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H I G H L I G H T S 

• Highly Non linear system of coupled equations are solved to describe the velocity and 

pressure components.  

• The theoretical results enable to predict and optimize the performance of Rotating disk 

electrode. 

• The analytical results are compared with the simulation result.  
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Abstract 

Rotating disc electrodes are preferred devices to analyze electrochemical reactions in 

electrochemical cellsand various rotating machinery such as fans, turbines, and centrifugal 

pumps. This model contains system of fully coupled and highly non-linear equations. This 

manuscript outlines the steady state solution of rotating disc flow coupled through the fluid 

viscosity, to the mass-concentration field of chemical species and heat transfer of power-law 

fluid over rotating disk. Furthermore, a simple analytical expression (Padé approximation) of 

velocity component/ self-similar velocity profiles is derived from the short and long distance 

expression. Our analytical results for all distance are compared with previous small and long 

distance and numerical solutions (Runge-Kutta method), which are in satisfactory agreement. 
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Keywords: Padé approximation, Mathematical modeling, Non-linear equations, Rotating disk 

electrodes. 

1. Introduction  

 The system of second order non-linear equations in rotating disk electrodes and their 

studies arises in various contexts such as electrochemical cell [1]and flow and heat transfer 

process in fluids [2, 3] among others.Von Kármán  swirling viscous flow [4] is a famous 

classical problem in fluid mechanics. The original problem raised by Von Kármán deals with the 

viscous flow induced by an infinite rotating disk where the fluid far from the disk is at rest. 

Steady laminar flows of viscous Newtonian fluid over an infinite rotating disk were studied 

originally by Von Kármán [4]. Von Kármán [4] proposed an elegant similarity transformation 

which reduces the Navier-Stokes equations to ordinary differential equations. The equations 

were then solved by the momentum integral method. Cochran [5] explained more accurate 

asymptotic series solution to Kármán's viscous pumping flow. Shevchuk [6] reported a new 

analytical solution with Nusselt number being specified as a boundary condition in the form of 

an arbitrary power-law function, and compared the results with experimental data. Levich et al. 

[7, 8] has solved the transient diffusion equation for the rotating disk electrode for the first time.  

Newman [9] obtained the uniform current density on a rotating disk electrode below the limiting 

current. Cahan et al. [10] developed a new method for mounting cylindrical samples for use as 

rotating disk electrodes which eliminates many of the problems associated with more 

conventional techniques. 

 Ariel [11] illustrated the flow of an elastico-viscous fluid near a rotating disk electrode 

and second-grade fluid [12]. In addition, perturbation solutions for small non-Newtonian fluid 

parameter and asymptotic analytical solutions for large parameter were also obtained. Attia [13] 

investigated the unsteady flow and heat transfer of Reiner-Rivlin fluid over a rotating disk by 

finite difference method as well as the effect of suction on the flow and heat transfer [14].In 

order to deal with the three-dimensional swirling flow over a rotating disk for power-law fluid, 

Mitschka [15] proposed a generalized Kármán similarity transformations. Chunying Ming et al. 

[3] solved the system of highly non-linear differential equations for the velocity, pressure and 

temperature field by an improved multi-shooting and Runge-Kutta method [16, 17]. 
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 Over the years, the importance of the fluid flow inside the electrochemical cell with 

rotating disk electrode have attracted a great interest [18, 19], however, at present this system has 

not been fully characterized. The early theoretical works dedicated to the hydrodynamic study of 

this system were presented by von Kármán [4] and Cochran [5].Two-dimensional axisymmetric 

numerical simulations were carried out[20] and compared with the fluid flow pattern calculated 

with the von Kármán [4] and Cochran [5] analytical expressions. There are significant 

differences in the extent of the electrochemical cell volume of the mathematical models reported 

in literature [1]. The entire cell volume was simulated in Mandin et al. [20] whereas in Dong et 

al. [21], only a small amount of liquid below a rotating disc ring electrode was considered. In 

these models only the electrode active face is in contact with the fluid. 

 The significance of the submerged electrode side wall was showed by means of two-

dimensional numerical simulations of an electrochemical cell with a rotating cylinder electrode 

in Mandin et al. [22]. Dong et al.[21] carried out two-dimensional axisymmetric numerical 

simulations of a cell with a rotating disc electrode where the electrode is submerged into the 

electrolyte.Sorensen[23]reported that the system flow is governed by two parameters, the 

Reynolds number and the ratio of container height to disc radius. A comparison between the 

fluid flow pattern and that calculated with the model of von Kármán [4] and Cochran [5] is 

carried out. 

 Recently, Liao [24], developed a new analytical method for this non-linear problem using 

homotopy analysis method. The purpose of this communication is to derive approximate 

analytical expressions for the velocity component/ self-similar velocity profiles from small and 

long distance expressionsusing the Padé approximation method for all values of dimensionless 

distance. 

2. Mathematical formulation of the problem 

 The equations for convective diffusion acquire their simplest form when the surface of a 

rotating disk serves as the reaction site. Von Karman [4] and Cochran [5] have solved the 

problem in which liquid is entrained by a rotating disk whose axis is perpendicular to its plane 

surface. The system of non-linear equations for convection diffusion process in rotating disk 

electrode are provided in Appendix A (Supplementary Information) for self-consistency, Von 

Karman [4]. 
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The most famous approximate solution for small values of ξ are given by the following 

equations: 

⋯+−−= 32

32
1

)( ξξξξ b
aF          (1) 

⋯+++= 3

3
1)( ξξξ a

bG          (2) 

⋯+++−= 432
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where 510.0=a  and 616.0−=b . 

For large values of ξ, the dimensionless velocity components are: 
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where 208.1,934.0 == BA and 886.0=α . 

The above equation for large values of ξ can be rewritten as the following form: 
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3. Two-point Padé approximation 

 Our aim is to report a combined analytical result for the radial, tangential and the axial 

velocity component valid for all axial dimensionless distances, using mathematically rigorous 

procedures. Among several methods available for constructing a correct fractional 

approximation, the Padé approximation is one of the simplest and easy to implement. This is a 

rational function approximation to a power series obtained by matching the coefficients 
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ofMaclaurin’sexpansionseries of the rational function with that of given power series [26]. Padé 

approximants are now employed normally in diverse contexts so as to overcome problems 

withslowly convergent or divergent power series expressions [27, 28].In view of the easy 

implementation of the algorithm, this technique is widely used in phase transitions and critical 

phenomena [29], virial equations of state for hard spheres and discs[30] and ultra-micro 

electrodes [31-33]. We constructeda rational function of order (5/5) such that the coefficient of 

Eqs. (A5) and (A6) are reproducible. The short and long distance expansions Eqs. (1-3) and Eqs. 

(4-6) can be merged in order to obtain a general form of rational function approximation 

( ) ( ) ( )ξξξ HandG,F valid for all distances, as follows: 

5
5

4
4

3
3

2
21

5
5

4
4

3
3

2
210

1 ξξξξξ
ξξξξξ

qqqqq

pppppp
Velocity

+++++
+++++

=       (10) 

where the Padé approximation coefficients0p  to 5p and 0q  to 5q  are given in Table. A.The 

complete derivation of the above Padé approximant is given in the Appendix B-D 

(Supplementary Information). This (Eq. (10)) is a simplest closed-form of analytical 

approximation valid over the entire range of axial distance.Using Eqs. (A8) and (10) combined, 

we can obtain the pressure, as indicated by the equation below: 

( ) ( ) ( ) ( )( ) ξξξξξ
ξ

dHHHP ∫ ′−′′=
0

        (11) 

4. Numerical Simulation 

 Electrochemical simulations are one particular approach to understand the processes at 

electrodes [34-37].White et al. [38] solved the problem numerically by Newman technique [39]. 

Mathematical demonstration using Mathematica software for von Kármán swirling flow of RDE 

is created by Higgins and Binous [40]. Non-linear equations in rotating disk electrode (RDE) 

was solved by means of the self-adaptive method [25]. Bikash Sahool et al. [41] obtained the 

numerical solutions by adopting direct multiple shooting method for the fully coupled and highly 

non-linear system of differential equations, arising due to the steady Kármán flow and heat 

transfer of a viscous fluid in a porous medium. Recently, Ming et al. [3] solved the system of 

highly non-linear differential equations (A5-A7) by an improved multi-shooting method. Our 

analytical result for the velocity and pressure profiles are compared with numerical simulation. 

The comparison of analytical result obtained in this work with the numerical result obtained by 
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multi shooting technique which is  based on Runge-Kutta method  is shown in Figure 1(a-d) in 

which satisfactory agreement is noted.Our analytical expression of velocity profiles (Padé 

approximation Eq. (20))is compared with small (Eqs. (1-3)) and long (Eqs. (4-6)) distance 

expressions in TableB and adequate agreement between the two approaches is noted. 

 

5. Discussions 

 Von Kármán [4] gave the approximate solution of these equations based on the 

momentum integral method. Cochran [5] pointed out the errors contained in Kármán’s solution 

and used a matching technique like Blasius method to give a solution more accurate than 

Kármán’s one. Fettis [42] derived a new asymptotic expansion which can describe the entire 

flow and Benton [43] gave an asymptotic solution better than Cochran’s solution using Fettis’s 

method with only a trivial difference. Ariel derived the steady laminar flow of an elastico-

viscous fluid near a rotating disk using perturbation technique [11]. 

For the first time Yang and Liao [24] obtained the analytical solution of von Kármán 

equations using the homotopy analysis method (HAM) [44, 45], as an infinite series Eq. (12). 

The homotopy series for the dimensionless axial velocity component converges slowly towards 

the exact solution of von Kármán equations. Hence, it is revealed that the series solution is not 

well suited to highly accurate computation of the diffusion–convection impedance for RDE. 

Recently, Liao [24] obtained the solution of the non-linear equation using homotopy analysis 

method as follows: 
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neG ηβξ η∑∑∑
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=
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1

0
,
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1

0

   (12) 

 In the above solution it is very difficult to obtain the coefficients of iη .However all the 

above mentioned solutions employed some numerical methods, such asanalytic, semi-numerical 

as well as essentially semi-ones. Thus, our analytical (Padé approximation) method is a simplest 

form which is valid for all values ofξ . The calculation of this method is free from computational 

software’s, in which, we can calculate the Padé coefficients algebraically by doing simple steps. 

 Fig. 2 illustrates how the steady state radial, tangential and the axial velocity vary with ξ, 

respectively. Fig. 2(a), gives the distribution of radial velocity. It shows that the maximum value 

of radial velocity increases slightly with increasing power-law index. The thickness of the 
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boundary layer decreases with the increasing power-law index [25]. It shows that the value of the 

radial velocity component rises initially and reaches the maximum value at 86290.=ξ and then 

decreases gradually until it reaches the steady state value. From the Fig. 2(b), it is evident that 

the value of the angular velocity component decrease from its initial value and reaches the steady 

state value zero at ∞=ξ . Maximum for ( )ξG  is 1. 

 Form the Fig.2(c), it is also observed that the axial velocity component always decreases 

when distance increases and reaches the steady state value at ∞=ξ . Maximum for ( )ξH is 

0.The results demonstrated that increasing the axial distance increases the value of axial velocity 

and vice versa for tangential and total velocities. 

 

 

6.  Conclusions 

Approximate analytical solutions to the system of non-linear differential equations are 

presented using Padé approximation method. A simple, straight forward and a new method of 

estimating the radial, tangential, axial velocity components have been reported. This analytical 

result will be useful to know the behaviour of the reaction system. In addition, this is a simple 

step solution for all distance to merge both the small and long distance expansions. For the first 

time, we have successfully reported a methodology which employs less time for analyzing small 

and large values of ξ  separately, compared to previous studies. In addition, we can emphasized 

that our solution is highly specific and purely analytical due to the structure of the known 

solution. Furthermore, thePadé approximation coefficients in the series can be calculated 

algebraically. This proposed methodology does not require to use any numerical method to get 

such coefficients in contrast to Cochran’s series solutions. Our analytical solutions are compared 

with numerical solutions and they are in very good agreement with the numerical simulation 

data.  
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Fig. 1(a). Dimensionless radial velocity component ( )ξF versus the dimensionless distance 

profile. The key to the graph: solid line represents Eq. (B10) and the dotted line represents the 

numerical [3]. 

 

Fig. 1(b). Dimensionless tangential velocity component ( )ξG versus thedimensionless distance 

profile. The key to the graph: solid line represents Eq. (C5) and the dotted line represents the 

numerical [3]. 
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Fig. 1(c). Dimensionless axial velocity component ( )ξH versus the dimensionless distance 

profile. The key to the graph: solid line represents Eq. (D5) and the dotted line represents the 

numerical [3]. 

 

Fig.1 (d). Dimensionless pressure component ( )ξP versus the dimensionless distance profile. 

The key to the graph: solid line represents Eq. (11) and the dotted line represents the numerical 

[3]. 
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Fig. 2(a). Comparison of our radial velocity component ( )ξF (Padé approximation Eq. (B10)) 

versus the dimensionless distance ξ with small (Eq. (1)) and long solution (Eq. (7)). 

 

Fig. 2(b). Comparison of our tangential velocity component ( )ξG  (Padé approximation Eq. 

(C5)) versus the dimensionless distance ξ with small (Eq. (2)) and long solution (Eq. (8)). 
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Fig. 2(c). Comparison of our axial velocity component ( )ξH  (Padé approximation Eq. (D5)) 

versus the dimensionless distance ξ with small (Eq. (3)) and long solution (Eq. (9)). 

 

Fig. 3. Plot for analytical solution of velocity and pressure using Eqs. (10-11). 
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Table. A. Numerical value of Padé approximation coefficients for ( )ξF , ( )ξG  and ( )ξH  

Padé Coefficients ( )ξF  ( )ξG  ( )ξH  

0p  0  1  0  

1p  0.51000  0.04812  0  

2p  0.33506  0.01933-  0.51000  

3p  -3109.95187 ×  001060.  0.10187-  

4p  -3107.31242- ×  0  0.02892-  

5p  -5108.32389 ×  0  0  

1q  1.63737  0.66412  0.85335  

2q  1.22223  0.38977  0.41316  

3q  0.52480  0.07116  0.12238  

4q  0.41588 0.00966  0.03263  

5q  0.07513  0  0  
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Table. B. Comparison of approximate analytical expression (Padé approximation Eq. (20)) of velocity profiles( )ξF , ( )ξG  and ( )ξH  
with small and long distance expressions 

( )ξF  
Radial  velocity 

( )ξG  
Tangential velocity 

( )ξH  
Axial velocity 
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0.000 0 0  0  1 1  0  0 0  0  

0.001 0.00 0.00  0  1.00 1.00  0  0.00 0.00  0  

0.05 0.02 0.02  0  0.97 0.97  0  0.00 0.00  0  

0.1 0.05 0.05  0  0.94 0.94  0  0.00 0.00  0  

0.2 0.08 0.08  0  0.88 0.88  0  -0.02 -0.02  0  

0.4 0.14 0.14  1  0.76 0.76  0  -0.06 -0.06  0  

0.6 0.16 0.17  3  0.66 0.67  1.5  -0.12 -0.12  0  

0.8 0.18 0.19  10  0.56 0.59 0.55 1.7 1 -0.19 -0.20 -0.18 5 5 

1 0.17 0.22 0.19 24 12 0.48  0.47  2 -0.26  -0.26  0 

2 0.10  0.12  20 0.22  0.20  9 -0.57  -0.57  0 

3 0.05  0.06  20 0.10  0.08  20 -0.73  -0.75  2 

4 0.03  0.03  0 0.05  0.04  20 -0.81  -0.83  2 

5 0.01  0.01  0 0.03  0.03  0 -0.85  -0.86  1 

10 0.00  0.00  0 0.00  0.00  0 -0.89  -0.89  0 

∞  0  0  0 0  0  0 ( )α−=− 886.0   ( )α−=− 886.0   0 
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Nomenclature 

u   radial velocity component( )sm /  

v   tangential or angular velocity component( )sm /  

w   axial velocity component( )sm /  

r   radial coordinate )(m  

z   normal or axial coordinate )(m  

p   pressure )/( mN  

ρ   density of the fluid )/( 3mkg  

ν   kinematic viscosity of the fluid 

ω   electrode rotation speed 

F   self-similar radial velocity or dimensionless radial velocity component 

G   self-similar tangential velocity or dimensionless angular velocity component 

H   self-similar axial velocity or dimensionless axial velocity component 

ip , iq   Padé approximation co-efficient 
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Figure Captions 

Fig. 1(a). Dimensionless radial velocity component ( )ξF versus the dimensionless distance 

profile. The key to the graph: solid line represents Eq. (B10) and the dotted line represents the 

numerical [3]. 

Fig.  1(b). Dimensionless tangential velocity component ( )ξG versus the dimensionless distance 

profile. The key to the graph: solid line represents Eq. (C5) and the dotted line represents the 

numerical [3]. 

Fig. 1(c). Dimensionless axial velocity component ( )ξH versus the dimensionless distance 

profile. The key to the graph: solid line represents Eq. (D5) and the dotted line represents the 

numerical [3]. 

Fig. 1(d). Dimensionless pressure component ( )ξP versus the dimensionless distance profile. 

The key to the graph: solid line represents Eq. (11) and the dotted line represents the numerical 

[3]. 

Fig. 2(a). Comparison of our radial velocity component ( )ξF (Padé approximation Eq. (B10)) 

versus the dimensionless distance ξ with small (Eq. (1)) and long solution (Eq. (7)). 

Fig. 2(b). Comparison of our tangential velocity component ( )ξG  (Padé approximation Eq. 

(C5)) versus the dimensionless distance ξ with small (Eq. (2)) and long solution (Eq. (8)). 

Fig. 2(c). Comparison of our axial velocity component ( )ξH  (Padé approximation Eq. (D5)) 

versus the dimensionless distance ξ with small (Eq. (3)) and long solution (Eq. (9)). 

Fig. 3. Plot for analytical solution of velocity and pressure using Eqs. (10-11). 
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