* 0.353* 0.319
10 0.331 0.302 0.316 0.290 0.331* 0.331* 0.278
Mean 0.323 0.301 0.306 0.311 0.323 0.323 0.285
Std. Dev. 0.0183 0.0195 0.0168 0.0251 0.0183 0.0183 0.0203
* the original KB was returned as best.

Fault 1: Wrong target-tablet-weight
Fault 2: Wrong surfactant
Fault 3: Wrong binder
Fault 4: Wrong disintegrant
Fault 5: Wrong filler

Table 8.4: Error rates for refined Tfs-1B KBs

This table summarises the results presented above. As with Tfs-1A, given a refinement 

example exhibiting a particular fault, Krust’s refinements fix faults of that type only. 

Moreover, in the case of Tfs-1b there may be a number of faults each of which affect the 

choice the same excipient type, but normally only one such fault is fixed at a time. Since 

Tfs-Ib suffers from so many faults, the potential improvement in accuracy resulting from 

each individual refinement is smaller than for Tfs-IA, as the results show.

For most examples of the target-tablet-weight, and for all examples of the surfactant 

faults, Krust was able to generate refinements which fixed the refinement example and 

all other examples of the same fault. For some examples of binder faults, Krust was able 

to generate refinements which fixed the refinement example and some other examples of 
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the same fault. For the other fault types, although Krust was able to generate a number 

of refined KBs which were acceptable to the expert, it had no way of realising this, and 

so rejected them and returned the original KB as best. For faults 1, 2 and 3, and for the 

KB combining the refinements, the improvements resulting from Krust’s application are 

significant at the 95% level.

8.6.9 The expert’s assessment

After examining all these results, the expert concluded that Krust had identified the 

majority of the differences in behaviour between Tfs-1b and Tfs-2, and had suggested 

reasonable rule changes for many of them. In some cases, Krust had “taken a step in the 

right direction, but had not gone all the way”.

The expert emphasised the magnitude of the change that had been introduced in 

Tfs-2. It was a significant policy shift, and not just the refinement of pharmacological 

knowledge. In fact, the new rules were based not on pharmacology, but on industrial 

requirements external to the formulation process, such as the need to maintain consis­

tency within an international organisation, and to reduce inventory costs. Hence the 

formulations generated by Tfs-2 might actually be poorer when considered in isolation 

than those generated by Tfs-1b. The expert believed that the nature of the shift would 

make it particularly difficult to duplicate automatically, but that Krust had made a good 

attempt.

8.6.10 Conclusions from the expert’s remarks

The principal conclusion from the expert’s assessment of Krust’s performance is that 

Krust would be more effective if it were given expert advice in two areas.

• Identifying which attributes are likely to be useful when learning new rule conditions.

• Selecting good refinements.

Assistance is required in selecting refinements for two reasons.

• A refinement may cause an improvement in the behaviour of Tfs, but because it still 

does not match the oracle, Krust has no way of determining that the refinement is 

a good one, so needs an expert’s assistance with refinement selection.
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• In complex situations where Tfs has undergone many rule changes, Krust may 

be able to duplicate these changes only one at a time. In this situation, the first 

change made by Krust may result in no apparent improvement at all. Here again, 

an expert is required to confirm that the refinement is a good one.



Chapter 9

Comparisons with other

refinement systems

This chapter compares Krust with two major competitors, Either (Ourston & Mooney 

1994) and Clips-R (Murphy & Pazzani 1994). Either was chosen as a sophisticated 

representative of other refinement systems. The comparison with Either concentrates on 

the use of inductive operators, since this is the principal area of the work described in this 

thesis for which a corresponding feature exists in Either. Clips-R was chosen because 

it is the only system apart from Krust to refine forward-chaining rules. Moreover, the 

authors share my aim of tackling the problems of refining industrial expert systems.

9.1 A comparison of inductive operators in Krust and Ei-

THER

A significant contribution made by this thesis is the implementation of inductive operators 

for Krust. To some extent, this was done in order to correct a weakness, and provide 

Krust with an ability which other tools already possessed. However, there are some 

differences between Krust’s inductive operators and those of other systems. In this 

section, Krust’s inductive operators are compared with those of Either.

172
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9.1.1 The inductive_adjust_value operator

Either possesses a similar operator to Krust’s inductive_adjust_value, which will gen­

eralise the threshold in a numerical comparison just far enough to cover failing negatives; 

that is, for examples for which the rule should have fired and did not. Similarly, it will 

specialise the threshold just far enough to cover failing positives. The approach taken by 

Krust is similar, but more general. First of all. Either refines classificatory systems, 

whose output for any given example is simply a class value. Krust refines systems which 

generate a complex output for each example. Consequently the selection of examples from 

which to learn is a harder task for Krust than for Either. Positive examples for general­

isation can not be characterised simply as false negatives, since there is no simple concept 

of negative and positive. Instead, the positive example used by Krust when generalising 

a condition are characterised as “all examples which suffer from the same fault and for 

which the condition being refined failed”. Similarly, positive examples for specialisation 

are characterised as “all examples which suffer from the same fault and for which the rule 

being refined succeeded”.

9.1.2 The inductive_split_rule operator

This operator may be compared with Either’s inductive rule addition operator. There 

are a number of differences between the two operators. First of all, their purposes differ. 

inductive_split_rule aims to alter the order in which objects are chosen, so that a differ­

ent object is chosen first. To do this, it makes modified copies of a rule with higher priority 

than the original rule. This is an appropriate modification to a design system, where it is 

often the case that one choice is better than another, rather than one choice being entirely 

right or entirely wrong. It also illustrates Krust’s ability to reason about and manipu­

late the actual behaviour of rules, including the order in which they fire. The purpose of 

Either’s rule addition operator is different. It seeks to add a rule so that a conclusion 

will be true for a particular example which was not true before. One consequence of this 

difference is that, since Krust seeks to change the order of rule firing only, it retains all 

the conditions of the original rule and adds further conditions to the copies. This means 

that the new rule set, consisting of the original rule plus some modified copies, will fire 

in exactly the same circumstances as the original rule on its own. On the other hand. 
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Either seeks to generate a rule which will fire when the old rule did not. Consequently, 

it creates a new rule which does not retain the conditions of the old rule.

A second difference is that, whereas Either’s operator seeks to enable a conclusion 

which was previously unprovable, Krust’s operator seeks to enable a conclusion which 

was previously provable, but with different bindings. For example, Either’s operator 

might seek to make the query insoluble (calcium phosphate) succeed, where before 

it failed. On the other hand, Krust’s operator might seek to make the query filler 

of formulation is <filler> succeed, binding <filler> to calcium carbonate, whereas 

before it succeeded with filler bound to calcium phosphate.

This difference has a bearing on the properties from which new conditions are induced. 

Either uses example properties, both observables and intermediate results. Krust cur­

rently uses observables, which in the case of Tfs are drug, dose and number of fillers, 

together with features which may be regarded as one step removed from observables, such 

as the properties of the drug. However, it also uses properties of the object which the 

rule is recommending; that is, the object to which a variable in the rule’s conclusion 

becomes bound when the rule fires. In the case of Tfs, this object is normally an excipi­

ent. However, the KBs to which Either has been applied do not appear to include such 

“object-generating” rules, so this particular source of information is not available to it.

To summarise, Krust’s inductive_split_rule and Either’s inductive rule addition 

operator have slightly different purposes and use different sources of information. Krust’s 

operator appears to be performing a more difficult task, since Krust’s operator is con­

cerned with the variable bindings for which a rule fires, and with the orders in which rules 

fire, and Either’s operator is concerned with neither of these things.

9.1.3 The inductive_add_fact operator

This operator may in a sense be regarded as a special case of Either’s rule addition 

operator, since it learns a new rule with no conditions. However, it differs from Either’s 

operator in that the purpose of Krust’s new rule is again not just to satisfy a previously 

unsatisfied condition elsewhere, but to satisfy it for a particular set of variable bindings. 

For example, if the condition max-level of <f iller> is <max> fails, the operator will 

add a fact which will cause the condition to succeed for particular values of <filler>

and <max>.
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9,1.4 The use of intermediate results

As mentioned above, Either is able to use any intermediate result when inducing new 

rules, and Krust uses only a limited class of intermediate results. The extra search this 

imposes on Either is balanced by the fact, that unlike Krust, it uses induction only 

when all other operators have failed.

The expert’s analysis of Krust’s performance presented in section 8.6.9 indicated 

that Krust might perform better if it did use certain intermediate results. He felt that 

specialised domain knowledge was needed in selecting the attributes, either observables 

or intermediate, to be used as input to the induction algorithm. In the case of Tfs, he 

believed that Krust should not have used the relative stabilities of excipients with the 

drug being formulated, and that it should instead have used certain physical properties of 

the tablet.

9.2 A comparison of Krust and Clips-R

This section describes CuiPS-R (Murphy & Pazzani 1994). Clips-R refines KBSs written 

in Clips (Girratano & Riley 1994), and is the only system apart from Krust to refine 

forward-chaining rules. Moreover, the authors share my aim of tackling the problems of re­

fining industrial expert systems. Consequently, it is instructive to compare the approaches 

of Clips-R and Krust to similar problems. This chapter describes the sequence of op­

erations performed by Clips-R, and where appropriate, draws comparisons with Krust. 

Once the description of Clips is complete, further comparisons with Krust are made.

The features of Clips KBSs which Murphy & Pazzani (1994) regard as distinctive 

about Clips, and particularly significant for the refinement task are;

• forward-chaining rules;

• the ability of rules to retract facts;

• the ability of rule firings to cause interactions with the user as side-effects.

The chaining direction of rules mainly affects Clips-R’s blame allocation. The ability of 

rules to retract facts affects refinement generation, but can be handled by a straightfor­

ward extension of an algorithm which handles assertions. The side effects of rule firings 
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affect both blame allocation and refinement generation. Pfes KBSs share the first two 

features: forward-chaining rules and (effectively) the ability to retract facts, so these must 

be handled by Krust as well as Clips-R. However, Krust has not so far been concerned 

with the side effects of rules in a KBS, mainly because the KBSs to which it has been 

applied have not had a major interactive element.

9.2.1 Blame allocation in Clips-R

Clips-R uses a much wider definition of the behaviour of a KBS than other refinement 

systems. The user can specify two aspects of a KBS behaviour:

• the content of working memory (the fact-list) when execution halts, and

• the order in which observable actions are carried out.

The constraints that the user can place on the final fact-list take the form of requirements 

that a certain fact must or must not be present in memory. An observable action, also 

known as a side-effect, is an action which displays information, or requests information 

from the user. The specification for the order of observable actions takes the form of a 

finite state machine. The ordering constraints for an example are said to be satisfied if 

the sequence of observable actions generated by the example is accepted by the finite state 

machine associated with that example. If the sequence is not accepted by the machine, 

then the number of violations in the sequence is defined to be the minimum number of 

additions and deletions required to make the sequence acceptable.

When an example is run, it is assigned an error rate, which is defined to be the number 

of constraint violations divided by the total number of constraints.

At the start of the blame allocation phase, Clips-R runs a Clips KBS on the available 

training examples, and arranges the resulting traces into a trie-structure. Figure 9.1 shows 

an example of the trie-structure for the student loan advisor (Pazzani 1993). This is a 

KB which determines whether a student should repay a US educational loan. The only 

trace information used at this stage is a list of which rules fired, and in which order. 

The trie-structure is “a compact representation of rule traces that groups together those 

instances that share an initial sequence of rule firings” (Murphy & Pazzani 1994). Each 

line in figure 9.1 represents a node of the trie structure, which in turn is associated with 

a particular initial sequence of rule firings. Each node is then associated with the set of
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Rule: continuously-enrolled [ 6, 45, 0.133 ]
Rule: student-deferment [6, 45, 0.133 ]

Rule: no-payment-due [5, 27, 0.185 ]
Rule: eligible-for-deferment [1, 9, 0.111 ]

Rule: no-payment-due [1, 9, 0.111 ] 
Leaf [1, 9, 0.111 ]

Leaf [ 4, 18, 0.222 ]
Rule: never-left-school [1, 18, 0.056 ]

Rule: financial-deferment [ 1, 9, 0.111 ]
Rule: no-payment-due [1, 9, 0.111 ]

Rule: eligible-for-deferment [1, 9, 0.111 ]
Rule: eligible-for-deferment [1, 9, 0.111 ]

Rule: no-payment-due [1, 9, 0.111 ] 
Leaf [1, 9, 0.111 ]

Leaf [0, 9, 0.000 ]

Figure 9.1: A trie-structure created by Clips-R for the student loan domain 

examples which gave rise to that sequence of rule firings. The three numbers at each node 

represent respectively the total number of errors (constraint violations) for all the examples 

at that node, the total number of constraints, and the ratio of the two, which represents 

an error rate. Each leaf in the trie structure represents a point at which rule-firing ceased 

for one or more traces.

The purpose of building the trie-structure is to determine the class of examples sharing 

a common initial rule firing sequence which suffer from the greatest proportion of errors. 

When Clips-R has built the trie structure, it identifies the leaf node with the highest error 

rate, and then tries to fix the examples associated with that node. For each constraint 

violation of each example at this node, a set of refinements is generated (section 9.2.2).

Comparison with Krust

The only aspect of a system’s behaviour with which refinement systems are usually con­

cerned is the class to which a KBS assigns an example. Krust extends this idea to cover 

the complex output generated for an example by a design system. Clips-R appears to 

extend the idea still further when it considers the entire content of final working memory. 

However, those Clips facts which appear in working memory, but are not part of the 

system output, are either initial facts or intermediate results. Palmer &: Craw (1995) have 

shown that Krust is able to generate refinements based on intermediate results. Hence, 
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in this respect, the two refinement systems are equally flexible. (The work on the use of 

intermediate results was not carried out by me).

On the other hand, the ability of Clips-R to handle constraints on a KBS’s order 

of actions is not shared by Krust. Experience to date, both of myself and others, with 

applying Krust to a number of KBSs has not indicated any requirement to impose con­

straints on the order of actions performed by a KBS. However, another reason for this 

lack may be that when Krust is applied to a KBS, the first step has been replace all 

user interactions with database accesses or some other kind of programmer interface. This 

means that errors in user interactions are less likely to be used to drive refinement.

9.2.2 Refinement generation

Once constraint violations have been identified for a number of examples, as specified 

above, Clips-R generates refinements with the aim of correcting them.

Clips-R is provided with a table which lists appropriate refinement types for the 

various possible faults exhibited by an example. The faults exhibited by an example will 

be violations of the constraints on the final fact list, so will either be of type Extra Fact or 

Missing FacF. However, the refinement generation procedure may subsequently suggest 

other fault types which may have caused the exhibited faults. For example, a Missing 

Fact fault may have been caused by a Missing Rule Firing. Here are the refinements for 

the fault Missing Rule Firing.

Fault: Missing Rule Firing

• Generalise LHS of rule.

• Increase salience (priority) of rule.

• For each unsatisfied unnegated conditional element in the rule, identify re­

pairs that could allow a fact which will satisfy the condition to be present 

in the fact-list at the time that the rule should have fired.

• For each unsatisfied negated conditional element in the rule, identify re­

pairs that could cause all facts that prevented the conditional element 

from being satisfied to be missing from the fact list.

^Violations of ordering constraints are considered later
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These refinements correspond to Krust’s refinements for a No-Fire and Can-Fire 

rules. The possible classes of refinement just listed may be summarised in more Krust- 

like terms as: to increase the rule’s priority, to refine one or more conditions, or to modify 

the behaviour of other rules in order to enable one or more of this rule’s conditions. Thus

Clips-R works backwards from a faulty conclusion, identifying possible faults in the rule 

chain leading to that conclusion, in the same way that Krust does.

The handling of negation

Clips includes two forms of negation, which complicate the refinement process: explicit 

negation in rule conditions, and retract operators in rule conclusions. Negated rule condi­

tions are covered by the final paragraph in the list of refinements quoted above for Missing 

Rule Firings, which explains how Clips-R fixes unsatisfied negated conditions.

The description of repairs in this list is also general enough to cover both fact assertions 

and fact retractions. A repair “that could allow a fact to be present” may be achieved 

either by enabling a rule which asserts the fact, or by disabling a rule that retracts the 

fact. The repairs for negated conditions can be achieved similarly, mutatis mutandis.

Pfes’s remove-from-agenda plays a similar role in rule chaining as Clips’s retract 

operator, so it is not surprising that Krust handles remove-from-agenda in the same 

way that Clips-R handles retract (section 5.5.1).

Correcting ordering constraint violations

If a KBS executes observable actions for some example in an order that can not be gener­

ated by the finite-state machine associated with that example, then the constraints have 

been violated. These violations are repaired by identifying actions which should be added 

to or deleted from the sequence. The violations can thus be expressed as Missing Fact or 

Extra Fact faults, and then fixed as described above.

9.2.3 Use of induction

The actual refinement operators which carry out the repairs do not differ significantly 

from the operators used by other RSs, so the only operators described here are those that 

use induction. Clips-R makes use of two inductive techniques. First, a specialisation
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operator is able to learn a new condition to add to an over-general rule. Second, induction 

is used at the refinement implementation stage to learn a new rule, if no other operator 

gives a decrease in the error rate.

The use of induction to specialise a rule

Clips-R is able to specialise the LHS of a rule by adding a new rule condition. To obtain 

a set of new conditions from which to choose, Clips-R first lists all the conditions existing 

in the initial KB and examples. It then creates an exhaustive set of condition templates 

by replacing constants with variables in these conditions in all possible ways. Finally, it 

tests these conditions by adding each in turn to the over-general rule and evaluating the 

resulting KB.

The use of induction to learn a new rule

When all the other refinement operators fail, the rule induction operator is invoked. A 

number of rules are generated, then revised through a hill-climbing iterative refinement 

search. The LHS of each new rule is generated by selecting pairs of examples with the same 

constraint violations, and taking the least-general generalisation (LGG) (Plotkin 1971) of 

their initial fact lists. If the common constraint violation is a missing fact, the RHS of the 

new rule asserts that fact; if the violation is a superfluous fact, then the RHS of the new 

rule retracts that fact.

9.2.4 Further comparisons of Krust and Clips-R

A further difference between Clips-R and Krust is the amount of tracing information 

required. Clips-R uses all the information Krust does, together with two other items: 

the fact-list prior to each rule firing, and information linking each fact to the rule that 

asserted it.

The presence in Clips traces of information about which rule asserted any given fact 

does not constitute a significant difference between Clips and Pfes traces, since the 

same information can be derived from the Pfes trace, though it is not included explicitly. 

Similarly, the inclusion of the fact list before each rule firing makes the refinement process 

easier for Clips-R than for Krust, but again the missing information can be derived 
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from elsewhere in the trace. An example from section 5.5.1 illustrates this. Rule REMOVE-

EXCESSIVE-FILLERS fails to fire for calcium phosphate, because its second condition fails.

Krust can correct this by adding a value for the maximum level of calcium phosphate 

to the database. However, in order to determine bounds on the maximum level, Krust 

needs to know the value of filler-CONCENTRATion in the third condition. This value can 

not be determined from the trace for remove-excessive-fillers, since the interpreter 

never reached the third condition. However, the value can be determined from the trace of 

a rule which set the FILLER-CONCENTRATION. On the other hand, if Krust had access to 

the fact-list before REMOVE-EXCESSIVE-FILLERS fired, as Clips-R does, it could instead 

have read the value of FILLER-CONCENTRATION from that list, instead of having to search

elsewhere in the trace, but the result would be the same.

Rule REMOVE-EXCESSIVE-FILLERS
If

<FILLER> is on FILLER-AGENDA
MAX-LEVEL has-value <level> in <filler> Failed

FILLER-CONCENTRATION haS-valUG <CONC> in SPECIFICATION
<CONC> is-greater-than <level>

Then

remove <filler> from filler-agenda

9.2.5 The use of traces by Clips-R and Krust

This section compares the use of traces by Krust with three Clips-R procedures: the use 

of the trie structure, and Clips-R’s two applications of induction in refinement generation. 

The trie structure is considered first.

Clips-R use of the trie structure

The effect of rule priority and conflict resolution strategies is much greater in forward­

chaining than in backward-chaining KBs. Consequently, it is reasonable that the starting 

point for Clips-R’s operation should be a structure, the trie structure, which is based on 

the order in which rules Are.

The purpose of the trie-structure to decide which faults to fix first, based on the error­



9.2. A comparison of Krust and Clips-R 182

rates at its nodes. This may be regarded as an early form of refinement selection. It 

is clearly more efficient to select particular examples to refine rather than to generate 

refinements for a wider class of examples and then to reject most of them.

The creation of the trie-structure is a mechanism whereby Clips-R uses trace infor­

mation to cluster examples. However, the mechanism and purposes for example clustering 

in Clips-R and Krust differ in several ways. Clips-R

• clusters examples which have an identical sequence of initial rule firings, ignoring 

variable bindings, and

• uses the grouping as a mechanism for example selection.

In contrast, Krust

• clusters examples for which one particular rule fired, with specified variable bindings.

The selection also takes into account properties of the system output.

• uses trace properties of selected examples, specifically the values of variable bindings, 

to create new rule conditions, or to modify old ones.

To assess the broader applicability of Clips-R’s use of the trie structure, it is worth 

considering if it might be applied to Pfes applications. There are two potential difficulties. 

First, variable bindings are ignored when constructing the trie; however, it might be 

possible to extend the algorithm to take variables into account. Secondly, it is not clear 

how well the approach would fit the “generate and filter” paradigm frequently used in Tfs, 

under which rules fire repeatedly with different variable bindings. In order to understand 

how a generate and filter procedure works, it is necessary to understand the chaining 

behaviour between the rule that generates data and the rule that filters it. However, the 

trie structure is not well-designed to do this, since it considers only rule firing sequences, 

not rule chains-, while any rule in the sequence must chain with an earlier rule or fact, it 

need not chain with the immediately preceding rule.

It appears therefore that, although it is important to understand the order in which 

rules fire when refining a forward-chaining system, the approach based on building a 

trie-structure ignores other useful information, and so would not in its current form be 

applicable to a design system like Tfs.
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Clips-R’s inductive operators

Clips-R’s specialisation operator creates new rule conditions based on patterns observed 

in the initial KB, so is much less focused than Krust’s inductive operators. It is more 

instructive to compare Clips-R’s rule induction operator with Krust’s.

Interestingly, when Clips-R groups examples for purposes of rule induction, it ignores 

trace information, and simply clusters examples suffering from similar faults. Examples 

are said to suffer from a similar fault if they violate the same constraints on the final fact­

list. No account is taken of the way in which the constraint is violated, which would make 

possible a more precise characterisation of the differences between examples, as discussed 

in section 7.4.

A second difference is that Clips’s rule induction operator creates an entire new 

rule, whereas Krust’s inductive operators just add or modify conditions. The induc- 

tive_split_rule comes closest to creating a new rule, since it takes copies of existing rules 

and then modifies the copies by adding sets of new conditions.

A last point of comparison is the manner in which Clips-R and Krust create new rule 

conditions. The principal difference is that Clips-R constructs the LHS of its rule using 

only initial facts, which are the equivalent of observables in backward chaining, whereas 

Krust also uses some intermediate results. For example, the inductive_split_rule in­

duces new conditions both from initial facts, and also from properties of excipients appear­

ing in traces which exhibit a rule’s faulty behaviour. In addition, Krust’s other inductive 

operators make use of other variable bindings found in traces, which again correspond to 

intermediate results in the KBS’s reasoning.

9.2.6 Conclusions

The principal difference between Clips-R and Krust when applied to forward-chaining 

systems is that Clips-R takes greater account of the order in which rules fired. This is 

shown in its use of a trie-structure based on the rule-firing sequences for the example set, 

and by the fact that it allows the user to specify an order of actions for the KBS. On the 

other hand, Krust takes account of variable bindings when clustering examples according 

to trace information, and so has less need to consider the order of firing. Krust’s approach 

therefore seems better adapted to systems which have a significant first-order element.
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Conclusions

This chapter recalls the goals of the project described in this thesis, and examines the 

extent to which they have been achieved. It then draws attention to other conclusions 

which may be drawn from the experience of applying Krust to Tfs. The final section 

proposes some directions for future work.

10.1 Principal goals

The main goals of this project were:

1. to develop a practical refinement tool, which could be applied to an industrial ex­

pert system, and which could assist with software development by identifying and 

suggesting fixes for faults;

2. to demonstrate that the tool was able to refine a design system, as well as classifi-

catory ones.

Chapter 3 established that Tfs is an expert system which performs a design task. It 

has been developed over a number of years, is in regular use in industry, and solves a 

hard problem. Moreover the architecture of Pfes is particularly appropriate for building 

design tools, and differs from shells intended for classificatory tasks. Consequently, the 

successful application of Krust to a Pfes application would satisfy the principal goals.

Chapter 5 then showed that Krust could be applied to Tfs, and chapter 8 evaluated 

its effectiveness in refining Tfs. Chapter 8 also showed that refinement could be used 

to carry out maintenance as well as refinement, and that Tfs provided opportunities to 

184
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evaluate Krust in both these roles. The upgrade from Tfs-Ia to Tfs-1b was an example 

of debugging, since only minor changes were made. Krust proved successful in identifying 

and fixing all the faults in Tfs-1A, impressing the domain expert, and demonstrating its 

effectiveness in a debugging role.

The upgrade from Tfs-1b to Tfs-2 represented what the expert described as a 

paradigm shift in formulation policy, and originally required several man-months of work. 

This upgrade should be described therefore as maintenance, rather than debugging. Krust 

was moderately successful in its attempts to perform this upgrade automatically. The ex­

pert judged that Krust had identified the majority of the points where changes were 

needed. In some cases, the new rules generated by Krust matched Tfs-2’s exactly; in 

others, they were reasonable alternatives.

Two conclusions were drawn from the application of Krust to Tfs-1b.

• Refinement of a design system is harder than refining a classificatory system, because 

there is often no one best answer. Consequently, a domain expert needs to assist in 

selecting good refinements.

• When maintenance is performed on a KBS, major changes are made to the rule base, 

and these may interact in complex ways. Often a number of changes will interact 

to produce a change in behaviour. When a refinement tool attempts to duplicate 

these changes, it may not be able to generate them all in a single run. Because of 

the interactions, implementation of some but not all the changes may not result in 

any observable improvement in the system’s behaviour. Therefore a domain expert 

is again needed to identify good refinements, but for a different reason.

Another way to view the proposed interaction between domain expert and Krust is to 

view Krust as a tool to assist the expert in debugging or maintaining a system, rather 

than, as at present, a “black box” which performs the task automatically.

10.2 Secondary goal

A secondary goal of the project was to create a generic, extensible refinement tool, capable 

of refining a variety of different shells. This section examines the extent to which this was 

achieved.
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Chapter 5 described that adaptations that had to be made to Krust in order to apply 

it to Pfes. Two conclusions can be drawn from this account.

• Krust had a number of features that facilitated its adaptation.

• The current project caused Krust to develop further in the direction of a truly 

generic tool.

The version of Krust available at the start of this project had a number of properties 

which made it readily applicable to a variety of shells. These were its knowledge hierarchy, 

parser, and operator tool-sets. The hierarchy and tool-sets proved adaptable to the needs 

of Pfes, but the parser did not. The parser facilitates the construction of a KBS translator 

given a set of grammar rules. However, the Krust parser could not be applied to Pfes 

rules, because the elements in a Pfes rule object can appear in an arbitrary order. Instead, 

a separate translator had to be written.

It was noted in section 5.4.8 that the translation of Pfes agendas was difficult, and 

required application-specific knowledge to recognise the relationship between successive 

agenda operations; for example, to recognise in what circumstances a value written to an 

agenda represented a property of another item on the agenda. However, the difficulty was 

caused by the flexible nature of the agenda structure, and the fact that the semantics of 

the agenda operations was often implicit; there is nothing in the PFES code to indicate 

explicitly the relationship between the items on an agenda. The conclusion from this 

is that refinement is easier for rules which have a declarative rather than a procedural 

behaviour, and that it may in some circumstances be possible to transform rules into a 

more declarative form by a change in representation.

Krust’s hierarchy, on the other hand, proved able to represent Pfes rule elements 

with very little adaptation. The most distinctive Pfes items, agendas, were able to be 

represented as ordered terms, and a small extension to the hierarchy permitted Krust 

handle Pfes’s use of Lisp functions. Moreover, ongoing work on applying Krust 

Clips and PowerModel shows that the hierarchy can readily be further extended 

handle the complex rule-elements found in these two environments. Johnson (1997)

confirms that different shells offer a wide variety of rule elements, but uses a primarily 

syntactically-based approach to construct a common framework, in contrast to Krust’s 

semantically-based approach.

to

to

to
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Krust’s remaining generic feature is its collection of operators. The power of these 

operators is demonstrated by the fact that they were immediately applicable to Pfes, 

once an internal representation of Pfes rules could be constructed. In addition, Krust 

possesses a lower-level toolset of functions which manipulate the data-structures used to 

represent rules and refinements. These are designed to be used in the creation of new 

operators, and indeed facilitated the creation of the new operators described in chapter 6. 

Examples of these lower-level functions are replace_condition, which replaces a given 

rule condition with a different one, and add_condition.

10.3 Traces give added value

The original version of Krust obtained information about the behaviour of a KB by 

submitting queries. This is an appropriate method for exploring a KBS that can be 

regarded as a logical theory, where the query effectively re-runs part of the proof, and 

where the act of executing a query does not change the contents of the knowledge-base. 

However, none of these things is true of a forward-chaining system. If the query-based 

interface is applied to a forward-chaining system, it can provide information only about 

the final state of the system. It cannot take account of facts which may have been added 

to working memory and then removed, nor of the order in which actions were performed. 

A second disadvantage of the query-based interface is that it is only applicable to KBSs 

which can support external queries. Given a KBS such as Pfes which does not offer this 

facility, an alternative approach is needed.

Krust’s use of execution traces to determine the behaviour of Pfes solves both these 

problems. The use of traces has several advantages.

• It allows Krust to refine non-monotonic systems.

• It provides information about the order of events, not just about what is true at 

the end of a run. In addition to providing the information necessary for blame 

allocation and refinement generation, it allows the order to place further constraints 

on the correct behaviour of a system. There is no point in the user stating that a 

KBS must perform actions in a certain order if Krust is unable to determine the 

order in which they were performed. This facility does not appear to be useful in 
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the refinement of PFES, but it might be applicable when refining more interactive 

systems, such as those refined by Clips-R (Murphy & Pazzani 1994).

• It allows Krust to refine KBSs which can not be queried, such as Pfes. Most shells 

provide some form of trace of rule execution, but in some cases it is hard, if not 

impossible, to submit the kind of queries used by the original Krust. Pfes is an 

example of a shell to which such queries can not be sent. PowerModel is a shell 

to which it is possible but hard to establish the necessary software interface.

10.4 Future Work

10.4.1 Further developing a generic tool

Section 10.2 has shown that Krust already fits the description of a generic refinement 

tool, applicable to a number of shells. However, there are a number of ways in which it 

could be improved.

Krust has grown by adding functionality required by each of the KBS shells to which it 

has been applied. Admittedly, this has been done in an organised way, and new knowledge 

elements fitted into a standard framework. Nonetheless, the tool has become unwieldy, 

and would benefit from being broken down into modules. In this way the user could 

select only the modules he required, and then customise them to his particular appli­

cation. This idea is the basis for the current KRUSTWorks project^. This project is a 

continuation of several projects, including the work described in this thesis, and aims to 

produce the KRUSTWorks toolkit. It is proposed that KRUSTWorks should operate as 

shown in figure 10.1. The user will provide a KBS consisting of a KB together with an 

interpreter. The user also supplies a grammar for parsing the KB. KRUSTWorks will then 

perform an analysis of the KB, determining properties such as the kinds of rule elements 

present, and the direction of rule chaining. Guided by the user, KRUSTWorks will then 

generate and customise modules to perform translation, together with all the standard 

refinement tasks of refinement generation, filtering, implementation, and evaluation. The 

resulting refinement tool appears in the large rectangle at the bottom of figure 10.1. It 

corresponds in many ways to the present Krust, but will be smaller, since it does not 

^Supported by EPSRC grant GR/L38387
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contain unnecessary functionality, and it will be customised to the needs of a particular 

application.

KrustWorksKBS

A KBS-Specific KrustTool

Figure 10.1: A generic refinement tool

10.4.2 User interface

A conclusion from the application of Krust in a maintenance role is that there is a need 

for a domain expert to play a role in refinement filtering. In our experience with Tfs, 

the expert was happy to assess individual new rules in isolation. However, in general it 

would be desirable to provide assistance to the expert by displaying the rule interactions 

in the form of a proof tree, making it clear how the proposed refinement is intended to 

affect the system’s output. This would have been helpful on the occasion when the expert 

wrongly believed that the deletion of insoluble-filler-rule was correct (section 8.6.9). 

The expert subsequently realised his mistake when he examined the behaviour of Tfs-2, 

and realised the importance of the tablet property rule in filler selection. If the proof tree 

had been displayed, the role of the tablet property rule would have been clear.

Generating a graphical display for the behaviour of a design system is not a trivial 
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task, however. Frequently-used paradigms are “generate and test”, and “generate and 

filter”, which mean that many rules fire multiple times generating multiple conclusions. 

Moreover, systems using forward-chaining rules are typically non-monotonic, adding to the 

complexity. One solution would be to display a skeleton tree with hot-spots, for example, 

at the nodes, so that the user could click on these to obtain more detailed information.

10.4.3 Forward chaining

Section 5.3 showed that forward-chaining rules interact in a different way from backward­

chaining rules, and that typically rule priority and conflict resolution policies have a greater 

affect on forward-chaining rules than on backward-chaining ones. Although section 5.3 

illustrates some ways in which forward-chaining rules can interact, it by no means provides 

a complete analysis. For purposes of blame allocation, it is possible to discover how 

rules interacted for any particular example by examining execution traces. However, this 

does not help in determining how the rule behaviour will change when a modiflcation 

is made. For that, a more complete theoretical analysis is needed. Ideally, a common 

framework would be constructed to describe the interaction of both forward and backward 

chaining rules, from which a refinement generation algorithm could be derived. This would 

simplify the implementation of the refinement generation module(s) in KRUSTWorks. In 

the absence of such a framework, it might be necessary to implement separate modules 

for backward and forward-chaining rules.

10.4.4 Refinement generation

Section 2.3.2 showed that extending the scope of a refinement tool from propositional to 

first-order logic greatly increases the potential complexity of the interaction between rules, 

and the way in which a faulty rule can lead to faulty behaviour in the system. It showed 

that there were faults which Krust could not fix because the blame allocation procedure 

would fail to identify certain potentially faulty rules. The following example, slightly more 

concrete than those in section 2.3.2, illustrates the difficulty.

If bathroom is steamy

Then temperature of water is 70.
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If temperature of water is ?t

?t < 60

Then turn on heater

Suppose the second rule is identified as a no-fire rule. For example, it might fail to fire 

because its second condition, ?t < 60, is not satisfied. Krust will try to fix the second 

rule by generalising the failed condition. However, Krust will not realise that the first 

rule, which chains with the second and thus sets the value of ?t, is also potentially at 

fault. If Krust were to identify all potential causes for the second rule’s failure, it would 

have to back-propagate the constraint temperature of water < 60 through the proof 

tree, and identify all the possible rule-changes whereby that constraint could be satisfied.

Krust does already possess this ability in a specialised form. When correcting a 

wrong-fire rule, it can propagate a particular value through a sequence of variable unifi­

cations and even arithmetic calculations, and identify the change at some ancestral node 

of the proof tree that will lead to the desired value being output (section 5.5.4). However, 

it can not propagate a constraint in this manner.

This section and the previous one have identified two weaknesses in Krust’s blame 

allocation and refinement generation strategies. A rigorous theoretical analysis of the ways 

in which forward and backward-chaining rules can interact would be a sensible starting 

point for devising more powerful algorithms.

10.4.5 Integration with Validation and Verification tools

Section 9.2.1 noted that recently-developed refinement tools have extended the definition of 

the behaviour of a system, where it is faults in the behaviour that trigger refinement. The 

only behaviour originally considered was the class to which a KBS assigned an example. 

Other behaviour which can be considered by Krust and Clips-R are the various elements 

in a system’s complex output, intermediate results generated by the system, and the 

order in which the system performs certain actions. One natural continuation of this 

development would be to derive input for the refinement process from other diagnostic 

tools. This would allow a refinement tool to become part of a KBS development toolkit. 

Various forms of interaction are possible. For example, a static analysis tool could be used 

to identify potentially faulty or missing rules, and a refinement tool could be used to fix 
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these faults if appropriate refinement examples were selected. Here, appropriate examples 

are those which would cause the faulty rule to fire, or which require the conclusion of 

the missing rule to be true. The use of a static analysis tool for example selection would 

complement the work of Palmer & Craw (1997), which uses similar reasoning to solve 

the problem of selecting appropriate judging examples for evaluating refined KBs. Other 

tools, such as Sycojet (Ayel & Vignollet 1993) generate examples in an organised way. 

Such a tool would be an excellent source of training examples.

The idea of creating a toolkit containing a number of V&V tools, together with a 

refinement tool, was proposed as part of the ViVa project^. Krust was the prototype 

improvement tool in ViVa (Craw 1996), but ViVa’s refinement work finished when a project 

re-scoping concentrated effort on V&V issues.

10.5 Summary

The knowledge-refinement system Krust has been applied to the tablet formulation sys­

tem Tfs, which solves a design problem. Design systems are significantly different from 

classificatory ones, and, until now, refinement tools have been applied only to classificatory 

systems.

The application of Krust to Tfs required modifications to Krust’s knowledge model, 

operators, and method of communication with the KBS. However, the adaptations of the 

knowledge model and operators were a matter of extension, not redesign, thus demon­

strating that Krust was to some extent a generic refinement tool.

The new method of communication derived information about the KBS’s behaviour 

from execution traces rather than from direct queries. This conveyed the following advan­

tages.

• It allowed Krust to communicate with a system with a restricted software interface, 

whose working memory could not be accessed directly.

• It provided information about the order in which rules fired, which is particularly 

important for forward-chaining systems.

• It allowed Krust to reason about a non-monotonic system.

^ESPRIT project 6125: Verification, Improvement and VAlidation of Knowledge Based Systems 
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Once Krust had been adapted to work with Tfs, a number of inductive operators were 

implemented. These all take a similar approach, identifying features which distinguish 

faulty from non-faulty examples and traces, and using these features to modify rule condi­

tions, or learn new ones. They permit Krust to use information from multiple examples 

at an earlier stage than before, and so make the refinement process more efficient. The 

same approach has been applied with a different purpose; to provide additional informa­

tion identifying rules which are not responsible for a fault, and so improve the effectiveness 

of refinement filtering.

Next, some applications of clustering to example selection at various stages of Krust’s 

refinement process were demonstrated, and these were later used in the experiments which 

evaluated Krust’s effectiveness.

The role of refinement in software development was then examined, and it was shown 

that refinement could be used in a maintenance role, as well as a debugging role. The 

refinement of Tfs-1A was a debugging task, but the upgrading of Tfs-Ib to Tfs-2 

corresponded to a policy change in some aspects of the formulation process, so was a 

maintenance task. Experiments were performed to evaluate Krust’s effectiveness in both 

these tasks. Krust proved highly effective in debugging, identifying and fixing all the 

faults in Tfs-Ia. Krust was less effective in performing the harder maintenance task, 

but identified the majority of the areas where changes needed to be made, and in many 

cases generated reasonable alternatives to the changes which appeared in Tfs-2. The 

principal reason for the difficulty lay in the nature of the design process, where there is no 

one best solution. Krust would have benefited from expert assistance in selecting good 

refinements, since a simple comparison with the oracle’s behaviour was too restrictive. In 

addition, expert advice on which attributes were likely to be relevant would have provided 

useful input to Krust’s induction of new rule conditions.

It has thus been shown that Krust was effective at debugging an industrial design 

system. When used in a maintenance role, however, it should be seen as a tool to assist a 

human expert, rather than as a black-box which can perform the whole task unaided.



Appendix A

A typical Krust run

This chapter illustrates the behaviour of Krust for a typical run, using annotated output 

from the program. The run is taken from the experiments on the refinement of Tfs-Ia 

(section 8.5), so the role of system is taken by Tfs-1A, and the role of oracle is taken by

Tfs-Ib.

At one point in the iterative experimental procedure described in section 8.4 example 

number 9 is selected. The system and oracle outputs for this example are compared, and 

found to differ in a number of attribute values. The method of rule chaining described in 

section 5.2 is used to determine that the only independent attribute among the incorrect 

ones is the filler. Krust therefore generates a query based on the difference between 

system and oracle values for filler.

example number is 9
query is ((== FORMULATION FILLER CALCIUM-CARBONATE) 

(== FORMULATION FILLER CALCIUM-PHOSPHATE) 
(== FORMULATION FILLER .FILLER))

This means that the system value for filler is calcium phosphate, and the oracle value 

is calcium carbonate. The third entry represents the query which is incorrectly answered 

by the system.

The next step is blame allocation, where Krust classifies the system’s end-rules ac­

cording to their faulty behaviour (section 4.4.2). End-rules are those whose conclusion 

matches the above query; in other words, those which derive the filler for the formulation.

194



A typical Krust run 195

{{ Getting Tagged Rules }} 

*TAGGED RULES*
WRONG.FIRE
RULE GET-INSOLUBLE-FILLER [FC 50] :
IF REQD-FILLER-SOLUBILITY of SPECIFICATION == INSOLUBLE 
AND
AND
AND
AND
THEN REFINE-ATTRIBUTE(FORMULATION FILLER .FILLER)

ON-AGENDA(FILLER-AGENDA _TASK _FILLER) 
SOLUBILITY of .FILLER == _S0L
SLIGHTLY-SOLUBLE of SOLUBILITY == .SLIGHTLY-SOLUBLE 
_SOL < (MIN-VAL .SLIGHTLY-SOLUBLE)

NOCAN.FIRE
RULE GET-SOLUBLE-FILLER [FC 50] :
IF REQD-FILLER-SOLUBILITY of SPECIFICATION == NOT-INSOLUBLE 
AND
AND
AND
AND
THEN REFINE-ATTRIBUTE(FORMULATION FILLER .FILLER)

ON-AGENDA(FILLER-AGENDA .TASK .FILLER)
SOLUBILITY of .FILLER == .SOL
SLIGHTLY-SOLUBLE of SOLUBILITY == .SLIGHTLY-SOLUBLE 
.SOL >= (MIN-VAL .SLIGHTLY-SOLUBLE)

CAN.FIRE
RULE GET-ANY-FILLER [FC 0] :
IF ON-AGENDA(FILLER-AGENDA .TASK .FILLER)
THEN REFINE-ATTRIBUTE(FORMULATION FILLER .FILLER)

CAN.FIRE
RULE SET-FILLER-LEVEL [FC -10] :
IF FILLER of FORMULATION == .FILLER 
AND
AND 
AND 
AND 
AND 
AND

DRUG of FORMULATION == .DRUG
.DRUG of FORMULATION == .DOSE
TARGET-TABLET-WEIGHT of SPECIFICATION == .WEIGHT 
DRUG+FILLER-CONCENTRATION of SPECIFICATION == .DRUG+FILLER-CONC 
#<Arith: (/ .DOSE .WEIGHT)> -> _DRUG-CONC
#<Arith: (- .DRUG+FILLER-CONC .DRUG-CONC)> -> _FILLER-CONC

THEN .FILLER of FORMULATION = _FILLER-CONC

Note that the last of the tagged rules does not draw a conclusion about the filler, but 

about the filler concentration, so that it is not in fact an end-rule. However, it has been 

included by Krust because its conclusion unifies with the query FILLER of FORMULATION 

= -FILLER. There is no way in which Krust could recognise that such rules are irrelevant 

to the current query, unless it were provided with some form of meta-knowledge about the
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structure of rules in the Tfs KB.

The next step is refinement generation. Krust does not provide a detailed trace at

this stage, because it will display all the remaining refinements once they have undergone

filtering. Krust’s trace therefore continues as follows, describing the filtering of the

generated refinements.

126 fire-enabling refinements produced

{{ Filtering Refinements }}

{{ Applying filter "Superset" }}• 
Filter rank is 100.
49 items after "Superset", 1 iteration(s)

{{ Applying filter "Spec/Gen Conflict" }} 
Filter rank is 80.
49 items after "Spec/Gen Conflict", 1 iteration(s)

{{ Applying filter "Weight Threshold" }} 
Filter rank is 60.
Note: KB is unweighted - no metaknowledge filtering
49 items after "Weight Threshold", 1 iteration(s)

{{ Applying filter "Remove Most Complex" }} 
Filter rank is 10.
Note: application mmecessary - filter’s max output is 50 
49 items after "Remove Most Complex", 0 iteration(s)

49 fire-enabling refinements after filtering

49 refinements in total for FILLER of FORMULATION == _FILLER

Refinement generation done

Krust now lists the 49 surviving refinements. A typical selection appears below.
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Experiment 1; To CORRECT WRONG.FIRE GET-INSOLUBLE-FILLER:
Specialise REQD-FILLER-SOLUBILITY of SPECIFICATION == INSOLUBLE in 
RULE GET-INSOLUBLE-FILLER [FC 50] :
IF REQD-FILLER-SOLUBILITY of SPECIFICATION == INSOLUBLE
AND
AND
AND
AND
THEN REFINE-ATTRIBUTE(FORMULATION FILLER .FILLER)

ON-AGENDA(FILLER-AGENDA .TASK .FILLER)
SOLUBILITY of .FILLER == .SOL
SLIGHTLY-SOLUBLE of SOLUBILITY == .SLIGHTLY-SOLUBLE 
.SOL < (MIN-VAL .SLIGHTLY-SOLUBLE)

Experiment 50; To ALLOW NOCAN.FIRE GET-SOLUBLE-FILLER:

To ENABLE NOCAN.FIRE GET-SOLUBLE-FILLER:

ON-AGENDA(FILLER-AGENDA .TASK .FILLER)
SOLUBILITY of .FILLER == .SOL
SLIGHTLY-SOLUBLE of SOLUBILITY == .SLIGHTLY-SOLUBLE 
.SOL < (MIN-VAL .SLIGHTLY-SOLUBLE)

Move
RULE GET-INSOLUBLE-FILLER [FC 50] :
IF REQD-FILLER-SOLUBILITY of SPECIFICATION == INSOLUBLE
AND
AND
AND
AND
THEN REFINE-ATTRIBUTE(FORMULATION FILLER .FILLER) 
below GET-SOLUBLE-FILLER
Where:
.FILLER = CALCIUM-CARBONATE
» AND «
Generalise .SOLUBILITY < (MIN-VAL .SLIGHTLY-SOLUBLE) in
RULE INSOLUBLE-DRUG-RULE [FC 0] :
IF DRUG of FORMULATION == .DRUG
AND SOLUBILITY of .DRUG == .SOLUBILITY
AND SLIGHTLY-SOLUBLE of SOLUBILITY == .SLIGHTLY-SOLUBLE
AND .SOLUBILITY < (MIN-VAL .SLIGHTLY-SOLUBLE)
THEN REQD-FILLER-SOLUBILITY of SPECIFICATION = NOT-INSOLUBLE
Where:
.SLIGHTLY-SOLUBLE = (1 10)
.SOLUBILITY =50.0

—» OR «—

Experiment 48; To ALLOW NOCAN_FIRE GET-SOLUBLE-FILLER:

To ENABLE NOCAN_FIRE GET-SOLUBLE-FILLER:

Move
RULE GET-INSOLUBLE-FILLER [FC 50]:
IF REQD-FILLER-SOLUBILITY of SPECIFICATION == INSOLUBLE
AND ON-AGENDA(FILLER-AGENDA .TASK .FILLER)
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AND SOLUBILITY of .FILLER == .SOL
AND SLIGHTLY-SOLUBLE of SOLUBILITY == .SLIGHTLY-SOLUBLE
AND .SOL < (MIN-VAL .SLIGHTLY-SOLUBLE)
THEN REFINE-ATTRIBUTE(FORMULATION FILLER .FILLER)
below GET-SOLUBLE-FILLER
Where:
.FILLER = CALCIUM-CARBONATE
» AND «
Generalise .SOLUBILITY < (MIN-VAL .SLIGHTLY-SOLUBLE) in
RULE INSOLUBLE-DRUG-RULE [FC 0] :
IF DRUG of FORMULATION == .DRUG
AND SOLUBILITY of .DRUG == .SOLUBILITY
AND SLIGHTLY-SOLUBLE of SOLUBILITY == .SLIGHTLY-SOLUBLE
AND .SOLUBILITY < (MIN-VAL .SLIGHTLY-SOLUBLE)
THEN REQD-FILLER-SOLUBILITY of SPECIFICATION = NOT-INSOLUBLE
Where:
.SLIGHTLY-SOLUBLE = (1 10)
.SOLUBILITY =50.0

—» OR «—

Experiment 3; To CORRECT WRONG.FIRE GET-INSOLUBLE-FILLER:
Specialise SOLUBILITY of .DRUG == .SOLUBILITY in
RULE SOLUBLE-DRUG-RULE [FC 0] :
IF DRUG of FORMULATION == .DRUG
AND SOLUBILITY of .DRUG == .SOLUBILITY
AND SLIGHTLY-SOLUBLE of SOLUBILITY == .SLIGHTLY-SOLUBLE
AND .SOLUBILITY >= (MIN-VAL .SLIGHTLY-SOLUBLE)
THEN REQD-FILLER-SOLUBILITY of SPECIFICATION = INSOLUBLE 
Where:
.SOLUBILITY =50.0
.DRUG = DRUG-A

—» OR «—

Experiment 6; To CORRECT WRONG_FIRE GET-INSOLUBLE-FILLER:
Specialise SLIGHTLY-SOLUBLE of SOLUBILITY == _SLIGHTLY-SOLUBLE in 
RULE SOLUBLE-DRUG-RULE [FC 0] :
IF DRUG of FORMULATION == _DRUG
AND SOLUBILITY of .DRUG == .SOLUBILITY
AND SLIGHTLY-SOLUBLE of SOLUBILITY == .SLIGHTLY-SOLUBLE
AND .SOLUBILITY >= (MIN-VAL .SLIGHTLY-SOLUBLE)
THEN REQD-FILLER-SOLUBILITY of SPECIFICATION = INSOLUBLE
Where:
.SLIGHTLY-SOLUBLE = (1 10)

—» OR «—
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Experiment 11; To CORRECT WRONG.FIRE GET-INSOLUBLE-FILLER:
Generalise MAX-LEVEL of .FILLER == .LEVEL in
RULE REMOVE-EXCESSIVE-FILLERS [FC 10] :
IF ON-AGENDA(FILLER-AGENDA .TASK .FILLER)
AND
AND
AND
THEN REMOVE-FROM-AGENDA(FILLER-AGENDA RANK-FILLERS .FILLER)
Where:
.FILLER = CALCIUM-PHOSPHATE

MAX-LEVEL of .FILLER == .LEVEL 
FILLER-CONCENTRATION of SPECIFICATION == .CONC 
.CONC > .LEVEL

Krust now generates one or more refined KBs for each of these experiments. Many 

refinements can be implemented by more than one operator; for example, specialisation 

can be performed by deleting a rule, adjusting a threshold, or changing a comparison 

operator. This could cause the number of refined KBs generated to be greater than 

the number of experiments. On the other hand, two or more experiments may lead to 

identical KBs. This can happen if, for example, two experiments each attempt to specialise 

a different condition within the same rule. If neither condition can be specialised, each 

of the experiments will simply delete the rule, thus creating two identical KBs. Since 

duplicates are removed, this phenomenon would tend to reduce the number of refined KBs 

eventually returned. In the current instance, the 49 experiments lead to 53 implemented

KBs, but 36 are duplicates, so 17 are returned.

Note: 36 duplicate KBs removed 

17 refined KBs generated

At this stage, the refined KBs exist only in Krust’s internal representation. The next 

step is to write them to file as Pfes KBs.

{{ Saving KB files }}
Writing /home/grad/rab/krust/tmp/vesp/nkb149.1
Writing /home/grad/rab/krust/tmp/vesp/nkbl37.1
Writing /home/grad/rab/krust/tmp/vesp/nkbll9.1 
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Writing /home/grad/rab/krust/tmp/vesp/nkbl30_l
Writing /home/grad/rab/krust/tmp/vesp/nkbll_2

The 17 refined KBs are then run on the refinement case. To be accepted, they must 

generate the correct output value for the particular field that is the subject of the current 

query. Here, the field in question is filler. Those that give an incorrect value for this field 

are rejected by the refinement example filter.

The section of trace included below shows just two of the KBs being tested on the 

refinement example. For each example, Krust display the input values, and any discrep­

ancies between the KB’s and the oracle’s choice of filler.

{{ Applying 
Filter rank 
TFS-IA (1): 
Atom space: 
Cons space:

filter "Refinement Case" }} 
is 100.
DRUG-A Dose
4331 (limit
4079 (limit

210 mg Fillers 1
2000)
2000)

Extracting formulation from state file... 
Formulation-Filler-List 
(CALCIUM-PHOSPHATE 0.3427138) 
(CALCIUM-CARBONATE 0.3499289)

Result of test-example for nkbl49_l 
error_pair_list ((0 1))

TFS-IA (1): DRUG-A Dose 210 mg Fillers 1
Atom space: 5586 (limit 2000)
Cons space: 5725 (limit 2000)

Extracting formulation from state file...

Result of test-example for nkbll_l 
error_pair_list ((0 0))

The trace shows that the first refined KB is still recommending calcium phosphate 

where the oracle recommends calcium carbonate. No discrepancy is displayed by the sec­

ond KB, which indicates that the second KB recommends the correct filler. The variable 
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error_pair_list gives the number of errors in the specification and formulation respec­

tively. Since only one field is being tested at this point, and it lies in the formulation, the 

error.pairJist will be ((0 1)) for KBs which fail, and ((0 0)) for KBs which succeed.

The atom and cons spaces mentioned in the trace refer to the memory used by Pfes 

on the PC. When the space available drops below a certain threshold, Krust will auto­

matically cause the application to exit and re-start.

At this point, only one KB has survived the filtering process. This KB has the label 

nkbll_l, and corresponds to Experiment 11, listed earlier.

Experiment 11; To CORRECT WRONG.FIRE GET-INSOLUBLE-FILLER:
Generalise MAX-LEVEL of .FILLER == .LEVEL in
RULE REMOVE-EXCESSIVE-FILLERS [FC 10] :
IF ON-AGENDA(FILLER-AGENDA .TASK .FILLER)
AND
AND FILLER-CONCENTRATION of SPECIFICATION == .CONC
AND
THEN REMOVE-FROM-AGENDA(FILLER-AGENDA RANK-FILLERS .FILLER)
Where:
.FILLER = CALCIUM-PHOSPHATE

MAX-LEVEL of .FILLER == .LEVEL

.CONC > .LEVEL

The suffix “1” in nkbll_l is necessary because a number of different KBs may be 

generated if more than one operator are applicable to experiment 11. The KB generated 

by a second generalisation operator would be labelled nkbll_2, and so on.

At this point, only one refined KB survives, to the remaining KB filters have no effect.

1 items after "Refinement Case", 1 iteration(s)

{{ Applying filter "Chestnut Cases" }} 
Filter rank is 80.
Note: application unnecessary - filter’s max output is 1
1 items after "Chestnut Cases", 0 iteration(s)

{{ Applying filter "Best Accuracy" }} 
Filter rank is 60.
Note; application unnecessary - filter’s max output is 1
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1 items after "Best Accuracy", 0 iteration(s)

{{ Applying filter "Depth" }}
Filter rank is 40.
Note: application unnecessary - filter’s max output
1 items after "Depth", 0 iteration(s)

is 1

{{ Applying filter "Disruptiveness" }} 
Filter rank is 20.
Note: application unnecessary -
1 items after "Disruptiveness",

filter’s max output 
0 iteration(s)

is 1

{{ Applying filter "Random" }} 
Filter rank is 0.
Note: application unnecessary -
1 items after "Random", 0 iteration(s)

filter’s max output is 1

Although only one refined KB has survived, Krust must still check that it is more

accurate than the original KB, so it now runs both KBs on the judging examples. As 

before, Krust displays any discrepancies between the output of the KB being evaluated 

and the oracle. It also calculates the total number of errors made by each KB over all the

judging examples, and finally derives an error rate by dividing the number of errors by 

the total number of possible errors. At this stage, it is the overall accuracy of the KBs 

that is important, so all discrepancies between KB and oracle output are noted, not just

those that concern the filler.

{{ Judging KBs }}
TFS-IA: DRUG-A Dose 160 mg Fillers 1 
Converting DOS state file to Unix... 
Formulation-Binder

(GELATIN 0.041237112)
(GELATIN 0.021052632)

TFS-IA: DRUG-A Dose 210 mg Fillers 1 
Converting DOS state file to Unix... 
Formulation-Binder

(GELATIN 0.041237112)
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(GELATIN 0.021052632)

to Unix...
TFS-IA (1): DRUG-I Dose 210 mg Fillers 2 
Converting DOS state file

Formulation-Filler-List 
(LACTOSE 0.2347802) 
(MAGNESIUM-CARBONATE

F ormulat i on-B inder
(PVP 0.030303031)
(HPMC 0.030303031)

(MAIZE-STARCH 0.10101011)
0.16036965) (MAIZE-STARCH 0.17542066)

Having tested both the refined and the original KB on all the judging examples, Krust

displays the error rate for each, and returns the KB with the lower error rate. In this case, 

nkbll_l performs better than the original KB.

Function: ACCURACY
Ratings:
nkbll_l has rating 0.48 
tfs-la has rating 0.5

The Refined KBs judged to be best: 

nkbll.l:
ADD (RULE770)
Operators: "Add Fact" 

{{ Refining Completed }}

The result of the run is that Krust returns a single best refined KB. This KB was 

created by adding the fact

MAXIMUM-LEVEL of CALCIUM-PHOSPHATE =0.3
to the Tfs-1a database.
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Refinement of a Product Formulation Expert 
System

Robin Boswell^, Susan Craw^ and Ray Rowe^

Abstract. We describe extensions made to the knowledge 
refinement tool KRUST with the aim of developing a generic 
refinement tool, applicable to a variety of expert system shells. 
In particular, we describe the PFES shell and the tablet for­
mulation application TFS written in PFES, discuss some of 
the differences between TFS and other systems, and show how 
we have extended KRUST in order to apply it to TFS.

1 Introduction
Knowledge refinement is the process of correcting errors in a 
KBS’s rule base, triggered when test cases are wrongly solved 
by the KBS. This paper describes how the knowledge refine­
ment tool KRUST has been applied to the product formula­
tion shell PFES, a shell which differs in a number of signifi­
cant ways from the backward-chaining diagnostic shells which 
have typically been the target both of KRUST and most other 
refinement tools.

We first describe the expert system shell PFES (§2), and the 
particular PFES application called TFS which we are using 
as a test-bed for KRUST. We go on to describe KRUST and 
how it has been extended to handle new types of knowledge­
bases, and in particular how it has been applied to PFES (§3). 
We then describe the results so far achieved by KRUST (§4). 
Finally, we compare KRUST with other systems (§5).

2 The Application

2.1 The PFES expert system shell

PFES (Product Formulation Expert System) is a LISP expert 
system shell [9]. As the name suggests, the shell is designed 
for the formulation or synthesis of a solution to a problem, so 
it differs in some ways from shells designed for analytic tasks 
such as diagnosis. In particular, its control structure is task­
based, and corresponding to each task is a rule-set which is 
executed by forward-chaining.

2.2 TFS
The tablet formulation expert system (TFS) solves the prob­
lem of selecting the inert substances, or excipients, which are 
needed to process a drug into a tablet [8]. When running TFS,

SCMS, Robert Gordon University, Aberdeen AB25 IHG. 
rab,smc@scms.rgu.ac.uk

2 ZENECA Pharmaceuticals, Hurdsfield Industrial Estate, Mac­
clesfield, Cheshire SKlO 2NA 

the user first provides the name of a drug and its dosage, to­
gether with certain other desired properties of the final tablet; 
then TFS calculates a formulation consisting of the most ap­
propriate material from each excipient type, and the quan­
tity of each required. During the initial stages of this calcula­
tion, TFS also calculates some intermediate results called the 
specification; these are necessary properties of the formulation 
which follow directly from the user’s requirements. TFS in­
put is thus drawn both interactively from the user, and from 
databases containing chemical properties of drugs and excip­
ients. TFS’s output consists of the specification followed by 
the formulation for the desired tablet.

For our purposes, PFES/TFS has been modified so that 
it reads its requirements from file rather than interactively, 
and writes its output (specification and formulation) to file. 
Each requirement / specification / formulation triple is then 
regarded as an example by the refinement program. Figure 1 
shows a typical example.

2.3 The Refinement Task

In general, the input to a refinement task is a KBS together 
with a set of examples, some or all of which are wrongly solved 
by the KBS. The refinement task then consists of correcting 
the KBS so that it correctly solves as many of the examples as 
possible. However on this occeision the task was presented in 
a slightly different form. Two versions of the KBS were sup­
plied, TFS-IA and TFS-IB, where TFS-IB was a more recent 
version which fixed some bugs that had been detected in TFS- 
IA. Thus we use TFS-IB as an oracle to determine whether or 
not the output from TFS-IA is correct for any particular in­
put. Consequently, our first task was to generate a set of TFS 
inputs, evenly distributed over the requirement space. This 
space is defined by three variables: Drug (13 values), num­
ber of fillers (2 values) and dosage (an integer, taking values 
between 1 and 360). Our generation routine selected all possi­
ble values of the first two variables, and an evenly-distributed 
subset of the possible dosage values starting at lOmg with a 
step size of 50mg. This gave a total of 182 different inputs. 
These were then passed both to TFS-IA and to the oracle 
(TFS-IB). The outputs from the two systems differed for the 
majority of examples.

TFS-lA’s errors can be clustered (currently, by hand) into 
two groups, the examples in each group sharing similar symp­
toms. Examples from the first group show a binder concentra­
tion roughly twice the correct value, and examples from the 
second show calcium phosphate wrongly chosen as a filler.

© 1996 R. Boswell, S. Craw & R. Rowe
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TFS Input
Requirement: 

Drug: Drug-A 
Dose: 60 mg 
No of fillers: 2

TFS Output
Specification: 

full-stability: Yes 
drug-filler-concentration: 0.9 
minimum-tablet-weight: lOOmg 
maximum-tablet-weight: SOOmg 
target-tablet-weight: 260mg 
start-strategy: strategy-A 
filler-concentration: 66.9% 
typical-disintegrant: Maize-starch 
disintegrant-concentration: 0.05 
tablet-weight: 252.2mg 
total-concentration: 97% 
tablet-diameter: 8.73mm
... various other properties...

Formulation:
Tablet weight: 250mg
Fillers: Lactose 66.7%, 

Calcium phosphate 2.4%
Binder: Gelatin 4.1%
Lubricant: Magnesium stearate 1.0%
Disintegrant: Croscarmelose 2.1%

Figure 1. TFS input and output

Figure 2 shows two examples of each type of error. For exam­
ples 1 and 42, the system recommends a greater proportion 
of binder than the oracle, and for examples 5 and 33, the sys­
tem recommends calcium phosphate as a filler while the oracle 
recommends calcium carbonate and magnesium carbonate re­
spectively.

Incorrect quantity of binder

Example 1 — (10 mg, DRUG-A, 1 filler) 
lA System binder choice; Gelatin 4.1% 
IB Oracle binder choice: Gelatin 2.1%

3 KRUST and its application to PFES
3.1 The Operation of KRUST
The operation of any refinement system may be broken down 
into the following three tasks. (A more detailed account of the 
operation of KRUST may be found in [1]).

Blame allocation determines which rules or parts of rules 
might be responsible for the erroneous behaviour. In 
KRUST at this stage no-fire rules are identified, which 
produce the correct conclusion but did not fire, and error­
causing rules which did (or could) fire, but do not produce 
the correct conclusion.

Refinement generation suggests rule modifications that 
may correct the erroneous behaviour. In general, there will 
be more than one way of fixing any particular error. In 
KRUST, refinement generation is based on the preceding 
blame allocation; no-fire rules may be enabled, e.g. by gen­
eralising a condition, and error-causing rules may be dis­
abled, e.g. by specialising a condition. The chaining of rules 
must be considered, since it may not be the error-causing 
rule itself that is faulty, but rather one of the rules that 
caused it to fire.

Refinement selection picks the best of the possible refine­
ments according to some criteria.

3.2 Applying KRUST to different 
knowledge bases

In this section we consider a number of issues that must be 
addressed in the development of a generic refinement tool, 
discussing first the general concepts, and then the particular 
requirements of PFES.

3.2.1 Rule element representation

Although it may at first appear that there is a wide vari­
ety in the representations used by various KBS development 
tools, there are only a limited number of roles that a rule 
element (condition or conclusion) can play within a rule [6]. 
For example, a condition can succeed or fail, bind variables, 
or be involved in rule chaining. These roles are the basis of 
KRUST’s hierarchy of rule element types (figure 3): further 
types are likely to be added as new KBS tools require.

Example 42 — (310 mg, DRUG-F, 2 fillers) 
lA System binder choice: PVP 3.9% 
IB Oracle binder choice: PVP 2.0%

Incorrect filler

Example 5 — (110 mg, DRUG-A, 1 filler) 
lA System filler choice; Calcium phosphate 57.3% 
IB Oracle filler choice; Calcium carbonate 58.5%

Example 33 — (110 mg, DRUG-F, 1 filler) 
lA System filler choice; Calcium phosphate 55.5% 
IB Oracle filler choice: Magnesium carbonate 56.6%

Figure 3. KRUST’s hierarchy of rule elements

Figure 2. Formulations generated by TFS-IA and TFS-IB

A test is a rule condition that can succeed or fail. Tests 
are currently of two types: comparisons (such as inequalities

75 R. Boswell, S. Craw R. Rowe



or identity tests) and goals. A rule element is a goal if and 
only if it can be involved in rule chaining. Two types of goal 
have so far been defined: oavRriples (terms of the form “At­
tribute of Object is Value”) and orderedRerms, correspond­
ing to OPS5 tuples. Expressions are rule elements that re­
turn a value. This class is divided into KRUSTExp, which 
can be evaluated within KRUST and KBSExp, which have to 
be passed back to the KBS for evaluation.

Snapshot of FILLER-AGENDAMICROCRYSTALLINE-CELLULOSE LACTOSECALCIUM-CARBONATECALCIUH-PHOSPHATE
Read/Write Operations on FILLER-AGENDA

3.2.2 Representation of PFES rules

Many of PFES’s rule elements are standard, and therefore 
correspond directly with classes found in the hierarchy shown 
in figure 3; for example OAV triples, arithmetic calculations, 
and comparisons between variables. However, there is a group 
of rule elements that appear not to be described by the hi­
erarchy: operations on agendas. PFES agendas are untyped 
lists; an item can be read and written to the top or bottom 
of an agenda, or directly below another given item.

However, TFS agendas can be interpreted as a mechanism 
for storing attribute-value data. Not aU agendas have the same 
semantics, but the number of different possibilities actually 
employed within TFS is fairly limited. Two of the most com­
mon examples are shown in figure 4. Each example shows 
the contents of an agenda at some point during the running 
of TFS-IA, together with the rule elements that write to and 
read from the agenda. The Filler-Agenda is simply a list of ex­
cipients; their presence on the agenda indicates that they have 
passed a stability test. The Property-Agenda again shows a 
list of excipients, but now each excipient has an associated 
floating-point number, representing the value of a mechani­
cal property. In both cases, the rule elements which read and 
write the agenda items can be represented as ordered terms, 
as follows.

Rule conclusion that adds an item to the agenda:ADD <FILLER> TO-BOTTOH-OF FILLER-AGENDA®
Rule condition that reads an item from the agenda: READ <FILLER> FROM FILLER-AGENDA

Snapshot of PROPERTY-AGENDAMICROCRYSTALLINE-CELLULOSE46.2LACTOSE
158.8CALCIUM-CARBONATE
851.1

Read/Write Operations on PROPERTY AGENDA
Rule conclusions that add items to this agenda:ADD <FILLER> TO-BOTTOH-OF PROPERTY-AGENDAADD <STABILITY> TO-BOTTOM-OF PROPERTY-AGENDA
Rule conditions that read items from this agenda:READ <FILLER> FROM PROPERTY-AGENDAREAD <STABILITY> THE-ITEH-AFTER <FILLER>ON PROPERTY-AGENDA

Example 1ON-AGENDA(FILLER-AGENDA,RANK-FILLERS, <FILLER»
Figure 4. Two agendas, and the PFES statements that read 

and write them

Example SON-AGENDA(PROPERTY-AGENDA,RANK-FILLERS, <FILLER>)AGENDA-UNLABELLED-ATTRIBUTE(PROPERTY-AGENDA,RANK-FILLERS, <FILLER>, <STABILITY>)

• If rule R cannot be satisfied, which condition(s) cause it to 
fail?

It will be noted that the PFES commandADD <ITEM> TO-BOTTOH-OF <AGENDA>
has different translations in the two examples. Fortunately it 
is possible determine the correct translation from the context, 
both in these two cases and in other more complex situations 
which also arise in TFS.

3.2.3 Communication

Originally this was achieved by KRUST communicating with 
the KBS directly. PFES does not allow this, since it must 
always answer complete formulation tasks, and it runs on a 
different platform from KRUST. However, PFES does pro­
duce a trace file which tells us which rules did fire, or which 
conditions caused them to fail. This information corresponds 
almost exactly to that obtainable via queries; the one excep­
tion being that details are available of the first unsatisfied 
condition only for each rule that failed to fire, since subse­
quent conditions will never have been tested. In principle this 
lack of information may make it harder for KRUST to diag­
nose multiple faults simultaneously, but so far we have not 
found it a problem. The existence of the trace file means that 
communication between KRUST and PFES can be achieved 
by file-sharing using PC-NFS (figure 5).

During refinement, KRUST requires answers to the following 
queries: 3.2.4 Chaining Direction

• Can rule R be satisfied, and what variable bindings result?

® Terms in angle-brackets <> are PFES variables.

Unlike the backward-chaining systems originally handled by 
KRUST, PFES is a task-based system where each task corre­
sponds to a rule-set, and the rules within each set are executed
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Dos file-spaceDos file-space

did not fire. KRUST has been extended to handle variables bydid not fire. KRUST has been extended to handle variables by 
adding a new class: wrong-fire - rules which fired and gave the 
wrong conclusion, but would have given the right conclusion if 
they had fired with a different set of variable bindings. In other 
words, wrong-fire rules are error-causing for one set of bind­
ings and no-fire for another. Refinement generation has been 
extended to generate two types of refinement for wrong-fire 
rules: refinements to disable the wrong-fire rule, and refine­
ments to correct the value assigned to an incorrectly-bound 
variable. In both cases the process is recursive, applying both 
to the wrong-fire rule and its antecedents. An example of re­
finement by value correction appears in the next section, on 
reasoning about arithmetic.

adding a new class: wrong-fire - rules which fired and gave the
wrong conclusion, but would have given the right conclusion if
they had fired with a different set of variable bindings. In other
words, wrong-fire rules are error-causing for one set of bind­
ings and no-fire for another. Refinement generation has been
extended to generate two types of refinement for wrong-fire
rules: refinements to disable the wrong-fire rule, and refine­
ments to correct the value assigned to an incorrectly-bound
variable. In both cases the process is recursive, applying both
to the wrong-fire rule and its antecedents. An example of re­
finement by value correction appears in the next section, on
reasoning about arithmetic.

3.S.6 Arithmetic3.2.6 Arithmetic

Unix file-space

Figure 5. Interaction between Sun and PC during the running 
of KRUST

in forward-chaining mode. However, since KRUST’s analysis 
of a KBS’s behaviour is goal-driven, KRUST will work back­
wards from the conclusion to the initial facts regardless of the 
order in which the rules were originally executed. For example, 
suppose a rule base contains the fact A, Rule 1: A -+ H and 
Rule 2: B C-, where C- is an erroneous conclusion. Under 
forward-chaining, rule 1 will fire first, then rule 2. However, 
the trigger for refinement is the conclusion C_, since that is 
the only aspect of the system’s behaviour initially known to 
be wrong. The blame allocation process will then work back­
wards from C- to rule 2 and then rule 1.

Furthermore, because rule chaining is mediated via the set­
ting and reading of attribute values, and these are indepen­
dent of PFES tasks, KRUST is also able to consider rules 
and rule-chaining regardless of task-set. For example, a rule 
in task CHDDSE-FILLER includes the action:SET-ATTRIBUTE-VALUEACCEPTABLE-STABILITY TO <TARGET-STABILITY>
and another rule in task APPLY-FILLER-STRATEGY includes the 
corresponding condition:ATTRIBUTE-HAS-VALUEACCEPTABLE-STABILITY <MIN-STABILITY>
The allocation of these two rules to different tasks means that 
the second rule will not be able to fire until task 
APPLY-FILLER-STRATEGY has been invoked, which may hap­
pen before or after task CHOOSE-FILLER is completed. 
Nonetheless, once the second rule is given a chance to fire, 
it is able to read the value written previously by the first 
rule. Therefore, for refinement, the first rule may be regarded 
as chaining with the second.

S.2.5 Blame Allocation with Variables

For propositional KBSs, KRUST identifies two rule classes: 
error-causing - rules which fired and gave the wrong conclu­
sion, and no-fire - rules which gave the right conclusion but 

We have extended KRUST so that it follows causal chains that 
include one or more arithmetic expressions. We illustrate this 
with reference to Example 1 in figure 2, for which the correct 
proportion of gelatin in the formulation is 2.1%, but TFS-IA 
recommends 4.1%.
The chain of rules leading to this conclusion includes:(RULE SET-BINDER-CONC (CONDITIONS<ADJUSTED-CONC> := <CONC> / <TOTAL-CONC>(ACTIONS(ADD <ADJUSTED-CQNC> TO-BOTTOM-OFTABLET-REPORT-AGENDA)
)

In this rule, the erroneous value for the concentration of 
gelatin is assigned to the variable <ADJUSTED-CONC>, and 
placed on the TABLET-REPORT-AGENDA.

Previous versions of KRUST would simply have recom­
mended specialising one of the rule’s conditions in order 
to prevent the rule firing with the erroneous binding of 
<ADJUSTED-CONC>. However, KRUST now also reasons as fol­
lows. The incorrect value of the variable on the left-hand side 
of the assignment (<ADJUSTED-CONC>) could result from incor­
rect values for any of the variables on the right-hand side, and 
so could be corrected by modifying any one of those values 
leaving the others unchanged. Each modified value is obtained 
by solving the appropriate equation; here, for example

<CONOniodified / <T0TAL CONC^existing= <ADJUSTED-CONC>correct
and similarly for <T0TAL-C0NC>modifled.

The point at which the recursive correction procedure ter­
minates in this particular example is at the conclusion of an 
earlier rule, in which a value for concentration is hardwired:(SET-ATTRIBUTE-VALUEFORMULATION <BINDER> 0.04)
The procedure then generates an appropriate refinement of 
the value 0.04 where it appears in this conclusion. This tech­
nique is not .PFES-specific, and will apply to any KBS that 
uses arithmetic.
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Note that refinements are not currently generated for the 
arithmetic expression itself, because the guidance provided by 
a single example is not sufficient to prevent a combinatorial 
explosion. For this and other reasons, we are currently con­
sidering applying KRUST to multiple examples in parallel.

ExperimentTo correctSpecialise
1;HRONG_FIRE UPDATE-FORMULATION:ON-AGENDA(TABLET-REPORT-AGENDA <TASK> <C0HP0NENT»in RULE UPDATE-FORMULATION:

5.^.7 PFES’s many-valued output

IF ON-AGENDA(TABLET-REPORT-AGENDA <TASK> <C0MP0NENT» AND AGENDA-UNLABELLED-ATTRIBUTE (TABLET-REPORT-AGENDA <TASK> <C0MP0NENT> <CONC> 1)AND CHECK.LEAF of <C0MP0NENT> == COMPONENTTHEN <COHPONENT> of FORMULATION = <CONC>Experiment 8;To correct HRONG.FIRE UPDATE-FORMULATION:
One consequence of PFES’s formulation task is that its out­
put is a compound answer (figure 1), in contrast to the single 
result typically output from a diagnostic system. Our testing 
of TFS-IA revealed that its output typically differs from the 
correct values at only one or two points, but some examples 
can have as many as 12 points of difference. One approach 
has combined the refinements to correct individual errors. An 
alternative approach is to determine dependencies between 
faults, and attempt to fix the earliest fault(s) in the depen­
dency chain first, in the hope that this will fix the later faults 
as well. A dependency chain linking attributes tii and a2 is 
defined to be a sequence of rules Ri, R2, • • •, Rn where Ri 
includes a condition referring to the value ai, R„ includes a 
conclusion setting the value of a2 and for each pair 
the conclusion of Ri matches a condition of Ri4-i. The exis­
tence of such a chain indicates that the value of cti may affect 
the value of 02- This technique of using dependency to select a 
potential prior cause out of set of faults has been applied (by 
hand, to date) to those few TFS-IA examples which exhibit 
large numbers of errors. In these cases, it has been possible to 
obtain either one or two values that are prior to all the others 
in terms of dependency.

Specialise<HEIGHT> := <ADJUSTED-CONC> * <TABLET-HEIGHT>in RULE SET-BINDER-CONCl:IF BINDER of FORMULATION == <EXCIPIENT> ANDANDANDANDAND

<EXCIPIENT> of FORMULATION == <C0NC> TABLET-HEIGHT of FORMULATION== <TABLET-HEIGHT> TOTAL-CONCENTRATION of SPECIFICATION== <T0TAL-C0NC> <ADJUSTED-CONC> := <C0NC> / <T0TAL-C0NC> <HEIGHT> :=<ADJUSTED-CONC> * <TABLET-HEIGHT>THEN ON-AGENDA(TABLET-REPORT-AGENDAEVALUATE-TABLET <EXCIPIENT>)Experiment 18;To correct HRONG.FIRE DEFAULT-BINDER-LEVEL:Correct <BINDER> of FORMULATION =0.04in RULE DEFAULT-BINDER-LEVEL:IF BINDER of FORMULATION == <BINDER> THEN <BINDER> of FORMULATION =0.04
4 Experiments

Our next step will be to adapt the remaining KRUST mod­
ules to the requirements of PFES, so that the refinements we 
have generated can be filtered, implemented and tested.

5 Other work

The extension of KRUST to handle the requirements of PFES 
has covered the blame allocation and refinement generation 
modules of KRUST. Thus, KRUST currently generates refine­
ments, but does not test them. KRUST generated 93 possible 
refinements for example 1 in figure 2 and 61 refinements for 
example 5. Typical refinements for example 1 appear below.

Systems which correct faulty knowledge bases may be divided 
into two classes: knowledge base refinement, which includes 
KRUST, and theory revision [2]. The principal distinguishing 
features of the two classes are shown in table 1.

This comparison shows that, in general, knowledge refine­
ment systems tend to be more applicable to real-world ex­
pert systems, because they take account of control knowledge 
and require fewer examples. Theory revision systems are more
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meta-rules ...

Refinement operators
Adding/deleting
rules/conditions

Can also specialise or gener­
alise individual conditions

We are grateful to Paul Bentley of Logica Cambridge Ltd. for 
his assistance with PFES.

[1]

[2]

[3]

[4]

adept at adding new knowledge based on many examples. 
Therefore by developing KRUST into a generic refinement 
tool, applicable to a variety of different knowledge represen­
tations and control strategies, we are building on the existing 
strengths of knowledge-refinement systems in general. We now 
discuss in more detail features of KRUST which we believe 
are particularly significant.

[5]

[6]

It refines shells having a variety of control strategies. Some 
other systems can reason about a shell’s control strategy 
(e.g., Odysseus [10] makes use of meta-rules to guide the 
learning of new object rules) but they are often tied to 
a particular shell, so are not generally applicable (e.g., 
Odysseus refines Minerva KBSs).
It can be applied to a wide range of shells. Many Theory 
Revision systems such as EITHER [5] and FORTE [7] are 
restricted to Prolog programs, and SEEK [4], Teiresias [3] 
and Odysseus are each applicable only to a single shell.
It generates and tests many relined knowledge-bases. This 
feature is unique to KRUST. Other systems select refine­
ments before implementing them as new KBSs, so may not 
detect unintended side-effects.

[7]

[8]

[9]

[10]

S. Craw and P. Hutton. Protein folding: Symbolic re­
finement competes with neural networks. In A. Prieditis 
and S. Russell, editors. Machine Learning: Proceedings 
of the Twelfth International Conference, pages 133-141, 
Tahoe City, CA, 1995. Morgan Kaufmann.
S. Craw, D. Sleeman, R. Boswell, and L. Carbonara. Is 
knowledge refinement different from theory revision? In 
S. Wrobel, editor. Proceedings of the MLNet Familiar­
ization Workshop on Theory Revision and Restructuring 
in Machine Learning (ECML-94), pages 32-34, Catania, 
ITALY, 1994. GMD Technical Report Number 842.
R. Davis and D. Lenat. Knowledge-Based Systems in 
Artificial Intelligence. McGraw-Hill, 1982.
A. Ginsberg, S. M. Weiss, and P. G. Politakis. Seek2: 
A generalized approach to automatic knowledge base re­
finement. In Proceedings of the Ninth IICAI Conference, 
pages 367-374, 1985.
D. Ourston and R. Mooney. Theory refinement combin­
ing analytical and empirical methods. Artificial Intelli­
gence, 66:273-309, 1994.
G. Palmer. Towards an extensible knowledge refinement 
tool. Technical Report 96/1, SCMS, Robert Gordon 
University, 1996.
B. L. Richards and R. J. Mooney. Refinement of first- 
order horn-clause domain theories. Machine Learning, 
19(2):95-131, 1995.
R. Rowe. An expert system for the formulation of phar­
maceutical tablets. Manufacturing Intelligence, 14:13— 
15, 1993.
J. Turner. Product formulation expert system. Manu­
facturing Intelligence, (8):12 - 14, 1991.
D. C. Wilkins. Knowledge base refinement as improving 
an incorrect and incomplete domain theory. In Y. Ko- 
dratoff and R. S. Michalski, editors. Machine Learning 
Volume III, pages 493-513. Morgan Kaufmann, San Ma­
teo, CA, 1990.

6 Conclusions

We have shown how KRUST can be applied to a shell having 
a number of peculiarities which cause it to differ significantly 
from the other shells to which KRUST has already been ap­
plied. We have solved two independent communication prob­
lems, both of which will be applicable to a number of expert 
systems: communicating with a PC-based shell; and generat­
ing refinements from the evidence in a trace. We have shown 
that even esoteric data-structures may be represented in a 
straightforward class hierarchy of rule element types. KRUST 
has been used to refine a shell whose control structures are 
different from the backward-chaining reasoning of Prolog, to 
which it was originally applied. Finally, we have extended the 
class of refinements which it is able to generate, and thus the 
number of faults which it is potentially able to fix.
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Abstract. The Krust refinement tool has already been successfully 
applied to a variety of relatively simple classificatory problems, and a 
generic refinement framework is being developed. This paper describes 
the application of Krust to a design system Tfs, whose task is tablet for­
mulation for a major pharmaceutical company. It shows how novel com­
ponents can be included within Krust’s underlying knowledge model, 
and how Krust’s refinement mechanisms can be extended as required, 
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been added whereby proofs of related examples are used to constrain and 
guide Krust’s refinement generation. Tfs has provided valuable widen­
ing experience for attaining our eventual goal of developing a framework 
for a generic knowledge refinement toolkit.

Keywords:
Knowledge Refinement, Knowledge Maintenance, Design Application.

1 Introduction

Knowledge refinement is the process of correcting errors in the rulebase of a 
Knowledge-Based System (KBS), triggered when test cases are wrongly solved 
by the KBS. This paper describes how the knowledge refinement tool Krust 
is being developed from a prototype, applicable to simple Prolog rulebases, 
to a generic tool, applicable to industrial systems written in a variety of dif­
ferent shells. We demonstrate the feasibility of this approach by showing how 
Krust has been applied to the Product Formulation Expert System (Pfes), a 
shell which differs in a number of significant ways from the backward-chaining 
diagnostic shells which have typically been the target both of Krust and many 
other refinement tools.

We first describe Krust, and our current generic approach to the represen­
tation of knowledge and the use of refinement operators. We then introduce the 
expert system shell Pfes, and a particular industrial application Tfs, used on 
a regular basis by the pharmaceutical company Zeneca. We then show how the 
generic framework is able to handle two necessary extensions required by Pfes .



First, we show how rule elements peculiar to Pfes can be accommodated in 
Krust’s knowledge hierarchy. Secondly, we introduce new refinement operators 
and a new filter whereby traces of sets of related examples can be used to gen­
erate and filter refinements. These operators are the first Krust procedures to 
employ induction; up to now, we have concentrated on the use of control infor­
mation because of its importance for real expert system shells, but we believe 
induction is also essential.

We then demonstrate the effectiveness of Krust’s approach by presenting 
the results of applying Krust to Tfs, and showing that Krust is able to fix 
actual bugs which occurred in an early version of the system. Finally, we compare 
Krust with other tools, and conclude with plans for the next stage of our work 
on Pfes.

2 Krust
The operation of any refinement system may be broken down into the follow­
ing three tasks; Blame allocation determines which rules or parts of rules might 
be responsible for the erroneous behaviour; Refinement generation suggests rule 
modifications that may correct the erroneous behaviour, and Refinement selec­
tion picks the best of the possible refinements according to some criteria.

Fig. 1. The operation of Krust

Krust’s input is a faulty KBS together with a set of examples, some of which 
are wrongly solved by the KBS. The refinement task consists of correcting the
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KBS so that it correctly solves as many of the examples as possible. Figure 1 
shows Krust using one training example at a time to generate refinements, 
while the remaining examples are used to filter these refinements. More details 
of Krust appear in [1].

2.1 The Development of a Generic Refinement Tool

A generic refinement tool should satisfy three requirements:
— applicable to a variety of commercial shells;
— have a unified framework (i.e., not just a collection of separate refinement 

tools); and
— the framework should be extensible to apply to new shells.

The two principle features of the tool which will enable us to satisfy these re­
quirements are:
- the ability to create an internal representation (or “knowledge skeleton”) for 

each rulebase, using a common knowledge representation hierarchy for rule 
elements; and

— toolsets of filters and refinement operators, as shown in figure 1.
When discussing our common knowledge representation, it is important to 

note that, whatever shell Krust is being applied to, it has direct access to 
the shell’s actual problem solving behaviour, and it uses this information when 
performing blame allocation and refinement. The purpose of constructing the 
knowledge skeleton is therefore not to run a simulation of the shell, but rather 
to provide the extra information needed to reason about the possible effects of 
changes to the rule-base; for example, to determine the possible chaining of rules.

Up to now, Krust has been applied to relatively simple rulebases in Prolog, 
Clips, and Kappa[9]. In this paper, we show how Krust has recently been 
applied to fix real problems in a commercial rulebase, Tfs, written in a different 
shell, Pfes. We thus demonstrate both the effectiveness of Krust’s approach 
to knowledge refinement (because it works for a “real” KBS) and the feasibility 
of the generic refinement framework (because the Pfes work required Krust’s 
extension to a new and significantly different type of shell).

2.2 Rule Element Representation

Although it first appears that there is a wide variety of representations used 
by various KBS development tools, there are only a limited number of roles 
that a rule element (condition or conclusion) plays within a rule. For example, 
a condition can succeed or fail, bind variables, or be involved in rule chaining. 
These roles are the basis of Krust’s hierarchy of rule element types.
® We have recently been awarded an EPSRC grant to extend our basic mechanism to 

develop such a generic refinement framework.
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Fig. 2. Krust’s hierarchy of rule elements

A test is a rule condition that succeeds or fails. Tests are currently of two 
types: comparisons, such as inequalities, and goals. A rule element is a goal if 
and only if it can be involved in rule chaining. Two types of goal so far exist: 
oav-triples (terms of the form “Attribute of Object is Value”) and orderedJerms, 
which consist of a keyword followed by arguments. Two ordered-terms unify if 
they have the same keyword and arity, and the corresponding arguments unify. 
Assignment has the obvious meaning. Expressions are rule elements that return 
a value. This class is divided into KRUSTExps, which can be evaluated within 
Krust and KBSExps, which must be passed back to the KBS.

This hierarchy has grown during the course of the development of Krust, 
and we expect that further terms will be added in the future as new KBS shells 
require. However, the use of a hierarchy allows us to add new rule elements within 
a consistent framework, and to implement procedures which take advantages of 
properties shared between different elements.

2.3 The Operator Toolset
To illustrate the purpose of the various toolsets shown in figure 1, we describe 
briefly the operator toolset, shown in more detail in figure 3. Here the labels on 
the left of the each column are experiments; that is, high-level descriptions of 
changes that might be made to the rule-base. Associated with each experiment 
are the names of the operators which actually implement these changes and 
create new, modified rule-bases. To add a new operator, an entry must be added 
in the table, and an associated Lisp function defined. For example, the new 
procedure described in §5.1 for learning facts from traces was implemented as 
an operator called Add Fact and associated with the experiment type Generalise.

3 PFES and TFS

3.1 PFES

Pfes [13] is a shell whose purpose is to solve problems of design, synthesis or 
formulation, for which is it difficult to have access to all possible solutions in 
advance, so a solution must be synthesised or generated. Its control structure
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Fig. 3. The Krust refinement operator toolset

To Generalise: Remove Condition To Specialise: Delete Rule
Adjust Value Adjust Value
Adjust Operator Adjust Operator
Add Fact

To Allow: Increase Certainty Factor

is task-based, and corresponding to each task is a rule-set which is executed by 
forward-chaining. There is considerably less experience in building and refining 
such systems than for diagnostic ones. Since Pfes can also be used to create 
traditional diagnostic systems, we believe that the application of Krust to Pfes 
represents a real extension to the power and applicability of refinement tools.

3.2 TFS

Drug formulation is a hard synthesis problem, and there are few formulation 
KBSs in regular commercial use [4]. One of these is the Tablet Formulation 
System (Tfs) written in Pfes^, which solves the problem of selecting the inert 
substances, or excipients, which are needed to process a drug into a tablet [12]. 
The difficulty of the formulation task arises from the need to select a set of 
mutually compatible excipients, while at the same time satisfying a variety of 
other constraints.

The user provides a drug’s name and its desired dosage. Then Tfs calculates 
a formulation consisting of the most appropriate material from each excipient 
type, and the quantity of each required. During the initial stages of this process, 
Tfs also calculates some intermediate results called the specification; these are 
necessary properties of the formulation which follow directly from the user’s 
requirements. Tfs input is thus drawn both from the user, and from databases 
containing chemical properties of drugs and excipients. Tfs’s output consists of 
the specification and formulation for the desired tablet. Figure 4 shows a typical 
example for Krust, comprising requirements, specification and formulation.

3.3 How Refinement is Applied to TFS

There exist three versions of Tfs: Tfs-1b simply fixed a number of bugs in 
Tfs-Ia, but Tfs-2, as well as fixing further bugs, represents a paradigm-shift 
in the approach to tablet-formulation. Our work on refining Tfs is therefore 
divided into two phases. During the first phase, described in this paper, we ap­
plied Krust to Tfs-Ia, using Tfs-1b as an oracle to critique Tfs-Ia’s output. 
Krust has access to Tfs-Ia’s rulebase, and traces of its behaviour on examples. 
‘ We are grateful to Paul Bentley of Logica Cambridge Ltd. for his assistance with the 

Pfes software interface.
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TFS Input
Requirement: Drug: Drug-A, Dose: 60 mg.. No of fillers: 2

TFS Output
Specification: 

full-stability: Yes 
drug-filler-concentration: 0.9 
minimum-tablet-weight: lOOmg 
maximum-tablet-weight: 800mg 
target-tablet-weight: 260mg 
start-strategy: strategy-A 
filler-concentration: 66.9% 
typical-disintegrant: Maize-starch 
disintegrant-concentration: 0.05 
tablet-weight: 252.2mg

total-concentration: 97% 
tablet-diameter: 8,73mm 
... various other properties...

Formulation:
Tablet weight: ^SOmg
Fillers: Lactose 66.7%,

Calcium phosphate 2.4%
Binder: Gelatin 4.1%
Lubricant: Stearic acid 1.0%
Disintegrant: Croscarmelose 2.1%

Fig. 4. Krust example, made up of Tfs input and output

In contrast, the oracle provides just the correct output for each example input. 
In the next phase, we will regard Tfs-1b as the buggy system to be refined, and 
Tfs-2 as the oracle.

4 Applying KRUST to PFES

This has required additions both to the rule element hierarchy and to the sets of 
operators. However, most of the existing operators were found to be applicable 
to Pfes, and the new operators required by Pfes turned out to be applicable 
to the other shells, so that much of the work was not PFES-specific, thereby 
confirming our belief in a framework approach.

4.1 Rule Element Representation

Many of Pfes’s rule elements (conditions and conclusions) are standard expres­
sions found in many KBS shells. However, there is a group of rule elements that 
appear at first unique to Pfes, and therefore potentially difficult to represent 
within a common framework. These agendas are untyped lists, where items can 
be read and written to the top or bottom, or directly below another given item. 
Agendas are used to pass data between routines that generate values and those 
that subsequently test or filter them.

However, TFS agendas can also be interpreted as a mechanism for storing 
attribute-value data. Not all agendas have the same semantics, but the number 
of different possibilities actually employed within TFS is fairly limited. Two of 
the most common types are shown in figure 5. Each example shows the contents 
of an agenda at some point during the running of Tfs-Ia, together with the
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Pfes rule elements that write to and read from the agenda, and the Krust 
representation of these elements.
The Filler-Agenda is simply a list of excipients; their presence on the agenda 

indicates that they have passed a stability test.
The Property-Agenda again shows a list of excipients, but now each excip­

ient has an associated floating-point number, representing the value of a 
mechanical property.
In each of these cases, the rule elements which read and write the agenda 

items can be represented in Krust as ordered terms. The fact that <STABILITY> 
is a property of <FILLER> is implicit in the Pfes statements, which write a 
filler to the agenda, followed by its stability. However, it is made explicit in the 
Krust representation, where the agenda-unlabelled-attribute statement in­
cludes both the filler and its stability as arguments. One consequence of this 
is that Pfes commands of the type add <ITEM> to-bottom-of <AGENDA> 
have different Krust representations, depending on whether or not <ITEM> 
represents an attribute. Fortunately it is possible to determine the correct trans­
lation from the context, both in the situations described here, and in other more 
complex situations also arising in Tfs; this enables our translator to construct 
the correct Krust representation automatically.

4.2 PFES’s Many-Valued Output

One consequence of Pfes’s formulation task is that its output is a compound 
answer (figure 4), in contrast to the single result typically output from a diag­
nostic system. Tfs-Ia’s output typically differs from the correct values at only 
one or two points, but some examples have 12 points of difference. Attempting 
to fix all of these at once leads to a combinatorial explosion, so instead Krust 
automatically determines dependencies between faults, and attempts to fix the 
earliest fault(s) in the dependency chain first, in the hope that this will fix the 
later faults as well. A dependency chain is a sequence of rules where each con­
clusion matches a condition of the next rule, and a fault lies in the chain if it 
matches the conclusion of a rule in the chain. This technique has been imple­
mented and applied to those few Tfs-1a examples which exhibit large numbers 
of errors. In these cases, it was possible to obtain a few values that are prior to 
all the others in terms of dependency, and so Krust focuses its repairs on them.

5 Learning from Traces

As stated above, Krust has direct access to the actual rule execution behaviour 
of a KBS. For Prolog, Clips and Kappa rulebases, it queries the KBS directly. 
For Pfes, this is not possible, so Krust derives equivalent information from the 
trace. This is a record of every attempt by the rule interpreter to execute a rule 
element, together with the result and the bindings for all the variables. It thus
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Snapshot of FILLER-AGENDACELLULOSE LACTOSE CALCIUM-PHOSPHATE
PFES Read/Write Operations on FILLER-AGENDA

Conclusion: add <FILLER> to-bottom-of FILLER-AGENDA 
Condition: <FILLER> is-on filler-agenda

Krust representation of each operation
on-agenda(FiLLER-AGENDA, <filler>)

Snapshot of PROPERTY-AGENDACELLULOSE 46.2 LACTOSE 158.8 CALCIUM-CARBONATE 851.1
PFES Read/Write Operations on PROPERTY AGENDA

Conclusions: add <filler> to-bottom-of property-agenda 
add <stability> to-bottom-of property-agenda

Conditions: <FILLER> is-on property-agenda

<STABILITY> is-the-item-after <FiLLER> on property-agenda

Krust representation of each of these paired operations
on-agenda(pROPERTY-AGENDA, <filler>) 
agenda-unlabelled-attribute(pROPERTY-agenda, <filler>, <stability>)

Fig. 5. Agendas and their Pfes operations

provides the information needed to construct a proof-tree for the conclusions 
generated, which is then used for blame allocation and refinement generation.

Earlier versions of Krust have generated refinements for a single training 
example at a time, subsequently using other examples for filtering and judging. 
We describe two recent additions to Krust which enable it to use sets of traces 
from related examples to guide the refinement process at an earlier stage. The 
approach in both cases is as follows:
- to select as positive examples those examples and their traces that exhibit a 

particular fault, and as negative examples those that do not;
- to identify features distinguishing these two groups; and finally
- to use these features as inputs to refinement generation and selection.
We shall describe two techniques: using traces to learn facts, and for refine­

ment filtering. The goal of the second technique is to reduce Krust’s search 
space, so we shall postpone its description until §7, after the results without 
the new filter. The remainder of this section is therefore devoted to the first 
technique: using traces to learn facts.
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5.1 Using Traces to Learn Facts

Most of Krust’s refinements take the form of modifications to existing rule 
elements. However, one of the available refinement operators adds a new fact to 
the database. Such a refinement is generated when the new fact is required to 
satisfy a currently unsatisfied condition in a rule, and hence enable that rule to 
fire. Induction from several examples should be applied at this point, because 
typically the training example imposes insufficient constraints on the new fact.

We now illustrate this technique with reference to faults of type 1, in which 
Tfs-1a incorrectly recommends the filler Calcium Phosphate. The reason is that 
the MAX-LEVEL of Calcium Phosphate is missing from the data-base, so that the 
second rule, Remove-Excessive-Fillers, fails to fire and hence fails to remove 
Calcium Phosphate from the filler agenda (figure 6). Hence Calcium Phosphate 
remains on the agenda to be read by Get-Insoluble-Filler.

Get-Insoluble-Filler
IF:

THEN

reqd-filler-solubility has value insoluble 
<FILLER> is on filler-agenda 
solubility has value <SOL> in <FILLER 
SLIGHTLY-SOLUBLE has value <SLIGHTLY-S 
<SOL> is less-than (mi.n-val <slightly-solu^le>) 
refine FILLER to be <FILLER>

UBLE>

Remove-Excessive-Fillers
IF: <FILLER> is on filler-agenda

MAX-LEVEL has value <LEVEL> in <n
FILLER-CONCENTRATION has value <CO11C> 
<CONC> is greater-than <LEVEL> 

THEN remove <FILLER> from filler-AGENDA

Database
MAX-LEVEL of Calcium Phosphate.... ?

Fig. 6. Rule chain for wrong filler example

Krust identifies the missing database value as one possible cause of the 
error by backward chaining from the erroneous conclusion: <FILLER> = Cal­
cium Phosphate. One way of preventing the rule Get-Insoluble-Filler from 
firing for Calcium Phosphate is to enable the rule Remove-Excessive-Fillers 
to fire. To do so, it is necessary to enable the condition: MAX-LEVEL has value 
<LEVEL> in <FILLER> which can only be done by adding an entry for max­
level of Calcium Phosphate to the database. Krust has three sources of con­
straints on the value to which MAX-LEVEL should be set:
1.
2.

3.

The current training example.
Other positive examples of the same fault — that is, examples for which 
Tfs-1a wrongly recommends Calcium Phosphate.
Negative examples of the fault — i.e., examples in which Tfs-1a correctly 
recommends Calcium Phosphate.
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constraints on max-level that must be satisfied for Ry to succeed. Here, 
value of MAX-LEVEL is stored in the variable <level>, and there is only 
constraint: <CONC> is grcater-tlian <level>. The value of <CONC> is 
available from the trace oi Rj, as the rule interpreter never reached this

We consider first the way in which the current training example and the 
other positive examples are used. In the following discussion, rule Rf is the rule 
whose failure is being corrected, so here, Rf is Remove-Excessive-Fillers. 
For the positive examples, Krust first checks that rule Rf failed on the same 
condition as for the training example, and thereafter processes the training ex­
ample and the other positive examples identically. Krust must first determine 
the 
the 
one 
not 
condition; however, the rule that set the value of <CONC> will have fired, and 
the value of <CONC>, and hence the constraint imposed on MAX-LEVEL may be 
obtained from its trace. Thus the training example and the other positive exam­
ples provides a set of bounds on MAX-LEVEL. Here, these are all upper bounds, 
which reduce to the single constraint 58% is greater-than MAX-LEVEL.

Negative examples are examples for which the system gives the same con­
clusion as in the training case (here, <FILLER> = Calcium Phosphate) but 
for which the conclusion is accepted by the expert, and for which the rule Rf 
failed. Krust constrains the new fact added to the database so that it will not 
interfere with the proofs of these examples by causing Rf to succeed. It must 
therefore ensure that at least one condition of Rf will continue to fail. Here, the 
relevant condition is <CONC> is greater-than <LEVEL>, so that the values 
of <CONC> arising in the various negative examples provide a lower bound for 
MAX-LEVEL, (here, 11.5%).

These two constraints define an interval delimiting the new value, and can 
be used in one of two ways: they can either be shown to an expert, who can then 
be asked to provide the new fact or else adjudicate on any inconsistencies (e.g., 
caused by noise); or else Krust can choose the value from within the constraints 
whose insertion constitutes the most conservative change. In our example, this 
will be the greatest value for max-level of Calcium Phosphate that lies within 
the bounds induced from the examples; i.e., 57%.

6 Results with TFS-IA and TFS-IB

Since our work is designed to solve problems of knowledge-base refinement rather 
than machine learning [2], the traditional machine learning approach involving 
learning graphs is inappropriate. Krust, like Moral [6], is not well described by 
the paradigm of “learn a concept and then use this concept to classify previously 
unseen examples”. Rather, its purpose is to refine real KBSs, with real faults, 
and to generate real repairs. Tfs-1a was not intended to be faulty (i.e., we did 
not introduce artificial faults for Krust to find), and Tfs-1b contains the actual 
fixes for those bugs. The goal of our experiments was thus to determine whether 
Krust was able to fix these faults in Tfs-1a.

We first generated 208 TFS inputs, evenly distributed over the requirement 
space, and ran Tfs-1a and Tfs-Ib on each of them. Any difference between 
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the outputs of the two system for a given input constituted a fault in Tfs-Ia. 
A hierarchical clustering mechanism grouped these faults into the classes shown 
in figure 7. These in fact correspond to the three differences between Tfs-1a 
and Tfs-1b. We now describe a set of typical runs where we have selected one 
example for each of the faults.

Fault 1: Incorrect filler

Example 5 — (110 mg, DRUG-A, 1 filler)
lA filler: Calcium phosphate 57.3% IB filler: Calcium carbonate 58.5%

Example 33 — (110 mg, DRUG-F, 1 fiUer)
lA filler: Calcium phosphate 55.5% IB filler: Magnesium carbonate 56.6%

Fault 2: Incorrect quantity of binder

Example 1 — (10 mg, DRUG-A, 1 filler)
lA binder: Gelatin 4.1% IB binder: Gelatin 2.1%

Fault 3: Multiple faults in specification produced

Example 183 — (360 mg, DRUG-A, 1 fiUer) 
lA target tablet weight: 400mg 
lA drug concentration: 9/10 
1A filler concentration: 0.0 
... various other discrepancies

IB target tablet weight: 450mg
IB drug concentration: 4/5
IB filler concentration: 0.1

Fig. 7. Contradictory formulations generated by Tfs-1a and Tfs-1B

6.1 Fault 1: Wrong Filler

One of the 61 refinements involved the induction module (§5.1). It returned a 
value of 57%, but this was overridden when the expert provided a value of 30%.

All but one of the refined knowledge bases (KBs) were rejected at the first 
filtering stage because they did not give the correct output for the training 
example. The refined KB recommended by Krust coincided with the “correct” 
Tfs-1b KB, and was the original Tfs-Ia KB, with the addition of the following 
database entry: MAX-LEVEL of Calcium Phosphate is 30%.

6.2 Fault 2: Wrong Binder Level

93 refinements were generated. Again, only one of the refined KBs passed the first 
filtering stage. The KB recommended by Krust coincided with the “correct” 
Tfs-1b KB and was the original KB, except that the conclusion to the rule 
Default-Binder-Level had been changed from Set the value of <BINDER> 
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in the formulation to be 0.04 to Set the value of <BINDER> in the 
FORMULATION to be 0.02. Again, this proved to be the correct fix, the refined 
KB coinciding with the Tfs-1b KB.

The effectiveness of evaluating the refined KBs on the training example for 
faults 1 and 2 at first seems surprising, since for other applications it is common 
for many refined KBs to pass this stage, necessitating further filtering. However, 
Tfs’s output is a complex formulation, so that an incorrect perturbation of Tfs- 
Ia’s kb is far less likely to lead to a correct solution for the original training 
example. This is one benefit of refining a design system, and contrasts with our 
experience with diagnostic systems, where the difficulty is to select appropriate 
test examples with which to filter the many refined KBs that are generated [10].

6.3 Fault 3: Multiple Faults in Specification

Since the system and oracle outputs differed on multiple fields for this fault, 
the technique described in section 4.2 was applied to these fields, and selected 
Target-Tablet-Weight as the independent one. It turned out that all the cases 
of multiple faults in the specification were in fact caused by an error in an 
equation in the rule Ist-Guess-Weight. Krust was unable to fix this error, 
because it currently has no operators for transforming equations.
RULE Ist-Guess-Weight
IF
AND
AND
THEN

Set the value of target-tablet-weight in the specification to be <weight>

DRUG has value <DRUG> in the FORMULATION
<DRUG> has value <DOSE> in the FORMULATION
<WEIGHT> = (ROUND-TO-NEAREST 5 <DOSE> / 0.1 + (0.00221 * <DOSE>))

Krust was nonetheless able to identify the faulty rule, and generate 3 re­
finements to it, specialising each of the 3 conditions. The small number of refine­
ments is explained by the fact that a single rule was responsible for the faulty 
conclusion, and no chaining was involved. Krust also attempted to propagate 
the desired value of <WEIGHT> back through the equation in the third condition 
to give a corresponding value for <DOSE>, but this did not lead to a refinement, 
since the value of <DOSE> may not be altered.

The correct fix may be found in Tfs-1b, where an additional rule uses a cubic 
equation to calculate TARGET-TABLET-WEIGHT for high values of <DOSE>. We 
believe functionally equivalent rules could be learned by an extension of the 
inductive techniques described in §5.1; this is work in progress.

7 Using Traces for Refinement Filtering

We now return to the use of traces to guide Krust’s behaviour, and introduce 
the second technique for the use of traces.

The refinements generated by Krust are derived from the system’s incorrect 
conclusion and its proof, together with the expert’s conclusion. Therefore, if we 
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also consider proofs that are similar to the faulty proof but yet lack the fault, we 
may obtain new information useful to the refinement process. We have used this 
new information to filter out refinements that are unlikely to fix the fault. Our 
trace comparator takes a pair of traces, and compares the firing behaviour for 
each of the rules for which Krust proposes a repair. The procedure for filtering 
is as follows.
1. Let R be the set of rules which Krust is refining.
2. Select sets of examples F and C, where examples F exhibit the fault (that 

exhibited by the current training example) and C do not.
3. Run the comparator for each rule Vk E R and for each pair of examples 

(/,-, Cj) E F X C. We define the comparator function difffr*,,  cj) to be 1 if 
the firing behaviour for rule r*  differs for examples /,■ and Cj, 0 otherwise.

4. Then we say that the behaviour of rule rj, is relevant to the fault iff 3 j such 
that Vz diff(zq., fi, Cj) = 1.
Note that the appearance of a fault in one example and not in another may 

arise in two ways:
- it could be that a certain rule r fires in one case and not in the other, or
- it could be that r’s firing behaviour is the same in both cases, but that this 

behaviour is faulty in the first case but correct in the second case.
The comparator will detect the difference in the first case, but not in the second. 
Hence we cannot choose as a criterion of relevance that the behaviour of r should 
differ for all faulty/non-faulty pairs.

7.1 Results of Refinement Filtering

The trace comparison technique was applied after Krust had already been 
run without it, as described in §6, so that it was already known which of the 
refinements generated was the correct one. The purpose of this experiment was to 
determine whether the technique could be used to remove irrelevant refinements 
at the refinement filtering stage (figure 1), thus avoiding the necessity for Krust 
to write out the refined KBs, load them into Pfes, and test them.

The algorithm was applied to the runs described in §6.1 and §6.2®. The 
second column in tables 1 and 2 indicates which rules were involved in the 
chaining process that lead to the faulty conclusion, and the third column shows 
which rules the trace comparator identified as potentially relevant to the fault. 
The tables show that, for both faults, the technique could be used to filter out 
some refinements that were indeed unrelated to the faulty conclusion, while not 
rejecting any that were relevant. The apparently poor behaviour for fault 1, 
where the technique highlighted only one of a possible three irrelevant rules, 
may be explained as follows. Fault 1 is a rarely-occurring fault, and all the 
® For fault three, Krust generated refinements to a single rule only, so the algorithm 
was not required.
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examples of this fault happen to share certain other attributes: viz., they use no 
surfactant, and the drugs involved are soluble. These attributes are reflected in 
the firing behaviour of the rules related to these attributes (Insoluble-Drug- 
Rule and Initial-Surfactant-Level), so that the comparison algorithm also 
identified these rules as potentially relevant.

Table 1. Trace Comparator applied to Fault 1: Wrong Filler

Rule Involved in 
faulty conclusion

Trace comparator 
indicates relevance

Get-Soluble- F iller
Insoluble-Drug-Rule y
Get-Insoluble-Filler v
Remove- Excess! ve- Fillers y y
Initial-Surfactant-Level y

Table 2. Trace Comparator applied to Fault 2: Wrong binder level

Rule Involved in Trace comparator
faulty conclusion indicates relevance

Default-Binder-Level y/ 7
Update-Formulation
High-Dose-Binder-Level y/
Try-Dose-Again
Find-Stable-Surfactant
Default-Surfactant

7.2 Further Developments

These examples have illustrated how groups of traces from related examples can 
be used to reduce Krust’s search. However, we believe that these techniques 
will acquire even greater importance when we refine Tfs-1b up to Tfs-2, since 
this task will be substantially harder that the refinement of Tfs-1a to Tfs-1b. 
The reason for this is the nature of the “paradigm shift” exemplified by Tfs-2. 
Its principle feature is the introduction of three categories to which all excipients 
are assigned. Formulators now have the further constraint of being required to 
choose excipients from the lowest possible category. Consequently the task of 
refining Tfs-1b so that it behaves like Tfs-2 will include the problem of learning 
rules which implement the new formulation policy. This is harder than any of the 
refinements required by Tfs-1a, and will demand the use of induction. However, 
the extension of Krust to extract as much information as possible from multiple 
related examples is well-suited to this type of problem.
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8 A Comparison with Related Work

The program Clips-R [7] refines forward-chaining production systems written 
in Clips, and so has to deal with some of the problems discussed in this paper. 
Clips-R’s approach to refinement is similar to Krust’s in that it identifies faulty 
rule elements by working backwards from observed faulty behaviour, but it also 
differs from Krust in a number of ways.

1.

2.

3.

It requires traces containing more information than Pfes traces, such as 
the fact-list prior to each rule firing, and information linking facts and their 
sources.
It has been applied to diagnostic but not design systems. It is not clear how 
well Clips-R’s grouping of traces sharing an initial sequence of rule firings 
would apply to production rules functioning in the generate and test mode 
found in design problems.
It can use, though does not require, a variety of user-supplied constraints on 
the correct behaviour of the KBS.
Many theory revision tools such as Either [8] and Forte [II] are restricted 

to Prolog programs, and Seek [5], Teiresias [3] and Odysseus [14] are each 
applicable only to a single shell. Krust on the other hand is currently usable with 
Prolog, Clips, Kappa and Pfes applications. Other tools select refinements 
before implementing them as new KBs, so may not detect unintended side-effects. 
Krust is unusual in that it generates and tests many refined knowledge bases.

Some tools can reason about a shell’s control strategy (for example, Odysseus 
makes use of meta-rules to guide the learning of new object rules) but they are 
often tied to a particular shell. Krust can deal with backward and forward­
chaining rules, can reason about a rule’s priority under conflict resolution, and 
is not tied to one particular shell. This ability is due both to the explicit repre­
sentation of control information, and to the fact that Krust has direct access 
to the shell’s actual problem solving behaviour. This contrasts with Either’s 
approach, which is to treat a PROLOG program as a logical theory, ignoring the 
ordering of rules, and hence also the order in which solutions are generated. This 
approach is less suited than Krust’s to the refinement of real systems, where 
conflict resolution and rule ordering are usually important aspects.

Knowledge refinement tools such as Krust also require fewer examples, al­
though theory revision tools are more adept at adding new knowledge, based 
on many examples. Clips-R shares properties of both types of tool, and our 
current work on Krust is aimed at giving it some of the desirable properties of 
theory revision tools, such as induction, while continuing to develop its ability 
to cope with real-world systems.

9 Conclusions
The experience of applying Krust to a Pfes KBS indicates that its basic refine­
ment techniques are equally applicable to design systems. It also confirms our 
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belief that a relatively small set of basic knowledge components are commonly 
used in KBSs, and also that novel ones may be fairly closely related to existing 
ones; i.e., the roles of knowledge components (not the knowledge itself) are fairly 
limited. This also suggests that our goal of a more general refinement framework 
is feasible. One gain of refining a design system is the relative complexity of 
the conclusion, which proves very helpful in isolating relevant rules and hence 
repairs. We also take advantage of the knowledge contained in Pfes traces. Infor­
mation from multiple traces guides and constrains refinement generation. Traces 
also allow Krust to propose new knowledge, a feature more usually associated 
with theory revision systems. Both these techniques will be increasingly relevant 
when Krust must learn the more complex concepts required in the most recent 
version, Tfs-2.
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Abstract

Knowledge refinement tools have commonly been ap­
plied to diagnostic applications. This paper considers the 
refinement of a design application. It explores the differ­
ences in knowledge content and problem-solving steps for 
design rather than diagnosis systems, and investigates addi­
tional refinement operators. Although the problem-solving 
task itself tends to be more complex, this in fact puts more 
constraints on the results of the problem-solving and so the 
evidence on which the refinement is based can be more rich. 
Results are provided for a real tablet formulation system, 
Tfs, and experience is reported for two types of refinement 
tasks: debugging to correct faulty problem-solving of an 
early version of Tfs; maintenance of Tfs when the formu­
lation task is altered by a change in company policy.

1. Introduction

Knowledge refinement is the process of changing knowl­
edge in a knowledge-based system (KBS) in reaction to ev­
idence that the KBS is not producing correct solutions. The 
KBS is evaluated on tasks provided by an expert. Those 
where the solutions of the KBS and expert are incompati­
ble provide evidence that the KBS is faulty. The “conect” 
task-solution pairs can be regarded as training cases for the 
learning undertaken within the refinement process.

Automated knowledge refinement comprises the follow­
ing steps. Blame Allocation identifies rules or individual 
conditions which are responsible for the wrong solution. 
These may be rules which have fired and so are part of the 
explanation for the solution: error-causing rules have fired 
when they should not have, wrong-fire rules have fired but 
provided the wrong value. However, blame allocation must 
also identify rules that have not fired but, if they were used. 

would produce the desired expert solution (target rules). 
Repair Generation decides which knowledge changes ef­
fect repairs that prevent error-causing rules from firing, al­
low wrong-fire rules to fire correctly or enable target rules 
to fire. Of course there will be many changes that achieve 
similar effects. Refinement Selection chooses which po­
tential repairs are likely to be the most effective overall. 
Selection happens at various stages of the refinement pro­
cess: which rules are most likely to be to blame for the 
faulty training case, which repair is most likely to achieve 
improved problem-solving, which refined knowledge base 
(KB) appears to achieve the best problem-solving? Selec­
tion is therefore based on heuristic knowledge about effec­
tive blame allocation or refinement generation, or empirical 
evidence of the effective problem-solving of refined KBs.

Our application is a rule-based Tablet Formulation Sys­
tem, Tfs, implemented in Logica’s Product Formulation 
Expert System shell PFES [16]. Tfs is in routine use at 
Zeneca Pharmaceuticals, where it forms an important stage 
in the development of tablet formulations for new drugs 
[15]. Tablet formulation is a complex synthesis task and 
Tfs is one of the few knowledge-based formulation sys­
tems in regular commercial use [6]. We are particularly in­
terested in working with Tfs because there is considerably 
less experience both in building and refining such design 
systems than for the more traditional diagnostic systems.

Section 2 introduces Tfs. The Krust refinement tool 
is described in Section 3, with TFS-specific details appear­
ing in Section 4. Our experience applying KRUST to Tfs 
is described in Section 5. Related work is considered in 
Section 6 and Section 7 contains conclusions.

2. The tablet formulation application

The design of a new tablet involves identifying other 
substances that must be included in the tablet’s recipe so 
that the tablet is manufactured in a robust form, and the de­
sired dosage of drug is delivered and absorbed by the pa­
tient. This involves the identification and quantities of in­



ert substances called excipients to balance the properties of 
the drug [15]. Excipients play the role of fillers, binders, 
lubricants and disintegrants in the tablet. The difficulty of 
the formulation task arises from the need to select a set of 
mutually compatible excipients, whilst at the same time sat­
isfying a variety of other constraints.

The input to Tfs is a requirement comprising the drug 
name and desired dose, together with the number of fillers 
to be used. Tfs produces a specification indicating the de­
sired properties of the tablet and the formulation for the 
tablet:

TFS Requirement___________________
Drug: Drug-A Dose: 60 mg 
Number of Fillers: 2
TFS Specification___________________
Full-Stability: Yes
Target-Tablet-Weight: 260mg 
Start-Strategy: Strategy-A 
Filler-Concentration: 66.9% 
Disintegrant-Concentration: 0.05 
Tablet-Diameter: 8.73mm 
... various other properties ...
TFS Formulation___________________
Tablet Weight: 250mg
Fillers: Lactose 66.7%

Calcium Phosphate 2.4%
Binder: Gelatin 4.1%
Lubricant: Stearic acid 1.0% 
Disintegrant: Croscarmelose 2.1%
We have access to several versions of Tfs. TFS-IA is 

an initial version, corresponding to an early stage in devel­
opment. Its KB is buggy and produced faulty tablet formu­
lations for some tablet requirements. TFS-IB is a manually 
debugged version of Tfs-IA. Tfs-1B produced correct for­
mulations during its period of usage. TFS-2 is a manually 
updated version of Tfs-IB that resulted from a paradigm 
shift in the company’s approach to tablet formulation. It 
also contains further bug repairs. Tfs-2 produced correct 
formulations according to the revised formulation practice 
during its period of usage. It should be noted that Tfs-2 
was an update rather than a completely re-engineered sys­
tem. This evolution of Tfs demonstrates the need for de­
bugging and maintenance in the development of a KBS in a 
commercial environment. Therefore knowledge refinement 
has a role to play in both the debugging of faulty knowl­
edge and the updating of knowledge to reflect changes in 
the operational environment.

3. The KRUST tool

Our Krust refinement tool is unusual in generating 
many refined KBs and postponing the final choice of a rec­

ommended refined KB until it undertakes an empirical eval­
uation. Figure 1 shows a typical application of Krust. A 
set of training cases is available each of which consists of a 
task and the expert’s solution. For Tfs, each training case 
consists of a requirement, a specification and a formulation 
as described in Section 2. Individual wrongly solved train­
ing cases are used to trigger the refinement cycle, but the 
set of training cases is used to induce new knowledge, re­
ject unsuitable refined KBs, and evaluate the suitable re­
fined KBs in order to select the preferred one, possibly for 
subsequent refinement with later training cases.

Figure 1. A typical application of KRUST

Krust is particularly applicable to KBSs where infer­
ence provides additional control over the exhaustive deduc­
tion assumed in logical theories. It takes account of a rule’s 
position on the execution agenda as well as considering 
whether the rule’s conditions are satisfied or not. Therefore, 
as well as proposing changes that affect the logical content 
of the rules, it also suggests knowledge changes that affect 
how the rule is handled by the control mechanism.

Krust creates internal models of the KBS’s knowledge 
and its problem-solving (Figure 2). This simulation of the 
KBS is not used as an efficient replacement of the KBS [3]. 
Instead it is an aid to guide the refinement process; the re­
finements are checked using the actual KBS. In this way 
Krust reasons about the refinement process in a common 
knowledge format but does not rely on duplicating all nu­
ances of the KBS.

3.1. Modelling knowledge: the knowledge skeleton

The knowledge skeleton is an internal frame-based rep­
resentation of the KBS’s knowledge. It is a general repre­
sentation of the knowledge, but can be fairly simple since it 
must faithfully represent only those portions of the knowl­
edge that are pertinent to refinement with Krust; a lan­
guage like Ontolingua is unnecessary. KBS validation work
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Figure 2. KRUST and KBS processes

also adopts this view [13]. Knowledge that should not be 
refined (such as procedural code to interact with the user) is 
duplicated but marked as irrelevant for refinement. A gram­
mar for the relevant knowledge types in the shell’s rule for­
mat generates a translator that creates a knowledge skeleton 
for the KB, and reconstructs a refined KB from the original 
KB and changes in the skeleton. Figure 2.

The knowledge skeleton represents rules as combina­
tions of rule elements. It allows navigation between related 
pieces of knowledge (rule chains) and assembles additional 
refinement specific knowledge: which refinement operators 
are applicable, links to repairs for the rule element. We have 
evolved an expandable hierarchy of rule elements where a 
small set of basic rule elements are identified with the var­
ious knowledge formats used in several shells. In practice, 
a rule element conforms to one of a very small set of roles: 
logical n-ary predicate, variable assignment, numerical test, 
arithmetic calculation, procedure call.

3.2. Modelling inference: the problem graph

The problem-solving of a KBS is affected by both the 
knowledge content and the inference engine. Therefore, we 
have always believed that it is important to consider refine­
ments that alter the way the knowledge is handled by the 
inference engine, in addition to the more standard changes 
to the content of the knowledge. Our work with Prolog KBs 
has always assumed that “the conclusion” is the first solu­
tion found and hence has taken account of Prolog’s rule or­
der conflict resolution and depth first search [4]. Therefore 
some refinement operators are concerned with altering the 
position of rules in the KB. We have extended this idea by 
developing refinement operators for several shells; specifi­
cally Clips, Pfes and PowerModel (formerly Kappa).

The problem graph is a graphical representation of the 

problem-solving for a particular training case, that captures 
the content of the deductions and the structure of the rule 
firing agenda. Its nodes contain [rule element, deducibil­
ity] pairs and the links represent problem-solving. Figure 3 
shows the problem graph for the following task-solution 
pair and simple backward chaining rules when high rule pri­
orities win:
Rl:C->-(.8) r2:G —A(.8)
R2:D->-(.7) r3: G A H-> B (.7)
R3: A A B -> -F (.9) r4: H -> C (.8)
R4: D A E -> -F (.6) r5: I —F C (.7)
rl:F^A(.9) r6: J A K-> D (.8)
Task: -iF A G A —iH A I A J A K
Solution: + (the KBS applies R1 and r5 to conclude—.)

Figure 3. Probiem graph for simple ruieset

Each deducible node is shown as a circle and unprovable 
ones are squares. A node’s links are ordered to reflect the 
decreasing order imposed by conflict resolution and so the 
solution graph (bold) is the leftmost subgraph whose nodes 
are deducible. Potential KBS faults are identified in the 
problem graph as incorrect deductions or wrongly config­
ured links. Repairs express changes to the problem graph as 
alterations to the knowledge skeleton. Thus, the knowledge 
skeleton and problem graph indicate the structure and pro­
cessing of the KBS from which refinements are proposed. 
We believe this approach can be extended to more complex 
control mechanisms since Menzies [8] uses a similar abduc- 
tive model for several problem solving methods.

It may appear that we are trying to create a generic simu­
lation for a range of KBSs. This is not the case; the knowl­
edge skeleton and problem graph are simply used to pro­
pose possible refinements. KRUST always generates refine­
ments and empirically filters and evaluates them by commu­
nicating with the actual KBS. Therefore, mismatches be­
tween the actual KBS and the internal models result only in 
proposed refinements that fail and are removed during the 
empirical filtering, or missed refinements where one of the 
many other refinements will be selected instead.

4. Using KRUST with TFS

In this section we indicate the updates to Krust that en­
able it to model, and so refine, PFES KBSs [2], Refinement
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operators are also added to enhance the range of repairs 
Krust undertakes for KBSs in PFES, and other shells.

4.1. Communicating with a PC-based KBS

The problem graph is constructed from the knowledge 
skeleton and answers to queries to the KBS. Originally 
Krust and the KBS ran as one process with commu­
nication between LISP and Prolog being handled by the 
Poplog environment. Clips and PowerModel have APIs 
that allow communication via pipes or RFCs, so Krust 
and the KBS run as separate Unix processes. Figure 2. This 
mechanism was changed to a file-based transfer of mes­
sages between the Unix KRUST process and PFES running 
on a PC. Pfes’s GUI was replaced by functions that com­
municated with the message-passing mechanism.

This simple communication was sufficient because few 
messages were needed since KBS behaviour was extracted 
from Pfes traces. These contain a record of every attempt 
by the rule interpreter to execute a rule element, together 
with the result (success or failure) and the bindings for all 
its variables. The training case trace provides information to 
construct the problem graph, which is then used for blame 
allocation and refinement generation.

4.2. Designs as evidence of faults

Tfs’s formulation task produces a compound answer 
(Section 2), in contrast to the single result typical of diag­
nostic systems. Normally, the outputs from different ver­
sions of Tfs differ at only one or two points, but some 
training cases can have as many as 12 points of difference. 
Combining the repairs to fix many differences will lead to 
a combinatorial explosion. Instead, Krust automatically 
determines a chain of dependencies between faults, and at­
tempts to fix the earliest first. A dependency chain is an 
ordering of the faults from the sequence of rule firings. For 
those few Tfs training cases which exhibit large numbers of 
errors, it was possible to obtain a few values that are prior 
to all the others in terms of dependency, and so Krust fo­
cuses its repairs on them.

4.3. New rule elements

Many of the rule elements in PFES KBSs are immedi­
ately identified with standard rule elements already used in 
Krust’s knowledge skeleton and so are easily expressed 
in the grammar that is used to generate the translators. But 
Pfes rules also apply agendas. These are not standard rule 
execution agendas (e.g. as found in Clips), but are used to 
pass data between rules that generate values and those that 
subsequently test or filter them. This action is common in 
constructive KBSs where partial designs must be extended.

Agendas are untyped lists, where items can be read and 
written to the top or bottom, or directly below another item. 
Examples of the two most common types in Tfs follow.

The Filler-Agenda is a list of excipients; their presence 
on the agenda shows they have passed a stability test:
Snapshot: Cellulose Lactose
Pfes Cone:
add <Filler> to-bottom-of Filler-Agenda
Pfes Cond: <Filler> is-on Filler-Agenda

The Property-Agenda contains a list of pairs compris­
ing an excipient and the value of some mechanical property:
Snapshot: Cellulose 46.2 Lactose 158.8
Pfes Cone:
add <Filler> to-bottom-of Property-Agenda 
add <Stability> to-bottom-of Property-Agenda 
Pfes Conds: <FILLER> is-on PROPERTY-AGENDA

<STABILITY> is-item-after
<Filler> on Property-Agenda

These examples show that Pfes agendas behave like 
attribute-value tuples in working memory and so are similar 
in behaviour to Clips ordered terms. They are translated 
to Krust’s rule element for ordered terms:
Filler:
Property:

on-agenda(filler-agenda, <Filler>) 
on-agenda(property-agenda, <Filler>) 
agenda-anon-attribute(property-agenda, 
<Filler>, <Value>)

Notice that conclusions that add items to agendas have 
different representations in the skeleton, depending on 
whether the item is an attribute or value. The translator 
chooses the construction automatically from the context.
We have identified all Pfes’s rule elements with existing 

rule elements for Krust’s knowledge skeleton. However, 
if a KBS rule element does not correspond to existing rule 
elements, then a new type can be added to Krust’s rule 
element hierarchy, but new refinement operators must also 
be defined, based on its parent in the hierarchy.

4.4. New refinement operators

Earlier versions of Krust concentrated on conservative 
changes to the knowledge, based on the evidence of a single 
training case, rather than creating new knowledge. This de­
cision resulted from our desire to investigate how effective 
knowledge refinement is when few training cases are avail­
able; a common scenario with real applications. Therefore, 
although a refinement operator to create new rules existed, it 
simply built a rule whose conditions were the training case 
facts and whose conclusion was the expert’s solution. Need­
less to say the addition of this (very specific) rule was rarely 
chosen as best in the evaluation of refined KBs!
We have now started to add inductive refinement op­
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erators to learn novel pieces of knowledge from a set of 
training cases. Our experience with Tfs has shown that 
although Krust has always been able to identify these 
faults, induction is necessary to actually suggest repairs to 
the knowledge. Our domain expert was very content with 
Krust identifying the faults and was happy to volunteer 
new knowledge for Krust to incorporate. However we re­
garded Tfs’s need for inductive operators as a timely impe­
tus to enhance Krust’s operators!

4.4.1. Acquiring missing database entries

In addition to IF/THEN rules, Tfs contains a database 
of facts about drugs and their interaction with excipients. 
Krust treats database entries as rules whose antecedent is 
always true and suggests refinements in the same way as for 
rules. New inductive operators are used to add missing facts 
to the database, but could also be used to create additional 
conditions for rules.

As an example, suppose Tfs wrongly suggests Calcium 
Phosphate as a filler and Krust’s problem graph identifies 
the rule chain in Figure 4 as a fault. Get-Insoluble-Filler 
has fired because Calcium Phosphate is (still) on the filler 
agenda, since Remove-Excessive-Fillers has not removed 
it because the Max-Level of Calcium Phosphate is miss­
ing from the Database. One of Krust’s possible repairs is 
to supply the database value.

Get-Insoluble-Filler
IF: Reqd-Filler Solubility has value Insoluble

<Filler> is-on Filler-Agenda
Solubility has value <SOL> in <Filler> 
Slightly-Soluble has value <Slightly-SolUsle> 
<SOL> is less-than (Min-Val <Slightly-SolublX>) 

THEN refine FILLER to be <FILLER>
Reraove-Excessive-Fillers
IF: <FILLER> is-on FILLER-AGENDA

Max-Level has value <Level> in <FUler> 
Filler-Concentration has value <C c> A 
<CONC> is greater-than <Level> 1

THEN remove <FILLER> from Filler-AGEND
Database /

Max-Level of Calcium Phosphate tc;?

Figure 4. Rule chain for database repair

The remainder of Remove-Excessive-Fillers requires 
the Max-Level of Calcium Phosphate to be less than 
the value of Filler-Concentration; the value of 
Filler-Concentration can be determined from the 
trace. Krust now uses an inductive approach to provide a 
best guess” for Max-Level by using further constraints 
from a relevant selection from all the training cases: 
Positive Examples - training cases (including the current 

training case) for which Tfs wrongly recommends 
Calcium Phosphate and fails Remove-Excessive- 
Fillers at the same point

Negative Examples - training cases for which Tfs cor­
rectly recommends Calcium Phosphate and fails 
Remove-Excessive-Fillers at the same point.

The values of Filler-Concentration for the pos­
itive examples provide a set of upper bounds for the 
Max-Level of Calcium Phosphate and Krust selects 
the least upper bound. Conversely, the values of FlLLER- 
CONCENTRATION for the negative examples provide a set 
of lower bounds, and hence a greatest lower bound. The 
greatest lower bound and least upper bound delimit the new 
database fact. In this example the most conservative change 
uses the least upper bound; the most radical change uses the 
greatest lower bound. Alternatively, the expert could select 
a value between these two bounds.

4.4,2. Fixing algebraic formulae

Tfs contains several algebraic formulae. Again, Krust 
has always been able to identify rule elements compris­
ing arithmetic calculations as potential faults but has not 
repaired them. Our experience of these faults in Tfs has 
revealed 2 types. Firstly the conditions under which a for­
mula is applied may be wrong. These faults are repaired 
with standard Krust refinement operators including the 
inductive operator described above (Section 4.4.1.). Sec­
ondly, the algebraic formula itself may be wrong. Krust 
identifies these faults but currently does not discover a new 
formula. The expert may wish to volunteer useful informa­
tion (a new formula or the general format for the formula) 
but we plan to use positive and negative examples as above 
to determine a set of points on the curve and then apply a 
standard curve fitting algorithm.

5. Experience of KRUST with TFS

In this section we describe the faults that have been re­
paired in Tfs. We concentrate on real knowledge engineer­
ing issues - the faults occurred in an early version of a real 
industrial application and the application was modified later 
in reaction to a real change in company policy. We are there­
fore not particularly concerned with providing results of the 
form: if you randomly select T% of the available data as 
training data then on average the improved accuracy of the 
KBS is A% on the (100-T)% remaining data compared to 
P% prior to learning”. We feel that the results here are 
more important for practising knowledge engineers, since 
they demonstrate Krust’s effectiveness in a real situation.

5.1. Debugging results

In this section we describe Krust in its debugging role 
when it attempts to replicate the manual refinement that has 
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taken place historically developing Tfs-IB from Tfs-1A. 
Krust refines an early (buggy) version Tfs-IA and the 
training cases are provided by a later (assumed correct) ver­
sion, Tfs-IB. Thus Tfs-IB, rather than an expert, is play­
ing the part of an oracle. KRUST has access to the knowl­
edge in Tfs-IA, the problem-solving of Tfs-IA (in the 
form of traces), and training cases consisting of specifica­
tions and formulations produced by Tfs-IB. Krust has no 
access to traces or knowledge from Tfs-IB.
We generated 208 requirements spread evenly through 

13 drugs, 10-500mg doses and requiring 1 or 2 fillers. A 
hierarchical clustering algorithm applied to the Tfs-IA 
traces for these inputs identified 3 types of fault.

Drug-A, llOmg, 1 filler
Filler Calcium Phosphate 57.3%
Filler Calcium Carbonate 58.5%

Fault 1: incorrect filler The refinement run produced by 
Case 5 is typical.
Case 5 Input: 
Tfs-1A Output: 
Tfs-IB Output:
The blame assignment and refinement generation stages 

produced 61 potential refinements, one of which identified 
the database value for the Max-Level of Calcium Phos­
phate as missing (Example in 4.4.1.). A set of training cases 
produced the range [12%, 57%] for Max-Level. The con­
servative repair, Max-Level=57% was overridden by the 
expert’s value, 30%. The refined KBs corresponding to each 
of the refinements were tested by running each on the train­
ing case. Case 5. All failed this test except the KB with the 
repaired database. Note that it would have passed even with 
the value 57%.

It is at first surprising that filtering the refined KBs us­
ing the training case is so effective. Our experience with 
other KBSs is that many refined KBs survive this filter and 
require further filtering. The difference here is that the KBS 
output is a complex formulation and so other changes to the 
KBS are likely to affect other parts of the formulation for 
the training case, in addition to the filler. This appears to be 
an advantage of refining a design system and is in contrast 
to experience with diagnostic systems, where one difficulty 
is selecting relevant training cases with which to filter ef­
fectively the many refined KBs generated [12].

Drug-A, lOmg, 1 filler
Binder Gelatin 4.1%
Binder Gelatin 2.1%
Drug-G, 210mg, 2 fillers
Binder Maize-Starch 4.0%
Binder Maize-Starch 2.0%

Fault 2: incorrect quantity of binder Cases 1 and 52 are 
examples.
Case 1 Input:
Tfs-1A Output:
Tfs-IB Output:
Case 52 Input:
Tfs-1A Output:
Tfs-IB Output:

The blame assignment and refinement generation stages 
produced 93 potential refinements for Case 1. One refine­
ment corrects the fault shown in Figure 5 as follows.
Update-Formulation
IF: <BINDER> is-on TaBLET-REPORT-AGENDA

<Adjusted-Conc> is-item-after <Binder> on Tablet-Report-Agenda
THEN set the value of <Binder> in the FORMULATION to be <Adjusted-Conc>

Set-Binder-Cone '

IF: Binder has value <Binder> in Formulation
<B1NDER> has value <CONO in FORMULATION
Tablet-Weight has value <Tablet-Weight> in Fo ulation
Total-Concentration has value <Total-Conc> in SfcciFiCATiON / 

THEN add <Binder> to-bottom-of Tablet-Report-Agenda /
<Adj usted- Cono = <Cono / <Tot al-Cono y
add <Adjusted-Cono to-bottom-of Tablet-Report- Agenda 
<Weight> = <Adjusted-Conc> * <Tablet-Weight> 
add <Weight> to-bottom-of Tablet-Report-Agenda

Default-Binder-Level
IF: Binder has value <Binder> in Formulation
THEN set the value of <Binder> in the Formulation to be 0.04

Figure 5. Rule chain for binder level repair

The binder concentration in the Formulation will 
be correctly set from the Table-Report-Agenda in 
Update-Formulation, if the Adjusted-Conc calculation 
in Set-Binder-Conc is altered. One way of changing this 
calculation is to alter the value of <CONC>, which was 
added to the formulation in the conclusion of Default- 
Binder-Level. The back-propagated repair changes the 
conclusion of Default-Binder-Level from 0.04 to 0.02. 
Again, this repair is the only refined KB to answer the train­
ing case. Case 1, correctly.

Drug-A, 360mg, 1 filler 
Tfs-IA
400m g
9/10
0.0

Tfs-IB
450mg 
4/5
0.1

Fault 3: multiple specification faults Case 183 is typi­
cal.
Case 183 Input:
Output:
Target Tablet Weight
Drug Concentration 
Filler Concentration
... various other discrepancies
The fault dependency mechanism selected Target Tablet 

Weight as the independent fault. Moreover, there is only one 
rule that determines TARGET-Tablet-Weight (in fact, it 
is responsible for all multiple faults):

Ist-Guess-Weight
IF:
AND
AND
THEN

Drug has value <D> in FORMULATION 
<D> has value <DOSE> in FORMULATION
< Weight> = round5 f---<Dos^ )Vo.1-1-0.00221<DOSE> J 
set value of Target-Tablet-Weight in 
Specification to be <Weight>

a wrong-fire rule whose action must be cor-This is
reeled. Refinements are generated that make this rule fire 
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correctly; i.e. by setting the correct value for Target- 
Tablet-Weight. The value in <Weight> can be 
changed by altering the formula, or finding a different value 
for <DOSE>, or retrieving a different <D> and hence 
<Dose>. However, the drug and dose in the formulation 
are fixed by the input to Tfs so cannot be altered. There­
fore the only refinement generated is the instruction to re­
pair the algebraic formula. The source of the error has been 
identified and the proposed curve fitting mechanism (Sec­
tion 4.4.2.) will implement a repair.

5.1.1. Reaction of the “experts”

Our domain expert has been surprised and encouraged by 
the success of these refinements. He believes that identi­
fying the missing database entry in Fault 1 and the faulty 
formula for Fault 3 is very helpful for an expert or knowl­
edge engineer and would be very willing to supply the ac­
tual database value or propose a suitable formula for these 
potential faults.

Another “expert” is Tfs-IB; in these experiments its 
knowledge and formulations take the place of the expert. 
We have access to the Tfs-IB KB and can compare our re­
fined KBs with it. For the Wrong Filler and Wrong Binder 
Level faults, the repairs that KRUST suggested coincide 
with the manual updates. For the training case with mul­
tiple faults, Tfs-IB reveals an additional Ist-Guess-Weight 
rule for high values of dose; curve fitting would approxi­
mate the divergent (cubic) part of the formula.
An inspection of the differences between Tfs-IA and 

Tfs-IB revealed that clustering the 208 examples had high­
lighted all the Tfs-IA faults. Therefore the runs above find 
all the errors. Although it may appear that the repairs are 
based on single training cases, this is not true; inductive op­
erators require a set of positive and negative training cases.

5.2. Maintenance experience

Our more recent, and incomplete, work investigates the 
role of refinement for the more difficult maintenance task 
caused by the change of formulation policy. Now, Tfs-IB 
is the KBS to be refined and Tfs-2 is the oracle. We have 
data from Tfs-2 for the original 208 training cases, and we 
use Tfs-IB knowledge and its traces for these cases.

Clustering the Tfs-IB cases has identified a class that 
reveals further debugging changes to the calculation of 
Target-Tablet-Weight. The conditions under which 
the two Tfs-IB formulae apply have changed again. The 
inductive method in Section 4.4.2. successfully moves the 
boundary separating the two rules.

Some of the remaining faults found in training cases are 
due to the paradigm shift. We have been given additional 
knowledge that supports the changes: excipients have been 

grouped into 3 classes and excipients in one class are pre­
ferred to those in subsequent classes. This is precisely the 
type of knowledge that Krust can use with inductive oper­
ators to create versions of rules with new conditions relating 
to the excipient classes.

6. Related work

Many refinement tools are restricted to single shells or 
languages. Each has concentrated on a particular part of the 
debugging process. They often select refinements before 
implementing them as new KBs, so may not detect unin­
tended side-effects. Krust is unusual in that it generates 
many refined knowledge bases and tests them empirically.

Teiresias [5] refines Mycin and other Em YCIN KBSs 
by assisting the user to browse the potentially faulty knowl­
edge. This approach appears in blame allocation for many 
more recent, more automated, refinement tools. Either 
[11], Forte [14], and many other theory revision tools 
coming from the Machine Learning community, revise Pro­
log theories. They rely on induction from many examples 
to replace knowledge that has been removed by their only 
other refinement operators, rule and rule element deletion. 
Mobal [9] acquires and refines knowledge for its own de­
velopment tool. It contains many knowledge acquisition 
tools with access to a wide range of knowledge sources. 
Seek [7] refines Expert KBSs, exploiting the fundamen­
tally numeric format of the rules and conflict resolution 
strategy, to apply an incremental scoring for potential faults 
and suitable repairs.

Clips-R [10] refines the forward-chaining rules of 
Clips KBSs. Like Krust it identifies faulty rule elements 
by working backwards from observed faulty behaviour. But 
it differs from KRUST in a number of ways. It requires 
traces containing more information than PFES traces and 
uses a variety of user-supplied constraints on the correct be­
haviour of the KBS. It has been applied only to diagnos­
tic systems and it might have difficulty with the generate- 
and-test mode of design KBSs; e.g. it groups traces sharing 
an initial sequence of rule firings but these might be over­
whelming for a design system.

Odysseus [17] refines Minerva KBSs. A distinctive 
feature of ODYSSEUS is that the control is explicitly rep­
resented as knowledge, and meta-rules allow it to reason 
about the control strategy and guide the learning of new do­
main rules. Wilkins’ concentration on control supports our 
belief that inference is an important consideration for refine­
ment, despite it being largely ignored by many refinement 
tools. Wilkins has also found that specifying meta-level re­
pairs for a small set of meta-rule faults is sufficient to solve 
many refinement problems.
We are lucky to have access to a real KBS application on 

which to evaluate our refinement tool, especially one con-
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taining an archive of versions covering both debugging and 
maintenance. Many refinement tools rely on corrupted ver­
sions of toy applications or simple systems induced from 
standard machine learning datasets. In particular, it is com­
mon for these to have an ample supply of test cases. But in 
practice, test cases are often scarce and so the field of KBS 
validation has seen various tools capable of generating test 
cases with a higher chance of finding faults; e.g. SYCOJET 
[1]. We believe that refinement tools must make the best 
use of existing test cases as training data, but if necessary 
suggest new, complementary test cases [12].

7. Conclusions

We have found that our refinement techniques are 
equally applicable to design and diagnostic KBSs, since 
there is nothing fundamentally different about the knowl­
edge content and problem-solving, and so our knowledge 
skeleton and problem graph models apply. The exploratory 
nature of design KBSs demands inductive operators, so 
these are being added to Krust whilst we continue to de­
velop its ability to cope with real-world systems.

Krust’s speculative approach of generating many po­
tential refinements necessitates effective mechanisms to re­
ject unsuitable repairs. This problem is reduced for design 
KBSs where the solutions are more complex objects than 
the single conclusion normally associated with diagnostic 
applications. Design solutions therefore provide many more 
constraints on which to evaluate repairs. On the other hand, 
the complexity of a design demands an understanding of de­
pendencies so that the refinement process can concentrate 
on underlying faults first.

Access to a real application has provided useful insights 
into real knowledge engineering issues. Tfs is one of the 
few successful tablet formulation systems because knowl­
edge acquisition is difficult for this complex task. Never­
theless, Krust found it relatively easy to focus on the var­
ious faults. It duplicated the manual refinement from Tfs- 
IA to Tfs-IB, and is making progress on the refinement to 
achieve Tfs-2. It is unfortunate that the examples of faulty 
behaviour that inspired the manual refinement are no longer 
available, but we use only a few of the abundant test cases 
generated by our oracles, the various Tfs versions.
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