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complex dependencies among different sequence variables of
time series data.

Significant breakthroughs have been witnessed in the time
series community in recent years, shifting from traditional
statistical time series models to more sophisticated deep
learning techniques. Several prominent statistical time series
models such as Auto Regressive Integrated Moving Aver-
age (ARIMA) [2], Exponential Smoothing (ETS) [3], and
Seasonal-Trend Decomposition (STD) [3] offer as forecaster’s
toolboxes, which are useful for many forecasting situations.
These methods rely on statistics and mathematical equations
to uncover characteristics of time series patterns, including
trends, seasonality, and cycles, or find relationships between
past observations and predictions for the future. However,
statistical methods are bound by assumptions such as sta-
tionery and linearity, which limit the potential of this approach
in practice. Deep Learning approaches have emerged as a
powerful solution to address the limitations and achieve out-
standing performance in the field of time series data analysis.
Various deep learning architectures originating from the NLP
and CV communities [1], [4] have been proposed and adapted
to fit time series data. These approaches have demonstrated
the ability to capture long-term dependencies and intricate
non-linear relationships in real-world applications, yielding
promising results. Some notable works include TimesNet [6],
FEDformer [7], Autoformer [5], Crossformer [8], and In-
former [9].

In this paper, we aim to integrate the strengths of CNN-
based methods and self-attention mechanisms to model better
the inherent characteristics of time series sequences, such
as local temporal features and global correlations. The local
temporal features refer to the properties of a temporal sequence
across a small period τ , and global correlations represent the
complex interactions and associations among many periods
{τ1, τ2, . . . , τn}. For instance, energy consumption is not only
affected by daily usage habits but may also be correlated with
larger trends over time, such as monthly patterns or changing
seasons. By exploring the underlying characteristics of a given
time period and the relationships among previous periods,
we can identify a more accurate estimation of the value at
a specific time point. Therefore, a robust forecasting model
should exhibit two essential properties: (1) the ability to extract
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I. INTRODUCTION

Time series data refers to a sequence of observations
ordered by discrete time, which is captured from various
sensors in practice with multiple variables. The time series
data plays a crucial role in real-world applications, such as
weather forecasting, intelligent transportation systems, and
energy consumption. With the increasing development of ad-
vanced technologies such as the Internet of Things (IoT), smart
devices, and edge computing, massive amounts of time series
data are generated in real-time across various domains. This
poses many challenges for the time-series analysis community.
Compared with computer vision (CV) [1] and natural language
processing (NLP) [4], which are relatively intuitive patterns,
it is required to discover intricate temporal patterns and the



local features that effectively capture short-term variations
and (2) the ability to model global correlations that illustrate
long-term relationships. While models like Conformer [12],
and MICN [16] have been proposed to combine local and
global modeling for greater efficiency, they were manually
designed through a trial-and-error process, making them time-
consuming.

To address the above problems, we proposed an Evolution-
ary Neural Architecture Search for Time Series Forecasting
(ENAS-TSF). We defined a search space on multiple branches
in which for each branch, we quipped a local module with
different convolutions to model its local context, modeling
information of the sequence separately. Moreover, we modeled
the global correlations using global modules to capture global
correlations. Then, we proposed an Evolutionary Neural Archi-
tecture Search (ENAS) approach, which aims to automatically
search for optimal local and global modules for striking
the balancing of local/ global context modeling. Finally, the
merge module is utilized to integrate information from various
patterns across multiple branches. Our main contributions are
summarized as follows:

• To the best of our knowledge, we are the first to apply
NAS to search the DL architectures for the long-term
sequence forecasting task. Here, our proposed ENAS-
TSF method aims to identify the optimal modules and
the ideal balancing of the local/ global context model-
ing. The proposed method explores optimal architecture
solutions for different time series datasets and achieves
strong prediction performance for the long-term sequence
forecasting task.

• In the proposed ENAS-TSF, we designed a novel search
space for multi-branch DL architectures and proposed an
effective ENAS to explore the search space. The search
space encoding includes the local module to extract the
better local temporal feature and the global model to
capture global correlations. Our proposed ENAS-TSF
method employs an early-generation stopping strategy to
accelerate training networks and convergence.

• We conducted extensive experiments on benchmark real-
world time series datasets to verify the proposed ENAS-
TSF approach. The experimental results demonstrate that
the architectures found by our ENAS-TSF method show
promising performance compared to state-of-the-art TSF
baselines.

II. RELATED WORK

As discussed above, ENAS aims to search optimal archi-
tectures of DNNs for time series forecasting tasks. In this
section, we will mention the time series forecasting models
in Section II-A and a brief review of the evolutionary neural
architecture search in Section II-B.

A. Time Series Forecasting Models

Time series forecasting approaches have evolved signifi-
cantly, transitioning from traditional statistical models to com-
plicated DL models. Many statistical models remain widely

used and are adopted as foundational design principles incor-
porating advanced DL architectures. In the early stage, promi-
nent statistical approaches such as ARIMA [2], ETS [3], auto-
regressive model (VAR) [3], etc. can be mentioned. Besides,
recent years have witnessed the development of advanced
DL methods, and these methods have been proposed for
time series forecasting. These methods can be classified into
five categories based on backbone architectures: RNN-based,
CNN-based, MLP-based, GNN-based, and Transformer-based
approaches [13]. The RNN-based time series models [14], [15]
utilize the recurrent structure to capture temporal dependencies
by hidden state transformation among time steps and modeling
the mutual correlation among multivariate variables. CNN-
based models [16], [17] become competitive time series back-
bones with capturing better local features and pattern recog-
nition. MLP-based models [11] inspired by auto-regressive
models become a popular approach for modeling temporal
data. The GNN-based architectures [18], aiming to capture
underlying topological relations in multivariate time series
data, serve as a spatio-temporal graph. Finally, Transformer-
based models nowadays have emerged as a powerful solution
for analyzing time series data based on advantages from
attention mechanisms. The Transformer-based models [5], [19]
can capture long-term temporal dependencies and multivariate
correlations.

B. Evolutionary Neural Architecture Search

The ENAS algorithms address the NAS problem based on
using evolutionary computation (EC) techniques. EC refers
to a group of population-based computational approaches
that mimic the process of natural evolution or population
behaviors in nature to tackle complex optimization problems.
Specifically, genetic algorithms (GAs), genetic programming
(GP), and particle swarm optimization (PSO) are commonly
utilized EC techniques. The first work of ENAS, namely the
LargeEvo algorithm [20], was proposed by the Google Brain
team. The proposed method used a GA algorithm to search
for the best CNN architectures on CIFAR-10 and CIFAR-100
datasets. Xie and Yuille [21] introduced the Genetic CNN,
where the authors encoded the network structure using fixed-
length binary strings. Then, different genetic operations such
as selection, mutation, and crossover are applied to find high-
quality candidate solutions. However, a fixed-length binary
string encoding can limit the length of deep structures. Sun
et al. [22] proposed a variable-length gene encoding strategy,
allowing the generation of deeper architecture configurations.
However, this flexible approach can lead to excessively long
architectures, resulting in excessive model size and slow
training speed.

Although many works utilize NAS approaches to optimize
domains such as NLP and CV, these design search spaces for
different domains cannot be directly applied to time series
forecasting and the problem of balancing local context and
global context in this paper. To the best of our knowledge, we
are the first to apply the ENAS to search DL architectures for
the long-term time series forecasting task. It is noted that our
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Fig. 1: The overall ENAS-TSF architecture. Fig. 1(a) presents the main architecture of ENAS-TSF. Fig. 1(b) provides the
detailed structure and search space of the local/ global modeling module. Fig. 1(c) shows an illustrative example of the utilized
encoding strategy.

work is different from the work of Liang et al. [23], who
proposed an evolutionary neural architecture search frame-
work, entitled EMTSF, for the automated design of spatial-
temporal graph neural networks (STGNNs). Their proposed
method aims to optimize the GNN architectures for temporal
and spatial time series datasets, which is distinct from long-
term time series forecasting.

III. METHODOLOGY

We propose an Evolutionary Neural Architecture Search
for Time Series Forecasting, called ENAS-TSF, to automate
the design of deep architectures for handling the balancing
local/ global modeling patterns. The objective of long-term
time series prediction is to predict a future sequence of length
O using a historical sequence of length I . The relationship
can be described as input I - output O, where the output O
is much substantially greater than the input I . In this section,
we will present the detailed workflow of the entire framework
and explain how we use an evolutionary algorithm to search
for optimal deep architectures.

A. The proposed ENAS-TSF

The main architecture of the proposed framework can be
referred to in Fig. 1(a). The original input data is initially
projected into an embedding input. Then, the positional in-
formation, including temporal encoding (TE) and positional
encoding (PE), is injected into the embedding input to help
the model utilize the order of the time series sequence effec-
tively. To overcome the non-stationary of data, which is the

inherent property in real-world time series, we adopt the series
stationarization, including the Normalization module and De-
normalization module from Non-stationary Transformers [24].
The Normalization module serves as a pre-processing step to
deal with non-stationary series caused by varied mean and
standard deviation. The De-normalization module works as a
post-processing at the end to transform the model outputs back
with original statistics. Inspired by decomposition techniques
in time series analysis [5], we adopt a decomposition block to
separate complex pattern time series data into season patterns
and trend-cyclical. The season part modeling is the input of the
backbone of the proposed architecture, which includes local
cell modules and global cell modules from different branches.
This design aims to automatically designed to capture more
accurate local features and global correlations. Additionally,
the skip connections are incorporated with the local/ global
modeling module to mitigate the vanishing/exploding gradient
problem, as shown in Fig. 1(b). The trend-cyclical series
input Xt is fed into a linear regression modeling to make a
prediction about the trend-cyclical Yt, which gives the model
a holistic view of the trend direction and achieves effective
performance in time series forecasting [16]. Finally, the trend-
cyclical Yt and season parts Ys are combined and go through
the de-normalization block to obtain a final output prediction.
In the subsequent subsections, we will briefly describe the
search space for the local modeling module and the global
modeling module. Furthermore, we will introduce the evolu-
tionary search algorithm employed in ENAS-TSF to explore



the designed search space and explore promising architectures
for the time series forecasting task.

B. The Local/ Global Modelling Module

Since original time series points cannot be directly captured
well by the single self-attention mechanisms, we aim to
incorporate the self-attention mechanism with the local context
modeling. As shown in Fig. 1(b), the input Xs is passed
through a local cell operation (LO) that focuses on capturing
local feature context within data. Two global cell operations
(GO) are designed to capture global correlations within data,
which are inspired by the self-attention mechanism and feed-
forward networks from Transformer architecture [4]. Among
these cells, we applied layer normalization (LN) to ensure the
data’s stability before moving to the next stage [26]. Moreover,
the residual path is utilized to avoid vanishing/exploding gra-
dient among these stages. The local/global modeling module
can be formalized as follows:

lp = LN(Xs + LO(Xs))

gp1 = LN(lp+GO1(lp))

gp2 = LN(gp1 +GO2(gp1))

(1)

where lp is the latent representation obtained by the local
path, gp1, gp2 are the latent representation obtained by the
global paths, LO(·), GO1(·), GO2(·) denote a local operation,
and global operations used for the local and global path,
respectively.

The LO(·) offers six candidate operations, containing five
one-dimensional convolution operations with different kernel
sizes of {3, 5, 7, 9, 11} and a zero operation that outputs a zero
tensor. The zero operation is proposed to simplify the overall
architecture. As demonstrated in Sandwich Transformer [25],
reordering the multi-head self-attention (MHSA) and feed-
forward network (FFN) can lead to better performance. This
is the reason we use global cell operations GO to replace the
order of the MHSA module and FFN module, which includes
the MHSA operation, FFN operation, and a zero operation.

In this paper, the outputs from different branches in the
local/global modeling module are merged using Conv2D with
different weights instead of traditional Concat operation. These
alternates yield a better performance in time series forecasting
task [16].

C. Evolutionary Search Algorithm

1) Encoding strategy: We propose an encoding strategy in
which each candidate architecture A is encoded into vector-
based encoding:

A =
[
(l1, g11, g12), (l2, g21, g22), . . . , (lN , gN1, gN2)

]
(2)

in which A includes N blocks (ln, gn1, gn2) encoding for N
layers, ln denotes the local operators, ln ∈ LO = {0, · · · , 5}
including 6 predefined convolutions with different kernel sizes
mentioned above, and (gn1, gn2) denote the global operators,
gn1, gn2 ∈ GO = {0, 1, 2} including 3 predefined Zero
operation, MHSA operation, and FFN operation for n =

Algorithm 1 Framework of the ENAS-TSF with Generation
Convergence Early Stopping

Input: D: Training set, V: Validation set, Gen: Maximum
number of generations, Pop: Population size, avg: the
average fitness of population, patience: the maximum
number of generations without improvement;

Output: Pb : The best individual;
1: P ← Randomly initialize Pop individuals;
2: Train each individual in P on D and evaluate its fitness

on V;
3: best fitness = Best fitness value from P;
4: no improvement = 0
5: for t = 0 to Gen do
6: Qt = ∅;
7: while |Qt| < Pop do
8: Randomly select parents G1, G2 from P;
9: Generate offsprings P1, P2 from G1, G2 using Al-

gorithm 2 and 3;
10: Evaluate fitness of P1, P2 on V;
11: Qt = Qt ∪ {P1, P2}
12: end while
13: P = Select Pop best individuals from P ∪Qt;
14: current best = Best fitness value from P;
15: if current best < best fitness then
16: best fitness = current best;
17: no improvement = 0;
18: else
19: no improvement = no improvement+ 1;
20: end if
21: if no improvement = patience then
22: break;
23: end if
24: end for
25: Select the best individual Pb from P;
26: return: Pb;

{1, . . . , N}. By proposing the encoding in Equation 2, the
search space size will be: (|LO| ∗ |GO| ∗ |GO|)N , | · | is the
cardinality of a set.

For a better understanding of the encoding strategy, Fig. 1(c)
describes an illustrative example, where N layers are set to
4. The given architecture is encoded as follows: the first
layer is represented by [1, 1, 2], the second, third, and fourth
layers are encoded as [0, 1, 1], [4, 0, 2], and [0, 1, 0], respec-
tively. As the result, the overall architecture’s encoding A is
[(1, 1, 2), (0, 1, 1), (4, 0, 2), (0, 1, 0)]. The architecture consists
of four layers. Layer 1 is encoded as [1, 1, 2], where 1
represents a convolution layer with a kernel size of 3, 1
indicates the MHSA cell, and 2 indicates the FFN. Based on
the encoding of layer 2, we can see that only two MHSA cells
are used. Layer 3 encoding, i.e. [4, 0, 2] shows that this layer
includes a convolution with a kernel size of 9, followed by a
zero operation, and the FFN. Finally, Layer 4 is encoded as
[0, 1, 0], indicating that it includes only one MHSA cell.



Next, we search for the optimal DL architecture by solving
the following optimization problem:

min
A
F(A) = fval MSE(A,V) (3)

where fval MSE(A,V) represents the Mean Square Error (MSE)
fitness value of A on the validation set V.

In this study, we use Evolutionary neural architecture search
techniques to address the complex task of automating the de-
sign of neural architecture by leveraging evolutionary compu-
tation (EC) methods. These EC methods, rooted-in population-
based approaches, draw inspiration from natural processes
such as species evolution or population dynamic. In ENAS-
TSF, we propose to use Genetic Algorithm, an evolutionary
search algorithm to solve the optimization problem in (3).

2) Algorithm description: Algorithm 1 describes the pro-
posed evolutionary search algorithm. Concretely, we start by
initializing the population P , and each individual is randomly
generated with the proposed gene encoding strategy. Then, we
train each individual on the training set D and then evaluate it
on the validation set V to obtain its fitness value. Subsequently,
an evolutionary process is carried out for a maximum number
of generations Gen or until the stopping criterion is met.
In each generation, pairs of parent candidates G1, G2 are
selected randomly from P , and offsprings P1, P2 are produced
through the genetic operations such as crossover and mutation.
These generated offsprings are then evaluated on the validation
set V, and the parent and offspring population undergo an
environment selection process to determine the Pop best
individuals for the next generation. To avoid unnecessary
computations, we proposed a generation-convergence early
stopping mechanism. The best fitness candidate in P is tracked
across generations. If the best fitness value does not yield an
improvement over a predefined patience threshold, the search
process terminates early, preventing redundant generations and
reducing computational costs.

Algorithm 2 Single-Point Crossover

Input: G1 and G2: Two parents, pc: Crossover probability, n:
Length of parents;

Output: P1 and P2: Two offsprings;
1: rc = Generate a random number between 0 and 1;
2: if rc < pc then
3: rpos = Select a random position in the range [1, n−1];
4: Offspring P1 = G1[0 : rpos] +G2[rpos : n]
5: Offspring P2 = G2[0 : rpos] +G1[rpos : n]
6: end if
7: Carry out the mutation operation on P1, P2 in Algorithm

3.
8: return: P1 and P2;

3) Genetic operations: In our paper, we use two genetic op-
erators namely crossover and mutation operations to generate
new offspring from the parent individuals. The main process of
a single-point crossover algorithm is described in Algorithm 2.
First, two-parent individuals G1 and G2 are randomly selected

Algorithm 3 Mutation

Input: P : Individual, pm: Mutation probability, LOset: Local
Operators, GOset: Global Operators;

Output: P : Mutated individual;
1: rm = Generate a random number between 0 and 1;
2: if rm < pm then
3: num pos = Randomly choose from {1, 2, 3}
4: positions = Randomly pick num pos positions from

P ;
5: for each position i in positions do
6: if P [i] is a LO operator then
7: P [i] = Randomly select from LOset

8: else
9: P [i] = Randomly select from GOset

10: end if
11: end for
12: else
13: Keep the original individual P ;
14: end if
15: return: P ;

from the population of the t-generation. This algorithm begins
by generating a random value rc ∈ [0, 1]. If the rc is smaller
than the predefined crossover probability pc, the algorithm
proceeds with the crossover. Specifically, a random crossover
position rpos is selected. Then, the offspring P1 and P2, are
obtained by swapping the segments between the parents G1

and G2 at the rpos single point.
Following the crossover, the mutation operation (as de-

scribed in Algorithm 3) is applied to the offspring P , which
aims to maintain genetic diversity and prevent getting stuck
in sub-optimal regions of the solution landscape. The process
involves altering one or more genes of a selected individual
to explore new regions of the solution space. Concretely, we
randomly select 1, 2, or 3 positions within the network con-
figuration. Based on the selected positions, we apply different
operators depending on whether the position belongs to the
local operator (LO) or the global operator (GO).

IV. EXPERIMENTS

A. Experimental Settings

1) Datasets: To evaluate the proposed ENAS-TSF, we
conducted experiments on three well-established benchmarks:
Electricity, Exchange-rate, and ETTh2 following [5], [8], [9].
The detail of experiment datasets are described as follows:
1) Elecitricy dataset inlcudes the electricity consumption of
321 clients with each column corresponding to one client. 2)
Exchange-rate shows the current exchange of 8 countries. 3)
ETTh2 dataset records hourly from two electricity transform-
ers at two stations.

2) Implementation details: Our method was trained using
the L2 loss and optimized with the ADAM optimizer, ini-
tialized with a learning rate of 10−3. The batch size was
set to 32. The parameters for the Genetic Algorithm were
configured as follows: the number of generations is set to



TABLE I: Multivariate forecasting results with different prediction lengths H ∈ {96, 192, 336, 720} and fixed lookback window
length L = 96. Red values indicate the best results, while underlined values indicate the second-best results. Rank 1st refers
to the number of times the method performed best.

Model → ENAS-TSF (ours) TimesNet [6] FEDformer [7] Crossformer [8] Autoformer [5] Informer [9]

Dataset ↓ MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.144 0.242 0.169 0.273 0.195 0.309 0.754 0.717 0.204 0.318 0.747 0.652
192 0.168 0.268 0.186 0.288 0.202 0.315 0.764 0.721 0.225 0.333 0.877 0.730
336 0.186 0.286 0.202 0.302 0.230 0.343 0.777 0.726 0.245 0.349 0.906 0.759
720 0.209 0.306 0.232 0.325 0.264 0.367 0.804 0.737 0.298 0.385 0.944 0.793

E
le

ct
ri

ci
ty

Avg 0.177 0.276 0.197 0.297 0.223 0.334 0.775 0.725 0.243 0.346 0.868 0.733

96 0.088 0.207 0.112 0.240 0.159 0.288 0.274 0.380 0.162 0.292 0.959 0.792
192 0.192 0.313 0.218 0.336 0.282 0.386 0.512 0.535 0.336 0.418 1.066 0.835
336 0.348 0.427 0.380 0.451 0.435 0.483 0.987 0.769 0.520 0.533 1.613 1.012
720 0.913 0.720 0.949 0.741 1.176 0.834 1.534 1.001 1.202 0.849 2.639 1.334

E
xc

ha
ng

e-
ra

te

Avg 0.385 0.417 0.414 0.442 0.513 0.498 0.827 0.672 0.555 0.523 1.569 0.993

96 0.304 0.350 0.325 0.368 0.356 0.398 0.859 0.672 0.378 0.412 3.340 1.464
192 0.432 0.428 0.418 0.421 0.438 0.444 1.450 0.899 0.460 0.459 5.481 1.959
336 0.448 0.453 0.455 0.451 0.466 0.474 2.417 1.282 0.476 0.483 5.162 1.939
720 0.474 0.465 0.465 0.470 0.457 0.483 3.276 1.525 0.503 0.504 4.041 1.703E

T
T

h2

Avg 0.414 0.424 0.416 0.428 0.429 0.450 2.000 1.095 0.454 0.464 4.506 1.766

Rank 1st 13 13 1 2 1 0 0 0 0 0 0 0
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Fig. 2: Influence of prediction length H ∈ {96, 192, 336, 720}. ENAS-TSF performs generally better than other models under
different prediction lengths.

200, the population size is set to 50, and the probabilities
of crossover and mutation are 0.9 and 0.2, respectively. The
Genetic Algorithm was early stopped if no improvement in
fitness performance was observed within 5 generations.

3) Baseline algorithms: We compared ENAS-TSF with five
state-of-the-art multivariate long-term forecasting approaches:
Informer [9], Autoformer [5], Crossformer [8], FEDformer [7],
and TimesNet [6]. In our experiments, we reproduced the
results of these baseline models by replicating the conditions
described in their original papers. This involved using the
original hyperparameters, runtime environments, and official
implementations, including model architectures and code.

B. Results and Discussions

1) Main results: We evaluated the proposed ENAS-TSF
framework against state-of-the-art time series forecasting mod-

els across three datasets, with prediction horizons H ∈
{96, 192, 336, 720}. Comprehensive forecasting results are
listed in Table I with the best in red and the second-best
results marked in underlined. The lower MSE/MAE values
indicate more accurate predictions. On the Electricity dataset,
ENAS-TSF consistently achieves the lowest MSE and MAE
values across all prediction lengths. At H = 96, ENAS-TSF
obtains an MSE of 0.144 and MAE of 0.242, outperforming
TimesNet (MSE: 0.169 and MAE: 0.273) by 14.8% and
11.4%, respectively. Even at the longest horizon (H = 720),
ENAS-TSF maintains the first rank, with MSE: 0.209 and
MAE: 0.306, that is 9.9% (MSE) and 5.8 % (MAE) better than
TimesNet. On average, ENAS-TSF is better than the second-
best method (TimesNet) by 10.2% for MSE (0.177 and 0.197)
and 7.1% for MAE (0.276 and 0.297). These results suggest
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Fig. 3: The best forecasting architectures found on Electricity, Exchange-rate, and ETTh2 with horizontal forecasting 96. We
simplify the connections and different input/output blocks for better observation.

that ENAS-TSF is particularly well-suited to the electricity
consumption dataset.

The Exchange-rate dataset exhibits similar trends in which
ENAS-TSF outperforms the benchmark algorithms on all
forecasting horizons. At H = 96, ENAS-TSF dramatically
outperforms the second-best method (TimesNet) MSE by
21.4% (0.088 vs. 0.112) and MAE by 13.8% (0.207 and
0.240). At H = 720, ENAS-TSF is better than TimesNet
by 3.8% for MSE (0.913 vs. 0.949) and by 2.8% for MAE
(0.720 vs. 0.741). With the longest horizon H = 720, Informer
exhibits the poorest performance, with an MSE of 2.639,
highlighting its limitations in handling long-horizon forecast-
ing tasks compared to ENAS-TSF. The average MSE (0.385)
and MAE (0.417) of ENAS-TSF are 7.0% and 5.7% lower
than TimesNet’s averages (0.414 and 0.442). While ENAS-
TSF secures the best average performance (MSE: 0.414 and
MAE: 0.424) on the ETTh2 dataset, minor trade-offs happen at
specific horizons. At H = 192, TimesNet slightly outperforms
our proposed method by 3.2% in MSE (0.418 vs. 0.432) and
1.6% (0.428 vs. 0.421). Meanwhile, at the longest horizon,
ENAS-TSF achieves the lowest MAE (0.465 vs. TimesNet’s
0.470) despite a slight MSE trade-off (0.474 vs. 0.465).

As demonstrated in Table I, ENAS-TSF yields superior
performance compared to various state-of-the-art forecasting
methods, securing 13 first-place rankings in both MSE and
MAE across all datasets. In contrast, TimesNet ranks first
on 1 case for MSE and 2 cases for MAE, while FEDformer
obtains 1 first-place result in MSE and none in MAE. The
results reveal that Crossformer, Autoformer, and Informer fail
to achieve any top-ranked outcomes. As a result, it is con-
cluded that ENAS-TSF model possesses robust performance
and broad applicability in multivariate time series forecasting
tasks.

2) Effects of different prediction lengths: Fig. 2 illustrates
the performance of ENAS-TSF compared to baseline models
(Informer, Crossformer, Autoformer, FEDformer, TimesNet)
across different prediction lengths H ∈ {96, 192, 336, 720}.
The figure reveals a clear trend as H increases, the MSE
rises across all methods, reflecting the error propagation and
growing uncertainty in long-horizon forecasting. ENAS-TSF

consistently outperforms baselines, maintaining statistically
narrower error margins even at longest prediction H = 720.
This robustness from its neural architecture search (NAS)-
optimized design, which dynamically balances shorter and
longer horizon forecasting.

C. Search Result Analysis

1) Architecture Visualization: The Fig. 3 shows the best
network architectures discovered by using ENAS-TSF on
the Electricity, Exchange-rate, and ETTh2 datasets under a
prediction length H = 96. We observe that two best-found
architectures on Electricity (Fig. 3a) and ETTh2 (Fig. 3c)
have highly similar designs, which prefer large-kernel con-
volutions to capture long-term temporal dependencies. For
the global operators, these architectures prefer Feed-Forward
Network (FFN) modules and ”Zero” blocks. In contrast, the
best architecture for Exchange-rate (Fig. 3b) employs small-
kernel convolutions. Whenever all operators in a branch are
assigned Zero blocks, that branch is effectively pruned, thereby
simplifying the overall network. This outcome exemplifies
ENAS-TSF’s ability to automatically discover dataset-specific
architectures by selectively activating or deactivating model
components.

2) Model efficiency: The ENAS-TSF requires a longer
overall training period than the benchmark algorithms. For
example, on the ECL dataset, with a look-back window of
L = 96 and a forecast horizon of H = 720, ENAS-TSF
takes about 5 days and 5 hours to find the best solution.
This is because the architecture search phase explores and
evaluates numerous candidate networks. Meanwhile, purely
handcrafted models spend fewer total hours (for example
TimesNet with 6.2 hours of training) to reach its final config-
uration. However, if we examine training speed per iteration,
ENAS-TSF operates efficiently and also maintains a relatively
small model size. As illustrated in Fig. 4, each forecasting
method is visualized according to its model size (circle area),
training speed (horizontal axis), and MSE (vertical axis). The
figure reveals that ENAS-TSF achieves a lower MSE and
training speed than many handcrafted competitors. To the
best of our knowledge, this is the first research of NAS to
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Electricity dataset.

long-term forecasting tasks. By exploring numerous candidate
models and optimizing architectures automatically, ENAS-
TSF demonstrates that NAS-based approaches can reduce per-
iteration training time and model size compared to handcrafted
solutions.

V. CONCLUSION

In this paper, we introduced the ENAS-TSF framework,
a novel approach designed to automate the discovery of
optimal deep learning architectures for long-term time se-
ries forecasting. By leveraging a multi-branch search space,
ENAS-TSF effectively captures both local and global temporal
dependencies. Local context modelling can achieve through
convolutional operations with different kernel sizes, while
global context modelling is offered by attention mechanisms
and feed-forward layers. In addition to designing an efficient
search space, we employed Genetic Algorithm to efficiently
explore and identify the best performing architecture. To
enhance computational efficiency, we also proposed an early
stopping generation strategy to accelerate the convergence of
the search process. Experiments on three multivariate time
series forecasting show the effectiveness and robustness of the
proposed approach, highlighting its potential for time series
forecasting.
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