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HIGHLIGHTS

* Highly Non linear system of coupled equations alvexl to describe the velocity and

pressure components.

» The theoretical results enable to predict and dpénthe performance of Rotating disk
electrode.

* The analytical results are compared with the sitraraesult.
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Abstract

Rotating disc electrodes are preferred devices rialyae electrochemical reactions in
electrochemical cellsand various rotating machingngh as fans, turbines, and centrifugal
pumps. This model contains system of fully coupgéw highly non-linear equations. This
manuscript outlines the steady state solution tditig disc flow coupled through the fluid
viscosity, to the mass-concentration field of cheahispecies and heat transfer of power-law
fluid over rotating disk. Furthermore, a simple Isitieal expression (Padé approximation) of
velocity component/ self-similar velocity profiles derived from the short and long distance
expression. Our analytical results for all distaace compared with previous small and long

distance and numerical solutions (Runge-Kutta nithehich are in satisfactory agreement.
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1. Introduction

The system of second order non-linear equationwtating disk electrodes and their

studies arises in various contexts such as eldarocal cell [1]Jand flow and heat transfer
process in fluids [2, 3] among others.Von Karmamirl;ng viscous flow [4] is a famous
classical problem in fluid mechanics. The origipedblem raised by Von Karman deals with the
viscous flow induced by an infinite rotating diskheve the fluid far from the disk is at rest.
Steady laminar flows of viscous Newtonian fluid pwn infinite rotating disk were studied
originally by Von Karman [4]. Von Karman [4] propas an elegant similarity transformation
which reduces the Navier-Stokes equations to ordidéferential equations. The equations
were then solved by the momentum integral methaach@n [5] explained more accurate
asymptotic series solution to Karman's viscous pogqflow. Shevchuk [6] reported a new
analytical solution with Nusselt number being sfedias a boundary condition in the form of
an arbitrary power-law function, and compared #wults with experimental data. Leviehal.
[7, 8] has solved the transient diffusion equafmmthe rotating disk electrode for the first time.
Newman [9] obtained the uniform current densityaorotating disk electrode below the limiting
current. Cahamt al. [10] developed a new method for mounting cylindrisamples for use as
rotating disk electrodes which eliminates many b& tproblems associated with more
conventional techniques.

Ariel [11] illustrated the flow of an elastico-@igus fluid near a rotating disk electrode
and second-grade fluid [12]. In addition, pertuidmatsolutions for small non-Newtonian fluid
parameter and asymptotic analytical solutions doged parameter were also obtained. Attia [13]
investigated the unsteady flow and heat transfeReher-Rivlin fluid over a rotating disk by
finite difference method as well as the effect o€toon on the flow and heat transfer [14].In
order to deal with the three-dimensional swirlit@af over a rotating disk for power-law fluid,
Mitschka [15] proposed a generalized Karman sintyldaransformations. Chunying Ming al.

[3] solved the system of highly non-linear diffetiah equations for the velocity, pressure and
temperature field by an improved multi-shooting &uwhge-Kutta method [16, 17].
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Over the years, the importance of the fluid flowside the electrochemical cell with
rotating disk electrode have attracted a greatastd18, 19], however, at present this system has
not been fully characterized. The early theoreticatks dedicated to the hydrodynamic study of
this system were presented by von Karman [4] anchf2m [5]. Two-dimensional axisymmetric
numerical simulations were carried out[20] and cared with the fluid flow pattern calculated
with the von Karméan [4] and Cochran [5] analyticakpressions. There are significant
differences in the extent of the electrochemic#lwa@ume of the mathematical models reported
in literature [1]. The entire cell volume was siad in Mandiret al. [20] whereas in Dongt
al. [21], only a small amount of liquid below a rotagidisc ring electrode was considered. In
these models only the electrode active face i®mact with the fluid.

The significance of the submerged electrode sid# was showed by means of two-
dimensional numerical simulations of an electrocicahcell with a rotating cylinder electrode
in Mandin et al. [22]. Dong et al.[21] carried out two-dimensional axisymmetric nuioalr
simulations of a cell with a rotating disc eleceodhere the electrode is submerged into the
electrolyte.Sorensen[23]reported that the systemv fls governed by two parameters, the
Reynolds number and the ratio of container heightlisc radius. A comparison between the
fluid flow pattern and that calculated with the reb@df von Karman [4] and Cochran [5] is
carried out.

Recently, Liao [24], developed a new analyticathod for this non-linear problem using
homotopy analysis method. The purpose of this comeation is to derive approximate
analytical expressions for the velocity componeetf-similar velocity profiles from small and
long distance expressionsusing the Padé approximatiethod for all values of dimensionless
distance.

2. Mathematical formulation of the problem

The equations for convective diffusion acquire tis&inplest form when the surface of a
rotating disk serves as the reaction site. Von Kernd] and Cochran [5] have solved the
problem in which liquid is entrained by a rotatidigk whose axis is perpendicular to its plane
surface. The system of non-linear equations forveotion diffusion process in rotating disk
electrode are provided in Appendix A (Supplementafgrmation) for self-consistency, Von

Karman [4].
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The most famous approximate solution for small @salof £ are given by the following

equations:

carle D
F(O)=ad-2&-28'+ (1)
G(E):1+b$+%f3+--- (2)
H(O=-ag+ 8+ D e ®)

wherea = 0510 andb =-0616.

For large values df, the dimensionless velocity components are:
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where A= 0934 B = 1208and a = 0886.
The above equation for large valuessafin be rewritten as the following form:

010347 069753 13033 36398 19373
= TR
011152_ 2.8105+ 21.191_ 50.316+ 57.529_ 32.523+ 7.2882
¢ &2 & & &8 &8 &’
02026 51647 39982 10109 12282 73611 17495
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3. Two-point Padé approximation

F(¢)=00011% )

G(¢) = -000025+

(8)

H(¢)=-088645+

(9)

Our aim is to report a combined analytical resoittthe radial, tangential and the axial
velocity component valid for all axial dimensiordedistances, using mathematically rigorous
procedures. Among several methods available for stcocting a correct fractional
approximation, the Padé approximation is one ofsihglest and easy to implement. This is a

rational function approximation to a power seridstamed by matching the coefficients

6
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ofMaclaurin’sexpansionseries of the rational fumetivith that of given power series [26]. Padé
approximants are now employed normally in diversatexts so as to overcome problems
withslowly convergent or divergent power series respions [27, 28].In view of the easy
implementation of the algorithm, this techniquemsiely used in phase transitions and critical
phenomena [29], virial equations of state for hapmheres and discs[30] and ultra-micro
electrodes [31-33]. We constructeda rational fumctf order (5/5) such that the coefficient of
Egs. (A5) and (A6) are reproducible. The short lamg) distance expansions Egs. (1-3) and Egs.
(4-6) can be merged in order to obtain a generah fof rational function approximation
F(£), G(¢&) and H(&)valid for all distances, as follows:
Pot Pié + Pod” + Pad’ + Pt + pd”

1+ & +0,8° +0o° + 0,8 +058°

where the Padé approximation coefficigyysto psandqy to gs are given in Table. A.The

Velocity = (20)

complete derivation of the above Padé approximantgiven in the Appendix B-D
(Supplementary Information). This (Eg. (10)) is @&n@est closed-form of analytical
approximation valid over the entire range of axstance.Using Egs. (A8) and (10) combined,

we can obtain the pressure, as indicated by thatiegqubelow:
&
P(¢)=[(H"(¢)-H(e)H'(¢)) as (11)

4. Numerical Simulation

Electrochemical simulations are one particularragph to understand the processes at
electrodes [34-37].Whitet al. [38] solved the problem numerically by Newman teghe [39].
Mathematical demonstration using Mathematica safiviar von Karméan swirling flow of RDE
is created by Higgins and Binous [40]. Non-lineguations in rotating disk electrode (RDE)
was solved by means of the self-adaptive metho{l Bikash Sahookt al. [41] obtained the
numerical solutions by adopting direct multiple stimg method for the fully coupled and highly
non-linear system of differential equations, agsuue to the steady Karman flow and heat
transfer of a viscous fluid in a porous medium. &ely, Ming et al. [3] solved the system of
highly non-linear differential equations (A5-A7) an improved multi-shooting method. Our
analytical result for the velocity and pressurefifge are compared with numerical simulation.

The comparison of analytical result obtained irs thork with the numerical result obtained by

Page 7 of 21



multi shooting technique which is based on Rungédmethod is shown in Figure 1(a-d) in
which satisfactory agreement is noted.Our analyteogression of velocity profiles (Padé
approximation Eq. (20))is compared with small (E¢s.3)) and long (Egs. (4-6)) distance
expressions in TableB and adequate agreement betiveéwo approaches is noted.

5. Discussions

Von Karman [4] gave the approximate solution oési equations based on the
momentum integral method. Cochran [5] pointed betérrors contained in Karman'’s solution
and used a matching technique like Blasius metlmogite a solution more accurate than
Karman’'s one. Fettis [42] derived a new asymptetipansion which can describe the entire
flow and Benton [43] gave an asymptotic solutiottdyethan Cochran’s solution using Fettis’s
method with only a trivial difference. Ariel deridethe steady laminar flow of an elastico-
viscous fluid near a rotating disk using perturtratiechnique [11].

For the first time Yang and Liao [24] obtained thealytical solution of von Karman
equations using the homotopy analysis method (HA44) 45], as an infinite series Eq. (12).
The homotopy series for the dimensionless axiaborgl component converges slowly towards
the exact solution of von Karman equations. Heitds, revealed that the series solution is not
well suited to highly accurate computation of th#udion—convection impedance for RDE.
Recently, Liao [24] obtained the solution of thendimear equation using homotopy analysis
method as follows:

f(6)="") =3 S e Sa p cl)=3 S S an 12

In the above solution it is very difficult to oiMathe coefficients dvi .However all the
above mentioned solutions employed some numeriesthads, such asanalytic, semi-numerical
as well as essentially semi-ones. Thus, our agalyPadé approximation) method is a simplest
form which is valid for all values of . The calculation of this method is free from cotapional
software’s, in which, we can calculate the Padéfictents algebraically by doing simple steps.

Fig. 2 illustrates how the steady state radiagéatial and the axial velocity vary wigh
respectively. Fig. 2(a), gives the distributionradlial velocity. It shows that the maximum value

of radial velocity increases slightly with increagi power-law index. The thickness of the
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boundary layer decreases with the increasing ptaveindex [25]. It shows that the value of the
radial velocity component rises initially and reastthe maximum value @ = 0.862¢ and then
decreases gradually until it reaches the steady stdue. From the Fig. 2(b), it is evident that
the value of the angular velocity component dee@amsn its initial value and reaches the steady
state value zero &t = «o . Maximum forG (¢ ) is 1.

Form the Fig.2(c), it is also observed that thialaxelocity component always decreases

when distance increases and reaches the steadyvalat atf =c . Maximum for H (¢ )is

0.The results demonstrated that increasing the distance increases the value of axial velocity

and vice versa for tangential and total velocities.

6. Conclusions

Approximate analytical solutions to the system oflinear differential equations are
presented using Padé approximation method. A singiaight forward and a new method of
estimating the radial, tangential, axial velocigmponents have been reported. This analytical
result will be useful to know the behaviour of tteaction system. In addition, this is a simple
step solution for all distance to merge both thalsand long distance expansions. For the first
time, we have successfully reported a methodoldgiglwvemploys less time for analyzing small

and large values of separately, compared to previous studies. In iatgitve can emphasized

that our solution is highly specific and purely gtieal due to the structure of the known
solution. Furthermore, thePadé approximation coefits in the series can be calculated
algebraically. This proposed methodology does aquire to use any numerical method to get
such coefficients in contrast to Cochran’s ser@st®ns. Our analytical solutions are compared
with numerical solutions and they are in very gampeement with the numerical simulation

data.

Page 9 of 21



Pade (all values of &)
0.15

T
X
1

xxxxxx Numerical result

0.1

0.05

Fig. 1(a). Dimensionless radial velocity component(¢ ) versus the dimensionless distance

profile. The key to the graph: solid line represeay). (B10) and the dotted line represents the
numerical [3].
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Fig. 1(b). Dimensionless tangential velocity componen{¢ )versus thedimensionless distance

profile. The key to the graph: solid line represelay). (C5) and the dotted line represents the
numerical [3].
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Fig. 1(c). Dimensionless axial velocity componerf (¢ )versus the dimensionless distance

profile. The key to the graph: solid line represeft. (D5) and the dotted line represents the
numerical [3].
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Fig.1 (d). Dimensionless pressure componen{s ) versus the dimensionless distance profile.

The key to the graph: solid line represents Eq) &bl the dotted line represents the numerical
[3].
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Fig. 2(a). Comparison of our radial velocity componemt(¢ ) (Padé approximation Eq. (B10))

versus the dimensionless distanéavith small (Eq. (1)) and long solution (Eg. (7)).
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Fig. 2(b). Comparison of our tangential velocity compon&¢) (Padé approximation Eq.

(C5)) versus the dimensionless distanéavith small (Eq. (2)) and long solution (Eq. (8)).
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Fig. 2(c). Comparison of our axial velocity component(¢) (Padé approximation Eq. (D5))

versus the dimensionless distanéavith small (Eqg. (3)) and long solution (Eg. (9)).
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Fig. 3.Plot for analytical solution of velocity and pressusing Egs. (10-11).
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Table. A. Numerical value of Padé approximation coefficidots (¢), c(¢) andu (¢)

Padé Coefficients F(¢) G(¢) H(¢)

Po 0 1 0

P, 0.51000 0.04812 0

P, 0.33506 -0.01933 0.51000
P 9.95187 x 107 0.00106 -0.10187
P, -7.31242 x10° 0 -0.02892
Ps 8.32389x10° 0 0

o} 1.63737 0.66412 0.85335
g, 1.22223 0.38977 0.41316
0 0.52480 0.07116 0.12238
q, 0.41588 0.00966 0.03263
o 0.07513 0 0

14
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Table. B. Comparison of approximate analytical expressioméPapproximation Eq. (20)) of velocity profilegs), G(¢) andH (¢)
with small and long distance expressions

2 F () G(¢) H(¢)

% Q Radial velocity Tangential velocity Axial velocity

22058, o2 |ge | .F |%8sss os | f |28e |ss . se g
ww S | 3 | g

0.000 | O 0 0 1 1 0 0 0 0

0.001 | 0.00 0.00 0 1.00 1.00 0 0.00 0.00 0

0.05 0.02 0.02 0 0.97 0.97 0 0.00 0.00 0

0.1 0.05 0.05 0 0.94 0.94 0 0.00 0.00 0

0.2 0.08 0.08 0 0.88 0.88 0 -0.02 -0.02 0

04 0.14 0.14 1 0.76 0.76 0 -0.06 -0.06 0

0.6 0.16 0.17 3 0.66 0.67 15 -0.12 -0.12 0

0.8 0.18 0.19 10 0.56 0.59 0.55 17 |1 |-019 -0.20 | -0.18 5 5

1 0.17 0.22 0.19 24 |12 | 048 0.47 2 |-0.26 -0.26 0

2 0.10 0.12 20 | 0.22 0.20 9 |-057 -0.57 0

3 0.05 0.06 20 | 010 0.08 20 | -0.73 -0.75 2

4 0.03 0.03 0 |005 0.04 20 | -0.81 -0.83 2

5 0.01 0.01 0 |003 0.03 0 |-0.85 -0.86 1

10 0.00 0.00 0 |000 0.00 0 |-0.89 -0.89 0

0 0 0 0 |0 0 0 | - 0886(=-a) - 0886(=-a) 0
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Nomenclature

u

\

W

I O T & =

o

radial velocity componei / s)

tangential or angular velocity compongnt s)
axial velocity componeifi / s)

radial coordinat@m)

normal or axial coordinaten)

pressureN / m)

density of the fluidkg/m® )

kinematic viscosity of the fluid

electrode rotation speed
self-similar radial velocity or dimensionless iedd/elocity component

self-similar tangential velocity or dimensionlessyular velocity component
self-similar axial velocity or dimensionless dxialocity component

Padé approximation co-efficient
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Figure Captions
Fig. 1(a). Dimensionless radial velocity component(¢s)versus the dimensionless distance

profile. The key to the graph: solid line represefy). (B10) and the dotted line represents the
numerical [3].

Fig. 1(b). Dimensionless tangential velocity compones{r ) versus the dimensionless distance

profile. The key to the graph: solid line represeBt]. (C5) and the dotted line represents the
numerical [3].

Fig. 1(c). Dimensionless axial velocity component (¢)versus the dimensionless distance

profile. The key to the graph: solid line represekt). (D5) and the dotted line represents the
numerical [3].

Fig. 1(d). Dimensionless pressure componer(ir)versus the dimensionless distance profile.

The key to the graph: solid line represents Eq) éhtl the dotted line represents the numerical

[3].
Fig. 2(a). Comparison of our radial velocity componem{¢ ) (Padé approximation Eq. (B10))

versus the dimensionless distangavith small (Eg. (1)) and long solution (Eq. (7)).

Fig. 2(b). Comparison of our tangential velocity compon&fs) (Padé approximation Eq.
(CH)) versus the dimensionless distangavith small (Eq. (2)) and long solution (Eq. (8)).

Fig. 2(c). Comparison of our axial velocity component(¢) (Padé approximation Eq. (D5))
versus the dimensionless distangavith small (Eg. (3)) and long solution (Eg. (9)).

Fig. 3.Plot for analytical solution of velocity and pressusing Egs. (10-11).
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