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Abstract
A novel online adaptive state of charge (SOC) estimation method is proposed, aiming to characterize the capacity state of all the connected cells in

lithium-ion battery (LIB) packs. This method is realized using the extended Kalman filter (EKF) combined with Ampere-hour (Ah) integration and open

circuit voltage (OCV) methods, in which the time-scale implementation is designed to reduce the computational cost and accommodate uncertain or

time-varying parameters. The working principle of power LIBs and their basic characteristics are analysed by using the combined equivalent circuit

model (ECM), which takes the discharging current rates and temperature as the core impacts, to realize the estimation. The original estimation value is

initialized by using the Ah integral method, and then corrected by measuring the cell voltage to obtain the optimal estimation effect. Experiments under

dynamic current conditions are performed to verify the accuracy and the real-time performance of this proposed method, the analysed result of which

indicates that its good performance is in line with the estimation accuracy and real-time requirement of high-power LIB packs. The proposed multi-

model SOC estimation method may be used in the real-time monitoring of the high-power LIB pack dynamic applications for working state measure-

ment and control.
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Introduction

In recent years, lithium-ion battery (LIB) packs have attracted

particular attention in power supply applications for their

high power density, high energy density, low self-discharge

rate, long cycle life and longevity advantages, and have gained

in popularity as the energy source for many applications,

ranging from portable equipment, electric vehicles (EVs) and

renewable energy systems to airborne equipment and other

applications. LIB packs are used in the discharging and charg-

ing maintenance (DCM) processes in order to supply energy

reliably, in which the battery cell voltage, total voltage, tem-

perature and other parameters should be detected in real time

to prolong the service life and cycling number of the LIB

packs. In recent years, with continuous improvement in the

science and technology of materials, production technology

and other aspects, the performance of LIB packs continues to

improve with reduced cost and it has gradually become the

most promising rechargeable battery. LIB packs, because of

their lightweight, high energy density, high rate discharge per-

formance, no pollution to the environment and other advan-

tages, have started to be used in hybrid electric buses, EVs,

underwater weapons, water navigation, aerospace and other

fields. However, the safety of high-power LIB packs is still the

most concerning problem. Improper LIB energy management

will directly affect its energy supply efficiency and useful life,

in which severe cases may also lead to security incidents.

Therefore, the state of charge (SOC) estimation for an LIB

pack in its entire life cycle is necessary, through which the

remaining useful energy of an LIB pack may be known in real

time. According to the working status monitoring of the LIB

pack in its DCM process, the overall performance of the LIB

pack may be given an accurate evaluation.
Due to the high power and energy requirements, a LIB is

usually used in series and parallel conditions with mounts of

battery cells. Battery security protection is becoming the main

challenge because of of accidents caused by uncontrolled
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working states of the LIB packs. Industrial applications of

the LIB packs usually require well-designed management sys-

tems to protect safety and make them show good working
performance, and monitor the running status in real time and

control its power supply process. The associated battery man-
agement system (BMS) equipment is usually used to facilitate

the safety and efficiency of the LIB packs and the SOC value

is an important aspect, the inaccurate estimation of which will
make the BMS equipment hardly provide sufficient energy

management and affect the safety of the battery power supply
system (Saw, 2016; Su, 2016; Tabuchi, 2016; Yang, 2016; Ye,

2016; Yu, 2016; Zhu, 2016). To safeguard the safety and

working performance of an LIB pack, reliable and accurate
SOC estimation is required in the associated BMS equipment

of the LIB pack. The dynamic models derived either from
equivalent circuits or electrochemical principles facilitate the

assimilation of the battery data and lead to an SOC estima-
tion value with bounded errors.

Many methods may used to estimate the SOC value for

LIBs, such as the Ampere-hour (Ah) integration and open cir-

cuit voltage (OCV) methods, which are studied by Arbabzadeh
et al.(2016), Burgos-Mellado et al.(2016) and Gallien et

al.(2015). Dynamic and closed-loop model-based methods such
as the extended Kalman filter (EKF), neural network (NN),

fuzzy logic and equivalent circuit model (ECM) have been

extensively used in SOC estimation (Beattie, 2016; Dong, 2016;
Masoumnezhad, 2015; Ganesan, 2016; Mohammad,2016;

Tenfen,2016). Several solutions to this issue have been reported
in recent years and each has its relative merits. In particular,

the SOC estimation tests of LIBs have been widely studied
using the Kalman filter (KF) methods, which have been

remarkable in this aspect. Aung et al. (2015) proposed a

square-root spherical unscented Kalman filter (UKF) method
for the SOC estimation for the LIB used in a nano-satellite.

The SOC estimation methods based on the flexible transforma-
tion of the KF algorithm are widely used and have made sig-

nificant achievements in different applications, such as classical

linear KF, EKF, UKF and iterated EKF, and so on. A rela-
tively complete battery model is the prerequisite of the SOC

estimation realization, along with the dynamic modelling and

parameter identification. However, it is difficult to obtain an

accurate online model because it is subject to the changes of
time and working conditions (Cao, 2016; Fabri, 2015;

Fridholm, 2016; Ge, 2016; Mohammad, 2016). Furthermore,

the internal resistance (IR) value of the LIB will increase along
with time, and the capacity diminishes as a result of the degra-

dation. Because the battery cell may differ from one cell to
another, this makes parameter identification of each cell is

rather cumbersome; thus it is desirable to use the adaptive

models, in which the parameter identification and SOC estima-
tion process is just merged into a single one-model construc-

tion. The symbols used in the paper are described in Table 1.
A real-time joint estimator is constructed by Gao et al.

(2015) for the model parameters and the SOC determination of

LIBs in EVs. A novel Gaussian model based on battery state

estimation approach was proposed by He et al. (2015) and
named SOE. Two-time-scaled battery model identification was

studied by Hu et al. (2015) with application to battery state esti-
mation. Capacity fade estimation was done by Hussein (2015)

for LIBs in EVs using the artificial neural network (ANN) algo-

rithm. Fading KF-based real-time SOC estimation was con-
ducted by Lim et al. (2016) in LIB-powered EVs. An LIB pack

capacity estimation approach was proposed by Wang LM et al.
(2015), considering in-parallel cell safety in EVs. On-board

SOH estimation was conducted by Wang SL et al. (2015) at a

wide ambient temperature range in LIBs. Probability-based
remaining capacity estimation was conducted by Wang QS

et al. (2016) using data-driven and NN models.
Mounts of LIB cells are used as series or parallel in the

power LIB pack, which is aiming to meet the high energy and

voltage requirements of the power supply systems. Due to the

restrictions of material defects, contamination and production
technology tolerances, there are dynamic and aging character-

istic differences among the connected LIB cells (Burow, 2016;

Ciez, 2016; Elsayed, 2016; Jaguemont, 2016; Jia, 2015). The
information parameters of working conditions, temperature

distributions, IR difference and historical state also influence
the SOC value of the LIB packs. The SOC value of each

Table 1. List of symbols used in the paper.

Symbol Full-name Description

Ah Ampere-hour The SOC value is obtained by the method of current and time integration

BMS Battery management system An apparatus for energy management of the lithium ion battery pack

BMTS Battery maintenance and testing system The device for the ground maintenance and testing of the battery pack

CC Constant current The constant current mode for charging or discharging

CV Constant voltage The constant voltage mode for charging or discharging

DCM Discharging and charging maintenance Maintenance process of charging and discharging

ECM Equivalent circuit model Battery performance simulation based on equivalent circuit

EKF Extended Kalman filter KF-based estimation method using Taylor series expansion

IR Internal resistance The internal resistance of the lithium ion battery

KF Kalman filter A state estimation method using Kalman filter

LIB Lithium ion battery Lithium ion battery with lithium cobalt acid type

MMSE Minimum mean square error Method for evaluating the effect of an estimation

NN Neural network The SOC estimation method by simulating human nerve

OCV Open circuit voltage Battery voltage after long standing

RMSE Root mean square error A method for evaluating detection error

SOC State of charge A parameter to characterize the remaining battery power

UKF Unscented Kalman filter A KF-based estimation method using the unscented transformation

2 Transactions of the Institute of Measurement and Control



individual cell should be also estimated by the associated
BMS equipment for reliable and accurate power supply man-
agement. An effective solution is that the adaptive SOC esti-
mator should be designed to calculate the SOC value of each
single cell, considering the above parameters, and replicated

for all connected cells in the LIB pack, which will obviously
incur a high computational cost and is not suitable for online
implementation in an embedded system.

A novel LIB balancing strategy was proposed by Shang
et al. (2014) based on a global best-first and integrated imbal-
ance calculation. Adaptive non-linear model-based fault diag-
nosis was conducted by Sidhu et al. (2015) for LIBs. The
optimization method was proposed by Song et al. (2015) for
a hybrid energy storage system in EVs using a dynamic
programming approach. The online dynamic equalization
adjustment method was studied by Wang SL et al. (2016) for
high-power LIB packs based on the SOB estimation. The
controllability is evaluated by Zhai et al. (2014) for a class
of switching control systems and application to the kinetic
battery model.

Mounts of SOC estimation methods have been proposed,
each method of which has its own advantages and limitations.
Generally, these methods may be mainly classified into two
kinds: direct measurement-based estimation and model-based
estimation. The first method directly uses the measurements
from the battery system to calculate the SOC, such as Ah and
OCV-based methods. The Ah algorithm is easy to implement
with low computational cost, but it suffers from low estima-
tion accuracy due to the accumulative errors caused by the
current sensor noise and it is difficult to obtain the initial
SOC. Therefore, the OCV method is usually used to comple-
ment the Ah method to recalibrate the SOC and provide the
initial SOC. However, a long rest time of the tested battery is
required to reach the OCV, which is usually unrealistic for the
actual applications. In the second kind of method, the battery
model is utilized when estimating the battery SOC. One of the
model-based methods for SOC estimation is based on the
black box battery models, such as NNs, fuzzy logic and sup-

port vector machine, which may be quite accurate if sufficient
experimental data is used to train the model. However, their
performance greatly depends on the quantity and quality of
the training data set, and a large amount of offline battery
tests are necessary to obtain a good model, which may be very
time-consuming. The optimum state filtering method is
another kind of model-based method for battery SOC estima-
tion. This method usually performs SOC estimation based on
the ECM, such as EKF, sigma point KF, adaptive EKF,
adaptive UKF and so on.

As the EKF suffers from the drawbacks of the Jacobian
matrix derivation and linearization accuracy, the adaptive
estimation model is developed by using the EKF algorithm,
combined with the ECM, OCV and Ah integral methods. The
method is validated experimentally by the measurement
results of the LIBs with little computational requirement. Due
to the rigorous requirements on real time and sampling syn-
chronization, the battery maintenance and testing system
(BMTS) based on RS485 and PCI is also designed for the
implementation of this method. In order to realize the adap-
tive, high accuracy and easy implement SOC estimation, the
combined model was proposed and realized, the estimation

characteristics of which are analysed in this study. The pro-

posed method has been validated with experimental results

and benchmarked with an integrated circuit and the Coulomb

counting methods. The results have been shown that the pro-

posed method has a lower absolute mean, absolute minimum

mean square error (MMSE) and root mean square error

(RMSE) than the single OCV, Ah integration or EKF meth-

ods (Wijewardana, 2016; Tong, 2015; Schindler, 2016;

Samadani, 2016; Raisemche, 2016). The experimental results

showed the clearness of the proposed method for reliable

SOC estimation.
The rest of the paper is organized as follows. In the next

section, we present a basic principle of EKF and its improve-

ment for SOC estimation. Then we describe the model con-

struction process, and the battery state and measurement

equations based on the battery impact factor analysis. Its

effective characteristics are validated by the simulation and

experiment results shown. Finally, conclusions and future

work ideas are discussed.

The associated model for the SOC
estimation

Compared with other battery models, the ECM may show the

relationship between the input current and the output voltage

more intuitively, which benefits the identification of cell char-

acterization and model parameters. Therefore, the battery

ECM is built for SOC estimation, the establishment process

of which contains two aspects of accuracy and complexity as

the main factors. It is necessary to reflect the dynamic charac-

teristics of the battery for the engineering applications.

Battery ECM structure construction

The battery charging and discharging maintenance process is

performed, during which the terminal voltage response after

the end of the charge and discharge is fitted by one, two and

three orders. The higher the order of the ECM, the closer the

data fits to the actual experiment data. However, the higher

the order for the model, the higher the degree of model com-

plexity. When the model is used for the SOC online estima-

tions of the power supply LIB pack, a longer calculation time

is needed, as a greater amount of calculation is used (Kim,

2016; Klein, 2016; Li Y, 2016; Lu, 2016; Panchal, 2016;

Pramanik, 2016; Rahman, 2016). The error of the second-

order fitting process is much smaller than the first-fitting pro-

cess, but it is almost the same as the third-order fitting error.

As a result, the second-order resistor–capacitor (RC) ECM is

Figure 1. The second-order resistor–capacitor (RC) battery model.
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used for the SOC estimation, shown in Figure 1, in which

VOC indicates the OCV value of LIB, which has non-linear

relationship with SOC; R0 represents the resistance of active

material, collectors, conductive tabs, the fluid collector and

the contact resistance among them; R1 and C1 denote the dif-

fusion layer resistance and capacitance, respectively; R2 and

C2 are the resistors and capacitors of the close layer; I

expresses the charging or discharging current, the value of

which is negative when charged and positive when dis-

charged; and V is the cell terminal voltage.
The ECM has one more RC circuit than the ECM used by

Lee et al. (2015) and has better performance for the LIB

characterization.
According to the second-order RC battery model shown

in Figure 1, the state-space model is obtained as shown in

Equations (1) and (2). It is combined with the Ah integration

method to realize the SOC estimation, in which the terminal

voltages of V1 and V2 at the ends of the capacitors of C1 and

C2 are used as the state variables. F is used to characterize

the battery SOC. The charging or discharging current para-

meter I is used as the input variable and the battery terminal

voltage parameter V is used as the output variable.

V1 k + 1ð Þ
V2 k + 1ð Þ
F k + 1ð Þ

2
4

3
5=

R1 1� exp � Dt
R1C1

� �� �
R2 1� exp � Dt

R2C2

� �� �
� hDt

CN

2
6664

3
7775I kð Þ

+
exp � Dt

R1C1

� �
0 0

0 � Dt
R2C2

0

0 0 1

2
64

3
75 V1 kð Þ

V2 kð Þ
F kð Þ

2
4

3
5 ð1Þ

V kð Þ= �1 �1
dVOC Fð Þ

dF

h i V1 kð Þ
V2 kð Þ
F kð Þ

2
4

3
5� R0I kð Þ ð2Þ

The battery SOC is estimated by using the adaptive EKF

method based on this space model. The parameters in the

space model shown in Equations (1) and (2) are described as

follows: Dt is the sampling interval, the value of which is

initialized as Dt = 1 s. The sampling interval time parameter

has no influence on the SOC estimation results in the simula-

tion process, but it will affect the application of the BMS

equipment in the power LIB pack. The large sampling inter-

val value will increase in the cumulative estimation error, and

the small sampling interval value will increase the computa-

tional burden of the processor. Considering the online SOC

estimation demand, a value of 1 s is selected in the actual

BMS application. In order to match this, a value of 1 s is also

selected as the sampling interval time in the simulation pro-

cess. V1(k), V2(k) and F(k) denote the kth sampling F value

and the voltage across the capacitor of C1 and C2;

V1(k + 1), V2(k + 1) and F(k + 1) denote the voltage

and F value, respectively, at the k + 1 sampling time. h is

the Coulomb efficiency and CN indicates the battery total

capacity calculated by Ah integration method; VOC indicate

the open-circuit voltage, which is a function of F. They have

the same order as the ECM used by Perez et al. (2015), and

are integrated in the closed-loop algorithm and able to com-

pensate for them to correct the SOC value.

Combined estimation based on EKF

In terms of the battery SOC estimation methods, many

research approaches have previously been proposed. Due to

the closed-loop estimation ability and strong inhibiting effect

on noise, the KF-based SOC estimator has been widely stud-

ied. The KF algorithm was proposed by Kalman and its

application range is only suitable for linear equations and lin-

ear systems. When it comes to non-linear recursive equations,

it is necessary to use the linearization treatment to estimate

the model parameters, such as the EKF, UKF, IEKF algo-

rithms and so on.

EKF algorithm for estimation. The EKF algorithm is a state-
space model that is based on the dynamic liner state equations

and the linearization treatment of the non-linear characteris-

tics of the OCV towards SOC. The structure of the EKF algo-

rithm is shown in Figure 2.

Figure 2. The state-space model structure of the extended Kalman filter (EKF) algorithm.
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The state-space model, including the state equation and

the observation equation, is thus

Xk + 1 =AXk +BUk +Wk

Zk + 1 =HXk + 1 +Vk + 1

�
ð3Þ

where the first part of the function is the system state equa-

tion and the second part is the measurement function; k is the

dispersive time interval; Xk is the system state factor at time

point k; Zk is the state measurement factor at time point k;

Uk is the control signal at time point k; Wk is the input noise

at time point k; and Vk is the measurement noise at time point

k, the parameter ranges of which are in the scope of Wk;(0,

Qk) and the range of Vk;(0, Rk). The recursive processing

principle of the EKF algorithm is shown in Figure 3, in which

Xk + 1jk indicates the prior estimation from the time point k

state to the k + 1 time state, namely the prediction value.

Xk + 1jk + 1 indicates the posterior estimation from the time

point k to the time point k + 1, namely the optimal estima-

tion value. The estimation process obtains the mean and cov-

ariance of the output of a non-linear function using a small

fixed number of function evaluations.

Most battery state detection and control systems that we

have encountered are non-linear systems. For example, the

voltage output characteristics of the lithium iron phosphate

battery show severe non-linearity. These systems cannot be

analysed directly using the KF method, but need linearization

treatments. However, the system state equation and system

measurement equation of the LIB characteristics may be

explored by using the Taylor series near the optimal estima-

tion point. Then, the non-linear system may be translated into

the linear system by dropping the high-order components,

after treatment of which the experimental data may be

handled by using the KF algorithm; this combined treatment

at this time is named EKF. The linear process of the state

equation and the measurement equation (observation equa-

tion) is analysed as follows. The state equation and

measurement equation for the non-linear discrete state-space

system may be simplified and expressed as shown:

xk + 1 = f xk ; ukð Þ+vk

yk = g xk ; ukð Þ+ nk

�
ð4Þ

where the functions of f(*) and g(*) are non-liner equations. The

upper equation in Equation (4) is the state equation, in which x is

the n-dimensional system state vector and v is an n-dimensional

system noise vector at the time point k. The function f(xk,uk) is

the non-linear state transition function. The lower equation in

Equation (4) is the observation equation, in which y is the m-

dimensional system measurement vector and v is the m-dimen-

sional system disturbance vector at time point k. The function

g(xk,uk) is the non-linear measurement function. The above func-

tions may be explored by using Tailor method at the prior esti-

mation point xk + 1jk that is at the state xk + 1. The high-order

components of the treatment process may be ignored and the

liner approximations of f(*) and g(*) may be obtained as shown:

f xk ; ukð Þ’f x̂k k�1j ; uk

� �
+

∂f xk ; ukð Þ
∂xk

����
xk = x̂k k�1j

xk � x̂k k�1j
� �

g xk ; ukð Þ’g x̂k k�1j ; uk

� �
+

∂g xk ; ukð Þ
∂xk

����
xk = x̂k k�1j

xk � x̂k k�1j
� �

8>>>><
>>>>:

ð5Þ

The coefficients may be characterized by using the variables

of M and H. Then, the liner state-space model may be

obtained by lining from the non-liner system:

xk + 1 =Mkxk + f x̂k k�1j ; uk

� �
�Mkx̂k k�1j

� 	
+vk ;Mk

=
∂f xk ; ukð Þ

∂xk

����
xk = x̂k k�1j

yk =Hkxk + g x̂k k�1j ; uk

� �
� Hkx̂k k�1j

� 	
+ nk ;Hk

=
∂g xk ; ukð Þ

∂xk

����
xk = x̂k k�1j

8>>>>>>>>><
>>>>>>>>>:

ð6Þ

Figure 3. The recursive process principle of the extended Kalman filter (EKF) algorithm.
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Mk and Hk may be obtained by the above analysis, which

may be used in the SOC state estimation and output voltage

traction. The working state estimation characteristics may be

gained from the above analysis, in which the advantages of

this EKF-based SOC estimation method are shown as

follows.

1) The recursive algorithm used in this method is quite
suitable for the software programming, and it does not
need to store a large amount of measured data, bring-
ing out a very good real-time response performance.

2) The linearization treatment process may ameliorate
the estimation error due to the measurement error of
current, voltage, temperature, etc.

3) The state-space equation and the observation equation
may ameliorate the measurement error caused by elec-
tromagnetic interference.

4) The effect of voltage rebound may be overcome by
using updating process, which is suitable for the brak-
ing energy and the downhill potential energy recovery.
The state estimation at any time of the application
process for the LIB has a good effect.

5) The requirement of the initial state value is not high in
the estimation process and the prediction may be
tracked quickly in the real-time estimation process,
which overcomes the shortcomings of other methods
in the state estimation.

The function E(x) indicates the expectation of the factor x

and the function Var(x) is its variance. xkjk is the measure-

ment update of x; xkjk 2 1 is the time update of x from the

time point k 2 1 to the time point k. Pkjk indicates the

measurement error covariance update at time point k; Pkjk 2 1

is the time update of the error covariance from the time point

k 2 1 to the time point k; Qk is used as the system noise cov-

ariance matrix; Rk is used for the observation noise covar-

iance matrix; and I is the identity matrix. The recursive

filtering process of the system is shown as follows.

1) The initial condition of the filter equation is:

x0 0j =E xð Þ;P0 0j =Var xð Þ ð7Þ

2) The update status of the estimation time is:

xk k�1j = f x̂k ; ukð Þ ð8Þ

3) The time update of the error covariance is:

Pkjk�1 =Ak�1Pk�1jk�1AT
k�1 +Qk�1 ð9Þ

4) The update process of Kalman gain matrix is:

Kk =Pkjk�1CT
k CkPkjk�1CT

k +Rk

� ��1 ð10Þ

5) The measurement update of the estimation state is:

xkjk = xkjk�1 +Kk Yk � g x̂k ; ukð Þ½ � ð11Þ

6) The measurement update of the error covariance is:

Pkjk = I � KkCk½ �Pkjk�1 ð12Þ

As seen from the recursive process of the EKF algorithm, the

evaluation value of the system state is obtained by the addi-

tion of two parts, as shown in Equation (11). The first part is
the time update of the estimation state, which indicates the

present state estimation value that is obtained and updated by

considering the last time moment system state and the latest

input parameters. The second part is the detection amend-

ment of the estimation state, which may revise the system state
value by calculating the system error of the observation para-

meter and its estimation value, considering the Kalman gain

parameter Kk.

Combined model of OCV and ECM. When the observed func-
tion is very accurate, the reserve amend value of the EKF fil-

tering process may reduce the time update error, which makes

the state estimation value quite close to the reference value.
However, when the observe function is not accurate, the

detection amendment may be not correct, which might even

make the error between the detection update value of the esti-

mation state and the reference value larger than the error
between the time update value and the reference value.

A major drawback in the use of LIB arises from the

strongly non-linear dependence and in wide ranges the flat

characteristics of the battery OCV and the SOC. In addition,

the hysteresis phenomenon has a distinct influence on the
OCV. Then, the relationship of the battery OCV and SOC as

well as the lack of dynamic models for LIBs hampers the

determination of the SOC using state estimation techniques,

resulting in high computational efforts to achieve an accepta-

ble level of accuracy. Hence, it is desirable to measure a differ-
ent physical parameter that varies more readily as a function

of the SOC. To deal with the battery non-linear characteris-

tics, the combined estimation method was proposed to build

the battery SOC estimator.
The dynamic Kalman gain amend coefficient factor C is

introduced into the estimation, which is multiplied by the

Kalman gain matrix K. As a result, the weights of the time

update of the estimation state and the detection amend value

are determined. According to this process, the estimation value

of SOC mainly depends on the time update process. However,
when the observation function has high accuracy, the weight of

the detection amend value may initially be a much larger value,

which makes the estimation value of SOC mainly depend on

the observed update process and obtains a higher convergence
rate of the estimation value close to the reference value.

The combined ECM battery model is built and applied in

the estimation process, which may make the state vector x of

the EKF model only have a single estimation parameter,

according to which the complex degree may be reduced effec-
tively. The combined observation function is used to express

the battery characteristics:

V =K0 � RI � K1=F� K2F+K3 ln Fð Þ+K4 ln 1�Fð Þ
ð13Þ
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where V is the battery terminal voltage; R is the battery IR

and I is the current through it. K0;K4 indicate the constant
coefficient parameters. Ultimately, the SOC estimation model

based on the EKF algorithm is constructed as shown:

Fk + 1 =Fk +
Dt�h1

h2Q
Ik +vk

Vk =K0 � RIk � K1=Fk � K2Fk + K3 ln Fkð Þ
+K4 ln 1�Fkð Þ+ nk

8<
: ð14Þ

where h1 is the Coulomb efficiency; h2 is the revised coeffi-

cient of the battery terminal voltage; and Q indicates the cali-
brated battery capacity.

Real-time SOC estimation

Estimation process

The SOC, which acts in the similar role as the meter for the
internal combustion engine system, is the most important fac-

tor for batteries that should be estimated accurately. In this
paper, the initial value of the input parameters and the mea-

surement current error may be corrected by using the proposed
combined adaptive SOC estimation method, considering the
parameters of temperature, charging current rate, discharging

current rate, aging and so on. The estimation value is gradu-
ally close to the actual value detected by using the standard

instrument and Ah integral method, reducing the accumula-
tion error over time in the SOC estimation process.

The EKF method has performed well in the battery work-

ing state estimation, assuming the detection process noise is
Gaussian white noise. However, the statistical and adaptive
characteristics of the process noise are unknown when doing

the actual BMS data acquisition in the working state monitor-
ing process. The associated adaptive EKF method is intro-

duced here, based on the EKF algorithm together with the Ah
integral method and the OCV method. In the proposed esti-

mation process, the state variables are estimated dynamically
by using the measured data. Meanwhile, the statistical proper-
ties of noise are constantly estimated and revised. As a result,

it may estimate the SOC value over time accurately for the
LIB pack. According to Equations (1) and (2), the battery

SOC estimation model may be obtained as shown in Equation
(15). The state variables and output variables are represented
by x and y, which are made by the appropriate variable matrix

substitutions.

xk + 1 =Akxk +Bkuk +Gwk ;wk qk ;Qkð Þ
yk =Ckxk +Dkuk + vk ; vk rk ;Rkð Þ

�
ð15Þ

where G is the interference matrix; wk is the process noise, the

mean value of which is represented by qk and the covariance
of which is characterized by Qk. vk is the measurement noise,

and its mean value is characterized by rk and its covariance
value is characterized by Rk. Qk, qk, Rk and rk are unknown,

which are forecasted and estimated by using the EKF method.
An adaptive EKF method for the SOC estimation is shown in
Equations (16)–(20).

1) The initial estimation state factor x0 e and its error
covariance P0 are set as the initial value obtained by

using the mean and variance operation, respectively,
which are described as:

x0 e =E x0½ �
P0 =E x0 � x0 eð Þ x0 � x0 eð ÞT

h i(
ð16Þ

2) The time point k status and its error covariance
matrix could be updated by using the k 2 1 time
point status and error covariance matrix together with
the time point k input matrix, the process of which is:

xkjk�1 e =Akxk�1 e +Bkuk +Gqk�1

Pkjk�1 =AkPk�1AT
k +GQk�1GT

�
ð17Þ

3) The Kalman gain matrix Lk may be determined by
Equation (18), which should be used in the later time
point k compound operation.

Lk =Pkjk�1CT
k CkPkjk�1CT

k +Rk�1

� ��1 ð18Þ

4) The state equation and the observation equation
should be used in the time point k state updating pro-
cess, considering the estimation value and the mea-
surement value at time point k. The status and state
covariance matrix at time point k should be updated
by using the time point k output error:

xk e = xkjk�1 e + Lkyk error

Pk = I � LkCkð ÞPkjk�1

yk error = yk � Ckxkjk�1 � Dkuk � rk�1

8><
>: ð19Þ

5) The mean and covariance value of the process noise
together with the measurement noise should be
updated according to:

qk = 1� dk�1ð Þqk�1 + dk�1G

xk e � Akxk�1 e � Bkuk�1ð Þ
Qk = 1� dk�1ð ÞQk�1 + dk�1G

Lkyk errory
T
k errorL

T
k +Pk � AkPkjk�1AT

k

� �
GT

rk = 1� dk�1ð Þrk�1 + dk�1

yk � Ckxkjk�1 e � Dkuk

� �
Rk = 1� dk�1ð ÞRk�1 + dk�1

yk errory
T
k error � CkPkjk�1CT

k

� �

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð20Þ

There are some parameters should be explained in the for-
mula above. G is initiated as G = diag(0.001 0.001 0.001); b is
the forgetting factor and its range is 0 \ b \ 1, which is set
as b = 0.98 in this work. In order to improve the efficiency of
program execution and shorten the execution time, the forget-
ting factor b is used to describe the aging characteristics of the
power LIB in the paper, which has influence on the Coulomb
efficiency calculation. The small value of the forgetting factor
illustrates that the LIB has been used for a considerable time,
which will make the remaining capacity low. Meanwhile, the
large value of the forgetting factor illustrates that the LIB has
been used for a short time, which will make the remaining
capacity high. G is set as G = (GTG)21GT; dk is set as

Wang et al. 7



dk = (1 2 b)/( 1 2 bk). Thus, the state variable SOC may be

constantly corrected by the online real-time estimation for qk,

rk, Qk and Rk, which improves the estimation accuracy corre-

spondingly. As known from the SOC estimation process that

is based on the improved EKF method, the combined adap-

tive SOC estimation method may perform the prediction and

amendment during all the iterations, aiming to make the opti-

mal estimation state value closer to the actual value and may

realize the error correction effectively.
The overall structure of the estimation model is shown in

Figure 4, in which the prediction and the update stage of the

estimation process is signed and characterized by the red and

blue rectangle. The battery model parameters are initially

indicated using the input vector, which is marked with an

oval. The input real-time data series including the current and

temperature are started, and are handled by using the

Coulombic efficiency process marked with the hexagon. This

is gaining popularity in estimator design, as it achieves good

simulation accuracy and is physically justifiable in providing

limited insights into the electrochemical reactions to some

extent, which has good performance in the working state esti-

mation for the LIB pack.

Impact factor selection

As known from the LIB characteristic analysis, the battery
capacity is mainly affected by charging current rate, dischar-

ging current rate, temperature, self-discharge and aging.
From the self-correcting nature of the EKF algorithm, the
battery self-discharge effect is not considered in the estima-

tion process. Meanwhile, as the effects of battery aging may
take quite a long time before they have any influence on the
battery SOC estimation process, the effects of aging are not
considered in the proposed method.

Charging and discharging current rate. The battery capacity is
affected by the charging current rate and the discharging cur-
rent rate enormously. When the maintenance current rate

increases, the discharging electricity of the battery will be
reduced. hi is defined to express the current influence coeffi-
cient of the battery capacity, and therefore the actual capacity

of the battery after the charging–discharging current rate cor-
rection is shown as:

Qi =hiQn ð21Þ

Figure 4. Over-all structure of the estimation model.
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where Qi indicates the actual capacity of the battery for the

discharging current i, and Qn indicates the battery standard

capacity. The different discharging rate experiments are done
for the lithium iron phosphate battery cell at the room tem-

perature (25�C), and the actual discharging capacity is calcu-

lated, in which the experimental data is obtained. The cftool
toolbox in MATLAB is used to gain the curve of actual bat-

tery capacity and charging–discharging current rate. The

second-order polynomial fitting factor of the battery actual

capacity may be obtained by continuing to use the cftool
toolbox as in:

hi = ð3:905i2 � 123:6i+ 15030Þ=14967 ð22Þ

where i indicates the discharging current and the realization of

the influence parameter characterization is shown in Figure 5,
which is indicated by the red rectangle. Its computational cost

may be reduced by simply the model complexity with the ben-

efit of physical insight, and has the best trade-off between the
estimation accuracy and computational efficiency.

Temperature correction. The temperature influence on the
battery capacity is also quite significant. When the tempera-

ture is low, the battery capacity will be reduced accordingly.

hT is defined as the temperature influence coefficient of the

battery capacity, and the actual battery capacity after tem-
perature correction is:

QT =hT Qn ð23Þ

where QT indicates the actual discharge capacity of the bat-

tery at time point T. In the condition of SOC = 1, the dis-

charging capacity of LIB in the condition of standard

charging–discharging current rate C/30 is obtained at various
temperatures. The temperature influence coefficient of the

fourth-order polynomial fitting for the actual battery capacity

is:

hT = � 0:00000003637T4 + 0:000003521T3

�0:0001373T2 + 0:006311T+ 0:8873 ð24Þ

where T indicates the actual working temperature of the bat-

tery, the unit of which is degree Celsius (�C). The influence

function is realized in the impact factor influence sub-model,
which is shown in Figure 5, the realization process of which is

characterized by using the blue rectangle. Therefore, consider-

ing the effect of charging–discharging current rate and tem-

perature, the actual battery capacity may be obtained by

using the function Q = hihTQn and the total Coulomb effi-

ciency may be characterized by using the function h = hihT.

State-space model of the battery

As seen from the EKF algorithm analysis, the non-linear fil-

tering problem of the discrete data may be solved recursively

based on a series of mathematical formulas, which are able to

estimate the process state by minimizing the state error covar-

iance in the estimation process. In the estimation process,

only the latest SOC value and its error covariance need to be

known to obtain the current time state and its error covar-

iance. There is no need to store large amounts of historical

data, which makes the real-time characterization and estima-

tion even better. Furthermore, concluding from the principle

analysis, the EKF-based estimation algorithm has a self-

correcting nature, which makes the filtering process exhibit

no accumulated error, and therefore it has high accuracy.

Thus, the proposed composite estimation algorithm is suit-

able for the SOC estimation of LIB.

Battery state equation. As seen from the standard non-linear
state equation (shown in Equation 5), the state equation

describes the state change law between two adjacent time

points of the dynamic system. As the Ah integration method

provides such a variety law, the battery state equation may be

linearized by using the Ah integral method and the battery

state equation not considering the process noise may be

described as:

xk + 1 = xk � hDt=Qnð ÞIk + 1 ð25Þ

As seen from the above equation, by introducing the

Columbic efficiency parameter h and the interval time para-

meter Dt together with the rated capacity parameter Qn, the

SOC state value may be updated by using the current at time

point k + 1 and the SOC state value at time point k. The

state equation may be realized in the prediction sub-model of

the estimation system shown in Figure 6, in which the blue

box marked part is designed according to Equation (25).
The relationship of the parameters in the yellow oval

marked part may be expressed as:

Fcn= uð1Þ � uð2Þ � uð4Þ=uð3Þ ð26Þ

As seen in the Figure 6 and compared with Equation (25), the

parameters in Equation (26) have a direct corresponding rela-

tionship with the parameters in Equation (25), which may be

described as:

uð1Þ ! ik + 1 uð2Þ ! h uð3Þ ! Qn uð4Þ ! Dt ð27Þ

The state equation may be obtained accordingly by consider-

ing the process noise v, which may be described as:

xk + 1 = xk � hDt=Qnð ÞIk + 1 +vk + 1 ð28Þ

Figure 5. The impact factor influence correction sub-model.
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where xk is the SOC value at the time point k; Dt is the dis-

crete time interval; ik is the discrete current; h is the Coulomb

efficiency, which was described detail previously; and vk is

the normal white noise with zero mean, the variance value of

which may be expressed by using Qn.

Battery measurement equation. The measurement equation
describes the state of the observing signals. As seen from the

OCV-based estimation method, the battery SOC value is rele-

vant to its voltage value. As a result, the SOC observation

may be realized by using this method. Many scholars have

studied the electrochemical battery operated model to

describe the battery output voltage. In order to improve the

accuracy of the model, the model combined by Shepherd,

Urmewehr universal and Nernst equations was proposed, the

composition equation of which is shown in Equation (13), in

which yk is the battery terminal voltage; E0 is the battery elec-

tromotive force when the initial battery SOC value is 1; and R

is the IR, the value of which will change accordingly when the

battery is in the discharging or charging working conditions.

The OCV is difficult to obtain, as it cannot be measured

directly when the battery is in the charging or discharging

process, so yk is used instead of using the OCV approxi-

mately. At the same time, as the calculation amount of the

composition model is quite small and the arithmetic opera-

tion is very simple, it is convenient to implement in the SCM.

The combination model is used in the battery measurement

equation. The measurement equation considering the mea-

surement noise is shown in the second part of Equation (14),

where vk is the normal white noise with zero mean and its var-

iance is characterized by using Rk, which is independent with

the process noise. K1, K2, K3 and K4 are used as the model

constant variable parameters. The column vector Y is set as

Y = [y1, y2, ., yn]
T and the matrix H is set as H = [h1, h2,

., hn]
T, the elements of which are initiated according to one

order vector hj = [1, ij, 1/xj, xj, ln(xj), ln(1 2 xj)]
T.

The combined vector for the constant parameters are set as

u = [E0, R, K1, K2, K3, K4]
T and N = [m1, m2, ., mn]

T. As a

result, the matrix pattern measurement equation may be

obtained and expressed according to the function

Y = Hu + N. Therefore, u may be obtained as

Figure 6. Prediction sub-model of the estimation process.

10 Transactions of the Institute of Measurement and Control



u = (HTH)21H21Y. The measurement equation may be rea-

lized in the ‘MeasEq’ sub-model of the estimation system,

which is shown in Figure 7, in which the red box marked part

is designed according to the second part of Equation (14).

One way is to record the latest memorable battery state

value immediately when the battery stops working, which

may be used as the initial SOC value for the next estimation

process. This approach is relatively simple, but there is a

downside. Even if it is not running, but as the sole energy pro-

vider, it is still used for the weak powered part of the power

supply system, such as LED lights and communication net-

works that are still in working condition, which will make the

initial value error for each estimation process be increased.

Even this small current may be detected and used in estimat-

ing the new SOC value, and the battery self-discharge current

is too small to be detected. As a result, the reducing SOC

value caused by the self-discharge cannot be estimated by

using this method. Then the error of the SOC initial value will

be significant after a long period of non-use.
The main function part not considering the noise as seen

in Equation (13) is shown in the blue ellipse marked part of

the Figure and expressed by using the function ‘Fcn1’ that is

shown in Equation (29), in which the relationship of the para-

meters may be expressed.

Fcn1= uð2Þ�uð3Þ � uð4Þ�uð5Þ=uð1Þ�uð6Þ � uð1Þ+ uð7Þ
� log ðuð1ÞÞ+ uð8Þ � logð1�uð1ÞÞ ð29Þ

As seen in the Figure and compared with Equation (28), the

parameters in Equation (29) have a direct corresponding rela-

tionship with the parameters in Equation (13), which may be

described thus:

Figure 7. State update sub-model.
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uð1Þ ! xk uð2Þ ! E0 uð3Þ ! R uð4Þ ! ik

uð5Þ ! K1 uð6Þ ! K2 uð7Þ ! K3 uð8Þ ! K4

ð30Þ

The combined parameter values, which are characterized by
using the vector parameter u, may be obtained as shown in

Equation (31). The OCV–SOC curves are obtained by per-
forming the HPPC experiments, and then the discharging effi-
ciency is measured under different temperatures and different

discharging current rates. The state-space equation is set and
used in the parameter input module for the SOC estimation
process of the power LIB pack, the parameters of which are

realized by the polynomial curve fitting method of the
OCV–SOC data sequence.

u= 3:391; 0:0048;�0:000268; 0:1495; 0:111;�0:01955½ �T

ð31Þ

Implementation of the SOC estimation

Initial estimation parameters

The parameter initial values may be obtained by comparing

the state-space model of the SOC estimation to the standard
model of the EKF algorithm, which are described as:

Fk = 1;Bk = � Dt
hihT Qn

; uk = i;

Hk =
∂yk

∂xk

���
xk = xk k�1j

= K1

xx k�1jð Þ2 � K2 +
K3

xk k�1j
� K4

1�xk k�1j

8<
: ð32Þ

As the EKF algorithm has self-correction characteristics, the

SOC estimation has a low dependence on the initial values,
which may be set arbitrarily. However, if the initial SOC
value deviates from the true value largely, it will lead to the

computation time increase for the SOC estimation process
compared with the initial value that at the vicinity of the
actual value. For example, if the SOC value has not con-

verged to the actual value, it is easy to cause battery over-dis-
charge. As a result, when the battery SOC value is very small
and has reached the low SOC warning value, it may cause the

detriment of the battery life, leading to serious accidents. It is
significant to make the initial SOC value close to the actual
value and there are generally two approaches for obtaining

the initial SOC value.
Another method is to correct the SOC value of the battery

by using the OCV–SOC curve when the battery stops work-

ing, which is a more accurate way of determining the initial
value of SOC. Meanwhile, it needs quite a long time to be
shelved to cause the lithium ions to be in a stable state, by

which the accurate initial SOC may be obtained and used in
the next estimation stage. For determining the initial value of
the error variance parameter P0j0 of SOC, there are a large

number of experiments performed and the experimental
results are analysed, the analysis result of which shows that
its value is not critical and any P0j06¼0 may cause convergence

of the estimation process. For the condition P0j0 = 0, if the
SOC initial value also equals 0, it may cause the filter not to
converge, resulting in SOC always being equal to 0. However,

in the real application of the LIBs, the system will prompt the
charge signal when the SOC value falls below a certain value,

such as 10% and so on. In particular, if the voltage is lower

than the discharging cut-off voltage (3.0 V or so), it will dis-

connect the battery power supply circuit loop to stop the dis-

charging process, so this extreme condition will not occur in

the actual power supply applications. The proposed frame-

work is implemented on the LIB successfully with simulation

and testing experiments.

Coefficient and its adjustment

The filter coefficients mean of the measurement is character-

ized by Rk and the process noise variance is expressed by Qk,

the values of which will affect largely to the SOC estimation

effect. Rk may be obtained by using the off-line battery vol-

tage detection and the analysis of the measurement equip-

ments, but the core parameter SOC is difficult to obtain. The

reason is that we cannot obtain the battery SOC value directly

by using the measurement equipment and as a result we can-

not obtain its error variance value. However, we may obtain

the Qk value that may reflect the process error variance effec-

tively by comparing with Rk or using other passions. If the

values for Rk and Qk are not adequate, we may also adjust

them by comparing with other estimation methods, aiming to

improve better accuracy of the SOC estimation.
The SOC estimation model is constructed and realized

with an emphasis on the estimation fusion strategy. Firstly,

the input signal is produced and given as the input of the basic

measurement model that is based on the ECM, as shown in

Equations (3) and (4). Then, the Coulombic efficiency is cal-

culated by using the equations described previously, which is

also taking the current and temperature as input parameters,

and its output value is used in the measurement sub-model

and KF estimation sub-model. The state equation and mea-

surement equation that were shown earlier are used in both

measurement sub-model and the KF estimation sub-model.

As a result, E0, R, K1, K2, K3 and K4 are initiated and used

according to Equation (32). At last, the estimation process is

realized by using the following two sub-models step by step.
The measurement sub-model is constructed according to

Equations (25) and (31), which are the state and measurement

equations, the sub-model of which is shown in Figure 4. As

the measurement sub-model is based on the general state and

measurement equations, it may reflect the battery characteris-

tics of the discharging working conditions. However, although

it has very high accuracy, it also has low adaptive perfor-

mance because it is based on the Ah and OCV methods. As a

result, it is used as a correct part to make the EKF estimation

sub-model more accurate. The EKF estimation sub-model is

realized according to the estimation process described previ-

ously. The SOC estimation error covariance is also provided

and used step by step in the estimation process.

Experimental analysis

The model core performance for the input parameter, estima-

tion effect, coefficient effect and the battery model parameter

vector is analysed in this section, the results of which are com-

pared with the existing SOC estimation methods.
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Model input parameters

The BMTS has been designed and realized for the aerial LIB

pack experiments, as shown in Figure 8. There is one industrial

personal computer (IPC) used to realize the control strategies

and the human–machine interface (HMI) is used as the moni-

toring interface. The keyboard and mouse are used to input the

parameters and allow human control. There are 14 digital

power supplies used for the balancing charging together with

two large power supplies from Taiwan. The two electronic

loads are used to practise the discharging. The protect unit is

designed and used for real-time protection in the DCM process.
The protection unit is designed and used in the BMTS,

which is shown in Figure 9.
The performance parameters of the LIB cell sample used

in this paper are described as follows. The rated voltage is

3.7 V and the rated capacity is 45 Ah. The resistance is less

than 3 mO and the discharge cut-off voltage is 2.8 V. The

charging cut-off voltage is 4.15 V and the nominal dischar-
ging current is 45 A, which is also named as 1 C. The battery

adaptive SOC estimation process uses the current, tempera-

ture and voltage as input parameters. The battery working
current uses the normal signal with the mathematical expecta-

tion value of 7 and the variance value of 1, which is used to
make the substation electrician current situation analogue.

The experimental results for its performance characteristics

are obtained and shown in Figure 10.
The capacity degradation is also studied by Landi et al.

(2015, Figure 2) and Zheng et al. (2015, Figure 6), the results

of which have the same varying regulation, and wider capac-

ity and current rates are studied here to gain a comprehensive
performance test. It has the same change regulation with the

experimental results obtained by Corno and Bhatt (2015,

Figure 6), which also proves its accuracy. Generally, the bat-
tery parameters are changing slowly. Thus, the update rate of

LIB battery parameters, including their identification algo-
rithm, needs not be too fast. Two forms of battery parameter

identification are performed in our experiments, in which the

identification algorithm runs every 300 s or only once.
Accordingly, the battery parameters are updated every

300 s or only once. The regression algorithm is used to iden-

tify the battery parameters. Its amount of computations is

moderately large, and it is difficult to obtain battery para-
meter in each run. Fortunately, considering the slow rate of

change of the battery parameters, the real-time requirements

of the parameter identification algorithm are not very high,
so battery parameters are not updated in each run but only a

few times in our experiments. The voltage characteristic in
the cycling maintenance process is shown in Figure 11, which

has the same varying regulation as the charge and discharge

experimental results obtained by Li D et al. (2015, Figure 5)
and Liu et al. (2016, Figure 2). The battery voltage graph

shows tendency to flatten between 3.8 and 4.1 V during the

charging stage and between 4.0 and 3.7 V during the dischar-
ging stage, the results of which may also been obtained by

Monem et al. (2015, Figure 2).
Similarly, the battery temperature uses the normal signal

simulation with mathematical expectation of 35 and variance
of 1, which indicates that the battery temperature is about

35�C and is in line with the normal distribution. The battery

Figure 9. The protection unit designed for the battery maintenance and testing system (BMTS) of lithium-ion battery (LIB) packs.

Figure 8. The battery maintenance and testing system (BMTS) for the

maintenance of lithium-ion battery (LIB) packs.
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voltage is measured to obtain the initial SOC estimation

value. As the cell voltage output of LIB is very stable, it may

be measured by using accurate measuring equipment. The

output voltage in the measurement equation is used to

approximate the voltage measurement and a zero mean

Gaussian measurement noise with the variance value of

0.00005 is then considered to obtain the discharging voltage

curve.

Estimation effectiveness analysis

Considering the online SOC estimation demand by using the

associated BMS equipment of the power LIB pack, the values

of the measurement noise variance and the process noise var-

iance are initiated. In order to match it, the values are also

selected in simulation process. However, when doing the real-

time SOC estimation process, the noise may vary along with

the working time and the different values are studied in the

experiments. The measurement noise variance may be set as

Rk = 2.5 and process noise variance set as Qk = 2. The ini-

tial error variance may be set as P0j0 = 10.

1) The estimation effect with large SOC initial value is
analysed. When the SOC actual initial value is set as
0.8 and the initial SOC value of the filter is set as 1,
the SOC estimation curve may be obtained as shown

in the first part of Figure 8. The difference between
the SOC estimation value and the actual SOC value of
the LIB is about 0.2. However, the SOC value may
converge to the actual value from the initial estimate
value 1 quickly in the estimation process, fully reflect-
ing the EKF self-tuning capabilities. Its absolute error
curve may be obtained as shown in the second part of
Figure 12.
As seen from Figure 10, the EKF has strong error cor-
rection capability for the SOC estimation process
when the SOC initial value is large, the varying for-
mula of which is similar with the experimental results
obtained by Hua et al. (2015, Figure 6). The SOC esti-
mation error becomes increasingly smaller along with

Figure 12. State of charge (SOC) estimation and its absolute error.

Figure 10. Different discharging current characteristics of power

lithium-ion battery (LIB) cell.

Figure 11. The voltage characteristics of the power lithium-ion battery

(LIB) cells in the cycling maintenance process.
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the time spread, and its maximum absolute error is
only 4.17% after the convergence, which also reflects
its self-correcting capability and anti-jamming capabil-
ity. Compared with the experimental results (absolute
error 4.96%) obtained by Aung et al. (2016), it has
much higher accuracy. However, in the early SOC
estimation process, there is a certain amplitude jitter,
which is due to the error between the SOC initial
value, the actual value and the cell voltage measure-
ment error. The easiest improvement in practice is
that the SOC initial value of the cells may be set as
statutory correction using the storied history informa-
tion and the OCV. Then, the SOC initial value and
the actual value may initially be very close, so that the
initial SOC estimation value will converge faster and
the error will be smaller, which makes the estimation
effect more outstanding.
If the cell voltage measurement equipment with higher
accuracy may be used, it will further reflect the correc-
tion role of EKF and greatly enhance the SOC estima-
tion, which makes the convergence speed higher and
reduces jitter in the initial SOC estimation. However, as
we know, the relative change between the OCV and
SOC is very small in the LIB charging and discharging

platform. As a result, it is very difficult to improve the
voltage measurement accuracy, which will also increase
the hardware cost. It is necessary to do the trade-offs
according to the SOC estimation accuracy. The other
ways should be considered first in practice to improve
the filter performance and SOC estimation effects.

2) The estimation effect with small SOC initial value is
analysed. The actual SOC initial value is set as 0.4 and
the initial SOC estimation value is set as 0.3. The esti-
mation effect for the SOC estimation may be obtained
as shown in the first part of Figure 13 and its absolute
error may be obtained as shown in the second part of
the figure, which has the same regulation studied by
Xian et al (2014, figure 6).

When the filter SOC initial value is small and closer to the

actual SOC value, the EKF convergence speed is very fast,

as seen in Figure 9. In this case, the SOC estimation has

high estimate accuracy and the maximum absolute error is

only 1.83%, which has higher accuracy compared with the

experimental results obtained by Hua et al. (2015, figures 7

and 16). Although the SOC estimation curve still shows

some jitter sometimes, the error is very small and the impact

is not great. As in the above analysis, the actual initial value

will be corrected so that jitter is negligible. As seen from the

simulation analysis, the lower the actual initial SOC value,

the smaller the absolute estimation error and the better the

estimation result. As seen from the analysis of simulation

results, the combined adaptive battery SOC estimation

method may realize the power battery SOC estimation with

higher accuracy and timeliness. As seen by doing careful

analysis, it is suitable for the state estimation of non-linear

systems and has good estimation results. As the KF obtains

an optimal value itself based on the minimum variance, the

EKF used for the non-linear system just obtains a subopti-

mal estimation value.
Therefore, the estimation accuracy is determined by the

state-space model of the system. Generally, the state equation

that describes the state changes may be obtained easily, but

the measurement equation for the state correction of the prior

estimation is not easy to obtain. If the measurement equation

is non-linear and the system linearization error is too large, it

will lead to the reduction of the estimation accuracy, or even

make the filter unable to work. As a result, for the battery

system, the most important thing for the estimation process is

to establish an accurate estimation practical battery dynamic

model to obtain a more accurate measurement equation,

thereby improving the SOC estimation results. As the EKF

itself has the chattering phenomena, the solution is to develop

different SOC estimation methods for different battery charg-

ing and discharging phase of the battery OCV–SOC curve.

The cycle revolution of the combined adaptive estimation

algorithm is 5 s, the first 4 s of which is used for the Ah calcu-

lation and the last 1 s is used for EKF correction, aiming to

eliminate the accumulated error generation in the Ah integra-

tion process. The integration method not only decreases the

estimation jitter but also reduces the computational load

effectively.

Figure 13. State of charge (SOC) estimation tracking effect and its absolute error.
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Coefficient effect to the estimation

The estimation effect is obtained when the initial value is 0.8,
the SOC initial value is 1, Rk = 2.5 and Qk = 2, shown ear-
lier. The following estimation effect analysis is done for the
process noise variance increased by 10 times and reduced by
10 times.

When the variance parameter Qk is set as 20, the estima-

tion effect is obtained and shown in the first part of Figure
14. As seen from Figure 14, when the process noise variance
is increased 10 times, it will result in the error variance
increase of the SOC estimation together with the estimation
absolute error increase. The estimation results obtained by
Wang YZ et al. (2015, Figure 1) have the same varying reg-
ulation. There is a substantial jitter curve in the initial SOC
estimation process at this time, in which the absolute maxi-
mum error convergence reaches 8.72%, but the filter con-
verges to the theoretical value much faster. At this time,
this is equivalent to reducing the measurement noise and
the filter is more sensitive to the measurement voltage value,
which leads to even faster convergence rate but makes the
estimation jitter more serious. In addition, as seen from the
Kalman gain calculation equation shown in Equation (27),
the SOC estimation effect is the same whether the process
noise variance is expanded 10 times or the measurement
noise variance reduced 10 times.

When the variance parameter Qk is set as 0.2, the estima-
tion effect is obtained and shown in the second part of Figure
14. When the process noise variance is reduced 10 times, the
SOC estimation error variance is reduced and the estimation
absolute error is greatly reduced. At this time, the absolute
maximum error is only 1.92% and the SOC estimation curve
is very smooth, reflecting the characteristics of the estimation
process with slow filtering convergence. The different initial
SOC values, including 0.25, 0.4, 0.6, and 0.75 are analysed by
Lee et al. (2015, Figure 13), showing high accuracy and adap-
tive advantages. This is almost equivalent to the measurement
noise variance being increased10 times, compared with the
estimation process described above. As seen from the above
analysis, if the accuracy of the battery model or the cell vol-
tage measurement is not high, a larger measurement noise

variance or smaller process noise variance should be set to
reduce the sensitive level of the estimation process to the vol-

tage measurement value, so that the filter may be made much

smoother, but this also reduces the estimation convergence

rate, reducing the correction performance. It also illustrates

the importance of battery modelling and the higher precision
cell voltage measurement, as we have to ensure the hardware

costs within an appropriate range. Therefore, the process

noise variance or measurement noise variance should be

adjusted in the simulation model, aiming to obtain a satisfac-

tory result with the convergence rate and SOC estimation

accuracy.

Battery model parameter vector effect

The battery is a complex electrochemical system, and the

parameters of the battery model inevitably change in long-

term application, that is as the battery ages. Battery aging will

lead to the decreases of the battery actual total capacity and

an increase in resistance, and the other model parameters will

change as well; model parameter identification also has a cer-
tain error. Therefore, it is necessary to analyse the impacts of

model parameters to evaluate their effect on the SOC estima-

tion process.
When the battery is aging, the total capacity Qn will be

reduced, and the battery will be scrapped when the total bat-

tery capacity is reduced to 80% of the rated capacity, which
may be seen in Figure 11. Meanwhile, as seen from the battery

capacity characteristics, the battery actual total capacity is dif-

ferent with the working environment. Here, the total battery

capacity is set as 95% of the rated capacity and the remaining

settings are same as the results shown previously. In different

OCV–SOC experiments, the obtained experimental results are
slightly different and the identification parameters of the SOC

estimation model are slightly changed. In considering this

change, the adaptability of the parameter variation in the

SOC estimation process needs to be verified. The simulation

experiments are done when the combined model parameters
have little change compared with Equation (31) and the para-

meter vector values are shown as:

Figure 14. The state of charge (SOC) estimation when the variance changes.
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u= 3:391; 0:0048; �0:000368; 0:2525; 0:119; �0:02285½ �T

ð33Þ

The SOC estimation results are shown in Figure 15. In this

case, the estimation speed for the SOC convergence becomes

slower, and there are substantial jitters in the initial SOC esti-

mation process. The estimation absolute maximum error is

5.17% and the estimation effect changes violently. The per-

formance degradation is up to 23.98% and the absolute maxi-

mum error is 4.17% in the correct parameter identification

process.
As seen from the experimental results, the estimation effect

is almost the same, and the maximum absolute error is 4.18%,

which is just a small change compared with the maximum

absolute error 4.17% of the rated capacity. It has similar regu-

lation with the experimental results obtained by Hussein et al.

(2016, Figures 4 and 5) and better astringency than the experi-

mental results obtained by Olivares et al. (2013, Figure 6).

Thus, the proposed SOC estimation method has good perfor-

mance for the battery capacity decrease due to aging and

incorrect identification of the battery total capacity.
When the battery is aging, the battery IR parameter R will

increase, and the battery IR identification may not be correct.

Here, the resistance increases only twofold, and the SOC

simulation analysis result is that the maximum absolute error

is 4.19%, which is little change compared with the maximum

absolute error 4.17% in the correct parameter identification.

As a result, the SOC estimation method has good perfor-

mance when the resistance increases caused by aging resis-

tance or its identification is not correct. When the

identification for the OCV E0 is incorrect and the OCV is set

as 90% of the correct identification value, the SOC estimation

maximum absolute error is 4.19% obtained by the simulation

analysis, which is a small change compared with the maxi-

mum absolute error 4.17% by identifying the correct OCV

value. As a result, the SOC estimation method still has a good

estimate performance of the OCV when the battery fully

charged and the identification is incorrect.
To sum up, the model estimation results change little when

there is a slight parameter change in the proposed SOC

estimation process of LIBs. Relative to the total battery

capacity, IR, OCV of full charge, the combined model para-

meters K1, K2, K3 and K4 have greater effects on SOC estima-

tion. As seen in the above experiment results, the combined

SOC estimation model mainly based on EKF is quite effec-

tive, which is combined with the Ah and OCV methods. The

measurement equation used in the estimation model is based

on the composition equation of Shepherd model, Urmewehr

universal model and Nernst model, which has good perfor-

mance in the estimation process. The higher efficiency makes

the proposed methodology more suitable for onboard estima-

tion devices that require computationally efficient estimation

techniques. Thus, it is of significant importance to extend the

proposed framework from the cell level to the pack level in

order to make it practically useful.

Conclusion

The SOC plays an essential role in many battery-powered

applications and its adaptive estimation is of practical signifi-

cance for the LIBs because of its time-varying performance

and non-liner characteristics. In this paper, a high-power

SOC adaptive estimation method was proposed, the main

contents of which are shown as follows. The working proper-

ties of LIBs are analysed, including the cycle life characteris-

tics, voltage characteristics and capacity characteristics. The

comprehensive SOC estimation method was proposed and

realized based on the battery core factors. The voltage char-

acteristics of an LIB are highly non-linear and the SOC value

is affected by the charging–discharging rate, temperature,

aging, self-discharge and other factors. The main advantages

of the proposed method are easy implementation, real-time

performance and high accuracy. The establishment of the bat-

tery state-space model is constructed using discharging test

data, the capacity influence coefficient, temperature coeffi-

cient and so on. The Ah method is used to obtain the state

equation and the combination model to obtain the measure-

ment equation. Then, the real-time correction of the total bat-

tery capacity is done to improve the estimation accuracy. The

establishment of estimation model is done to analyse the SOC

estimate effect, and the filter coefficients are given slight

changes to evaluate the impact effect of the model parameters

on the filtering performance. The experiment results show

that this method has good SOC estimation results and the

estimation process may be optimized by regulating the pro-

cess noise variance, in which the model parameters varied

slightly and have less impact on the filtering effect.
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