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Summary 
 
This study presents a deep learning model trained on 
a dataset of 674 water samples from Nevada to 
predict geothermal reservoir temperatures. The model 
outperforms traditional geothermometers and other 
machine learning models, achieving high accuracy 
and demonstrating global applicability when tested on 
samples from different geothermal fields around the 
world. 
 
Introduction 
 
Geothermal energy is a promising source of 
renewable, clean and sustainable energy. Accurate 
prediction of subsurface temperatures is critical for 
geothermal exploration and development. 
Traditionally, this has been done using classical 
geothermometers, which rely on the chemical 
equilibrium between reservoir fluids and host rocks. 
However, these methods can be potentially unreliable 
due to factors such as fluid mixing and degassing. 
This study presents a novel data-driven model 
designed to overcome these limitations and provide 
more accurate temperature predictions for diverse 
geothermal systems. 

The data-driven model harnesses the power of 
machine learning to analyze extensive 
hydrogeochemical data and identify patterns that may 
be missed by traditional methods. This innovative 
approach was trained and validated using a 
comprehensive dataset of 674 water samples from 
Nevada, a region known for its significant geothermal 
potential and diverse geological settings. The study 
also explores the geological and hydrogeological 
characteristics of Nevada's geothermal systems, 
examining factors such as fault systems, groundwater 
flow patterns, and water chemistry. 
 
Methodology 
 
Recognizing the limitations of classical 
geothermometers and addressing the challenge of 
missing subsurface temperature measurements in the 
Nevada water sample dataset, subsurface temperature 

was inferred using multiple techniques including 
classical and multicomponent geothermometry, 
regional thermal database extrapolation, and an 
existing machine learning geothermometer. This 
comprehensive approach ensured a robust dataset for 
training the machine learning model. After data 
preprocessing and exploratory data analysis, 
including feature selection and data clustering, the 
deep neural network model outperformed other 
machine learning models tested (Random Forest, 
XGBoost, and Back-Propagation Neural Network), 
achieving high accuracy (R² = 0.978) and low error 
rates on both the training and test datasets, as shown 
in Figure 1. Validation with 42 new well samples 
from different geothermal fields around the world 
confirmed its applicability and reliability in different 
geological environments. 

 
Conclusions 
 
This study successfully developed and validated a 
novel deep learning model for predicting geothermal 
reservoir temperatures using geochemical data. The 
model was trained on a comprehensive dataset of 674 
water samples from Nevada, addressing the 
limitations of traditional geothermometers and 
leveraging the power of machine learning to identify 
complex patterns in hydrogeochemical data. The deep 
learning model outperformed other machine learning 

 
Figure 1:  Train vs Test R2 scores for adopted models 
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models, including Random Forest, XGBoost, and 
Back-Propagation Neural Networks, achieving high 
accuracy (R² = 0.978) and low error rates. The study 
addressed the challenge of missing subsurface 
temperature measurements in the dataset by 
employing a multi-pronged inference strategy that 
combined classical geothermometers, 
multicomponent geothermometry, regional thermal 
database extrapolation, and an existing machine 
learning geothermometer. This approach ensured a 
robust and reliable dataset for training and validation 
of the deep learning geothermometer. Furthermore, 
the global applicability of the model was 
demonstrated by testing it on 42 new well samples 
from different geothermal fields around the world, 
demonstrating its ability to perform well in different 
geological environments. This approach represents a 
significant advance in chemical geothermometry, 
providing a more accurate, efficient, and globally 
applicable tool for predicting subsurface temperatures 
in geothermal exploration and reservoir 
characterization. Future research will focus on 
expanding the dataset, incorporating advanced feature 
engineering, and developing a user-friendly platform 
to disseminate the model's capabilities and further 
advance geothermal research and investment 
opportunities. 
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Renewable Source

Geothermal energy is derived from Earth's heat, providing stable, sustainable power.

power.

Global Growth

Geothermal energy could meet 15% of global electricity demand by 2050, with a potential 

potential global capacity of 800 gigawatts - equivalent to the current electricity demand of the 

demand of the US and India combined (IEA 2025).

Key Countries

Significant in USA, Indonesia, Philippines, Türkiye, and New Zealand.

Geothermal Overview
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1 Financial Risks

High costs during predevelopment stages, 

including surface surveys and exploratory 

drilling.

2 Hidden Resources

Difficulty in identifying blind geothermal 

resources without surface manifestations.

3 Expert Reliance

Traditional methods heavily depend on expert 

expert knowledge, leading to uncertainties.

uncertainties.

Exploration Challenges

The stages of the geothermal development project and its risk levels 

(Gehringer and Loksha, 2012).
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Cost-Effective

Geochemical data from groundwater samples are crucial in early exploration stages.

Insightful

Provides valuable information on subsurface characteristics and reservoir properties.

Analytical

Helps determine reservoir temperature, heat flow, and potential for energy extraction.

Geochemical Analysis



Net-Zero Emissions Workshop                                                                         23-26 June 2025

Geothermometry

1

Classical Geothermometers
function based on temperature-dependent mineral-fluid equilibrium reactions, primarily 
utilizing silica concentrations and cation ratios (Na-K, Na-K-Ca, K-Mg) in geothermal waters.

2

Multicomponent Geothermometry
analyzes the equilibrium between multiple minerals, focusing on the convergence of 
mineral saturation indices at the true reservoir temperature.

3

Data-Driven Geothermometers

a modern approach that utilizes machine learning and statistical methods to
establish correlations between fluid chemistry and reservoir temperatures.
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1

Comprehensive Dataset

Utiliz ing  water sam p les from  d iverse g eotherm al reg ions in N evad a

2
Advanced Methodology
Integrating classical geothermometers, multi-component geothermometry, and ML

3
Improved Accuracy
D em onstrating  excellent p erform ance, exp laining  variance  in training  and  test d ata

4
G lo b al A p p licab ility

Evaluation on new well samples from different geothermal fields worldwide

Methodology
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1 Extensive Dataset
Analysis of over 14,400 geochemical samples from the Great Basin 
Groundwater

Groundwater
 Geochemical Database. This vast collection of information forms the 

forms the backbone of the platform's predictive capabilities.

2 Data Integrity
To ensure data quality, the model performs a charge balance error calculation, 
rejecting samples outside the acceptable range of ±5%. This rigorous approach 
guarantees the reliability of the input data.

3 Feature Selection
Through exploratory data analysis, eight key features were identified as 
strong

strong
 influencers of temperature: potassium, sodium, magnesium, 

calcium
calcium

, 
, 

chloride, fluorine, silica, and pH. These elements form the core of aiION's 
of aiION's predictive model.

Exploratory Data Analysis
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Data Processing

Data Transformation

Employing various data 
transformation methods, including z-
score, logarithmic transformation, and 
quantile normalization. These 
techniques optimize model 
performance and ensure accurate 
predictions.

Clustering Analysis

Utilized clustering techniques such as K
as K-

-
means and Hierarchical Clustering 

Clustering to identify patterns within 
within the dataset. This approach helps 
helps in understanding the underlying 
underlying structure of the geochemical 
geochemical data.

ML Model Development

Several machine learning algorithms were evaluated to determine each algorithm's 
algorithm's predictive ability and to determine the best model.

Ensemble learning method using 
multiple decision trees

Builds new trees sequentially to  
reduce b ias from  previous trees

Simple backpropagation neural network 
with four layers

1 Random Forest (RF)

2 Gradient Boosting (XGB)

3 Artificial Neural Network (ANN)

4 Deep Neural Network (DNN)
More complex architecture with three 
three hidden layers and advanced 
techniques
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DNN Model Performance Metrics

0.9784
DNN R² (Train)

Coefficient of determination for training data

0.9783
DNN R² (Test)

Coefficient of determination for test data

4.0097
DNN RMSE

Root Mean Square Error for test data

2.6363
DNN MAE

Mean Absolute Error for test data
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Temperature
Ranges (°C)

Nevada
Geothermal
Potential
Map
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aiION
Software
Platform
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Solution Properties Module

Classification

Categorize water based on its properties, 
properties, including class, type, and 
and description. This classification helps 
helps in understanding the nature and 
and origin of the geothermal fluid.

Chemical Equilibrium State

Determine the chemical equilibrium 
state of the water, providing insights 
into its maturity and potential for 
geothermal energy production.

Hydrogeochemical Processes 

Understanding the mechanisms 
controlling water chemistry. It helps 
helps identify the dominant processes 
processes affecting the geothermal 
geothermal fluid composition and 
controlling water chemistry and rock 
rock weathering, categorizing samples 
samples into precipitation-
dominated, rock weathering

dominated, 
-

dominated, and evaporation/
crystallization-controlled types.

Trace Elements Analysis

Ternary Diagrams to visualize the 
relationships between Cl⁻, B, and F⁻ 
F⁻ concentrations and Cl⁻, B, and Li⁺ 
Li⁺ concentrations in the geothermal 
geothermal fluid. This analysis helps in 
helps in understanding the fluid's origin 
origin and evolution.
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Geochemical Modelling Module

Molality and Moles

Lists the molality and moles of 
various elements, including C, 
Ca, Cl, F, K, Mg, Na, S, and Si.

Solution Description

Provides detailed information 
including Sample ID, pH, pe, 
Activity of water, Ionic 
strength, Mass of water, Total 
alkalinity, Total CO₂, and 
Electrical balance.

Species Distribution

Lists the molality, activity, and 
log activity of various species, 
such as OH⁻, H⁺, H₂O, HCO₃⁻, 
Ca²⁺, Cl⁻, F⁻, K⁺, Mg²⁺, Na⁺, 
SO₄²⁻, and SiO₂.

Mineral Saturation Analysis

This module provides a comprehensive 
comprehensive summary of mineral 
saturation indices, indicating the extent of 
extent of their saturation in the geothermal 
geothermal fluid. This information is crucial 
crucial for understanding the chemical 
chemical equilibrium of the system.

Gas Fugacity and Pressure

aiION calculates and reports the fugacity and 
partial pressure of gases in the solution, such 
as CO₂ and H₂O. This data is essential for 
understanding the behavior of gases in the 
geothermal reservoir.
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Thermophysical Module

Comprehensive Solution Properties
aiION calculates crucial thermophysical properties including solution quality, 
density, specific volume, dynamic viscosity, thermal conductivity, internal 
energy, entropy, enthalpy, and heat capacity.

Geothermal Gradient Analysis
Computing effective thermal conductivity and geothermal gradients, 
providing insights into the heat distribution within the reservoir.

Heat Flow Assessment
aiION calculates heat flow, a critical parameter for understanding the energy 
potential of a geothermal system.
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Geothermal Potential Module

1

Thermal Energy Calculation

Computes total thermal energy of the reservoir

2

Power Potential Estimation

Calculates potential power output in Watts and MWe

3

Economic Viability Analysis

Calculation of CapEX & OpEX and determining the LCOE

4

Sensitivity Analysis

Allows adjustment of key parameters for scenario planning



Net-Zero Emissions Workshop                                                                         23-26 June 2025

Im plications for Geotherm al Exploration

Improved Accuracy

aiION provides reliable temperature predictions for geothermal reservoirs

Cost-Effective Exploration

Reduces the need for expensive drilling and testing in early exploration stages

Blind System Identification
Enhances ability to locate and assess "blind" geothermal systems without surface 
manifestations

Resource Assessment

Facilitates more accurate estimation of geothermal potential in unexplored areas
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