

AUTHOR(S):

TITLE:

YEAR:

Publisher citation:

OpenAIR citation:

Publisher copyright statement:

OpenAIR takedown statement:

 This publication is made
freely available under
________ open access.

This is the ______________________ version of an article originally published by ____________________________
in __
(ISSN _________; eISSN __________).

This publication is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

S.I . : EANN 2016

Deep imitation learning for 3D navigation tasks

Ahmed Hussein1 • Eyad Elyan1 • Mohamed Medhat Gaber2 • Chrisina Jayne1

Received: 13 March 2017 / Accepted: 4 October 2017 / Published online: 4 December 2017

� The Author(s) 2018. This article is an open access publication

Abstract Deep learning techniques have shown success in

learning from raw high-dimensional data in various appli-

cations. While deep reinforcement learning is recently

gaining popularity as a method to train intelligent agents,

utilizing deep learning in imitation learning has been

scarcely explored. Imitation learning can be an efficient

method to teach intelligent agents by providing a set of

demonstrations to learn from. However, generalizing to

situations that are not represented in the demonstrations

can be challenging, especially in 3D environments. In this

paper, we propose a deep imitation learning method to

learn navigation tasks from demonstrations in a 3D envi-

ronment. The supervised policy is refined using active

learning in order to generalize to unseen situations. This

approach is compared to two popular deep reinforcement

learning techniques: deep-Q-networks and Asynchronous

actor-critic (A3C). The proposed method as well as the

reinforcement learning methods employ deep convolu-

tional neural networks and learn directly from raw visual

input. Methods for combining learning from demonstra-

tions and experience are also investigated. This combina-

tion aims to join the generalization ability of learning by

experience with the efficiency of learning by imitation. The

proposed methods are evaluated on 4 navigation tasks in a

3D simulated environment. Navigation tasks are a typical

problem that is relevant to many real applications. They

pose the challenge of requiring demonstrations of long

trajectories to reach the target and only providing delayed

rewards (usually terminal) to the agent. The experiments

show that the proposed method can successfully learn

navigation tasks from raw visual input while learning from

experience methods fail to learn an effective policy.

Moreover, it is shown that active learning can significantly

improve the performance of the initially learned policy

using a small number of active samples.

Keywords Deep learning � Convolutional neural
networks � Learning from demonstrations � Reinforcement

learning � Active learning � 3D navigation � Benchmarking

1 Introduction

Recent years have seen a rise in demand for intelligent

agents capable of performing complex motor actions.

Advances in robotics and computational capabilities pro-

vide opportunities for many potential applications such as

assistive robots, autonomous vehicles and human computer

interaction. However, the challenge remains to create

intelligent agents capable of robust and effective behavior.

Most applications are dynamic and involve many variables

and are therefore not suitable for manually designed poli-

cies. It is also difficult to breakdown and articulate how

humans perform tasks in order to program intelligent

agents to replicate this behavior. For instance, it is hard for

an experienced driver to describe to another human how to

drive well. A more intuitive and effective method of

imparting this knowledge is to show the student examples

of good driving.

& Ahmed Hussein

a.s.h.a.hussein@rgu.ac.uk

1 School of Computing Science and Digital Media, Robert

Gordon University, The Sir Ian Wood Building, Garthdee Rd,

Aberdeen AB10 7GE, UK

2 School of Computing and Digital Technology, Birmingham

City University, 15 Bartholomew Row, Birmingham B5 5JU,

UK

123

Neural Comput & Applic (2018) 29:389–404

https://doi.org/10.1007/s00521-017-3241-z

http://orcid.org/0000-0001-5227-9929
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-3241-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-3241-z&domain=pdf
https://doi.org/10.1007/s00521-017-3241-z

Imitation learning is a paradigm where an intelligent

agent is taught to mimic human behavior by supplying the

agent with demonstrations provided by a teacher rather

than instructions. By learning from demonstration, the

agent does not require explicit knowledge about the task or

the environment such as objectives or constraints. Instead a

generic learning process is advocated where all needed

information is inferred from the provided demonstrations.

Two major challenges facing imitation learning are (1)

creating adequate feature representations for learning. (2)

Learning a policy that generalizes to unseen situations.

Feature representations are required to encode the

demonstrations in a way that the agent can learn from and

also to represent how the agent perceives its environment

from its sensory data. The representations must be adequate

for learning as well as be suitable for real-time processing.

Manually designing suitable features for imitation learning

is an arduous task as different representations must be

tailored for each task or environment, especially in

dynamic settings where the representations must be robust

against various scenarios. Generalization to unseen sce-

narios is also a challenge because of the dynamic nature of

the tasks. This is a common problem because demonstra-

tions typically show the best way to perform a task and do

not offer any information about recovering from sub-opti-

mal actions. Therefore, approaches are required that can

generalize beyond demonstrated behavior without exten-

sive feedback from a teacher or the environment. This

paper builds on the work reported in [1] and presents a

deep active learning method for learning from demonstra-

tions in navigation tasks. The proposed method addresses

the challenges of imitation learning by utilizing deep

learning to learn feature representations and active learning

to improve generalization using a relatively small number

of samples. The main extension in this paper is comparing

the proposed methods with state-of-the-art deep rein-

forcement learning methods as well as creating methods for

combining reinforcement learning with learning from

demonstrations. Utilizing both taught behavior and expe-

rience in learning aims to mitigate the limitations of each

approach. By allowing the agent to explore using trial and

error, it is exposed to new scenarios and is able to gener-

alize without requiring a teacher’s involvement. While

demonstrations can provide a starting point to learn more

efficiently than learning from scratch using trial and error.

The proposed learning method is generic and does not

require any prior knowledge of the task. The only infor-

mation presented to the agent is the demonstrations, which

are acquired by controlling the agent using a deterministic

optimal policy. For each frame, the agent’s point of view

and the action performed are captured and used to construct

a dataset of observation/action pairs. A deep convolutional

neural network is trained on the captured dataset to learn a

policy that mimics the demonstrated behavior. Since direct

imitation can lead to poor generalization, active learning is

employed to adapt to situations that are not represented in

the demonstrations. Active samples are selected based on

the confidence of the agent’s current policy. The agent

queries the optimal policy to suggest actions for these

instances. The trained policy interacts with the 3D envi-

ronment in real time, observing the current state, extracting

features and predicting the action to perform in a timely

manner. The proposed learning from demonstration

method is compared to two popular deep reinforcement

learning methods: deep-Q-networks (DQN) which has

shown human level behavior on learning Atari games from

raw pixels and paved the road for deep reinforcement

learning methods, and Asynchronous actor-critic (A3C)

learning that is considered the state of the art in deep

reinforcement learning and has shown success on a 3D

navigation task. Moreover, we investigate methods for

combining learning from demonstrations and reinforce-

ment learning to alleviate the generalization limitations of

imitation methods and help reduce the search space of trial

and error methods. Extensive experiments are conducted

on four navigation tasks in the 3D MASH simulator [2] as

well as a simple 2D navigation task to analyze the per-

formance of the methods used in this paper. The evaluation

highlights the challenges and advantages of the different

approaches.

In the next section we provide a background to rein-

forcement and imitation learning methods and highlight

our motivation. Section 3 reviews related work in the lit-

erature. Section 4 describes the proposed methods. Sec-

tion 5 details the conducted experiments and results. The

paper is concluded in Sect. 6, and future steps are

discussed.

2 Background

Deep learning methods have shown great success in

learning from high-dimensional raw data in a variety of

applications. Convolutional neural networks (CNN) are

used in many computer vision applications to learn from

raw pixels and achieve state-of-the-art results in various

image classification tasks [3, 4]. CNNs are effective

because they employ multiple convolution layers that

automatically extract higher level patterns from the input

features which are more useful for learning. Automatically

extracting feature representations can greatly facilitate

creating generic learning processes for learning from

demonstration. Where the same network architecture can

extract relevant features for different situations depending

on the provided demonstrations.

390 Neural Comput & Applic (2018) 29:389–404

123

A different approach for creating intelligent behavior in

agents is learning from experience. Learning from experi-

ence relies on trial and error and uses reinforcement

learning to train a policy based on feedback from a reward

function. Deep reinforcement learning is rapidly gaining

attention due to recent successes in a variety of problems

[5–10]. The combination of deep learning and reinforce-

ment learning allows for a generic learning process that

does not consider specific knowledge of the task and learns

from raw data. Reinforcement learning (RL) is a popular

choice for learning motor actions because most tasks can

be modeled as a Markov decision process. Moreover,

optimizing a reward function arguably provides a better

description of a task than optimizing a policy [11].

Learning from experience can produce robust policies that

generalize to dynamic scenarios by balancing exploration

and exploitation of rewards. However, finding a solution

through trial and error may take too long, especially in

problems that require performing long trajectories of

actions with delayed rewards. In such cases it may be

extremely difficult to stumble upon rewards by chance.

And the time to learn a policy to maximize the rewards

exponentially increases. Such challenges are present in

many real-life applications and pose limitations to current

methods. Another drawback is that learning through trial

and error may result in a policy that solves the problem

differently to how a human would. Performing a task in a

manner that is intuitive to a human observer may be crucial

in applications where humans and intelligent agents inter-

act together in an environment.

On the other hand, learning from demonstrations may

result in faster learning and produce a policy that follows

the teacher’s way of solving the task [12]. However,

learning a direct mapping between observation and action

can commonly result in a policy that generalizes poorly to

unseen scenarios. The supervised policy only learns to deal

with situations covered in the demonstrations. Since

demonstrations only cover the optimal trajectory, if the

agent deviates even slightly from that trajectory at any

point (which is expected in any machine learning appli-

cation), it finds itself in an unseen situation not covered by

the training data [13]. So essentially the policy is trained

using samples from a distribution that is different to the one

it is evaluated on. Therefore, in many cases, policies need

to be refined based on the performance of the initially

learned policy. Moreover, supervised learning needs a

sufficient number of demonstrations which for deep net-

work architectures may be large.

Navigation is an important skill for intelligent agents

due to its relevancy to a variety of applications. Navigation

can be a main task as in autonomous vehicle applications

[14–20] or as a base skill for other tasks such as humanoid

robots which need to move before performing other tasks

[19, 21]. Navigation tasks present a set of problems where

the agent is typically required to perform long trajectories

and receives rewards at the end of the trajectory. In many

applications, it is not realistic to design intermediate

rewards and is common in navigation tasks to only provide

terminal rewards after reaching the target. Navigation from

visual input also poses an extra challenge as the view of the

agent changes constantly as it moves around the environ-

ment making it more difficult to observe relations between

subsequent states. This is in contrast for example to object

manipulation tasks where a static view contains all the

information needed by the agent, and changes from one

frame to the next can be more easily tracked.

3 Related work

In this section we present related work and review methods

that utilize deep learning in imitation learning and rein-

forcement learning methods. This section also surveys

different methods proposed in the literature to combine

learning from demonstrations and experience.

3.1 Navigation

From an early stage, artificial intelligence (AI) research has

accorded special interest to navigation problems as many

potential applications rely on autonomous navigation.

Learning from demonstrations lends itself to navigation

problems as it is difficult, even for experts, to identify an

optimal strategy for agents to follow in complex environ-

ments. Prioritizing different aspects of navigation such as

speed, safety and avoiding obstacles can be better inferred

from demonstrations [11]. An early work [14] proposed a

method for learning autonomous control of an aerial

vehicle from demonstrations. Since then several papers

have proposed learning autonomous aerial navigation using

demonstrations [22] and reinforcement learning

[15, 16, 23]. In [19], a robot learns how to navigate through

a maze based on its sensory readings. The information

available to the robot is a stream from an infrared (IR)

sensor and input from a controller operated by a teacher.

The agent learns to map its sensory data directly to the

motor primitives provided by the controller. The IR data

provide information about the proximity of objects. This

sensory information does not allow the agent to differen-

tiate between different objects. In [24], a laser sensor is

utilized to enable the agent to detect and identify relevant

objects. Instead of mapping the sensory data directly to

motor primitives, the agent learns to identify sub-goals

from its observations. A more detailed representation of the

environment can be provided by visual data. High-dimen-

sional visual data can be efficiently provided to intelligent

Neural Comput & Applic (2018) 29:389–404 391

123

agents thanks to advances in computational resources and

communication technology. An agent learns to play a

racing game from visual data in [25]. A teacher plays the

game using a controller, and the controller’s input is cap-

tured along with the game’s video stream to create a

training dataset. The video stream is stored as raw pixels,

and down-sampled versions of the frames are input into a

neural network. In [9], a deep reinforcement learning

algorithm is used to teach an agent in a racing simulator

from raw visual features. The learned policy maps the

high-dimensional visual input to multiple continuous out-

puts such as steering and pressing the acceleration pedal.

Another racing application is demonstrated in [26] where

the training algorithm uses features extracted from the

simulator (such as the position and speed of the car). It is

shown that learning from demonstration can be used to

handle high degree of freedom low level actions; however,

features such as those extracted from the simulator are

difficult to produce in real-world applications. Learning

from visual information is not limited to the point of view

of the agent. In [17], an imitation learning method is pro-

posed to train a vehicle to navigate over long distances by

learning from overhead data captured from satellite and

aerial footage. Recently, state-of-the-art deep reinforce-

ment learning methods have been evaluated on 3D navi-

gation tasks [27, 28]. However, these benchmark tools are

not publicly released.

3.2 Deep learning from demonstrations

and experience

Creating feature representations is one of the major chal-

lenges in developing intelligent agents; especially in

dynamic environments. Engineering features that are

robust in all situations facing the agent is very difficult.

Therefore, deep learning methods are suitable for such

tasks due to their ability to learn from raw sensory data.

Recently, deep reinforcement learning methods have been

gaining a lot of attention due to recent successes. One of

the first successful deep reinforcement learning methods is

deep-Q-networks (DQN) [5, 29] in which a convolutional

neural network is used to estimate the Q-function from raw

visual data. In order to scale Q-learning to a complex

model such as CNNs, a replay buffer of training samples is

collected from the performing policy and random mini-

batches from the buffer are used to perform off-policy

training. This buffer is important as it allows for random

sampling of instances from different situations within the

task. This technique has shown human level performance

on several Atari games and paved the road for deep rein-

forcement learning methods. A similar concern is raised in

[30] where a reservoir of liquid state machines (LSM)-

based method is proposed to overcome over correlation

between the training samples and the network’s sensitivity

to the input. For a survey of reservoir-based methods refer

to [31]. Since Q-functions provide an estimated reward for

each possible action, Q-learning methods can only be

applied to tasks with discrete actions. To use deep rein-

forcement learning in tasks with continuous action spaces,

[9] adapts the contributions of DQN are adapted to an

actor-critic reinforcement learning method. This algorithm

consists of an acting step, in which a convolutional neural

network outputs an action in continuous space, and a critic

step where the rewards from the environment are used to

evaluate the performed action. This approach is demon-

strated to successfully learn tasks that require continuous

input such as racing simulators from raw pixels. In [28], a

number of asynchronous deep reinforcement learning

methods are proposed. Instead of the replay buffer, these

methods enforce diversity in the training samples by cre-

ating parallel threads in which multiple agents are acting;

each in its own environment. Discarding the replay buffer

and relying on parallel online learning allows both on-

policy and off-policy reinforcement learning methods to be

adapted to this approach. The best results from the methods

proposed in this work belonged to Asynchronous advan-

tage actor-critic (A3C), and set a new state of the art on the

Atari benchmark and showed success on a 3D navigation

task. A3C has been evaluated using a feed forward network

similar to the one used in DQN and a long short-term-

memory (LSTM) network that considers the past when

predicting a new action. A version of A3C has been

modified in [10] to take an image of the target as input in

addition to the current view of the agent. The results show

that this extra information significantly decreases the time

required to reach the target.

Although most efforts focus on incorporating deep

learning in reinforcement learning methods, examples of

good behavior provided by an expert can significantly

reduce the policy space and result in more efficient learn-

ing. If sufficient training samples are available, deep

learning can be used to learn an effective policy from

demonstrations. A drone is trained to navigate through

cluttered environments in [32] using a dataset of good and

bad examples (crashes). A camera mounted on the drone

provides images of the environment in front of it. These

images are used by a deep neural network to decide whe-

ther to move forward or not. If the drone does not move

forwards it will turn to face a new direction and feed the

new images to the network to make a decision. The deep

network used for training follows the AlexNet architecture

[4] and uses 2 output nodes to perform the binary classi-

fication. In [8], demonstrations for the Atari Benchmark

used in [29] are generated using an offline Monte Carlo

policy. These demonstrations are used to train a deep

convolutional neural network in a supervised manner

392 Neural Comput & Applic (2018) 29:389–404

123

where the network predicts the likelihood of performing

actions rather than expected rewards. The results show that

the supervised policy learned from demonstrations out-

performs DQN on Atari games. Similarly in [33], DQN is

compared to learning from demonstrations on a game of

‘‘Pacman.’’ The demonstrations were provided by the

authors playing through the game. The results show that the

imitation learning approach resulted in an agent that can

play the game effectively, while DQN failed to learn a

well-performing policy. Most of the researches that utilize

demonstrations with deep learning do so in combination

with learning from experience to get the benefits of both

approaches.

3.3 Combining learning from demonstrations

and experience

A common paradigm in combining learning from demon-

strations and experience is to train the agent using rein-

forcement learning while using demonstrations to provide

information that helps the reinforcement learning process.

One such method is apprenticeship learning [11] where

demonstrations are used to infer a reward function rather

than to directly train a policy. Therefore, apprenticeship

learning does not need to receive explicit rewards from the

environment. Instead, it is assumed that the demonstrator is

attempting to solve the task in a manner that optimizes an

unknown reward function. The demonstrations are then

used to learn an estimation of this reward function. The

learned reward function provides feedback to the rein-

forcement learning algorithm in order to learn a policy.

This approach in addition to not requiring an explicit

reward system has the advantage of creating a policy that

follows the demonstrator’s priorities. However, insufficient

demonstrations that don’t cover possible scenarios can

affect the generalization ability of the agent by creating an

inadequate estimation reward function. Deep learning has

been integrated with apprenticeship learning to train the

reinforcement learning algorithm from raw pixels using a

convolutional neural network [34].

In [6] supervised learning is used in two different ways

to assist deep reinforcement learning to learn to play the

board game ‘‘GO.’’ Firstly, a dataset of previous games is

used to train a supervised convolutional neural network to

play the game. The weights of the network are used to

initialize the network used for reinforcement learning, so

the agent starts exploring from a good starting policy.

Secondly, a set of recorded games is used to train a net-

work to predict whether the game will end in a win or a

loss given the current state. This evaluation function pro-

vides feedback to the reinforcement learning algorithm so

it can learn from the estimated consequences of each

action. This method significantly outperforms direct imi-

tation [35] and has shown the ability to beat human experts.

Guided policy search [36] allows combining learning

from demonstrations with policy search reinforcement

learning. A model-based approach generates guiding

samples from demonstrations using differential dynamic

programming (DDP). A model-free policy search algo-

rithm then uses these sample trajectories to explore areas in

which it is likely to be rewarded. By following the guid-

ance of demonstrations the agent has faster access to

rewards, which expedites learning through reinforcement

learning. In [7], supervised and reinforcement learning are

combined to perform deep end-to-end training on a number

of object manipulation tasks. This approach does not

require a dedicated teacher as the demonstrations are

generated using a reinforcement learning policy. This

policy is trained with knowledge of the positions of rele-

vant objects. Generated trajectories of successful behavior

are used to train a supervised convolutional neural network.

The agent now learns the task from visual input with no

information about the positions of objects. In [37],

demonstration is used to initialize reinforcement policies.

Because RL agents require a large number of trials before it

achieves acceptable performance, using RL in many real-

world applications may not be practical. Therefore,

demonstrations are used to train an initial policy using

supervised loss as well as temporal difference (TD) loss.

DQN is then used to re-train the policy by continuing to

optimize the TD loss. This method shows significantly

faster learning than using DQN from scratch and outper-

forms using RL only on a number of Atari games.

3.4 Active learning

Instead of using demonstrations to expedite reinforcement

learning, a different approach would be to improve the

generalization ability of supervised methods. This requires

using the supervised policy’s performance to generate

corrective feedback. In active learning, the agent is allowed

to act according to its initially learned policy and queries

the expert when in situations of low confidence. The expert

provides the agent with the optimal action which enables it

to continue exploring this previously unrepresented situa-

tion. These active samples are collected and used to re-train

the policy, thus improving its weakest areas. In [19], active

learning helps a robot to explore navigation tasks. With

each action predicted by the robot’s policy, an estimate of

the policies confidence in this action is calculated. In

unfamiliar situations where the policies confidence is lower

than a certain threshold, the robot queries a teacher for the

correct action. These active samples help the robot explore

unseen scenarios based on its initial policy and improve its

ability to generalize. Due to the nature of imitation learning

Neural Comput & Applic (2018) 29:389–404 393

123

applications, it can be difficult for the teacher to provide

active feedback when queried mid-trajectory. Therefore, in

some applications the teacher can prompt the active cor-

rections in contrast to traditional active learning. For

example, in [38] the teacher identifies errors in the robot’s

actions and physically corrects the robot’s movement

during the performance. These adjustments are identified

by the learner and used as active demonstrations. However,

learner queries can still be employed to improve action

trajectories. In [39], this problem is reduced to independent

and identically distributed (IID) active learning and allows

the agent to query the teacher at any step in the trajectory.

Another special version of active learning can be seen in

human–robot cooperation tasks. The robot and human are

mutually dependent in their attempts to achieve a common

goal. So as the human adapts to the robot’s action, the robot

in return needs to adapt to the updated scenario. In [40],

human–robot interaction occurs in rounds with an episode

of active learning taking place between each round. The

active learning stage updates the robot’s policy to accom-

modate for human behavior unseen in its initial training.

While in the interaction round, the human modifies their

behavior according to the robots actions. This process is

repeated until the mutual actions of the interacting parties

converge into a smooth cooperative behavior.

4 Methods

This section presents the proposed method for learning

from demonstration using active learning and deep neural

networks. Methods for combining learning from demon-

strations and experience using deep networks are also

described.

4.1 Deep active imitation learning

The proposed method is divided into three processes: (1)

collecting demonstrations. (2) Supervised training of the

neural network. (3) Active learning to refine the initially

learned policy. This novel method combines supervised

deep learning with data aggregation using active learning

to produce a robust imitation learning approach with a

relatively small number of training samples. Table 1

summarizes key differences between the proposed method,

deep active imitation (DAI), and other approaches that use

deep learning that learn from raw pixels, deep-Q-networks

(DQN) [29] and deep guided policy (DGP) [7]. The

table shows differences in the approaches such as the

methods used to generalize the policy to unseen scenarios,

the methods used to gather demonstrations and how the

states are constituted from the captured frames. Moreover,

it shows differences in the tasks and environments in which

the different approaches are utilized. The viewpoint is the

perspective from which the state of the environment is

captured. Having a fixed point of view may help keep track

of changes in the state, while having a dynamic viewpoint

can be more challenging as the scene changes completely

with small movements in the viewpoint. The trajectory

refers to the sequence of steps typically needed to suc-

cessfully complete the task. A longer trajectory can be

harder to learn as small errors mid-trajectory can propagate

and cause failure to reach the target. The environments

refer to the settings in which the experiments are con-

ducted. The environment can be randomized at every run,

so the agent is faced with unfamiliar states. The more

random the environment, the more the agent’s policy needs

to generalize to the changing circumstances.

We begin by describing the process of collecting

demonstrations. The demonstrations are collected from the

point of view of the agent while being controlled by the

teaching policy. A teacher providing demonstrations may

be assumed to be optimizing an unknown optimal function.

Therefore, as the teaching policy we use a deterministic

optimal policy p� to control the agent. This policy has

access to information from the simulator such as the

position of the agent and the target in 3D space in order to

deterministically calculate the optimal action. For each

frame t the view of the agent is captured as well as the

action chosen by the optimal policy. This pair ðxt; ytÞ is

added to the dataset of demonstrations D ¼ ðx; yÞ where xi
is a 120� 90 image and yt is the action predicted by p�ðxtÞ.
Only one frame is used in an instance ðxt; ytÞ as opposed to

a sequence of consecutive frames which is usually used in

deep reinforcement learning. Many AI applications are

formulated as a Markov decision process (MDP) where the

current state on its own is sufficient to predict the action to

perform. And while deep reinforcement learning methods

[5, 29] commonly represent the state by a sequence of

frames, in the navigation tasks at hand the current view of

the agent is enough for the optimal policy to make a

decision. Next the captured dataset D is used to train the

policy p such that u ¼ pðx; aÞ. Where x is a 120� 90

image and u is the action predicted by policy p for input x,

and a is the set of policy parameters that are changed

through learning. The policy is learned using a deep con-

volutional neural network. The network used has 3 con-

volution layers with rectifier unit activation functions. Each

layer automatically extracts higher level features from its

input. The input to the first convolution layer is a lumi-

nance map of the captured 120� 90 image. This trans-

formation allows us to use one channel for greyscale

instead of three channels for the RGB colors. Each con-

volutional layer is followed by a pooling layer to further

reduce the dimensionality. Following is a fully connected

layer with a rectifier unit activation function and finally an

394 Neural Comput & Applic (2018) 29:389–404

123

output layer which directly represents the action available

to the agent. Figure 1 and Table 2 show the architecture of

the network

Finally, active learning is used to adapt the initial policy

learned from demonstrations to new situations that arise

from the agent’s behavior. The agent is allowed to act in

the environment according to its current policy. The

agent’s confidence in its actions is estimated in order to

identify weaknesses in the initial policy. In each frame the

agent’s network provides a probability for each possible

action. If probabilities to perform all actions are similar,

then it is implied that the agent is not confident about

which action to take in the current state. The opposite is the

case if one action is far more probable than the rest. The

confidence of the agent is estimated as the entropy of the

action probabilities.

HðXÞ ¼ �
X

i

PðxiÞ log2 PðxiÞ ð1Þ

where X is a vector representing the output of the final layer

in the network, PðxiÞ is the probability of taking action

i. The agent queries the optimal policy if its confidence is

lower than a certain threshold. The action returned by the

optimal policy and the current frame are recorded in a

dataset of active samples. The active samples represent

situations that were unseen in the initial training data but

are likely to appear when executing the current policy.

Thus, active learning helps the agent generalize to relevant

scenarios. The training dataset is augmented with the active

dataset and used to update the agent’s policy. The policy is

updated by keeping the network weights learned during

supervised learning when training the network using the

augmented dataset. Initializing the weights in this way

results in faster and easier convergence as retraining the

network from scratch with the augmented dataset can be

time consuming [41]. The training set used in this step

includes both the active samples and the samples originally

collected from demonstrations. If the network is only

updated with the active samples, the initial policy is for-

gotten and replaced by one solely learned from the active

samples, which is not sufficient [42]. This is known as the

catastrophic forgetting phenomena [43] and can have

Table 1 A comparison of deep

learning agent approaches
Method DAI DQN DGP

Input Pixels Pixels Pixels

Generalization Active learning Q-learning Policy gradient

State representation Greyscale frame 4 Greyscale frames RGB frame

Demonstration source Teacher Reinforcement learning N/A

Viewpoint Dynamic Static Static

Trajectory Long Various Shorter

Environment 3D simulator 2D simulator Real world

Randomization Extensive Extensive Limited

Fig. 1 Architecture of the neural network used to train the agent

Table 2 Neural network architecture

Layer Size of activation volume

Input 120� 90

Conv1 7� 9� 20

Conv2 5� 5� 50

Conv3 4� 5� 70

FC 500

Output (FC) 3

Neural Comput & Applic (2018) 29:389–404 395

123

severe effects on the agent’s performance if the network

was trained online using the acquired active samples.

Algorithm 1 shows the proposed method.

Algorithm 1 Active Deep Imitation Learning Algorithm
1: Given: A policy π trained on a Data set D = (xi, yi)

Confidence threshold β
2: while Active Learning do
3: x = current frame
4: u = π(x, α)
5: H(X) = −∑

i
P (ui) log2 P (ui)

6: if H(X) < β then
7: y = Query(x)
8: perform action y
9: add (x, y) to D
10: else
11: perform max(u)
12: Update π using D

4.2 Combining deep learning from demonstrations

and experience

In this section we propose methods for combining learning

from demonstrations and experience. The policy is learned

using DQN [29] while using teacher demonstrations to

expedite reinforcement learning. While a demonstrated

instance is represented as a pair (x, y), in reinforcement

learning additional attributes are added to represent an

instance as a tuple ðs; a; r; s0Þ. s describes the current state of
the agent in its environment and corresponds to x in demon-

strations. a is the action taken by the agent and belongs to the

same set of possible actions as y. r is a reward provided by the

environment for performing action a in state s and s0 is the
resulting new state. Reinforcement learning assumes the task

takes place in an environment �. An experience is represented

as a tuple ðs; a; r; s0Þwhere s is the state, a is the action taken at
state s, r is the reward received for performing action a, and s0

is the new state resulting from that action. To combine

learning from demonstrations and experience, the agent is

trained using deep reinforcement learning, while demonstra-

tions are used to facilitate the training process. The rein-

forcement learning algorithm follows [5] and uses a

convolutional neural network to learn discounted rewards for

performed actions. The network optimizes a Q-function

Q(s, a) that predicts an estimated reward for the input state

action pair. The Q-function is learned recursively using the

Bellman equation.

Qðs; aÞ ¼ Es0�½r þ cmaxa0Qðs0; a0Þjs; a� ð2Þ

where c is a discount parameter and maxa0Qðs0; a0Þ is the

largest estimated reward available to the agent at the next

state s0. In the case where s is a terminal state which ends

the task, Qðs; aÞ ¼ r as there is no future state. This ends

the recursive learning of Q.

The learning method is model free and does not require a

working model of the environment but rather just the expe-

rience tuples ðs; a; r; s0Þ. The method also learns off-policy,

that is, the learned policy is different from the performed

policy. Therefore, an optimal policy p� which provides the

optimal action choice a� ¼ p�ðsÞ can be used to provide

demonstrations through off-policy exploration to guide the

agent to reward dense areas in the search space. We investi-

gate two methods for utilizing demonstrations in deep rein-

forcement learning. The first is to simply initialize the Q

networkwith weights learned from supervised learningwith a

dataset of demonstrations. Supervised learning is conducted

as in Sect. 3.1 on a networkwith the same architecture as theQ

network. The last layer uses a linear activation function

instead of the softmax function used for classification in Sect.

3.1 as the Q network predicts continuous rewards for each

available action.The agent uses randomactions and its current

policy to explore the environment, so initializing the network

helps the agent explore behaviors similar to the teacher’s. The

second approach is to use demonstrations from the optimal

policy p� to guide the agent’s exploration. The performance

policy alternates between at ¼ p�ðstÞ and random actions, to

encourage exploration beyond the teacher’s demonstrations.

Note that the choice between using demonstrations and ran-

dom actions is performed once before each episode not before

each action. It is easier in most applications for the teacher to

provide demonstrations by performing the whole trajectory.

This way the teacher is not required to produce an optimal

action in themiddle of the trajectory (such as in active learning

techniques). The performance policy gradually shifts toward

using the learned policy p where at ¼ maxaQðst; a; pÞ, i.e.,
choose the actionwith the greatest predicted reward according

to the trainedneural network. In this approach, the information

from demonstrations is independent of the agent’s learning

process, while in the first approach the initialized policy

changes with training.

Algorithm 2 summarizes learning from experience using

guiding demonstrations. The demonstrations are provided

as in traditional learning by demonstration problems by

simply performing the task in an optimal manner. Unlike

[6], no specially designed labeled dataset is needed to pre-

train Qðs0; a0Þ, which makes the training process more

generic and streamlined. The task is assumed to be an MDP

where the current state represents all past information (no

extra context is needed to make a decision). Therefore, a

single frame is used as the agent’s observation and the

resulting policy is stationary (i.e., does not require infor-

mation about the current position in the trajectory).

396 Neural Comput & Applic (2018) 29:389–404

123

5 Experiments

This section describes the experiments conducted to eval-

uate the methods detailed in Sect. 3. We present, discuss

and analyze results comparing direct imitation learning,

active learning and reinforcement learning methods. The

experiments are conducted in the framework of MASH

simulator [2] as well as a 2D Grid navigation task.

5.1 Grid navigation task

This task is a simplified representation of navigation

tasks which facilitates testing and analysis of learning

algorithms in controlled manner. The environment is

constructed of a grid where each cell is a state in the

MDP and the agent is allowed to move between cells

using 4 actions (Go Left, Go Right, Go forward, Go

Back). Each state is represented by an 84� 84 image of

the number which reflect the number of this cell in the

grid. These states are automatically generated given the

dimension of the grid in terms of cells. The goal of the

agent is to reach a target cell on the grid. Grids of

dimensions 5� 5, 15� 15 and 30� 30 are used in this

paper. This task is simple in that the environment is

static, i.e., performing the same trajectory results in the

same outcome. Therefore, the task does not pose the

challenges of generalization. Another simplified aspect is

having finite well defined states. However, the task

presents other features which are relevant to real navi-

gation tasks. Namely that it requires learning from raw

visual data and requires long trajectories of dependent

actions to achieve the target. The environment offers no

intermediate positive feedback, while the agent is per-

forming the task and only supplies a positive terminal

reward when the target is reached. This is challenging as

in a 30� 30 grid, the shortest path to reach a reward

consists of 57 steps. To give perspective, in a photo-

realistic 3D environment which is used to train deep

reinforcement learning agents [27], the shortest path to

reach the reward is typically less than 20 actions. Fig-

ure 2 illustrates this task on a grid of size 5� 5. The

agent’s starting position is shown by the blue marker,

while the target state is highlighted in green.

To train the imitation learning policy, a dataset of

demonstrations is collected by having a deterministic

optimal policy control the agent. Pairs of state and action

are captured and added to the training set. The demon-

strations are used to train a deep neural network in a

supervised manner. To evaluate the deep reinforcement

learning algorithms DQN and A3C, the agent explores the

environment using trial and error and receives a positive

reward (? 1) if it reaches the target and a negative reward

(- 1) if it selects an action that would take it out of the

grid. In this case, the agent’s position is not changed. The

algorithms are run for 1000 epochs, each epoch consisting

of 2500 steps. A testing step is conducted after each epoch

where the result is 1 if the agent reached the target within a

step limit and 0 otherwise.

Fig. 2 Illustration of the grid navigation task

Algorithm 2 Learning from demonstration and experience
1: Given: Teacher policy π∗

Exploration factor α
Performance policy π̂ alternates between π∗ and random choice according to α
Network Q(s, a) with random weights

2: for episodes do
3: for timestep t = 1 : T do
4: a∗

t = π̂(st)
5: With probability ε, at = a∗

t
6: Otherwise at = maxaQ(st, a;π)
7: Perform at and get rt,st+1
8: Given the tuple (st, at, rt, s′) train Q(s, a):
9: if si+1 is terminal:
10: yi = ri
11: else
12: yi = ri + γmaxa′Q′(st+1, a′; θ) + F (si, ai, st+1)
13: Optimize π using gradient descent for loss = yt − Q(st, at;π)

Neural Comput & Applic (2018) 29:389–404 397

123

5.2 MASH simulator

MASH simulator [2] is a framework for evaluation of

vision-based learning methods. It contains a number of

tasks and environments designed for navigation. For each

task, success and failure criteria as set, as well as a reward

function and a teaching policy which considers 3D infor-

mation from the simulator. The experiments in this paper

are evaluated on 4 tasks.

5.2.1 Reach the flag

The goal of this task is to reach a flag which is placed

randomly in a room. The task is considered successful if

the agent reaches the flag within an allocated time limit.

5.2.2 Follow the line

The goal of this task is to follow a pattern drawn on the

floor which leads to the target. The pattern shows the

direction in which the agent should move in order to reach

the target. The task fails if the agent moves out of the

patterned area.

5.2.3 Reach the correct object

The goal of this task is to reach an object while avoiding

another similar looking object. The task fails if the wrong

object is reached or if a time limit is exceeded before

finding the correct object.

5.2.4 Eat all disks

The objective of this task is to collect as many disks as

possible within a time limit. Several black disks are laid out

in a large room, and new disks appear once one is collected

by the agent. Unlike other tasks, there are no failure criteria

but only a score at the end of the given time.

Figures 3, 4, 5, 6 show sample images of the 4 tasks. The

images are shown in the same quality and size (120� 90)

size produced by the simulator and used by the agent in the

experiments.

For supervised learning, each task is trained on 20000

samples. Active learning is conducted using an active

sample size of 5 and 10% of the training data. Reinforce-

ment learning algorithms are trained for 100 epochs of

250,000 steps each. A3C utilizes 8 parallel processes. And

frame skipping of 5. Frame skipping can greatly help

reinforcement learning by shortening the trajectory and

enhancing exploration through taking bigger steps. How-

ever, delicate navigation can limit the number of frames to

skip. For instance, in the ‘‘Follow the line’’ task, navigating

the narrow corners of the patterned corridor fails when

using high-frame skipping values even while following the

optimal policy.

5.3 Inter-process communication

For both simulators, the agent is decoupled from the sim-

ulator and the learning algorithm. This allows for generic

independent modules and facilitates interchanging tasks

and learning algorithms. A TCP connection is used to

communicate between the different components.

Figure 7 shows the process of collecting demonstrations.

The agent requests the current state from the simulator and

receives an image and an optimal action. The agent saves

the state action pair and sends the action back to the sim-

ulator for execution. The simulator updates the state, and

the process is repeated. The collected dataset is used to

train the neural network offline. Figure 8 shows the process

of the agent performing a task based on the learned policy.

Figure 9 presents the process of learning from experience

used in combining reinforcement learning and imitation.

The agent communicates with the simulator to receive the

state of the environment and the reward and sends them to

the learning network. The learning network uses this

information to decide the next action and update the policy.

The prediction action is sent to the agent which in turn

communicates it to the simulator.

5.4 Results

Firstly, the results for experiments on the Grid task are

presented. Since this task presents no states that are unseen

Fig. 3 Sample images from ‘‘Reach the flag’’

398 Neural Comput & Applic (2018) 29:389–404

123

in the demonstrations, for all grid sizes, the supervised

policy was able to consistently solve the problem using

only 5 demonstrations. Figure 10 shows results comparing

DQN and A3C on the three grid sizes. Since success in this

task is binary, the score counts how many epochs up to the

current epoch have resulted in successful test sessions. This

evaluation method produces a graph that shows the

improvement and stability of the learned policy over

training epochs.

The results on the Grid tasks show that considering

static tasks, learning from demonstrations can be successful

with far viewer training instances than learning from

Fig. 4 Sample images from ‘‘Follow the line’’

Fig. 5 Sample images from ‘‘Reach the correct object’’

Fig. 6 Sample images from ‘‘Eat all disks’’

Fig. 7 Dataset collection flowchart

Fig. 8 Imitation agent playing flowchart

Fig. 9 Reinforcement learning flowchart

Neural Comput & Applic (2018) 29:389–404 399

123

experience. Moreover, learning from experience becomes

exponentially more difficult as the size of the grid increa-

ses. This is evident in the failure of A3C to learn on 30�
30 grid. This failure stems from the delayed rewards which

makes obtaining feedback less frequent. The agent learns

from the more readily available negative rewards to avoid

the edges of the grid but is not able to reach the target.

Following, the results for experiments on the MASH

simulator are presented. The same network and parameters

are used to learn all tasks. The agent’s performance is

evaluated by performing each task in the simulator for

1000 rounds. For the first 3 tasks, a success rate is calcu-

lated as the percentage of rounds in which the agent suc-

cessfully completed the task out of 1000 rounds. For the

fourth task ‘‘Eat all disks,’’ the evaluation measure used is

the number of disks eaten in 1000 rounds. The results for

deep reinforcement learning methods are reported after 100

epochs of training. For the imitation network, the classifi-

cation error on an unseen test set is also reported. The test

set consists of 20,000 samples collected from the teacher’s

demonstrations.

Table 3 shows the results for ‘‘Reach the flag,’’ ‘‘Reach

the correct object’’ and ‘‘Follow the line.’’ The Success

rates are reported for supervised learning, DQN and A3C

as well test error for supervised learning. Supervised

learning showed good performance on ‘‘Reach the flag’’

with a success rate of 96:2%. On ‘‘Follow the line’’ it

resulted in a 40:7% success rate. This is attributed to the

failure criteria in ‘‘Follow the line’’ where a small deviation

can result in the agent leaving the designated path and

failing the round. While in ‘‘Reach the flag’’ the round is

not failed unless the time limit is reached. If the agent

makes an error in prediction and approaches the walls there

is room for recovery. As the details of the walls become

clearer the agent acts according to its learned policy and

continues to search for the flag. Supervised learning

resulted in a success rate of 53:1% on ‘‘Reach the correct

object.’’ Qualitative analysis shows that the agent fails to

distinguish between the two objects and approaches them

both resulting in a high failure rate. This could be attributed

to the fact that the demonstrating policy does not avoid the

wrong object if it stands between the agent and the target

and only demonstrates avoiding the wrong object from a

distance. Therefore, there are insufficient data to teach the

agent to avoid the wrong object. The demonstrating policy

performs the task with an 80:2% success rate. A better

demonstrator which actively avoids the wrong object in all

cases could result in a better performance for the trained

agent. This highlights direct imitation’s lack of general-

ization beyond the provided demonstrations. Both rein-

forcement methods failed to learn a robust policy to solve

any of the 3 tasks. Qualitative analysis shows that all

successful attempts during testing were achieved by chance

without any clear pattern in the learned policy. Since

‘‘Follow the line’’ requires a longer trajectory and is not as

fault tolerant as the other tasks, it is less suitable for ran-

dom exploration. Thus, reaching the target by chance is

more difficult and the success rate is 0%. The test errors for

all 3 tasks are relatively low and don’t reflect the failure

rates. This shows that small prediction errors can lead the

agent to face situations that are not represented in the

demonstrations and therefore propagate erroneous

(a) 5 X 5 (b) 15 X 15 (c) 30 X 30

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

0

250

500

750

1000

Epochs

Sc
or

e Method
DQN

A3C

Fig. 10 DQN and A3C results on the grid navigation task

Table 3 Direct imitation results
Task Reach the flag (%) Reach object (%) Follow the line (%)

Direct imitation 96.20 53.10 40.70

DQN 6.40 6.00 0.00

A3C 7.60 8.9 0.00

Error 2.48 4.06 0.86

400 Neural Comput & Applic (2018) 29:389–404

123

behavior. Since the agent in ‘‘Reach the flag’’ was able to

correct its behavior following wrong prediction, we eval-

uate the effect of the time limit on the agent’s success.

Figure 11 shows the success rate against different time

limits represented as percentages of the original time limit.

The graph shows that the success rate improves with longer

time limits, which shows that continuing to follow the

learned policy can result in success even after sub-optimal

behavior.

Table 4 shows results for ‘‘Eat all disks.’’ The

table compares the scores achieved by direct imitation,

DQN, A3C and the optimal policy. The results show that

direct imitation achieves 97:9% of the score achieved by

the optimal policy while again learning from experience

failed to produce an effective policy.

Figures 12 and 13 show results for the 4 tasks in terms of

rewards received for DQN and A3C, respectively, over 100

epochs. The test results are reported every 10 epochs and

show rewards averaged over the test rounds. The graphs

show no pattern of improving the performance with the

increasing number of epochs.

In Fig. 14, the proposed active learning method is

evaluated on ‘‘Follow the line.’’ Active learning is not used

on the other tasks as the demonstrating policies keep track

of the target’s location even if it not in the current frame.

This contradicts with the approach of learning solely from

the current visual data and requires either incorporating

memory in the learning process or replacing the policy that

provides active samples. The graph compares the success

Fig. 11 Results for ‘‘Reach the flag’’ task with increasing time limits

Table 4 ‘‘Eat all disks’’ results

Task Direct imitation Optimal policy DQN A3C

Score 1051 1073 51 45

Error 1.70% – – –

−15

−10

−5

0

25 50 75 100
Epochs

R
ew

ar
d

Task
reach the flag
follow the line
reach correct object
eat all disks

Fig. 12 Results for DQN on navigation tasks in MASH simulator

−5.0

−2.5

0.0

25 50 75 100

Epochs

R
ew

ar
d

Task
reach the flag
follow the line
reach correct object
eat all disks

Fig. 13 Results for A3C on navigation tasks in MASH simulator

Direct Imitation Active 5% Active 10%

Success Rate
Test Accuracy

0
25

50
75

10
0

Fig. 14 Results for active learning on ‘‘Follow the line’’ task

−10.0

−7.5

−5.0

−2.5

0.0

25 50 75 100
Epochs

R
ew

ar
d Method

DQN
Initialized DQN
DQN demonstrations

Fig. 15 Results for combining learning from demonstrations and

experience on ‘‘Reach the flag’’

Neural Comput & Applic (2018) 29:389–404 401

123

rate and test error of direct imitation against those of active

learning using 5% and 10% of the training data. The results

show that active learning significantly improves the suc-

cess rate of the agent. Increasing the size of the active

dataset is shown to further improve the performance.

Comparing the improvement in classification error against

that in success rate emphasizes the point that poor agent

behavior stems from situations that are not represented in

the teacher’s demonstrations.

Next we evaluate combining learning from demonstra-

tions and experience. The two methods proposed in Sect.

3.2 to help DQN using demonstrations are compared to

traditional DQN on the ‘‘Reach the flag’’ task. ‘‘Initialized

DQN’’ initializes the policy network of DQN with the

parameters learned from supervised learning, while ‘‘DQN

demonstrations’’ refers to using demonstrations from the

optimal policy to perform off-policy rollouts. Figure 15

shows the average rewards every 10 epochs for 100 epoch.

The graph shows that utilizing demonstrations using the

two proposed methods did not enhance the performance of

DQN. The initial policy learned from demonstrations is

quickly overwritten and thus provides no benefit to the

learning policy or the rollout policy. This happens as there

are no constraints to preserve the initial policy once DQN

training starts. Guiding the agent by utilizing demonstra-

tions in exploration also did not show any improvement.

By looking at the probability distribution of the output

layer of the network, we attribute this failure to the fact that

the cost function used in DQN training does not consider

output nodes other than the performed action. Therefore,

when applying a rollout policy of optimal actions, the

probabilities of non-used actions change arbitrarily. A cost

function that includes all actions could be considered, but

since DQN uses a periodically updated target network, the

learned parameters for the performed actions will be

overwritten with every update.

Overall, the results of the proposed learning from

demonstrations method show good performance on 3 out of

the 4 tasks. They demonstrate the effectiveness of active

learning to significantly improve a weak policy with a

limited number of samples. Even without active learning

the agent can learn a robust policy for simple navigation

tasks. Comparisons with deep reinforcement learning

methods show that learning from demonstrations can learn

the same task with substantially fewer training instances.

Results of deep reinforcement learning methods showed

that learning becomes more difficult with longer trajecto-

ries and that they failed to learn the 4 tasks on MASH

simulator.

6 Conclusion and future directions

In this paper, we propose a framework for learning

autonomous policies for navigation tasks from demon-

strations. A generic learning process is employed to learn

from raw visual data without integrating any knowledge of

the task. This method is compared to two state-of-the-art

deep reinforcement learning methods. Active learning is

employed to help the agent generalize to unseen situations.

Methods for combining learning from demonstrations and

experience are also investigated to improve the general-

ization ability of the agent while taking advantage of

provided demonstrations. The experiments are conducted

on a testbed that facilitates reproduction, comparison and

extension of this work. The results show that CNNs can

learn meaningful features from raw images of 3D envi-

ronments and learn a policy from demonstrations. They

also show that active learning can significantly improve a

learned policy with a limited number of samples. More-

over, it is shown that learning from demonstrations can be

successful with significantly fewer instances than learning

from experience and outperforms deep reinforcement

learning methods on the 4 3D navigation tasks used. The

comparison between learning from demonstrations and

experience highlights the limitations of both techniques.

Direct imitation can generalize poorly if no appropriate

active samples are available. While learning by trial and

error from scratch can be ineffective in tasks with long

trajectories and sparse rewards.

In the future we aim to further investigate tackling the

generalization problem in imitation learning methods.

More general active learning methods are to be investi-

gated in order to work with a larger variety of tasks.

Incorporating memory of past actions in imitation learning

would allow for active learning with different expert

policies. Although initial results were not successful,

integrating learning with experience and demonstrations

can help with generalization without requiring teacher

involvement. In the next step we aim to investigate using

guiding demonstrations with reinforcement learning

methods that use different cost functions and do not require

target networks. Furthermore, adapting the online learning

methods in [44] can speed up retraining while overcoming

the catastrophic forgetting phenomenon. This can also

potentially allow one network to learn multiple tasks.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/),which permits unrestricted

402 Neural Comput & Applic (2018) 29:389–404

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

use,distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Hussein A, Gaber MM, Elyan E (2016) Deep active learning for

autonomous navigation. In: International conference on engi-

neering applications of neural networks. Springer, pp 3–17

2. Mash-Simulator (2014) Mash-simulator. https://github.com/idiap/

mash-simulator

3. Ciresan D, Meier U, Schmidhuber J (2012) Multi-column deep

neural networks for image classification. In: IEEE Conference on

computer vision and pattern recognition (CVPR), 2012. IEEE,

pp 3642–3649

4. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classi-

fication with deep convolutional neural networks. In: Advances in

neural information processing systems, pp 1097–1105

5. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Belle-

mare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G

et al (2015) Human-level control through deep reinforcement

learning. Nature 518(7540):529–533

6. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den

Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V,

Lanctot M et al (2016) Mastering the game of go with deep neural

networks and tree search. Nature 529(7587):484–489

7. Levine S, Finn C, Darrell T, Abbeel P (2015) End-to-end training

of deep visuomotor policies. arXiv preprint arXiv:150400702

8. Guo X, Singh S, Lee H, Lewis RL, Wang X (2014) Deep learning

for real-time Atari game play using offline Monte-Carlo tree

search planning. In: Advances in neural information processing

systems, pp 3338–3346

9. Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver

D, Wierstra D (2015) Continuous control with deep reinforce-

ment learning. arXiv preprint arXiv:150902971

10. Heinrich J, Silver D (2016) Deep reinforcement learning from

self-play in imperfect-information games. arXiv preprint arXiv:

160301121

11. Abbeel P, Ng AY (2004) Apprenticeship learning via inverse

reinforcement learning. In: Proceedings of the twenty-first inter-

national conference on machine learning. ACM, p 1

12. Hussein A, Gaber MM, Elyan E, Jayne C (2017) Imitation

learning: a survey of learning methods. ACM Comput Surv

(CSUR) 50(2):21

13. Togelius J, De Nardi R, Lucas SM (2007) Towards automatic

personalised content creation for racing games. In: Proceedings

of IEEE symposium on computational intelligence and games,

2007. CIG 2007. IEEE, pp 252–259

14. Sammut C, Hurst S, Kedzier D, Michie D et al (1992) Learning to

fly. In: Proceedings of the ninth international workshop on

machine learning, pp 385–393

15. Abbeel P, Coates A, Quigley M, Ng AY (2007) An application of

reinforcement learning to aerobatic helicopter flight. Adv Neural

Inf Process Syst 19:1

16. Ng AY, Coates A, Diel M, Ganapathi V, Schulte J, Tse B, Berger

E, Liang E (2006) Autonomous inverted helicopter flight via

reinforcement learning. In: Ang MH, Khatib O (eds) Experi-

mental robotics IX. Springer, Berlin, Heidelberg, pp 363–372

17. Silver D, Bagnell JA, Stentz A (2008) High performance outdoor

navigation from overhead data using imitation learning. In:

Robotics: science and systems. Robotics Institute, Carnegie

Mellon University, Pittsburgh, PA

18. Ratliff N, Bradley D, Bagnell JA, Chestnutt J (2007) Boosting

structured prediction for imitation learning. Robotics Institute,

Pittsburgh, p 54

19. Chernova S, Veloso M (2007) Confidence-based policy learning

from demonstration using Gaussian mixture models. In: Pro-

ceedings of the 6th international joint conference on autonomous

agents and multiagent systems. ACM, p 233

20. Ollis M, Huang WH, Happold M (2007) A bayesian approach to

imitation learning for robot navigation. In: IEEE/RSJ interna-

tional conference on intelligent robots and systems, 2007. IROS

2007. IEEE, pp 709–714

21. Saunders J, Nehaniv CL, Dautenhahn K (2006) Teaching robots

by moulding behavior and scaffolding the environment. In: Pro-

ceedings of the 1st ACM SIGCHI/SIGART conference on

human-robot interaction. ACM, pp 118–125

22. Ross S, Melik-Barkhudarov N, Shankar KS, Wendel A, Dey D,

Bagnell JA, Hebert M (2013) Learning monocular reactive uav

control in cluttered natural environments. In: IEEE international

conference on robotics and automation (ICRA), 2013. IEEE,

pp 1765–1772

23. Zhang T, Kahn G, Levine S, Abbeel P (2016) Learning deep

control policies for autonomous aerial vehicles with mpc-guided

policy search. In: IEEE international conference on robotics and

automation (ICRA), 2016. IEEE, pp 528–535

24. Dixon KR, Khosla PK (2004) Learning by observation with

mobile robots: a computational approach. In: Proceedings of

IEEE international conference on robotics and automation, 2004.

ICRA’04 2004, vol 1. IEEE, pp 102–107

25. Ross S, Bagnell D (2010) Efficient reductions for imitation

learning. In: Proceedings of international conference on artificial

intelligence and statistics, pp 661–668

26. Munoz J, Gutierrez G, Sanchis A (2009) Controller for torcs

created by imitation. In: IEEE symposium on computational

intelligence and games, 2009. CIG 2009. IEEE, pp 271–278

27. Zhu Y, Mottaghi R, Kolve E, Lim JJ, Gupta A, Fei-Fei L, Farhadi

A (2016) Target-driven visual navigation in indoor scenes using

deep reinforcement learning. arXiv preprint arXiv:160905143

28. Mnih V, Badia AP, Mirza M, Graves A, Lillicrap TP, Harley T,

Silver D, Kavukcuoglu K (2016) Asynchronous methods for deep

reinforcement learning. In: Proceedings of international confer-

ence on machine learning

29. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I,

Wierstra D, Riedmiller M (2013) Playing Atari with deep rein-

forcement learning. arXiv preprint arXiv:13125602

30. Schliebs S, Fiasché M, Kasabov N (2012) Constructing robust

liquid state machines to process highly variable data streams. In:

Villa AEP, Duch W, Érdi P, Masulli F, Palm G (eds) Artificial

neural networks and machine learning–ICANN 2012, vol 7552.

Springer, Berlin, Heidelberg

31. Schliebs S, Kasabov N (2013) Evolving spiking neural networka

survey. Evol Syst 4(2):87–98

32. Gandhi D, Pinto L, Gupta A (2017) Learning to fly by crashing.

arXiv preprint arXiv:170405588

33. Ranjan K, Christensen A, Ramos B (2016) Recurrent deep

Q-learning for PAC-MAN

34. Wulfmeier M, Ondruska P, Posner I (2015) Maximum entropy

deep inverse reinforcement learning. arXiv preprint arXiv:

150704888

35. Clark C, Storkey A (2015) Training deep convolutional neural

networks to play go. In: Proceedings of the 32nd international

conference on machine learning (ICML-15), pp 1766–1774

36. Levine S, Koltun V (2013) Guided policy search. In: Proceedings

of the 30th international conference on machine learning, pp 1–9

37. Hester T, Vecerik M, Pietquin O, Lanctot M, Schaul T, Piot B,

Sendonaris A, Dulac-Arnold G, Osband I, Agapiou J et al (2017)

Neural Comput & Applic (2018) 29:389–404 403

123

https://github.com/idiap/mash-simulator
https://github.com/idiap/mash-simulator
http://arxiv.org/abs/150400702
http://arxiv.org/abs/150902971
http://arxiv.org/abs/160301121
http://arxiv.org/abs/160301121
http://arxiv.org/abs/160905143
http://arxiv.org/abs/13125602
http://arxiv.org/abs/170405588
http://arxiv.org/abs/150704888
http://arxiv.org/abs/150704888

Learning from demonstrations for real world reinforcement

learning. arXiv preprint arXiv:170403732

38. Calinon S, Billard AG (2007) What is the teachers role in robot

programming by demonstration?: toward benchmarks for

improved learning. Interact. Stud. 8(3):441–464

39. Judah K, Fern A, Dietterich TG (2012) Active imitation learning

via reduction to IID active learning. arXiv preprint arXiv:

12104876

40. Ikemoto S, Amor HB, Minato T, Jung B, Ishiguro H (2012)

Physical human-robot interaction: mutual learning and adapta-

tion. Robot Automat Mag IEEE 19(4):24–35

41. Fiasché M, Verma A, Cuzzola M, Morabito FC, Irrera G (2011)

Incremental–adaptive–knowledge based-learning for informative

rules extraction in classification analysis of aGvHD. In: Iliadis L,

Jayne C (eds) Engineering applications of neural networks.

Springer, Berlin, Heidelberg, pp 361–371

42. Kasabov N (2007) Evolving connectionist systems: the knowl-

edge engineering approach. Springer, Berlin

43. Robins A (1995) Catastrophic forgetting, rehearsal and pseu-

dorehearsal. Connect Sci 7(2):123–146

44. Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G,

Rusu AA, Milan K, Quan J, Ramalho T, Grabska-Barwinska A

et al (2017) Overcoming catastrophic forgetting in neural net-

works. In: Proceedings of the national academy of sciences,

p 201611835

404 Neural Comput & Applic (2018) 29:389–404

123

http://arxiv.org/abs/170403732
http://arxiv.org/abs/12104876
http://arxiv.org/abs/12104876

	HUSSEIN 2018 Deep imitation learning for 3D
	coversheetJournalArticles
	HUSSEIN 2017 Deep imitation learning (VOR)
	Deep imitation learning for 3D navigation tasks
	Abstract
	Introduction
	Background
	Related work
	Navigation
	Deep learning from demonstrations and experience
	Combining learning from demonstrations and experience
	Active learning

	Methods
	Deep active imitation learning
	Combining deep learning from demonstrations and experience

	Experiments
	Grid navigation task
	MASH simulator
	Reach the flag
	Follow the line
	Reach the correct object
	Eat all disks

	Inter-process communication
	Results

	Conclusion and future directions
	References

	10.1007_s00521-017-3241-z
	Deep imitation learning for 3D navigation tasks
	Abstract
	Introduction
	Background
	Related work
	Navigation
	Deep learning from demonstrations and experience
	Combining learning from demonstrations and experience
	Active learning

	Methods
	Deep active imitation learning
	Combining deep learning from demonstrations and experience

	Experiments
	Grid navigation task
	MASH simulator
	Reach the flag
	Follow the line
	Reach the correct object
	Eat all disks

	Inter-process communication
	Results

	Conclusion and future directions
	Open Access
	References

	OA: GOLD
	OA Logo:
	AUTHORS: HUSSEIN, A., ELYAN, E., GABER, M.M. and JAYNE, C.
	TITLE: Deep imitation learning for 3D navigation tasks.
	YEAR: 2018
	Publisher citation: HUSSEIN, A., ELYAN, E., GABER, M.M. and JAYNE, C. 2018. Deep imitation learning for 3D navigation tasks. Neural computing and applications [online], 29(7), pages 389-404. Available from: https://doi.org/10.1007/s00521-017-3241-z
	OpenAIR citation: HUSSEIN, A., ELYAN, E., GABER, M.M. and JAYNE, C. 2018. Deep imitation learning for 3D navigation tasks. Neural computing and applications, 29(7), pages 389-404. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk
	Version: PUBLISHED
	Publisher: SPRINGER
	Series: Neural computing and applications
	ISSN: 0941-0643
	eISSN: 1433-3058
	Set statement: The final publication is available at link.springer.com via https://doi.org/10.1007/s00521-017-3241-z
	License: BY 4.0
	License URL: https://creativecommons.org/licenses/by/4.0
	CC Logo:
		2018-03-26T15:32:09+0100
	OpenAIR at RGU

