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ABSTRACT: Surface group modification and functionalization of two-dimen-
sional materials in many cases are deemed as effective approaches to achieve some
distinctive properties. Herein, we present a new nanoflower-shaped TiO2/C
composite which was synthesized by in situ alcoholysis of two-dimensional layered
MXene (Ti3C2(OHxF1−x)2) in a dilute HF solution (0.5 wt %) for the first time.
Furthermore, it is demonstrated that it bestows a strong catalytic activity for the
dehydrogenation of NaAlH4. The results show that the NaAlH4 containing 10 wt
% A0.9R0.1−TiO2/C (containing 90% anatase TiO2 and 10% rutile TiO2)
composite merely took ∼85 min to reach a stable and maximum dehydrogenation
capacity of ∼3.08 wt % at 100 °C, and it maintains stable after ten cycles, which is
the best Ti-based catalyst for the dehydrogenation of NaAlH4 reported so far.
Theoretical calculation confirms that this C-doping TiO2 crystals remarkably
decreases desorption energy barrier of Al−H bonding in NaAlH4, accelerating the
breakdown of Al−H bonding. This finding raises the potential for development
and application of new fuel cells.

KEYWORDS: MXene, catalytic properties, two dimension, phase transformation, dehydrogenation

1. INTRODUCTION

Fuel cells are regarded as a potential alternative energy to
decrease dependence on fossil fuels,1 whereas until now it still
meets some challenges, such as an absence of suitable hydrogen
storage, low-cost system to be used. Recently, significant efforts
have been devoted to developing solid-state metallic systems
for hydrogen storage in viewpoints of safety and reversibility.2

The NaAlH4 compound, which was pioneered by Bogdanovic
et al.,3,4 has been deemed a promising candidate for fuel cells
because of its high reversible hydrogen storage capacity and
optimal thermodynamic stability for hydrogen storage at
medium temperatures, though its maximum gravimetric
capacity is ∼4.5%.4 The main hurdles of NaAlH4 applications
lie in its slow kinetics and poor reversibility.3 Therefore, some
methods, such as catalyst doping,5 nanoengineering,6,7 and
reactant destabilization, have been performed to enhance its
hydrogen storage properties. Among these methods, the
catalysts are more attractive in terms of industrial viewpoints.
Figure 1 shows the combination of dehydrogenation properties
of NaAlH4 accompanying different catalysts.3,4,6−26 Compared
to other catalysts, the Ti-based catalyst is the most possible
counterpart to improve dehydrogenation properties in the

temperature range of 150−250 °C since the barrier mainly
originates from kinetics rather than thermodynamics.2,27−29

Unfortunately, the low cycle stability and relatively high
dehydrogenation temperature slow its application rhythm
although some nanocrystalline TiO2 supported on nanoporous
carbon30 and Ti−C ordered mesoporous carbon31 provide high
dehydriding performances but low hydrogen capacity. Hence
the applications of NaAlH4 for proton exchange membrane
(PEM) fuel cells at low temperatures (∼100 °C) are still
severely restricted.
Basically, the formation of Ti−O, Ti−F, and Ti−C bonds is

of particular benefit to develop some new catalysts for
dehydrogenation.3,4,6−26 Coincidentally, the recently developed
MXene (Ti3C2(OHxF1−x)2) materials contain a larger amount
of such bonds.32−34 The external surface of MXene after Al
removal is terminated by OH or F groups by forming Ti−OH
or Ti−F bonds.35 Meanwhile, the MXene can also change to
TiO2 structure by heat decomposition or hydrothermal
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reaction,36−38 which can be used as lithium ion batteries
electrodes or adsorbents.39,40 Both of them provide some
prerequisites to design such new catalysts.
Noteworthy, it is confirmed that not only do phase

transformations occur on the surface groups of MXene in the
different aqueous solvents39 but also the whole MXene
structure can be continuously decomposed by varying HF
concentrations.41 In addition, the presence of F groups on
MXene surface significantly determines the growth of TiO2
crystallographic planes. Therefore, it is expected to prepare
some new MXene derivatives with some distinctive chemical
properties. Herein, we achieved a new A0.9R0.1-TiO2/C
nanocomposite by alcoholysis reaction of MXene in solutions
containing dilute HF concentration of 0.5 wt % for the first
time. Attractively, this nanoflower-shaped A0.9R0.1−TiO2/C
composite (FS-A0.9R0.1TC, containing 90% anatase TiO2 and
10% rutile TiO2) bestows unexpected high catalytic activity for
the dehydrogenation of NaAlH4. It remarkably improves
dehydrogenation capacity, kinetics, and stability relative to the
previously reported catalysts (Figure 1). To the best of our
knowledge, this is the first time to report the synthesis of
nanoflower-shaped 2D-MXene composite. This composite was
successfully evaluated as a catalyst toward the dehydrogenation
of NaAlH4. Furthermore, the low dehydrogenation temper-
ature, high cycle stability, and simple procedure on large scale
are especially desirable for the development of new PEM fuel
cells.

2. MATERIALS AND METHODS
2.1. Preparation of Different MXene Derivative Composites.

The processing of MXene has been reported in detail in our previous
results.35 The flower-shaped (A-TiO2 + R-TiO2)/C composite was
achieved by solvent-thermal decomposition of MXene. The solvent
compositions were shown in Table S1. The mixture (0.5 g of MXene,
15 mL of ethylene glycol (EG), 25 mL of isopropyl alcohol (IPA), and
0.5 mL of HF) was continuously sonicated for 15 min and stirred for 3
h at room temperature. Then the above solution was added into a

Teflon autoclave and heated at 200−250 °C for 8−48 h in an electric
blast drying oven. After the reaction was completed, the gray
precipitate on the bottom was moved to a 50 mL centrifuge tube
and centrifuged at 3600 rpm with deionized water and ethyl alcohol at
least four times (20 min for each time) to remove unreacted solution.
After removal of the supernatant, the sediment was dried at 80 °C
under vacuum for 24 h to obtain the final flower-shaped (A-TiO2 + R-
TiO2)/C composite (FS-A0.9RT0.1TC). The detail concentration ratio
was obtained, dependent on the following Rietveld refinement.

2.2. Hydriding/Dehydriding Measurements. NaAlH4 (high
purity, Sigma-Aldrich, St. Louis) samples with different additives were
treated by ball milling (QM-3MP4, Nanjing) under an Ar atmosphere
at 500 rpm for 12 h. All preparation processes were done in a glove
box with the protection of pure argon gas (H2O, O less than 1 ppm).
The weight concentration of all catalysts remained at 10 wt % to
compare their catalytic properties.

A lab-built Sievert’s apparatus was used to measure the hydrogen
sorption. The detailed testing process and mechanism have been
reported in our previous results.42 Basically, all the steps were prepared
under Ar atmosphere. Approximately 0.3 g of sample was used for
hydrogen sorption. Sieverts ̀ methods were used to study the effect of
the temperature on the desorbed amount of hydrogen (temperature-
programmed desorption: TPD). The temperature increased in the
range of 25−200 °C at a rate of 2 °C/min. The initial hydrogen
pressure of the channel was 0.001 MPa. The heating rate is ∼15 °C/
min. During the hydrogenation/dehydrogenation cycles, the sample
was hydrogenated at 120 °C under the hydrogen pressure of 10 MPa
for 6 h.

2.3. Analysis and Characterization. The X-ray diffraction (XRD,
Rigaku D/MAX-2005/PC) results were attained using Cu Kα
radiation (λ = 1.5406 Å) at a voltage of 40 kV with a step-scanning
speed of 2°/min. The testing results were analyzed in terms of
Rietveld refinement (the software Fullprof).

The morphologies were characterized by a field emission scanning
electron microscopy (FESEM, Hitachi S4800, Japan) and the
transmission electron microscopy (TEM) and high-resolution trans-
mission electron microscopy (HRTEM, JEOL JEM2010) at
accelerating voltage of 200 kV. The bonding composition was
analyzed by X-ray photoelectron spectroscopy (XPS, UlVAC-PHI
model 5000 Versa probe), and the peaks were fitted by using a curve-

Figure 1. Optimization of the dehydrogenation catayst profile for NaAlH4. (a) Property space for dehydrogenation desorption versus temperature.
The inset correponds to the crystal stucture of NaAlH4. The pink ellipsoid and the yellow circle represent the range for PEC at low temperatures and
the high dehydrogenation amount at elevated temperatures. The different colors are used to distinguish the test samples which were prepared by
using different raws. The red signs represent the raws of NaH and Al, while the blue signs correspond to the raw of NaAlH4. The connections mean
the same samples. (b) Property space for hydrogen desorption versus desorption time at 100 °C. The data in these figures are compared with other
catalysts in the published literature, showing the signifcant improvement in the dehydrogenation amount in combination with the kinetics.
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fitting program (XPS-peak4.1) The reference C 1s at 284.2 eV was
used to calibrate the binding energies.
2.4. Computational Details. The calculations were finished with

the Vienna ab initio Simulation Package (VASP) code in terms of the
density functional theory (DFT).43 The function and approximation
have been introduced in previous results.44 Briefly, the cutoff energy
was 520 eV. A 3 × 3 × 1 supercell of A-TiO2 and A-TiO2/C and a 3 ×
3 × 1 supercell of R-TiO2 and R-TiO2/C were used, respectively. The
smearing value, which was determined by a Methfessel-Paxton
smearing scheme,45 was 0.1 eV. The DFT-D3 method46 was involved
to calculate the van der Waals (vdW) interaction. A vacuum space was
15 Å, and it can effectively eliminate the effect between sheets.

3. RESULTS AND DISCUSSION

3.1. Microstructure Characteristics. Typically, Ti3AlC2
powders were mixed with a solution of LiF and 6 M HCl and
heated at 60 °C for 48 h. After reaction, the samples were
separated and washed to obtain the reaction products. A
representative exfoliated morphology of layered MXene
(Supporting Information, Figure S1a) was observed by
FESEM. The gap width and layer thickness are ∼100 ± 50
nm and ∼25 nm, respectively. It is similar to the results by
etching in 40% HF solution.35 Note that the TiC peaks (∼3.9
wt %) which formed during hot-pressed sintering maintain
invariable.35

A hierarchical nanoflower-shaped morphology has first been
achieved by alcohol-thermal decomposition of MXene in a
mixing solution of EG, 0.5 mL of HF solution, and IPA (Figure
2a, Table S1). EG and IPA are added to strengthen the F
adsorption on the surface. The average size of nanoflower-
shaped structure with a hierarchical structure is ∼1.25 μm. The
high-magnification image reveals that the petals are mainly
composed of some intercrossed sheets with a width of ∼125

nm and a thickness of ∼4.3 nm (Figure S1). The TEM images
of separated flowers (Figure 2c,d) present the high-resolution
crystal structure of the petals. The selected area electron
diffraction (SAED) can be assigned into diffraction spots of the
[100] zone axis. Examination of individual nanosheet with high-
resolution TEM shows that the petals are completely crystalline
along their entire lengths. Lattice figures with interplanar
spacing, d101 = 4.34 ± 0.02 Å and d200 = 2.40 ± 0.02 Å, are
evidently confirmed, and they correspond to anatase TiO2 (A-
TiO2) phase.46,47 In addition, Raman spectra (Figure 2e) and
X-ray diffraction patterns (XRD, Figure 2f) demonstrate that
the flower-shaped sample mainly consists of a large number of
A-TiO2, a little C (graphene type11) and rutile TiO2 (R-TiO2).
The impurity of TiC (∼3.1 wt %) comes from hot-pressed
sintering. The ratio of chemical composition between A-TiO2
and R-TiO2 is ∼9.19 in terms of Rietveld refinement (Figure
S2). The C element comes from the decomposition of C layer
in MXene, which is consistent with the results reported by
thermal decomposition or hydrothermal reaction.48,49 Accord-
ing to the aforementioned results, this new sample can be
abbreviated as a FS-A0.9R0.1TC (Table S1).
To elucidate the formation process of FS-A0.9R0.1TC, the

FESEM graphs (Figure S1) and XRD patterns (Figure S3a)
after reacting for different time intervals were performed. At the
initial reaction stage (4 h), the whole layer structure remains
and the peak of 9° is observed. However, apart from MXene
peaks, there are some new peaks detected based on the XRD
results. Some TiOF2 peaks are detected. As incubation time is
further increased (over 8 h), the peaks of TiOF2 become weak,
suggesting the occurrence of phase transformation. This trend
has also been confirmed by XPS investigation (Figure 3). The
distinguished Ti 2p3/2 and Ti 2p1/2 peaks within the primitive

Figure 2. Microstructure characteristics. (a) A representative SEM graph of FS-A0.9R0.1-TiO2/C. The inset is the peony morphology. (b) High-
magnification graph of petals. (c) Typical TEM graph of FS-A0.9R0.1-TiO2/C. The thin sheet and fine rod correspond to A-TiO2 and R-TiO2,
respectively. The inset represents the SAED of A-TiO2 sheet. (d) HRTEM graph of A-TiO2 sheet. (e) Raman spectroscopy of FS-A0.9R0.1-TiO2/C.
(f) Rietveld structure refinement of FS-A0.9R0.1-TiO2/C.
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MXene were located at ∼458.7 and ∼464.3 eV, respectively,
which corresponded to Ti(IV)−O/F species (Figure 3a).
Meanwhile, another broad peak ranging from approximately
452.0 to 456.5 eV can be ascribed to the low-valence Ti
sources, that is, Ti(II) 2p3/2 (455.8 eV) and Ti(III) 2p3/2 (454.7
eV), respectively. Interestingly, a new kind of Ti 2p was
observed after thermal reaction for 4 h. The corresponding full
width at half-maximum (fwhm) of Ti(IV) 2p widened, in which
a new Ti(IV) species emerged at approximately 459.7 eV for
Ti(IV) 2p3/2 and 465.2 eV for Ti(IV) 2p1/2, respectively
(Figure 3b), which might be attributed to the formation of
TiOF2 intermediate (Ti(IV)O).30,39 Finally, the majority of
TiOF2 species and low-valence Ti sources transformed into the
Ti(IV)−O composition after reaction for 24 h (Figure 3c).
Additionally, the O 1s peaks also revealed a similar

conversion process. The representative O 1s peak was
composed of the Ti−O (∼530.3 eV) and Ti−OH (∼532.0
eV) on the bare MXene material with the peak area of 71.7%
and 28.3%, correspondingly (Figure 3d). Comparatively, a new
O 1s peak was detected (Figure 3e) at the initial reaction stage
(4 h), which was related to the formation of double-bond
oxygen in TiOF2 intermediate product. The composition ratio

of Ti−O, Ti−OH, and TiO was approximately
49.8:32.5:18.6%, indicating that the possible species trans-
formed from Ti−O and Ti−OH to intermediate TiOF2, which
was consistent with the variation of the Ti 2p spectrum and
XRD analysis. Therefore, the reaction process can be shown as
follows:

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ + ⎯ →⎯⎯
< ≥

Ti C (OH F ) TiOF C TiO /C3 2 0.8 1.2 2
EG,HF,IPA, 4h

2
8h

2
(1)

The width of nanosheet increases with the incubating time at
the beginning of the decomposition process and then it remains
a constant of ∼170 nm. In contrast, the similar trend is also
confirmed for the percentage of the (001) plane (Figure S3b).
The maximum fraction value of the (001) plane is ∼62%.

3.2. Dehydrogenation Properties. To probe potential
applications in dehydrogenation catalysts of FS-A0.9R0.1TC
nanocomposite, the hydrogen desorption properties of the
NaAlH4 including 10 wt % samples were evaluated by
temperature-programmed desorption (TPD) via volumetric
release.31 The pristine MXene and commercial TiC (99.5%),
and P25 (99.9%, containing 85.48 wt % A-TiO2 and 14.52 wt %
R-TiO2), were involved as the references. All references and the

Figure 3. Variation of different elemental states. (a) Ti 2p spectra of MXene. (b) Ti 2p spectra of TiOF2 (4 h). (c) Ti 2p spectra of FS-A0.9R0.1TC (4
h). (d) O 1s spectra of MXene. (e) O 1s spectra of TiOF2(4 h). (f) O 1s spectra of FS-A0.9R0.1TC (4 h).
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samples have a similar size of 1−2 μm. The typical two-step
reactions relative to the decompositions of AlH4

− and AlH6
3−

occurred during all dehydrogenation procedures3,50 (Figure

4a). All additions decrease the dehydrogenation temperature of
NaAlH4 due to the presence of Ti−O, Ti−F, or Ti−C bonds.
Attractively, the FS-A0.9R0.1TC sample shows the most effective

Figure 4. Dehydrogenation properties of MXene derivatives. (a) TPD curves of NaAlH4 with different additives. (b) Isothermal dehydrogenation
curves of NaAlH4 with different additives at 100 °C (10 wt % catalyst). (c) Isothermal dehydrogenation curves of NaAlH4 with FS-A0.9R0.1TC at
different temperatures (10 wt % catalyst). (d) TPD curves of NaAlH4 with FS-A0.9R0.1TC at different cycles.

Figure 5. Microstructure variation. (a) Molecular structure of (NaAlH4)3 clusters. (b) Structure of (NaAlH4)3 clusters and C-doping A-TiO2 (001).
(c) The lengths of different Al−H bonding in (NaAlH4)3 clusters, (NaAlH4)3 /A-TiO2 (001), and (NaAlH4)3 /C-doping A-TiO2 (001). (d) The
desorption energy of different H atoms in (NaAlH4)3 clusters, (NaAlH4)3/A-TiO2 (001), and (NaAlH4)3/C-doping A-TiO2 (001). (e) ELF of
(NaAlH4)3/C-doping A-TiO2 (001).
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performance on the decomposition of AlH4
− and AlH6

3−. The
onset temperature reduces to ∼95 °C, which lowers ∼60 °C in
contrast to the pristine ball-milled NaAlH4. Moreover, the final
temperatures of the first and second dehydrogenation step
change to 122 and 152 °C, respectively, representing 90 and
115 °C declines relative to those of the pristine NaAlH4 sample,
correspondingly.
In addition, hydrogen storage materials which release

hydrogen at around 100 °C are of particular interest for PEM
fuel cells. The isothermal dehydrogenation tests (Figure 4b)
show that the FS-A0.9R0.1TC improves the decomposition rate
of AlH6

3− groups at low temperature. It can release ∼3.11 wt %
hydrogen in 90 min, which is better than those reported so
far6−20 (Figure 1b). Moreover, it can rapidly release more than
4.6 wt % of hydrogen within 20 min at 140 °C, and almost all
5.05 wt % of hydrogen is desorbed within 250 min at 140 °C
(Figure 4c). However, no hydrogen can be desorbed by pure
NaAlH4 at 140 °C. More importantly, the dehydrogenation
amount of ∼3.08 wt % is achieved within 240 min at 90 °C and
85 min at 100 °C at a constant rate. To the best of our
knowledge, it is the best one among the Ti-based catalysts for
dehydrogenation of NaAlH4. The FS-A0.9R0.1TC additive
completely decomposes the AlH6

3− at 110 °C for only 35
min, which is a half value of NaAlH4 + 2 mol % nanosized
CeB6

3.
The dehydrogenation curves of NaAlH4 + 10 wt % FS-

A0.9R0.1TC samples in the first ten cycles (Figure 4d) reveal its
excellent cycling stability, in which a little reduction is observed
with increasing the cycling numbers. The dehydrogenation
amount remains a constant of ∼4.5 wt % after the second cycle,
which is approximately 95% of that in contrast to the first cycle.
More importantly, the dehydrogenation amount maintains
relatively constant for even ten cycles.
To understand the improved kinetics, the activation energy

(Ea) of two-step dehydrogenation reactions of NaAlH4 + 10 wt
% FS-A0.9R0.1TC was calculated using the nonisothermal
Kissinger methods according to the following equation,19,22

β Τ
Τ

=μ

μ

E
R

d ln( / )

d(1/ )

2
a

(2)

where β is the heating rate, Tm is the solute temperature for the
maximum desorption rate, and R is the gas constant. Tm was
obtained using differential scanning calorimetry measurement
with the different heating rates (Figure S4a). The induced
results (Figure S4b) show that the EaAlH4 and EaAlH6 are 57.68
and 67.30 kJ/mol, respectively. They are reduced by 36% and
30% compared with those of the pristine NaAlH4,

3,17,51−54

respectively. Compared with similar Ti-based catalysts or other
catalysts (Table S3), the values are also very low.
3.3. Catalytic Mechanism. The catalytic behavior of FS-

A0.9R0.1TC is elucidated by first principle calculations, wherein
the (NaAlH4)3 cluster as a type of the NaAlH4 structure is
selected to investigate the procedure55 (Figure 5a). It is well-
known that the dehydrogenation of NaAlH4 is a process
controlled by kinetic activation barrier. Thus, the desorption
energy (Ed) of H atoms desorbing from (NaAlH4)3 is regarded
as an important parameter to interpret the catalytic mechanism.
Taking into account the high concentration of A-TiO2 and the
high activation of {001} plane,28,32 the model of A-TiO2 (001)
(Figure 5b) has been simplified to investigate their catalytic
properties. In addition, taking into account our experimental
process, the C element has two possible existence forms,

although it is marked as TiO2/C. One is graphene, which was
verified by Raman spectrum (Figure 2e). The other is related to
the C-doped TiO2 (substituting O sites) confirmed by the
shifted peaks (Figure S2−3). Owing to the weak catalytic role
of graphene on dehydrogenation,56 only C-doped A-TiO2 is
considered to simplify the calculations.
The desorption energy (Ed) of one H atom desorbing from

(NaAlH4)3 with or without A-TiO2 (001) surface is defined as
the following,57

= − ′ −E E E E
1
2d H2 (3)

where E and E′ are the total energy before and after desorbing
H. EH2

is the total energy of the H2 molecule.
The variation of Al−H bonding length (Figure 5c) shows

that the primitive Al−H bonding is ∼1.69 Å. However, the
majority of Al−H bonding lengths are increased on the surface
of A-TiO2 (001) substrate. The max value (position 7) changes
to ∼2.05 Å. It shows that the addition of A-TiO2 is of benefit
for the dehydrogenation of NaAlH4. Comparatively, the trend
similar to A-TiO2 is detected in the C-doping A-TiO2. The
main difference between A-TiO2 and C-doping A-TiO2 is that
the Al−H bond lengthening is further increased with the
addition of C-doping A-TiO2. The max Al−H length (position
7) is ∼2.50 Å, which is 1.48 times than that of the primitive
one.
The strengthening dehydrogenation roles of (NaAlH4)3

clusters are achieved in both A-TiO2 and C-doping A-TiO2

(Figure 5d). The average Ed value is ∼4.00 eV for the primitive
(NaAlH4)3 clusters. Comparatively, the Ed value is reduced to
∼3.00 eV with the addition of A-TiO2. More attractively, this
catalytic dehydrogenation is further strengthened by the C-
doping A-TiO2. The majority of activation energies became ∼2
eV. Particularly, the Ed values of one-third sites (positions 3, 5,
6, and 7) are below 1 eV (∼0.60 eV). It demonstrates that the
C-doping A-TiO2 additive would remarkably accelerate the
dehydrogenation of (NaAlH4)3 clusters.
The valent electron localization function (ELF, Figure 5e)

shows that the surface of Ti atoms is covered by the H atoms.
Moreover, the H atom separates the bonding between Ti and
Al. It reveals that it is prone to forming Ti−H bonding instead
of Ti−Al bonding. The formation of Ti−H bonding enlarges
the length of Al−H bonding, which makes the bonding of Al−
H weak. This process is confirmed by XRD results (Figure S5),
in which only the TiHx compound is detected during the
dehydrogenation, independent of the temperatures.

4. CONCLUSIONS

In summary, this investigation presents a simple method to
prepare some intriguing stuctures of two-dimensional MXene
derivatives. For example, we successfully achieved a unique
flower-shaped A0.9R0.1-TiO2/C nanocomposite which contains
90% anatase TiO2 and 10% rutile TiO2 thermal alcoholysis
reaction of MXene in a dilute HF solution. This unique
structure shows unexpected catalytic activity for the dehydro-
genation of NaAlH4 at low temperatures owing to the
decreased activation energy barriers. The low dehydrogenation
temperature, high cycle stability, and simple procedure on large
scale are especially desirable for the development of new PEM
fuel cells.
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