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particularly when faced with sophisticated attacks that evolve
over time [1], [2].

Recent advances in Machine Learning (ML), DL, and RL
have opened new avenues to enhance the performance of IDSs.
These technologies offer the potential to analyse large amounts
of network data more effectively than conventional methods.
Among these, EL techniques have emerged as a powerful
approach to improve classification accuracy by combining
multiple models to leverage their complementary strengths. By
integrating various classifiers, ensemble methods can mitigate
the limitations associated with individual models, such as
overfitting and underperformance, in specific scenarios [3], [4].
This study explores the integration of reproducible DL and
RL models within a stacking ensemble framework to enhance
network intrusion detection.

II. RELATED LITERATURE

Network Intrusion Detection Systems (NIDS) are vital for
identifying and mitigating malicious activities within net-
works. Despite their effectiveness, traditional approaches face
challenges in detecting novel and evolving threats, necessitat-
ing advancements in intrusion detection technologies.

Recent research highlights the potential of advanced ML
techniques, particularly DL and RL, to improve NIDS. DL
architectures, such as Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs), have shown strong
performance in handling high-dimensional and sequential data.
CNNs effectively capture spatial features in network traffic,
while RNNs, particularly Long-Short-Term Memory, excel at
identifying temporal patterns in attacks [5], [6]. RL, offering a
dynamic approach, uses techniques such as Deep Q-Networks
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I. INTRODUCTION

The rapid expansion of the Internet and the increasing
reliance on networked systems have led to a significant rise
in cybersecurity threats, particularly in the form of network
intrusions. As organisations become more interconnected, the
need for robust IDSs has never been more critical. IDSs
serve as a front-line defence mechanism, designed to monitor
network traffic f or s uspicious a ctivities a nd p otential threats,
thereby safeguarding sensitive information and maintaining the
integrity of networks. However, traditional IDSs often struggle
with high false positive rates and low detection accuracies,



(DQNs) to adaptively learn from network environments, mak-
ing it effective against novel and adaptive threats [7].

EL is a ML approach that enhances predictive performance
by combining the outputs of multiple models. This technique
leverages the strengths of various individual models, known
as weak learners, to create a more robust and accurate pre-
dictive system [8]. In the context of intrusion detection, EL
has emerged as a promising method for improving intrusion
detection [1]. Studies by [9], [1], and [10] have explored EL
frameworks, often integrating models of the same type, such
as DL with DL or Conventional Machine Learning (CML)
with CML. However, these approaches often fail to address
the broader limitations of the DL and RL methods.

The research by [11] and [12] emphasised feature selection
and EL to improve IDS performance, focusing on combina-
tions of existing DL or CML algorithms without leveraging
the complementary nature of DL and RL. Meanwhile, [13]
demonstrated improved performance using a stacked EL model
for wireless networks, but focused on combining gradient
boosting and random forest, overlooking the advantages of
DL and RL.

Despite these efforts, a significant gap remains in explicitly
integrating DL and RL models within an EL framework to
address their standalone limitations. This research aims to
bridge this gap by leveraging the strengths of DL and RL
through a stacking ensemble technique, providing a scalable
and robust solution for NIDS.

III. METHODOLOGY

A. DL and RL Model Selection

A comprehensive literature review was conducted to identify
effective DL and RL models for network intrusion detection,
focusing on studies published between 2020 and 2024. This
ensured that the findings aligned with recent advances in
addressing evolving cybersecurity challenges. Key information
was extracted from the selected studies, including methods,
datasets, and evaluation metrics.

To allow fair comparisons, the normalised performance
metrics were compiled into two tables. TABLE I for the DL
models and TABLE II for the RL models, using Min-Max
Scaling to ensure unbiased evaluations. The F1 score and re-
producibility were prioritised as key metrics. The F1 score bal-
ances precision and recall, critical for intrusion detection with
imbalanced datasets, while reproducibility ensures that models
are deployable in real-world settings. The best performing
models were identified based on their highest normalised
scores, providing a solid foundation for the development of
an effective NIDS.

The DL model from [6] and the RL model from [27]
achieved the highest normalised scores, making them the best
DL and RL models for this investigation.

B. EL Technique Selection

Building on the identification of the best performing DL
and RL models, the next step was to develop an EL technique
to combine these models.

TABLE I: EVALUATION OF IDENTIFIED DL MODELS

Study F1
Score

Code Dataset Hyper
param-

eters

Normalised
Score

[14] 0.8514 0 1 0 0.044806
[15] 0.8200 0 1 1 0.250000
[16] 0.9935 0 1 0 0.247574
[17] 0.9354 0 1 0 0.164669
[18] 0.9426 0 1 1 0.424943
[19] 0.9800 0 1 1 0.478311
[20] 0.9584 0 1 1 0.447489
[21] 0.8965 0 1 1 0.359161
[22] 0.9952 0 1 1 0.500000
[23] 0.9917 1 1 0 0.495006
[24] 0.9900 0 1 1 0.492580
[25] 0.9764 0 1 0 0.245277
[6] 0.9902 1 1 1 0.742865
[26] 0.9946 0 1 1 0.499144

TABLE II: EVALUATION OF IDENTIFIED RL MODELS

Study F1
Score

Code Dataset Hyper
param-

eters

Normalised
Score

[28] 0.9890 0 1 0 0.236224
[29] 0.9970 0 1 0 0.247029
[7] 0.8141 0 1 1 0.250000
[30] 0.9880 0 1 0 0.234873
[31] 0.9490 0 1 0 0.182199
[27] 0.9992 1 1 1 0.750000

Among the various ensemble methods, stacking, bagging,
and boosting were evaluated. Boosting trains base learners
sequentially, adjusting weights for misclassified instances,
making it effective for hard-to-classify cases but sensitive to
noise and outliers [32]. Bagging, on the other hand, is a
parallel method that reduces variance by training multiple base
learners on bootstrapped data subsets, which performs well
with high-variance models such as Decision Trees (DTs), but
is less effective for weak learners to address bias [32].

Stacking is especially beneficial when integrating diverse
models with complementary strengths, making it an ideal
choice for complex tasks such as network intrusion detection.
Unlike boosting and bagging, stacking is versatile and can
handle models with varying characteristics, allowing each
model to contribute its unique insights to a unified prediction
[32].

Therefore, stacking was identified as the optimal EL tech-
nique for integrating the selected DL and RL models, offering
a powerful way to improve the performance of NIDSs.

C. Metaclassifier Selection

The next step involved selecting suitable metaclassifiers for
the ensemble model. A comprehensive literature review was
conducted to identify ensemble techniques commonly used in
network intrusion detection. This informed the selection of
metaclassifiers for the initial ensemble models.

Hossain et al. [33] proposed an EL technique for intrusion
detection, comparing several methods such as Random Forest
(RF), Gradient Boosting, AdaBoost, and XGBoost. Their study



found that RF outperformed others in terms of accuracy and
false positive rates, achieving high precision, recall, F1 score,
and balanced accuracy. Based on these findings, RF was
chosen as one of the metaclassifiers.

Thockchom et al. [1] introduced a stacking-based model
using Gaussian Naive Bayes (GNB), DT, and Logistic Re-
gression (LR) as base classifiers, with stochastic gradient
descent as metaclassifier. Their approach achieved an accuracy
of 99.48%, motivating the development of similar stacking
models for this investigation.

Ali et al. [34] proposed another stacking ensemble model
using k-Nearest neighbors, support vector machine, and RF
with XGBoost as meta-classifier, achieving a weighted F1
score of 98.24%. This inspired the implementation of an ad-
ditional ensemble model using XGBoost as the metaclassifier.

In addition, other classifiers such as Histogram Gradient
Boosting (HGB), Linear Discriminant Analysis (LDA), and
Quadratic Discriminant Analysis (QDA) were explored to
assess their effectiveness within this study.

D. Reproduction of Selected DL Model

Building on the previous steps, the DL model chosen for
reproduction is from [6], which uses the CSE-CIC-IDS2018
[35] dataset, the same dataset used in this investigation as the
benchmark dataset.

The reproduction process followed the steps outlined in the
original study, including data preprocessing, model implemen-
tation, and training configurations. Key settings such as early
stopping with a patience of 20 and a total of 500 epochs
were used to prevent overfitting. After executing the training
process, the performance metrics achieved were compared
with those of the original study. The reproduction resulted
in an accuracy of 0.9913 and a loss of 0.0041, which were
slightly higher than the accuracy reported by the original study
of 0.9910 and a loss of 0.0040.

The training and validation performance curves are shown
in Fig. 1.

It should be noted that while [6] excluded certain at-
tack classes (DDoS attacks-LOIC-HTTP, FTP-BruteForce, and
SSH-BruteForce), this research included all 15 attack classes
from the CSE-CIC-IDS2018 dataset to maintain consistency
with the RL models. Despite this difference, the reproduction
still resulted in slightly better accuracy, suggesting that in-
cluding additional attack classes did not negatively impact the
model’s performance.

E. Reproduction of Selected RL Model

The next step of the investigation focused on reproducing
the selected RL model presented by [27], which also used the
CSE-CIC-IDS2018 dataset. The reproduction process followed
the steps outlined in the original study, including data prepro-
cessing, model implementation, and training configurations.

The RL model in [27] involves training an agent over 250
episodes, each episode consisting of 200 iterations, resulting
in a total of 50,000 interactions between the agent and the
environment. This comprehensive training process allowed the

(a) Training and validation accuracy (b) Training and validation loss

Fig. 1: Performance of DL model

(a) Normalised reward per episode (b) Confusion matrix

Fig. 2: Performance of RL model

RL agent to develop robust detection capabilities and adapt to
the diverse characteristics of the dataset.

After training, the reproduction achieved an accuracy of
0.9997, slightly higher than the accuracy reported in the
original study of 0.9992. This confirmed the successful repro-
duction of the RL model, with performance closely matching
and even improving on the original results.

A notable difference was observed in the classification
performance for the ’Attack’ class. In the original study, the
model reported an accuracy of 0 for the ’Attack’ class. In
contrast, the reproduced model achieved an accuracy of 0.9245
for this class, while maintaining slightly better accuracies for
other classes. This improvement indicates that the reproduced
RL model was more effective in identifying attack instances
compared to the original study.

The training and validation performance of the RL model
is shown in Fig. 2.

IV. RESULTS

The ensemble models were developed by feeding the pre-
dictions from the selected DL and RL models into the se-
lected meta-classifiers. The results of each metaclassifier are
displayed in Table III-Table X and Fig. 3-Fig. 10.

The evaluation of the ensemble models developed was based
on several key metrics: precision, recall, F1 score, accuracy,
and inference time. Each metric was carefully analysed to
assess the overall effectiveness and computational feasibility
of the ensemble models in real-world applications.

A performance overview for all metaclassifiers tested was
summarised in the TABLE XI, highlighting the comparative
results across these metrics.

Among the tested classifiers, the HGB meta-classifier
demonstrated the highest balanced accuracy (0.9951), making



it the most effective choice for this ensemble framework. RF
also performed well, achieving similar precision and recall
values, but with slightly longer inference time. In contrast,
classifiers such as GNB and QDA showed lower accuracy and
recall, which could be attributed to their inability to capture
the complexity of the ensemble’s input data distribution.

The models were also compared for computational effi-
ciency, a crucial aspect for IDSs that require real-time or near-
real-time processing. HGB not only provided robust classifi-
cation performance, but also balanced computational cost with
an inference time of 4.54 seconds per batch, outperforming the
RF’s inference time of 11.09 seconds. These findings indicate
that HGB strikes an optimal balance between accuracy and
speed, making it suitable for deployment in dynamic network
environments.

V. DISCUSSION

The results underscore the effectiveness of the stacking
ensemble method for intrusion detection. By combining pre-
dictions from the DL and RL models, the ensemble addressed
individual model limitations and leveraged their complemen-
tary strengths. The DL model excelled at detecting majority
classes, while the RL model effectively identified minority
classes, resulting in improved classification accuracy and re-
duced false positives and negatives. This approach surpasses
previous work that relied on standalone DL or RL models. The
ensemble framework, with robust metaclassifiers like HGB,
demonstrated superior adaptability and scalability, generalising
well across diverse attack types in imbalanced datasets.

However, the ensemble method has challenges, including
increased computational complexity from training multiple
base models and a meta-classifier. This can be mitigated
through optimised training pipelines or distributed computing.
Furthermore, while the proposed approach performed well on

TABLE III: MULTICLASS CLASSIFICATION OF DT

Label Precision Recall F1
Score

AUC
Score

Support

Benign 1.00 1.00 1.00 1.00 660050
DDos 1.00 1.00 1.00 1.00 125492
Dos 1.00 1.00 1.00 1.00 65065
BruteForce 1.00 1.00 1.00 1.00 38179
Bot 1.00 1.00 1.00 1.00 28706
Infilteration 1.00 1.00 1.00 1.00 15229
Attack 0.93 0.95 0.94 0.98 94

(a) Confusion matrix (b) ROC curve

Fig. 3: Performance of DT

TABLE IV: MULTICLASS CLASSIFICATION OF GNB

Label Precision Recall F1
Score

AUC
Score

Support

Benign 1.00 0.98 0.99 1.00 660050
DDos 1.00 1.00 1.00 1.00 125492
Dos 1.00 1.00 1.00 1.00 65065
BruteForce 1.00 1.00 1.00 1.00 38179
Bot 1.00 1.00 1.00 1.00 28706
Infilteration 0.81 0.97 0.88 1.00 15229
Attack 0.01 0.79 0.02 0.97 94

(a) Confusion matrix (b) ROC curve

Fig. 4: Performance of GNB

TABLE V: MULTICLASS CLASSIFICATION OF HGB

Label Precision Recall F1
Score

AUC
Score

Support

Benign 1.00 1.00 1.00 1.00 660050
DDos 1.00 1.00 1.00 1.00 125492
Dos 1.00 1.00 1.00 1.00 65065
BruteForce 1.00 1.00 1.00 1.00 38179
Bot 1.00 1.00 1.00 1.00 28706
Infilteration 1.00 1.00 1.00 1.00 15229
Attack 1.00 0.97 0.98 1.00 94

(a) Confusion matrix (b) ROC curve

Fig. 5: Performance of HGB

TABLE VI: MULTICLASS CLASSIFICATION OF LDA

Label Precision Recall F1
Score

AUC
Score

Support

Benign 1.00 1.00 1.00 0.99 660050
DDos 1.00 1.00 1.00 0.98 125492
Dos 1.00 1.00 1.00 1.00 65065
BruteForce 1.00 1.00 1.00 1.00 38179
Bot 1.00 1.00 1.00 1.00 28706
Infilteration 1.00 0.99 0.99 1.00 15229
Attack 0.98 0.46 0.62 0.73 94



(a) Confusion matrix (b) ROC curve

Fig. 6: Performance of LDA

TABLE VII: MULTICLASS CLASSIFICATION OF LR

Label Precision Recall F1
Score

AUC
Score

Support

Benign 1.00 1.00 1.00 1.00 660050
DDos 1.00 1.00 1.00 1.00 125492
Dos 1.00 1.00 1.00 1.00 65065
BruteForce 1.00 1.00 1.00 1.00 38179
Bot 1.00 1.00 1.00 1.00 28706
Infilteration 1.00 0.99 0.99 1.00 15229
Attack 1.00 0.45 0.62 0.98 94

(a) Confusion matrix (b) ROC curve

Fig. 7: Performance of LR

TABLE VIII: MULTICLASS CLASSIFICATION OF QDA

Label Precision Recall F1
Score

AUC
Score

Support

Benign 1.00 0.99 1.00 1.00 660050
DDos 1.00 1.00 1.00 1.00 125492
Dos 1.00 1.00 1.00 1.00 65065
BruteForce 1.00 1.00 1.00 1.00 38179
Bot 1.00 1.00 1.00 1.00 28706
Infilteration 0.87 0.98 0.92 1.00 15229
Attack 0.02 0.90 0.04 0.99 94

(a) Confusion matrix (b) ROC curve

Fig. 8: Performance of QDA

TABLE IX: MULTICLASS CLASSIFICATION OF RF

Label Precision Recall F1
Score

AUC
Score

Support

Benign 1.00 1.00 1.00 1.00 660050
DDos 1.00 1.00 1.00 1.00 125492
Dos 1.00 1.00 1.00 1.00 65065
BruteForce 1.00 1.00 1.00 1.00 38179
Bot 1.00 1.00 1.00 1.00 28706
Infilteration 1.00 1.00 1.00 1.00 15229
Attack 1.00 0.96 0.98 0.99 94

(a) Confusion matrix (b) ROC curve

Fig. 9: Performance of RF

TABLE X: MULTICLASS CLASSIFICATION OF XGBoost

Label Precision Recall F1
Score

AUC
Score

Support

Benign 1.00 1.00 1.00 1.00 660050
DDos 1.00 1.00 1.00 1.00 125492
Dos 1.00 1.00 1.00 1.00 65065
BruteForce 1.00 1.00 1.00 1.00 38179
Bot 1.00 1.00 1.00 1.00 28706
Infilteration 1.00 1.00 1.00 1.00 15229
Attack 1.00 0.96 0.98 1.00 94

(a) Confusion matrix (b) ROC curve

Fig. 10: Performance of XGBoost

TABLE XI: SUMMARY OF CLASSIFIER PERFORMANCE

Classifier Accur-
acy

Precis-
ion

Recall F1
Score

Balanced
Accu-
racy

Infer-
ence
Time

DT 0.9999 0.9999 0.9999 0.9999 0.9920 0.28s
GNB 0.9875 0.9967 0.9875 0.9919 0.9620 5.92s
HGB 0.9999 0.9999 0.9999 0.9999 0.9951 4.54s
LDA 0.9998 0.9998 0.9998 0.9998 0.9214 1.98s
LR 0.9997 0.9997 0.9997 0.9997 0.9198 0.63s
QDA 0.9930 0.9976 0.9930 0.9952 0.9813 2.15s
RF 0.9999 0.9999 0.9999 0.9999 0.9935 11.09s
XGBoost 0.9999 0.9999 0.9999 0.9999 0.9936 1.21s



the benchmark CSE-CIC-IDS2018 dataset, its effectiveness
with live traffic data and evolving attack patterns requires
further validation.

In general, this study highlights the potential of ensemble
methods in advancing intrusion detection systems. By combin-
ing accuracy with scalability, the proposed approach provides
a strong foundation for resilient and efficient cybersecurity
solutions in dynamic network environments.

VI. CONCLUSION

This research highlights the transformative potential of EL
techniques in advancing NIDSs. By systematically integrat-
ing state-of-the-art DL and RL models within a stacking
framework, the study achieved significant improvements in
detection accuracy, particularly across various attack classes.
The implementation of an optimised metaclassifier, such as
HGB, was instrumental in striking an effective balance be-
tween detection performance and computational efficiency,
making the proposed approach suitable for scalable and real-
time cybersecurity applications.

Furthermore, the research underscores the importance of
reproducibility and dataset diversity in the development and
evaluation of robust intrusion detection models. By includ-
ing all attack classes in the CSE-CIC-IDS2018 dataset, the
study addressed critical gaps in previous work, ensuring the
adaptability of the proposed model to real-world scenarios.
This comprehensive approach not only improves the model’s
robustness, but also enhances its generalisability to complex
and evolving network environments.

Future research could explore the integration of additional
features, such as temporal data patterns, contextual analysis,
and user behaviour monitoring, to further improve detection
accuracy. Furthermore, expanding the framework to include
adversarial training techniques could enhance its resilience
against attempts to deceive the system. Real-time implemen-
tation and validation in operational environments with live
traffic data would also be critical steps to bridge the gap
between theoretical advances and practical deployment. The
proposed approach sets the foundation for developing resilient
and scalable cybersecurity systems capable of tackling ever-
evolving threats in dynamic network environments.
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