
 
 

 
 

OpenAIR@RGU 
 

The Open Access Institutional Repository 
at Robert Gordon University 

 
http://openair.rgu.ac.uk 

 
This is an author produced version of a paper published in  
 

Applied physiology, nutrition, and metabolism (ISSN 1715-5312, eISSN 
1715-5320) 

 
This version may not include final proof corrections and does not include 
published layout or pagination. 
 
 

Citation Details 
 

Citation for the version of the work held in ‘OpenAIR@RGU’: 
 

KAPRAVELOU, G., MARTINEZ, R., ANDRADE, A.M., NEBOT, E., 
CAMILETTI-MOIRON, D., APARICIO, V.A., LOPEZ-JURADO, M., 
ARANDA, P., ARREBOLA, F., FERNANDEZ-SEGURA, E., BERMANO, 
G., GOUA, M., GALISTEO, M. and PORRES, J.M. 2015. Aerobic 
interval exercise improves parameters of non-alcoholic fatty liver 
disease (NAFLD) and other alterations of metabolic syndrome in 
obese Zucker rats. Applied physiology, nutrition, and metabolism, 
40(12), pages 1242-1252. Available from OpenAIR@RGU. [online]. 
Available from: http://openair.rgu.ac.uk 

 
 

Citation for the publisher’s version: 
 

KAPRAVELOU, G., MARTINEZ, R., ANDRADE, A.M., NEBOT, E., 
CAMILETTI-MOIRON, D., APARICIO, V.A., LOPEZ-JURADO, M., 
ARANDA, P., ARREBOLA, F., FERNANDEZ-SEGURA, E., BERMANO, 
G., GOUA, M., GALISTEO, M. and PORRES, J.M. 2015. Aerobic 
interval exercise improves parameters of non-alcoholic fatty liver 
disease (NAFLD) and other alterations of metabolic syndrome in 
obese Zucker rats. Applied physiology, nutrition, and metabolism 
[online], 40(12), pages 1242-1252. Available from: 
https://dx.doi.org/10.1139/apnm-2015-0141  

http://openair.rgu.ac.uk/
http://openair.rgu.ac.uk/
https://dx.doi.org/10.1139/apnm-2015-0141


Full details of publisher copyright available from 
http://www.nrcresearchpress.com/page/authors/information/rights 

 
Copyright 

Items in ‘OpenAIR@RGU’, Robert Gordon University Open Access Institutional Repository, 
are protected by copyright and intellectual property law. If you believe that any material 
held in ‘OpenAIR@RGU’ infringes copyright, please contact openair-help@rgu.ac.uk with 
details. The item will be removed from the repository while the claim is investigated. 
 

http://www.nrcresearchpress.com/page/authors/information/rights
mailto:openair%1ehelp@rgu.ac.uk


1 

 

Aerobic interval exercise improves parameters of Non Alcoholic Fatty Liver Disease (NAFLD) and 1 

other alterations of metabolic syndrome in obese Zucker rats. 2 

 3 

Garyfallia Kapravelou
1
, Rosario Martínez

1
, Ana M. Andrade

1
, Elena Nebot

1
, Daniel Camiletti-4 

Moirón
1
, Virginia A. Aparicio

1
, Maria Lopez-Jurado

1
, Pilar Aranda

1
, Francisco Arrebola

2
, Eduardo 5 

Fernandez-Segura
2
, Giovanna Bermano

3
, Marie Goua

3
, Milagros Galisteo

4
, and Jesus M. Porres

1
* 6 

 7 

1Department of Physiology. Institute of Nutrition and Food Technology. Doctoral Program in Nutrition and 8 

Food Sciences. University of Granada. Campus Universitario de Cartuja s/n. Granada 18071, Spain. 9 

2
Department of Histology, Institute of Neurosciences, University of Granada. Avenida de Madrid s/n. 10 

Granada 18071, Spain.   11 

3
Institute for Health and Wellbeing Research, Robert Gordon University, Aberdeen, UK 12 

4
Department of Pharmacology, School of Pharmacy, University of Granada. Campus Universitario de 13 

Cartuja s/n. Granada 18071, Spain. 14 

 15 

 16 

* Corresponding author: Departamento de Fisiología. Facultad de Farmacia. Universidad de Granada. 17 

Campus Universitario de Cartuja s/n. Granada 18071 Telephone: 34-958-243879, Fax: 34-958-248959, E-18 

mail: jmporres@ugr.es 19 

20 

Page 1 of 40



2 

 

Abstract 21 

Metabolic syndrome (MS) is a group of metabolic alterations that increase the susceptibility to 22 

cardiovascular disease and type II diabetes. Non Alcoholic Fatty Liver Disease (NAFLD) has been described 23 

as the liver manifestation of MS. We aimed to test the beneficial effects of an aerobic interval training (AIT) 24 

protocol on different biochemical, microscopic, and functional liver alterations related to the MS in the 25 

experimental model of obese Zucker rat. Two groups of lean and obese animals (6 weeks old) followed a 26 

protocol of aerobic interval training (4 min at 65-80% of VO2 max, followed by 3 min at 50-65% of VO2 27 

max, 45-60 min, 5 days/week, 8 weeks of experimental period), whereas two control groups remained 28 

sedentary. Obese rats had higher food intake and body weight (P < 0.0001), and suffered significant 29 

alterations in plasma lipid profile, area under the curve (AUC) after oral glucose overload (P < 0.0001), liver 30 

histology and functionality, and antioxidant status. The aerobic interval training protocol assayed 31 

ameliorated the severity of alterations related to glucose and lipid metabolism, and increased the liver protein 32 

expression of  PPAR-γ, as well as the gene expression of Glutathione Peroxidase 4 (P < 0.001). The training 33 

protocol also showed significant effects on the activity of hepatic antioxidant enzymes, although this action 34 

was greatly influenced by rat phenotype. The present data suggest that AIT protocol is a feasible strategy to 35 

improve some of the plasma and liver alterations featured by the MS.  36 

 37 

Key words: metabolic syndrome, non-alcoholic fatty liver disease, aerobic interval training, aerobic capacity, 38 

lipid metabolism, hepatic metabolic pathways, liver antioxidant status 39 
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Introduction 41 

Metabolic syndrome (MS) is a cluster of interrelated metabolic conditions which increase the risk of 42 

developing cardiovascular disease (Kaur 2014). MS is characterized by central obesity, dyslipidemia, 43 

elevated blood pressure, and elevated plasma glucose (Grundy 2005). Patients with MS are also more 44 

susceptible to develop type 2 diabetes mellitus (Reaven 2004). 45 

Hepatic morphology and function can be adversely affected by MS leading to the development of Non 46 

Alcoholic Fatty Liver Disease (NAFLD) (Marchesini et al. 2003) which is characterized by steatosis, lobular 47 

and portal inflammation, hepatocyte ballooning, and fibrosis (Brunt and Tiniakos 2010). Furthermore, this 48 

hepatic pathology is now considered as the liver manifestation of MS (Angelico et al. 2005). Although the 49 

exact mechanisms leading to it are not yet completely understood, insulin resistance and chronic oxidative 50 

stress have been reported to play a major role in liver damage and development of NAFLD (Polyzos et al. 51 

2009; Rolo et al. 2012)  52 

The effects of different types of exercise on MS have been studied. In 2009, Haram et al. (2009) reported 53 

that high-intensity aerobic interval training  was more effective at reducing cardiovascular disease risk in rats 54 

with MS than moderate-intensity continuous training. Aerobic interval exercise has also been described as a 55 

feasible and efficient strategy to restore mitochondrial dysfunction in rats after myocardial infarction by 56 

inhibiting dynamic pathological remodelling (Jiang et al. 2014). With regard to liver metabolism, several 57 

authors have studied the effect of moderate or vigorous intensity exercise on different aspects of NAFLD. 58 

Moderate intensity exercise training showed beneficial effects on intrahepatic triglyceride content, although 59 

it did not improve hepatic lipoprotein kinetics in obese individuals with NAFLD (Sullivan et al. 2012). On 60 

the other hand, vigorous exercise in humans was associated with a decreased adjusted odds of having non-61 

alcoholic steatohepatitis (NASH), whereas doubling the recommended time of vigorous exercise was 62 

associated with a decreased adjusted odds of advanced fibrosis (Kistler et al. 2011). Furthermore, Linden et 63 

al. (2015) have reported that vigorous-intensity interval exercise training (40 m/min, 15% incline, 6 × 2.5 64 

min bouts/day, 5 days/week treadmill running) was as effective as a longer moderate intensity protocol in 65 

lowering hepatic triglycerides, serum alanine aminotransferase (ALT), perivenular fibrosis, and hepatic 66 

collagen 1α1 mRNA expression in OLETF rats.   67 

Page 3 of 40



4 

 

Although a direct relationship has not been established, insufficient aerobic capacity is the basis of 68 

several cardiovascular and metabolic diseases (Tjønna et al. 2008). Therefore, an improvement in such 69 

capacity could result in health benefits reported for aerobic interval training.  70 

Oxidative stress is responsible for part of the initiation of obesity associated co-morbidities including 71 

NAFLD and NASH (Rolo et al. 2012; Tariq et al. 2014). The obese status is characterised by oxidative stress 72 

partly caused by insulin resistance and partly by low chronic inflammation (Al Rifai et al. 2015). Conditions 73 

in which antioxidant status is altered by prevailing oxidative forces can be reflected in altered activity or 74 

expression of liver antioxidant enzymes (Soltys et al. 2001; Videla et al. 2004). The regulation of glucose 75 

and lipid metabolism at hepatic level can be significantly affected by metabolic alterations such as those 76 

related to the development of NAFLD. Several molecular pathways are involved in glucose and lipid 77 

metabolism. There are specific components of the former pathways like 5' AMP-activated protein kinase 78 

(AMPK) or Peroxisome Proliferator Activator Receptor (PPAR) that play a key role in their activation. 79 

AMPK is a regulator of energy homeostasis that down-regulate the expression of gluconeogenic and 80 

lipogenic enzymes (Galisteo et al. 2010; Lochhead et al. 2000) in energetic deficiency situations. PPARs are 81 

a family of nuclear transcription factors related to the management of lipogenic and lipolitic pathways in 82 

liver and adipose tissue (Souza-Mello 2015). The up-regulation of PPAR-γ isoform has been related to 83 

different factors such as AMPK pathway (Sakai et al. 2014) or reactive oxygen species (ROS) generation 84 

(Ristow et al. 2009). Animal experimental models are an accepted tool to study the multifactorial effects of 85 

exercise on MS associated conditions. In this context, the obese Zucker rat model shares many similarities 86 

with humans affected by MS, including obesity, dyslipidaemia, insulin resistance, hepatomegalia, altered 87 

antioxidant status, and inflammatory process (Galisteo et al. 2010; Hey-Mogensen et al. 2012). According to 88 

Kucera and Cervinkova (2014), this experimental animal model exhibits the initial stages of NAFLD mainly 89 

characterized by steatosis, but does not spontaneously progress to stage 2 of the disease. This study aimed 90 

therefore: 1) to assess the potentially beneficial effects of AIT protocol on aerobic capacity, glucose and lipid 91 

metabolism parameters, liver histology and functionality, and hepatic antioxidant status in an animal 92 

experimental model of MS, the obese Zucker rat, that presents hepatic alteration related to early stages of 93 

NAFLD, 2) to study the role of AMPK and PPAR-γ in the signaling pathways involved in exercise-derived 94 

effects.    95 

Materials and methods 96 
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Animals and experimental design 97 

Twenty young male obese (fa/fa) (O) and 20 lean heterozygous (fa/+) (L) Zucker rats (6 weeks old) with 98 

an initial mean body weight of 179±2.8 and 148±3.4g, respectively, were allocated to four different 99 

experimental groups (two obese and two lean groups, n=10 rats each). Two of the experimental groups (an 100 

obese and a lean one) performed aerobic interval exercise according to an established training protocol (OE, 101 

LE) while the two remaining groups were considered as sedentary groups (OS, LS). The experiment lasted 102 

for 8 weeks, during which the animals were housed in a well ventilated, thermostatically controlled room 103 

(21±2°C). A reversed 12:12 light/dark cycle was implemented so the animals would perform the training 104 

protocol in darkness. Throughout the trial, animals had free access to type 2 water and consumed the 105 

experimental diet (see below) ad libitum. Food intake was recorded daily whereas body weight was 106 

measured once a week. At the end of experimental period, a glucose tolerance test following the protocol 107 

described by Prieto et al. (2004) was performed 24 h after the last training session in order to re-establish the 108 

normal physiological conditions altered in response to the energetic demand induced by the aerobic interval 109 

exercise. Blood glucose concentration from the animals’ tail was recorded at periods 0, 15, 30, 90 and 120 110 

min after the glucose overload ingestion (BREEZE® 2, Bayer), and the area under the curve (AUC) was 111 

determined. The animals were allowed to recover for 24 h prior being fasted for a further 8 h, anesthetized 112 

with xylazine/ketamine and sacrificed. Blood was collected by puncture of the abdominal aorta (with heparin 113 

as anticoagulant) and centrifuged at 1458 × g for 15 min to separate plasma that was subsequently frozen in 114 

liquid N2 and stored at -80°C. The liver was extracted, weighed, photographed for macroscopic studies, 115 

divided into various portions and immediately frozen in liquid N2 and stored at -80°C. All experiments were 116 

undertaken according to Directional Guides Related to Animal Housing and Care (EUC 2010) and all 117 

procedures were approved by the Animal Experimentation Ethics Committee of the University of Granada, 118 

Spain. 119 

Experimental diet 120 

The experimental diet was formulated following the guidelines of the American Institute of Nutrition 121 

(AIN-93M; Reeves et al. 1993), in order to meet the nutritional recommendations of adult rats (NRC 1995), 122 

with casein (70%) and whey (30%) as protein sources, to reach a 12% protein level. Dietary insoluble fiber 123 

was added as cellulose to provide a dietary level of 10%, while 4% of fat was provided as sunflower oil. 124 

There was no further addition of saturated fat or cholesterol. 125 
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Exercise Protocol 126 

The exercise groups followed a protocol of aerobic interval training five days a week during the eight 127 

weeks of the experimental period. The training protocol was performed in a motorized treadmill specially 128 

designed for rats (Panlab Treadmills for five rats, LE 8710R), and all sessions were performed during the 129 

dark cycle of the animals (active period). This training protocol was designed based on recent studies that 130 

have demonstrated that a high intensity interval training (65-80% of VO2max combined with periods of 50-131 

65% of VO2max) promotes best results on weight reduction and blood lipid profile (Donnelly et al. 2009). 132 

One week before the start of the study, the animals were adapted to the training procedures through a low 133 

intensity running protocol every day for 20 min in the treadmill at 18m/min. The running sessions of 1 h 134 

started with a 10 min warm up at 40% VO2max, and consisted of successive 4 min exercise periods at 65-135 

80% of VO2 max, followed by 3 min recovery periods at 50-65% of VO2 max. The intensities and length of 136 

the training were gradually incremented every week (Table 1). To establish the velocity that would 137 

correspond to the VO2max of each rat, a maximal incremental test was performed at the start of the study. A 138 

final incremental test was performed 96 h prior the end of the study to test the maximal aerobic capacity and 139 

physical performance achieved by the animals as a result of the intervention. The maximal incremental test 140 

was carried out following the protocol described by Clemente et al. (2011) and Wisløff et al. (2001) with 141 

slight modifications. This protocol ran by the computer software SeDaCom V2. (Panlab. Harvard apparatus), 142 

first measures 5 min ambient air and then air within the treadmill to determine the appropriate ratio VO2: 143 

VCO2. The test ends when the animal is visibly exhausted and rested on the shock bar for > 5 seconds. Basal 144 

and final blood lactate concentrations were measured at the start and at the end of the incremental test in 145 

blood obtained from the animals’ tail (Lactate Pro, Arkray, The Netherlands).  146 

During the experimental trial, the sedentary groups were subjected to a 15 min of low velocity (15 m/min) 147 

training protocol twice a week, to reflect a human sedentary lifestyle (Morris et al. 2007). 148 

Plasma and liver biochemical analysis 149 

Biochemical parameters of glucose and lipid metabolism, and liver function were measured in plasma 150 

using a Shenzhen Midray BS-200 Chemistry Analyzer (Bio-Medical Electronics) at the Bioanalysis Unit of 151 

the Scientific Instrumentation Centre (Biomedical Research Park, University of Granada). Plasma insulin 152 

concentration was quantified using a rat insulin enzyme immunoassay kit (Spibio, Montigny le Bretonneux, 153 

France).   154 
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A portion of liver was lyophilized in order to determine the percentage of water.  Hepatic lipids were 155 

extracted from the freeze-dried liver portion using the method described by Folch et al. (1957) with slight 156 

modifications (Kapravelou et al. 2013). The extracted lipids were dissolved in 1mL of 96% hexane to 157 

measure triglycerides content (Spinreact, S.A., Girona, Spain). 158 

Macroscropic and microscopic liver study  159 

Liver area of the macroscopic image was estimated in all the liver images of the four experimental groups 160 

assayed by morphometric study using the software Image Pro Plus 6.0. A portion of liver was fixed in 10% 161 

phosphate-buffered formalin, dehydrated in ethanol, embedded in paraffin, and sectioned for histological 162 

examination using hematoxylin-eosin (HE), and Masson’s trichrome (MT) staining for general microscopy 163 

morphology and fibrosis development, respectively. Four different preparations of each staining were 164 

analyzed for each animal, and 10 animals were evaluated in each experimental group (n=40). Histological 165 

alterations were evaluated according to the following grading score: -, non-existent; +, mild; ++, 166 

mild/moderate; +++, moderate; ++++, abundant; +++++, severe. 167 

Antioxidant activity assays 168 

Liver was homogenized (1:10 w/v) in 50 mM phosphate buffer (pH 7.8) containing 0.1% Triton X-100 169 

and 1.34 mM of DETAPAC using a Micra D-1 homogenizer (ART moderne labortechnik) at 18,000 rpm for 170 

30 sec followed by treatment with Sonoplus HD 2070 ultrasonic homogenizer (Bandelin) at 50% power three 171 

times for 10 sec. Liver homogenates were centrifuged at 13 000 × g, 4°C for 45 min and the supernatant was 172 

used to determine the activity of antioxidant enzymes. Catalase activity was measured by the method of Aebi 173 

(1984) and the enzyme unit was defined as µmol of H2O2 consumption per min. Total cellular GPX activity 174 

was determined by the coupled assay of NADPH oxidation (Lawrence et al. 1974) using cumene 175 

hydroperoxyde as substrate. The enzyme unit was defined as nmol of GSH oxidized per min. Total SOD 176 

activity was measured as described by Ukeda et al. (1997). Mn-SOD activity was determined by the same 177 

method after treating the samples with 4mM KCN for 30 min. Cu,Zn-SOD activity resulted from subtracting 178 

the Mn-SOD activity from the total SOD activity. One unit of SOD activity was defined as the enzyme 179 

needed to inhibit 50% XTT reduction. Protein concentration was assayed by the method of Lowry et al. 180 

(1951). 181 

 Liver protein expression analyses 182 
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Liver samples were homogenized in 20mM Tris HCl buffer containing 0.1% Igepal, 100mM EGTA, and 183 

a cocktail of protease inhibitors (Sigma, St Louis, MO) that provided a final concentration of 100mM 184 

dichloro dipheny thrichloroethane (DDT), 100mM orthovanadate, 1mM EDTA, 2mM AEBSF, 130µM 185 

Bestatin, 14µM E-64, 1µM Leupeptin and 1µM Apoprotin. Samples were homogenized as before. Liver 186 

homogenates were centrifuged at 13 000 × g for 45 min, at 4°C and supernatants were aliquoted and stored at 187 

-80oC, until further use for western blot analysis. Protein concentration was measured by the method of 188 

Lowry et al. (1951). Equal amounts of total protein for each sample were loaded per lane (two samples from 189 

each experimental group were run per gel), subjected to 12% SDS-PAGE, and electrophoretically transferred 190 

to nitrocellulose membranes (Schleicher&Schuell, Dassel, Germany) by wet transfer at 90 V for 2 h using a 191 

Mini Trans-Blot cell system (Bio-Rad Laboratories, Hercules, CA). Membranes were blocked using 5% non-192 

fat dry powered milk dissolved in Tris-Buffered saline Tween-20 (TBST) for 90 min at room temperature. 193 

The primary antibodies for 5’-AMP-activated protein kinase (AMPK), phosphorylated-AMPK (PAMPK) 194 

(Cell Signaling Technology, Inc. Danvers, MA, USA), and proliferator activating receptor-γ (PPAR-γ) 195 

(Abcam, Cambridge, UK) were used according to the manufacturer recommended dilutions (1:1000) and 196 

were incubated overnight at 4°C. The membranes were then washed three times for 10 min with TBST, 197 

before incubation for 2 h at room temperature with secondary peroxidase conjugated goat anti-rabbit 198 

antibody (Sigma, St Louis, MO) diluted at 1:2000 in 5% nonfat dry milk–TBST. Membranes were washed as 199 

before, and the bound antibodies were visualized by an ECL Pro system (PerkinElmer, Boston, USA) using a 200 

Fujifilm Luminescent Analyzer LAS-4000 mini System (Fujifilm, Tokyo, Japan). PAMPK expression was 201 

determined in relation to AMPK expression while PPAR-γ was normalized to ponceau reagent. Results were 202 

expressed in relative density units.  203 

Liver gene expression analyses 204 

Total RNA was extracted from 10-20 mg of frozen liver tissue using TrizolTM reagent (Invitrogen; UK) 205 

and following the manufacturer’s instructions. RNA purity was determined by the A=260/A=280 ratio, using 206 

a UV/VIS spectrophotometer (Thermo Spectronic, Helios γ). Expression of GPX1 and GPX4 genes was 207 

measured by semi-quantitative RT PCR. GAPDH gene expression was used as housekeeping gene. Total 208 

RNA (100ng) was reverse transcribed using SuperScript III Reverse Transcriptase (Invitrogen, UK), 10mM 209 

of each dNTP (Promega, UK), 10-20U RNaseOUT (Invitrogen), 1mg/mL BSA (BioLabs, UK), and 210 

500µg/ml of Random Hexamers (Promega, UK) as primers. The amplification of cDNA was performed by 211 
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adding 10x PCR buffer (w/o MgCl2), 1.75mM MgCl2, 1U TaqDNA polymerase and 1 µM of each specific 212 

primer for GPX1, GPX4 and GAPDH (Table 2). After a hot start (95oC) and 4 min at 94oC, 25 cycles of 1 213 

min at 94oC, 2 min at 59oC and 2 min at 72oC, were performed. Samples were further incubated at 72oC for 8 214 

min to complete any elongation reaction. PCR products were then separated by gel electrophoresis on a 1.5% 215 

agarose gel containing GelRed
TM

 (1:10,000, Biotium, UK). PCR amplified gene products were visualized 216 

under UV light and, images were captured using Fusion Fx7 imaging system (PEQLAB Biotechnologies, 217 

UK). Optical density of the obtained products was quantified by Image J software. Expression of GPX1 and 218 

GPX4 was related to expression of GADPH. To test the expression stability of GAPDH, equal amounts of 219 

PCR product from liver samples of rats within each experimental group were loaded per lane and the band 220 

density of the corresponding samples measured and compared among them. The average band density of LS 221 

group was assigned with a value of 1, and relative values for the rest of samples in the three remaining 222 

experimental groups were calculated and averaged. After statistical comparisons, no significant differences 223 

were found for GAPDH expression among the four groups assayed. 224 

Statistical analyses 225 

Time-repeated measurement analysis was applied to weekly food intake and body weight data as well as 226 

to blood glucose content after an oral glucose overload in order to analyze within subject effects (time) or 227 

within group effects (phenotype or aerobic interval training protocol) on the above parameters. The effect of 228 

phenotype and AIT protocol on final body weight, aerobic capacity and physical performance, plasma and 229 

liver biochemical parameters, hepatic antioxidant enzyme activity, protein and gene expression was analyzed 230 

by 2 × 2 factorial ANOVA with phenotype and AIT protocol as main treatments. Results are given as mean 231 

values and pooled standard error of the mean. Bonferroni’s test was used to detect differences between 232 

treatment means. The analyses were performed with SAS, version 9.0, and the level of significance was set 233 

at P < 0.05. 234 

Results 235 

Food intake and body weight 236 

Changes observed in weekly food intake and body weight during the study are presented in Fig. 1A and 237 

1B. Time-repeated measurement analysis revealed a significant time effect, phenotype effect, and exercise 238 

effect on food intake that was 20% higher in the obese compared to the lean Zucker rats (P < 0.0001) and 239 
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decreased by 5% as a result of the aerobic interval training (P < 0.05). Body weight was significantly 240 

affected by phenotype and the aerobic interval training, with lower values being found for lean vs obese (P < 241 

0.0001), and trained vs sedentary (P < 0.0001) rats, respectively. The effect of exercise on body weight was 242 

more pronounced in the obese when compared to lean rats.    243 

Aerobic capacity and physical performance 244 

The effects of phenotype and AIT protocol on aerobic capacity and physical performance of Zucker rats 245 

during an incremental test are shown in Table 3. Blood lactate content at the end of incremental tests was 246 

lower in lean when compared to obese rats (P < 0.0001), whereas the opposite was observed for the total 247 

running time and maximal speed achieved (P < 0.0001). Exercise increased all the above parameters (P < 248 

0.0001) with the exception of final blood lactate that decreased in the obese rats (P < 0.001) and was not 249 

affected in the lean ones. The effects of exercise on running time and maximal speed were significantly 250 

affected by phenotype, a finding that was reflected in significant phenotype × exercise interactions. 251 

Plasma parameters 252 

The effects of phenotype and AIT protocol on blood and plasma parameters of glucose and lipid 253 

metabolism of Zucker rats are presented in Figure 2 and Table 4. With regards to the plasma parameters 254 

related to glucose metabolism affected by phenotype (glucose, insulin, and AUC, P < 0.0001), the training 255 

protocol only had a significant effect on the AUC. Exercise tended to decrease both glucose and insulin 256 

concentrations in the obese rats and increase them in the lean ones, although the effects were not significant. 257 

AUC was differentially affected by exercise depending on the rat phenotype, a finding that was reflected in 258 

phenotype × exercise interaction (P < 0.0001). Exercise caused a 2.7-fold reduction in the AUC of obese rats, 259 

returning this index to values similar to those found in lean animals, among which no appreciable effect of 260 

this intervention was found. When blood glucose content of lean and obese Zucker rats prior to or at different 261 

time points after an oral glucose overload was represented (Fig. 2), the rise in blood glucose during the initial 262 

stages after oral administration was more pronounced in obese when compared to lean rats, and higher levels 263 

were observed among the former animals for sedentary when compared to trained individuals. Blood glucose 264 

levels of obese sedentary animals remained higher than the rest of experimental groups during the 120 min 265 

post administration period, whereas those of obese trained animals were not significantly different from the 266 

lean ones from 30 min post administration time.    267 
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The plasma parameters related to lipid metabolism (Total-, LDL-, and HDL-cholesterol, triglycerides) 268 

were all significantly affected by phenotype. There was a significant effect of exercise on Total- and LDL-269 

cholesterol contents that were considerably diminished in the obese groups that carried out the training 270 

protocol (20 and 41%, respectively) and to a lesser extent in the lean animals, giving rise to a significant 271 

phenotype × exercise interaction. Triglyceride content was considerably reduced by exercise (P = 0.0845) in 272 

both the obese and lean animals (12 and 74%, respectively). 273 

Liver surface, lipid composition, functionality and antioxidant status 274 

The effects of phenotype and AIT protocol on liver weight and surface, lipid composition, and 275 

functionality, are presented in Table 5 and Fig. 3. There was a significant effect of phenotype on liver weight 276 

and surface, total fat, and triglyceride content that was higher in obese compared to lean rats. The liver of 277 

obese rats showed clear signs of hepatomegalia and steatosis compared to their lean counterparts (Fig. 3). 278 

The training protocol caused 8.6 and 9.3% decrease in liver weight and surface, respectively, and significant 279 

reductions in hepatic total fat and triglyceride contents in the obese animals (35 and 50%, respectively). Such 280 

AIT-induced improvements in the hepatic outcomes of lipid metabolism were associated to a lower body 281 

weight exhibited by trained animals (Fig. 1B) and, to a lesser extent, to the lower weight of their abdominal 282 

fat pad (6.4±0.2 vs 5.7±0.2 g in OS and OE groups, respectively)    283 

Liver function was measured as plasma AST, ALT, ALP, GGT activities. All of these parameters were 284 

affected by phenotype, showing a significant increase in the obese animals. The training protocol was 285 

effective at reducing the activity of AST in both lean and obese animals, and ALP in obese but not in lean 286 

rats, thus giving rise to a significant phenotype × exercise interaction. However, it did not have any major 287 

effect in ALT and GGT activity. 288 

With regard to the hepatic antioxidant enzyme activities, there was a significant phenotype effect on SOD 289 

activity reflected by lower values for Cu/Zn-SOD and higher values for Mn-SOD in obese compared to lean 290 

rats. The training protocol caused a 40% increase in Cu/Zn-SOD activity of obese but no appreciable effect 291 

on lean rats, and a 43% increase in Mn-SOD activity of lean rats that in contrast was significantly reduced in 292 

their obese counterparts (20%). Such differential effects of exercise depending on rat phenotype gave rise to 293 

significant phenotype × exercise interactions (P=0.049 and P<0.0001, respectively). GPX activity was 294 

significantly affected by phenotype, with lower values in the obese when compared to the lean sedentary 295 
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rats. The training protocol caused a 17% decrease in GPX activity of lean compared to a 100% increase in 296 

obese rats. Such differential effects of the training protocol gave rise to a strong phenotype × exercise 297 

interaction (P < 0.0001). Exercise also exhibited a differential effect on catalase activity depending on rat 298 

phenotype (P = 0.0053), decreasing as a result of the training protocol in the obese rats whereas it increased 299 

in their lean controls. 300 

The effects of phenotype and AIT protocol on the liver expression of GPX1 and GPX4 genes are shown in 301 

Fig. 4. The expression of GPX1 and GPX4 genes, two major redox enzymes that take part in the antioxidant 302 

defence system of the liver of Zucker rats, was not affected by phenotype. Exercise had only a significant 303 

enhancing effect on the expression of liver GPX4 gene. 304 

Liver histology 305 

Several phenotype-related changes in liver histology were observed under the experimental conditions of the 306 

present study (Fig. 5, Table 6). The obese sedentary rats exhibited clear signs of microvesicular steatosis and 307 

fatty droplets (Fig. 5C), lipogranulomas and portal inflammation (Table 6) when compared to their lean 308 

counterparts. The training protocol improved microvesicular steatosis, reduced the number of fatty droplets 309 

(Fig. 5D), and decreased the amount of lipogranulomas and portal inflammation. However, it caused the 310 

appearance of multinucleic cells and necrosis (Table 6) followed by the development of fibrosis (Fig. 5H). 311 

Liver protein expression 312 

The effects of phenotype and AIT protocol on the liver expression of AMPK, PAMPK, and PPAR-γ are 313 

shown in Fig. 6. Western blot analysis indicated a significantly lower expression and activation of AMPK 314 

(shown by the ratio PAMPK/AMPK) (Figure 6A) in the liver of obese compared to lean animals, and the 315 

training protocol did not induce major effects on AMPK phosphorylation. No significant differences in 316 

PPAR-γ expression were observed between obese and lean rats, whereas the training protocol caused 1.7-317 

fold increment in the obese and lean phenotypes (OE, LE), respectively (Figure 6B).  318 

Discussion 319 

The study of MS and the development of strategies for its prevention and treatment has attracted 320 

increasing attention in recent years due to its growing prevalence and associated comorbidities exemplified 321 

by cardiovascular disease and NAFLD ( Kaur 2014; Marchesini et al. 2003). Changes in lifestyle, i.e. caloric 322 

restriction and physical activity, are the primary interventions chosen to improve this condition. However, 323 

the type and intensity of exercise are still a matter of debate. In this study, the influence of an aerobic interval 324 
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training protocol consisting of successive 4 min periods at 65-80% of VO2max, followed by 3 min recovery 325 

periods at 50-65% of VO2max on plasma and liver biochemical parameters, was studied in obese and lean 326 

Zucker rats. Obese rats exhibited higher food intake and body weight, and suffered significant alterations in 327 

MS-associated parameters such as plasma lipid profile, OGTT and AUC after oral glucose overload, liver 328 

histology and functionality, and antioxidant status. Exercise increased the aerobic capacity of both rat 329 

phenotypes and diminished the severity of MS alterations, especially those related to glucose and lipid 330 

metabolism, affecting the levels and activity of proteins involved in metabolic and antioxidant pathways and 331 

the gene expression of GPX4, a key antioxidant enzyme, in the liver. The effects of exercise on glucose and 332 

lipid metabolism were independent of hepatic AMPK activation, but matched significant increments in the 333 

protein expression of PPARγ.  334 

Zucker obese rats are known to present a genetic defect in leptin receptor that causes the development of 335 

hyperphagia and other metabolic disturbances leading to obese phenotype (Galisteo et al. 2008). The 336 

anorectic effects of exercise on Zucker rats have been described by (Kibenge and Chan 2002) that related 337 

such effects to an increased production of corticotrophin-releasing hormone. Such anorectic effects would in 338 

turn lead to a lower weight gain both in obese and lean animals. Decrease in weight gain is among the most 339 

widespread recommendations for the treatment of metabolic syndrome and has been associated to significant 340 

improvements in cardiovascular health and metabolic disorders intrinsic to that disease. 341 

Physical performance was always lower in obese when compared to lean Zucker rats due to the severe 342 

metabolic disturbances, impaired skeletal muscle perfusion, and muscular atrophy inherent to this 343 

experimental model. Low intrinsic aerobic capacity in rats has been related to lower energy expenditure and 344 

reduced whole body and hepatic mitochondrial lipid oxidation, which in turn made the animals more 345 

susceptible to dietary-induced hepatic steatosis (Morris et al. 2014). Our results show a clear improvement in 346 

the aerobic capacity of lean and obese rats that followed the aerobic interval training protocol although the 347 

effect of exercise on VO2max did not reach statistical significance. The adaptation changes in blood lactate, 348 

maximal speed, and running time were significantly improved in trained rats. The enhancement in aerobic 349 

capacity derived from aerobic interval exercise has been reported by other authors (Haram et al. 2009; 350 

Tjønna et al. 2008) that related such changes to amelioration in several risk factors of MS associated 351 

cardiovascular disease.  Under our experimental conditions, the higher physical performance of trained 352 
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Zucker rats was related to significant changes in glucose and lipid metabolism as well as to improved hepatic 353 

histology and function altered in NAFLD.  354 

The experimental model of obese Zucker rat has been described to exhibit impaired lactate transport by 355 

the skeletal muscle that can be alleviated by endurance exercise (Metz et al. 2005). The aerobic training 356 

protocol tested in our study achieved a consistent reduction in blood lactate after the incremental oxygen 357 

consumption test. Since lactate release under exercise conditions is mostly related to skeletal muscle 358 

metabolism, our results suggest that the benefits of the AIT protocol on lactate uptake and metabolism are 359 

clear. Such improvement represents an important benefit on glucose metabolism in relation to 360 

hyperlactatemia and aggravation of insulin resistance (Juraschek et al. 2013; Souto et al. 2011).  361 

The beneficial effects of different types of aerobic exercise on glucose and lipid metabolism have been 362 

extensively reported in the literature (Johnson et al. 2009; Rosety-Rodriguez et al. 2012). Our results confirm 363 

such positive actions of AIT protocol, and point out to training-induced enhanced insulin sensitivity in the 364 

obese animals as seen by changes in blood glucose levels and AUC after an oral glucose load, rather than to 365 

changes in insulin secretion. Moreover, the specific action of the training protocol at decreasing total- and 366 

LDL-cholesterol, while leaving HDL-cholesterol unchanged, suggests a direct protection against well known 367 

cardio-metabolic risk factors.  Such effects on the plasma lipid profile could be explained by a lower free 368 

fatty acid uptake and lipogenesis in the adipose tissue (Haram et al. 2009). In addition, it has been reported 369 

that physical exercise can elicit a significant improvement in the content and functionality of mitochondria 370 

measured by increased citrate synthase activity, and palmitate oxidation (Linden et al. 2015). Moreover, 371 

physical exercise is a successful strategy to prevent and mitigate NASH-induced mitochondrial bioenergetics 372 

impairment, thus improving lipid metabolism in liver (Gonçalves et al. 2014). 373 

The aerobic interval training triggered a clear improvement in liver lipid composition (lower total fat and 374 

triglyceride content) as described by other authors in different human and animal models (Johnson et al. 375 

2009; Linden et al. 2015). AIT can lead to such improvements in lipid composition through increases in 376 

mitochondrial content and oxidative phosphorylation, or greater lipid and carbohydrate oxidation (Barker et 377 

al. 2014; Larsen et al. 2015). Indeed, a long term aerobic training, for 3 months, at 60-75% of VO2max has 378 

been shown to induce a decrease in intrahepatic lipids in obese female adolescents (Lee et al. 2013), whereas 379 

a 7-day aerobic training protocol during 1 h at 80-85% of maximum heart rate in obese individuals with 380 

hepatic steatosis resulted in increased resting fat oxidation and favourable effects in hepatic lipid 381 
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composition by increasing polyunsaturated lipid index (Haus et al. 2013). Furthermore, the beneficial effect 382 

of a 12 week interval training on lipid oxidation was also proven in healthy, sedentary subjects (Astorino et 383 

al. 2013).  384 

Fatty liver has been associated to high plasma AST and ALT activities, resulting from hepatic damage 385 

mediated by inflammation and oxidative stress reflected in higher levels of hepatic nitrate and 386 

malondialdehyde (Jung and Kim 2013; Linden et al. 2015). Significant improvements of hepatic plasma 387 

parameters have been observed under our experimental conditions related to the fat composition changes in 388 

the obese Zucker rats. It is worth mentioning that our exercise training protocol has been beneficial both in 389 

acute and chronic hepatic markers (AST and ALP activities, respectively) of altered functional status. 390 

Oxidative stress is one of the main factors involved in the development of NAFLD (Rolo et al. 2012; 391 

Tariq et al. 2014). Indeed, the “two-hit” hypothesis on NASH development points out to oxidative stress as 392 

one of the factors directly promoting the progress from steatosis to the advanced stages of the pathology. A 393 

decrease in antioxidant defence system has been described as a major promoting factor in the development of 394 

oxidative stress in patients with NASH (Videla et al. 2004), whereas obese Zucker rats with fatty liver have 395 

been described to exhibit an altered antioxidant status as shown by the decrease in liver content of GSH, 396 

tocopherol, and catalase activity (Soltys et al. 2001). Exercise is a useful lifestyle intervention strategy to 397 

improve oxidative stress in the muscle of type 2 diabetic rats (Qi et al. 2011; Rosety-Rodriguez et al. 2012) 398 

and plasma of obese middle-age women (Shin et al. 2008). Furthermore, in obese individuals with hepatic 399 

steatosis, short-term aerobic exercise has proved to favourably alter hepatic lipid composition, insulin 400 

resistance and oxidative stress, risk factors that influence the severity of NAFLD (Haus et al. 2013). 401 

However, the effects of exercise on oxidative stress may vary depending on parameters such as age, health 402 

status, severity of pathology of the individual, and/or type and intensity of the exercise protocol applied. 403 

Although, the effect of exercise on SOD, GPX, and catalase activities differed between obese and lean rats 404 

under our experimental conditions, a finding that can be attributed to the compromised antioxidant status of 405 

the obese animals associated to their fatty liver condition, exercise was in general terms an effective strategy 406 

to lower oxidative stress and balance SOD and GPX activities that were altered in obese sedentary rats, 407 

returning them to levels closer or even higher than those of lean animals. Of particular interest was the 408 

increment in GPX activity attained by trained obese rats that nearly doubled that of their sedentary 409 

counterparts and led us to conduct further experiments to confirm if such increments were related to the 410 
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induced expression of two relevant genes belonging to the GPX group of selenoenzymes such as GPX1 and 411 

GPX4. Nevertheless, neither exercise nor phenotype had a significant effect on the hepatic GPX1 gene 412 

expression under our experimental conditions. Similar findings have been observed in pediatric patients with 413 

NASH that underwent liver biopsy (Desai et al. 2014) or mononuclear cells isolated from peripheral blood 414 

samples of active or inactive healthy participants after completing a 30-min treadmill run at 75–80% 415 

VO2max (Jenkins et al. 2009). A possible explanation for this lack of coincidence between enzymatic 416 

activity and gene expression pattern is the existence of different members within the group of GPX 417 

selenoenzymes that are not taken into account when the total GPX activity is measured. Furthermore, 418 

Bermano et al. (1995) reported that both the activity of the selenoenzymes and the abundance of their 419 

respective mRNAs are not regulated in a similar manner in the liver of rats with different Se status. 420 

While GPX4 deficiency has been linked to disorders associated with reactive oxygen species and lipid 421 

peroxides generated in mitochondria (Imai and Nakagawa 2003), its overexpression is associated with the 422 

inhibition of atherosclerosis development in ApoE
−/−

 mice (Guo et al. 2008) and lipid peroxidation in 423 

endothelial cells (Sneddon et al. 2003). In our study, hepatic GPX4 gene expression was up-regulated by 424 

exercise in both lean and obese groups. Similar results were obtained by (Daussin et al. 2012) in the 425 

expression of GPX4 after endurance training for 10 days.  426 

The improvement in liver histological features associated to changes in lipid composition and function 427 

exerted by the training protocol in the obese Zucker rat shows the prospective benefits of this type of 428 

exercise in ameliorating hepatic morphological and histological alterations present in the early stages of 429 

NAFLD characteristic of the experimental animal model selected for this study. Nevertheless, although the 430 

training protocol has shown interesting results on glucose and lipid parameters in plasma, as well as lower 431 

lipid content and decreased fatty droplet accumulation and microvesicular steatosis in liver of obese rats, the 432 

potentially deleterious effects of that intensive type of exercise on individuals prone to liver damage (e.g. 433 

suffering from MS), should be considered, since necrosis and fibrosis were detected in the liver of trained 434 

rats, especially in the obese animals. It has been described that the obse Zucker rat does not spontaneously 435 

progress from steatosis to steatohepatitis but needs an additional intervention (Kucera and Cervinkova 2014). 436 

It seems that the experimental training protocol assayed was protective against steatosis but triggered some 437 

distinctive features of NASH. In fact, exhaustive or strenuous exercise has been shown to increase certain 438 

biomarkers of liver damage like AST and ALT and cause oxidative damage to nuclear DNA (Ogonovszky et 439 
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al. 2005; Ramos et al. 2013). Moreover, some authors have used exhaustive acute exercise to induce liver 440 

injury in experimental animal models (Huang et al. 2013; Praphatsorn et al. 2010). Histopathological lesions 441 

described in such models were mediated by pro-inflammatory cytokines and consisted on extensive nuclear 442 

pyknosis, severe necrosis with haemorrhage and neutrophil infiltration, edema and necroinflammation, as 443 

well as accelerated apoptosis. Under conditions of demanding physical exercise blood flow is preferentially 444 

derived to skeletal muscle at the expense of other tissues like the liver in which decreased blood flow may 445 

induce ischemic hypoxia-reperfusion of hepatocytes and lead to necrosis. 446 

Activation of AMPK depends on the ADP:ATP ratio, and it is reduced in the liver of obese Zucker rat 447 

due to an excess of energetic substrates entering this tissue (Galisteo et al. 2010). Furthermore, AMPK 448 

activity has been shown to be inhibited by insulin and glucose in several tissues, a finding that would be 449 

supported by the hyperinsulinemia characteristic of this experimental animal model. Although exercise can 450 

activate AMPK in the skeletal muscle, and subsequently up-regulate PPAR-γ expression (Sasaki et al. 2014), 451 

the aerobic interval protocol tested under our experimental conditions was not able to ameliorate high plasma 452 

insulin levels of obese rats or show any effect on liver PAMPK expression. In contrast, liver AMPK activity 453 

in obese Zucker rats has been described to be activated by different nutritional and pharmacological 454 

strategies like diet supplementation with Plantago ovata or chronic treatment with polyphenols (Galisteo et 455 

al. 2010; Rivera et al. 2009). On the other hand, it has been reported that activation of liver PPARγ improves 456 

insulin sensitivity and NASH in human patients (Neuschwander-Tetri et al. 2003) and this correlates with the 457 

significant increase of liver PPAR-γ protein expression by our exercise protocol. Therefore PPAR-γ 458 

activation under our experimental conditions appeared to be independent of the AMPK pathway.  459 

In conclusion, the AIT protocol used in this study is a feasible intervention strategy to improve plasma and 460 

hepatic biochemical parameters as well as hepatic histological alterations inherent to early stages of NAFLD 461 

in obese Zucker rats, although it caused the development of fibrosis. The training protocol was especially 462 

efficient to improve insulin sensitivity and decrease the hepatic lipid content, as well as ameliorating the 463 

oxidative stress conditions in this organ. Such effects run in parallel to an increased expression of liver 464 

PPAR-γ. 465 
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Table 1. Details of the AIT protocol. 673 

Week              

(5 days/week) 

Work Time 

(min/day) 

% VO2max 

1 45´ 50%→3 min 

65%→4 min 

2 50´ 55%→3 min 

70%→4 min 

3 50´ 60%→3 min 

75%→4 min 

4 55´ 60%→3 min 

75%→4 min 

5-8 60´ 65%→3 min 

80%→4 min 

  674 

675 
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Table 2. Sequence of primers used in RT-PCR 676 

Gene Primer’s 5’-3’ sequence 

GPX1 Forward CACCGAAATGAATGATCTGC 

Reverse        TGTATCTGCGCACTGGAACA 

GPX4 Forward CCGGCTACAATGTCAGGTTT 

Reverse         CGGCAGGTCCTTCTCTATCA 

GAPDH Forward ATGGGAAGCTGGTCATCAAC 

Reverse        GTGGTTCACACCCATCACAA 

 GPX1: Glutathione peroxidase 1; GPX4: Glutathione peroxidase 4.677 
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Table 3. Effect of AIT protocol on aerobic capacity and physical performance of lean and obese Zucker rats. 678 

 Lean                     Obese     

 Sedentary Exercise Sedentary Exercise SEM R
2
 

Phenotype 

Effect 

Exercise 

Effect 

Phenotype  

×  

Exercise 

Exercise Lactate (mmol/L) 6.8
A 

6.2
A 

15.7
C 

10.4
B 

0.79 0.7822 P < 0.0001 P = 0.0003 P = 0.0076 

VO2max (mL/min/kg
0.75

) 18.7A 19.9A 17.7A 19.5A 1.01 0.1049 P = 0.3318 P = 0.1380 P = 0.7525 

Running Time (min) 13.3
B 

23.6
C 

7.6
A 

11.2
B 

0.72 0.9204 P < 0.0001 P < 0.0001 P < 0.0001 

Maximal Speed (cm/sc) 55.8B 85.6C 38.9A 49.8B 2.2 0.9161 P < 0.0001 P < 0.0001 P = 0.0002 

A,B,C  
Results are mean of 8-10 rats. Means within the same row with different superscripts differ significantly (P < 0.05). SEM, pooled standard error of the mean.  679 
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Table 4. Effect of AIT protocol on plasma parameters of lean and obese Zucker rats. 

 Lean Obese      

 Sedentary Exercise Sedentary Exercise SEM R
2
 

Phenotype 

Effect 

Exercise 

Effect 

Phenotype 

×  

Exercise 

Glucose (mg/dL) 177.6
A
 238.3

A
 400.2

B
 341.9

B
 30.5 0.5114 P<0.0001  P=0.9679 P=0.0607  

Insulin (ng/mL) 0.062A 0.126A 0.685B 0.558B 0.081 0.6929 P < 0.0001  P = 0.6687 P = 0.1992 

AUC (arbitrary units) 2417
A 

2516
A 

7054
B 

2599
A 

301 0.8470 P < 0.0001  P < 0.0001  P < 0.0001  

T-Cholesterol (mg/dL) 74.9A
 74.2A

 209.2C
 167.5B

 6.1 0.9224 P<0.0001  P=0.0016  P=0.0021  

LDL-Cholesterol (mg/dL) 4.9A
 3.4A

 19.9C
 11.8B

 1.27 0.7772 P<0.0001  P=0.0007  P=0.0148  

HDL-Cholesterol (mg/dL) 27.5
A
 29.4

A
 51.0

B
 45.3

B
 3.88 0.4619 P<0.0001  P=0.6331 P=0.3395 

Triglycerides (mg/dL) 100.2A
 26.5A

 279.3B
 246.2B

 29.9 0.6025 P<0.0001  P=0.0845  P=0.5051 

A,B,C  
Results are mean of 8-10 rats. Means within the same row with different superscripts differ significantly (P < 0.05). AUC, Area under the curve. SEM, pooled 

standard error of the mean.  
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Table 5.  Effect of AIT protocol on liver weight, composition, and function of lean and obese Zucker rats.  

 Lean Obese      

 Sedentary Exercise Sedentary Exercise SEM R
2
 

Phenotype 

Effect 

Exercise 

Effect 

Phenotype × 

Exercise 

Weight (g FW) 8.2
A 

9.3
A 

17.5
B 

16.0
B 

0.5 0.8738 P < 0.0001 P = 0.7508 P = 0.0255 

Surface (cm
2
) 12.5

A 
13.2

A 
22.6

B 
20.5

B 
0.5 0.8450 P < 0.0001 P = 0.293 P = 0.048 

Fat (g/100 g DM) 7.1A 4.3A 19.6C 12.7B 1.2 0.7412 P < 0.0001 P = 0.0005 P = 0.1040 

Triglycerides (mg/g DM) 5.3
A 

4.1
A 

26.9
B 

13.4
A 

2.5 0.6139 P < 0.0001 P = 0.0096 P = 0.0204 

Liver function plasma markers 

AST (U/L) 98.4A
 66.9A

 182.3B
 107.3A

 14.7 0.5226 P<0.0001  P=0.0010  P=0.1494 

ALT (U/L) 25.7
A
 31.8

A
 61.0

B
 59.7

B
 4.7 0.5917 P<0.0001  P=0.6134 P=0.4287 

ALP (U/L) 98.2A
 100.7A

 202.6B
 137.6A

 10.5 0.6823 P<0.0001  P=0.0055  P=0.0030  

GGT (U/L) 0.10A
 0.70A

 13.9B
 9.3B

 1.56 0.6440 P<0.0001  P=0.2162 P=0.1098 

Antioxidant enzymes          

Cu/Zn-SOD (Units/mg protein) 223.8C 233.4C 112.5A 157.7B 8.5 0.7987 P < 0.0001  P = 0.0047  P = 0.0494  

Mn-SOD (Units/mg protein) 26.8A 38.2B 85.8D 68.9C 2.6 0.9019 P < 0.0001  P = 0.4839 P < 0.0001  

Catalase (µmol H2O2/min/mg protein) 487.1
AB 

551.8
B 

503.9
AB 

461.7
A 

19.4 0.2803 P = 0.0630  P = 0.4260 P = 0.0053  

GPX (nmol NADPH/min/mg protein) 9.2B 7.6AB 6.4A 13.0C 0.5 0.7040 P=0.03 P< 0.0001 P< 0.0001 
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A,B,C,D  
Results are mean of 8-10 rats. Means within the same row with different superscripts differ significantly (P < 0.05). FW, fresh weight, DM, dry matter, AST, 

aspartate aminotransferase, ALT, alanine transaminase, ALP, Alkaline Phosphatase, GGT, Gamma-glutamyl transpeptidase, GPX, Glutathione peroxidase. SEM, 

pooled standard error of the mean.  
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Table 6. Effect of AIT protocol on liver histology of lean and obese Zucker rats. 

 

  

Microvescicular 

steatosis Fatty droplets Multinucleic cells Lipogranulomas Portal inflammation Necrosis Fibrosis 

LS - - - - -/+ - - 

LE - - -  +  + -/+ - 

OS  ++++  ++++ -  +++  +++ - - 

OE  +++  +++  ++  ++/+++  ++/+++  ++  ++ 

 

LS, Lean (fa/+) sedentary rats, LE, Lean (fa/+) rats performing a protocol of aerobic interval exercise, OS, Obese (fa/fa) sedentary rats, OE, Obese (fa/fa) rats 

performing a protocol of aerobic interval exercise. Grading score of the histological alterations: -, non existent; +, mild; ++, mild/moderate; +++, moderate; ++++, 

abundant; +++++, severe. 
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Fig. 1. Effect of AIT protocol on food intake and body weight of lean and obese Zucker rats. (A) Weekly food 

intake (grams Dry Matter/day). (B) Weekly body weight (grams). Groups: LS, Lean (fa/+) sedentary rats, 

LE, Lean (fa/+) rats performing aerobic interval exercise, OS, Obese (fa/fa) sedentary rats, OE, Obese (fa/fa) 

rats performing aerobic interval exercise. Values are means ± SEM depicted by vertical bars (n = 8-10). 

Fig. 2. Effect of AIT protocol on blood glucose levels of lean and obese Zucker rats prior to or at different 

time points after oral glucose overload. Groups: LS, Lean (fa/+) sedentary rats, LE, Lean (fa/+) rats 

performing aerobic interval exercise, OS, Obese (fa/fa) sedentary rats, OE, Obese (fa/fa) rats performing 

aerobic interval exercise. Values are means ± SEM depicted by vertical bars (n = 8-10). The following 

notation is used to express significant differences (P < 0.05) between groups pointed out by Dunnet’s t-test: 

a, OS vs LS, b, OE vs LS, c, LE vs LS.  

Fig. 3. Effect of AIT protocol on liver morphology of lean and obese Zucker rats. Groups: LS, Lean (fa/+) 

sedentary rats, LE, Lean (fa/+) rats performing aerobic interval exercise, OS, Obese (fa/fa) sedentary rats, 

OE, Obese (fa/fa) rats performing aerobic interval exercise. Photographs are representative of livers of 8-10 

different rats for each experimental group. 

Fig. 4. Effect of AIT protocol on GPX1 and GPX4 mRNA levels in liver of lean and obese Zucker rats. 

Hepatic GPX1 and GPX4 mRNA relative expression. Groups: LS, Lean (fa/+) sedentary rats, LE, Lean 

(fa/+) rats performing aerobic interval exercise, OS, Obese (fa/fa) sedentary rats, OE, Obese (fa/fa) rats 

performing aerobic interval exercise. GPX1 and GPX 4 levels are expressed as percentage of the mean value 

obtained from liver of the LS group (100%). Results represented in the graphs are means ± SEM depicted by 

vertical bars (n = 10). Means within the same gene expression without a common letter differ, P < 0.05. 

Image of gel used for determination of GPX1 and GPX4 expression by semiquantitative RT-PCR is 

representative of RNA samples of 8-10 rats for each experimental group; all samples were derived at the 

same time and processed in parallel. The samples were analyzed for expression of GAPDH, GPX1, and 

GPX4. GAPDH expression was not different among the experimental groups.   

Fig. 5. Effect of AIT protocol on liver histology of lean and obese Zucker rats. (A) Histological view of 

control LS liver HE stain, (B) Histological view of LE liver HE stain, (C) Histological view of OS liver HE 

stain with clear signs of microvesicular steatosis (mv) and fatty droplet accumulation (fd), (D) Histological 

view of OE liver HE stain with diminished signs of microvesicular steatosis (mv) and fatty droplet 

accumulation (fd), (E) Histological view of control LS liver MT stain, (F) Histological view of LE liver MT 
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stain, (G) Histological view of OS liver MT stain, (H) Histological view of OE liver MT stain with signs of 

fibrosis (fb). Groups: LS, Lean (fa/+) sedentary rats, LE, Lean (fa/+) rats performing aerobic interval 

exercise, OS, Obese (fa/fa) sedentary rats, OE, Obese (fa/fa) rats performing aerobic interval exercise. 

Photographs are representative of livers of 8-10 different rats for each experimental group. 

Fig. 6. Effect of AIT protocol on AMPKα/PAMPKα and PPARγ protein expression in the liver of lean and 

obese Zucker rats. Western blot analysis of (A) AMPKα/PAMPKα and (B) PPARγ expression. Groups: LS, 

Lean (fa/+) sedentary rats, OS, Obese (fa/fa) sedentary rats, LE, Lean (fa/+) rats performing aerobic interval 

exercise, OE, Obese (fa/fa) rats performing aerobic interval exercise. Immunoblots are representative of liver 

homogenates from eight different rats for each experimental group; two samples of each experimental group 

were loaded per gel and processed in parallel. The amount of sample loaded per lane was 100 µg of protein 

for AMPKα/PAMPKα and 80 µg of protein for PPARγ. Levels of PAMPK were normalized to the total 

AMPK. Levels of PPARγ were normalized to ponceau reagent. Densitometric analysis values represented in 

the graphs are means ± SEM depicted by vertical bars (n = 8). Means without a common letter differ, P < 

0.05. 
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Fig. 2. Effect of AIT protocol on blood glucose levels of lean and obese Zucker rats prior to or at different 
time points after oral glucose overload. Groups: LS, Lean (fa/+) sedentary rats, LE, Lean (fa/+) rats 

performing aerobic interval exercise, OS, Obese (fa/fa) sedentary rats, OE, Obese (fa/fa) rats performing 
aerobic interval exercise. Values are means ± SEM depicted by vertical bars (n = 8-10). The following 

notation is used to express significant differences (P < 0.05) between groups pointed out by Dunnet’s t-test: 
A, OS vs LS, B, OE vs LS, C, LE vs LS.  
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Fig. 3. Effect of AIT protocol on liver morphology of lean and obese Zucker rats. Groups: LS, Lean (fa/+) 
sedentary rats, LE, Lean (fa/+) rats performing aerobic interval exercise, OS, Obese (fa/fa) sedentary rats, 
OE, Obese (fa/fa) rats performing aerobic interval exercise. Photographs are representative of livers of 8-10 

different rats for each experimental group.  
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Fig. 4. Effect of AIT protocol on GPX1 and GPX4 mRNA levels in liver of lean and obese Zucker rats. Hepatic 
GPX1 and GPX4 mRNA relative expression. Groups: LS, Lean (fa/+) sedentary rats, LE, Lean (fa/+) rats 
performing aerobic interval exercise, OS, Obese (fa/fa) sedentary rats, OE, Obese (fa/fa) rats performing 

aerobic interval exercise. GPX1 and GPX 4 levels are expressed as percentage of the mean value obtained 
from liver of the LS group (100%). Results represented in the graphs are means ± SEM depicted by vertical 
bars (n = 10). Means within the same gene expression without a common letter differ, P < 0.05. Image of 
gel used for determination of GPX1 and GPX4 expression by semiquantitative RT-PCR is representative of 
RNA samples of 8-10 rats for each experimental group; all samples were derived at the same time and 
processed in parallel. The samples were analyzed for expression of GAPDH, GPX1, and GPX4. GAPDH 

expression was not different among the experimental groups.  
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Fig. 5. Effect of AIT protocol on liver histology of lean and obese Zucker rats. (A) Histological view of control 
LS liver HE stain, (B) Histological view of LE liver HE stain, (C) Histological view of OS liver HE stain with 
clear signs of microvesicular steatosis (mv) and fatty droplet accumulation (fd), (D) Histological view of OE 

liver HE stain with diminished signs of microvesicular steatosis (mv) and fatty droplet accumulation (fd), (E) 
Histological view of control LS liver MT stain, (F) Histological view of LE liver MT stain, (G) Histological view 
of OS liver MT stain, (H) Histological view of OE liver MT stain with signs of fibrosis (fb). Groups: LS, Lean 

(fa/+) sedentary rats, LE, Lean (fa/+) rats performing aerobic interval exercise, OS, Obese (fa/fa) sedentary 
rats, OE, Obese (fa/fa) rats performing aerobic interval exercise. Photographs are representative of livers of 

8-10 different rats for each experimental group.  
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Fig. 6. Effect of AIT protocol on AMPKα/PAMPKα and PPARγ protein expression in the liver of lean and obese 
Zucker rats. Western blot analysis of (A) AMPKα/PAMPKα and (B) PPARγ expression. Groups: LS, Lean 

(fa/+) sedentary rats, OS, Obese (fa/fa) sedentary rats, LE, Lean (fa/+) rats performing aerobic interval 

exercise, OE, Obese (fa/fa) rats performing aerobic interval exercise. Immunoblots are representative of 
liver homogenates from eight different rats for each experimental group; two samples of each experimental 
group were loaded per gel and processed in parallel. The amount of sample loaded per lane was 100 µg of 
protein for AMPKα/PAMPKα and 80 µg of protein for PPARγ. Levels of PAMPK were normalized to the total 
AMPK. Levels of PPARγ were normalized to ponceau reagent. Densitometric analysis values represented in 
the graphs are means ± SEM depicted by vertical bars (n = 8). Means without a common letter differ, P < 

0.05.  
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