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Abstract 

Objective: To quantify the effects of acute hypoxic exposure on exercise capacity and performance, 

which includes continuous and intermittent forms of exercise. 

Design: A systematic review was conducted with a three-level mixed effects meta-regression. The 

ratio of means method was used to evaluate main effects and moderators providing practical 

interpretations with percentage change. 

Data Sources: A systemic search was performed using 3 databases (Google scholar, PubMed and 

SPORTDiscus).  

Eligibility criteria for selecting studies: Inclusion was restricted to investigations that assessed 

exercise performance (time trials, sprint, and intermittent exercise tests) and capacity (time to 

exhaustion test (TTE)) with acute hypoxic (< 24 hrs) exposure and a normoxic comparator.  

Results: Eighty-two outcomes from 53 studies (N = 798) were included in this review. The results 

show an overall reduction in exercise performance/capacity -17.8 ± 3.9% (95% CI -22.8% to -11.0%), 

which was significantly moderated by -6.5 ± 0.9% per 1000 m altitude elevation (95% CI -8.2% to -

4.8%) and oxygen saturation (-2.0 ± 0.4% 95% CI -2.9% to -1.2%). Time trial (-16.2 ± 4.3%; 95% CI 

-22.9% to -9%) and TTE (-44.5 ± 6.9%; 95% CI -51.3% to -36.7%) elicited a negative effect, whilst 

indicating a quadratic relationship between hypoxic magnitude and both TTE and TT performance. 

Furthermore, exercise < 2-min exhibited no ergolytic effect from acute hypoxia.  

Summary/ Conclusion: This review highlights the ergolytic effect of acute hypoxic exposure; which 

is curvilinear for TTE and TT performance with increasing hypoxic levels, but short-duration 

intermittent and sprint exercise seem to be unaffected.  

 

 

Key words: altitude, intermittent hypoxic training, extreme environments, environmental physiology. 
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Introduction  1 

Sojourns to terrestrial high altitudes have grown in popularity in recent years, with the World Health 2 

Organisation reporting that approximately 35 million people visit terrains greater than 3000 m every 3 

year. Furthermore, there is a greater prevalence of altitude and hypoxic training camps amongst elite 4 

athletes in preparation for major competition. This has necessitated a greater understanding on the effect 5 

of altitude on exercise performance. A predominant environmental stressor for human physiology at 6 

altitude is the lower partial pressure of oxygen with progressive elevations. As such, the recent 7 

commercialisation of hypoxic simulation chambers and portable devices has increased the accessibility 8 

to acute hypoxic training strategies for recreational athletes and individuals predisposed to health issues. 9 

Intermittent hypoxic training (IHT) is one ergogenic training strategy commonly used; whereby isolated 10 

acute hypoxic training bouts are interspersed within a training programme. These acute training bouts, 11 

however, present a substantially negative impact on exercise capacity (Wehrlin & Hallén, 2006) and 12 

performance (Clark et al., 2007; Goods, Dawson, Landers, Gore, & Peeling, 2014). Therefore, 13 

quantifying the negative effect of hypoxia is important to inform exercise prescription and performance 14 

management during IHT training and other forms of acute hypoxic exercise.  15 

The magnitude of acute hypoxia’s ergolytic effect is dependent on the type of exercise and the duration 16 

(Wyatt, 2014). Indeed, mean power output during 5 min time trial (TT) reduces by 7% every 1000 m 17 

(Clark et al., 2007) and exercise capacity is reported to decline by 9.4% in the first 500 m with a greater 18 

14.3% per 1,000 m thereafter (Wehrlin & Hallén, 2006). However, mean power output and work 19 

completed during repeated sprint exercise (RSE) is only impaired from hypoxic conditions equivalent 20 

to 4000 m  (Bowtell, Cooke, Turner, Mileva, & Sumners, 2014; Goods et al., 2014). This difference in 21 

effect may be attributed to the shorter duration of activity during RSE tests; given the suggestion that 22 

high intensity exercise lasting less than 2 min is largely unaffected by hypoxia (Wyatt, 2014). 23 

Furthermore, acute hypoxia is shown to enhance the relative anaerobic energy contribution and 24 

concurrently lower the relative and absolute aerobic contribution (Horscroft & Murray, 2014; Scott, 25 

Goods, & Slattery, 2016). Therefore, the magnitude of decline is likely to be dependent on the 26 

bioenergetic demand of the exercise bout, which is determined by duration and the required intensity. 27 
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Despite current evidence from experimental investigations, a pooled effect from all available evidence 28 

will offer a more generalisable understanding of the effect of acute hypoxia on exercise performance.  29 

The influence of acute hypoxia during exercise is subject to large inter-individual variability, with 30 

training status (Macinnis, Nugent, Macleod, & Lohse, 2015) and an individual’s ability to maintain 31 

oxyhaemoglobin saturation (SaO2) during exercise (Chapman, Stager, Tanner, Stray-Gundersen, & 32 

Levine, 2011) cited as primary reasons for this variability. Indeed, a meta-analysis identified that the 33 

reduction of maximal rate of oxygen consumption (VO2max) under acute hypoxia was greater in those 34 

that possessed a superior VO2max (Macinnis et al., 2015). Thereby, suggesting that athletes of a higher 35 

training status may be subject to a greater decrement in performance compared to their untrained 36 

counterparts. While, susceptibility to SaO2 reductions is reported to be a more robust predictor of 37 

exercise performance under hypoxia, given the preservation of SaO2 during exercise is linked to the 38 

improved maintenance of 3000 m running performance under acute moderate hypoxic conditions 39 

(Chapman et al., 2011). Therefore, reducing peripheral oxygen delivery to active musculature, as 40 

inferred through a lower SaO2, is a hypothesised to be a primary moderator of exercise performance 41 

within acute hypoxic conditions.  42 

The purpose of this study was to perform a systematic review and meta-regression to quantify the effect 43 

of varying magnitudes of hypoxia on exercise capacity and performance. Performance was further 44 

subdivided into continuous (TT), intermittent and sprint (Wingate test) exercise sub-groups; and each 45 

group assessed against the moderators of elevation equivalent to the hypoxic magnitude tested, SaO2 46 

reduction during exercise and training status. Furthermore, the ergolytic effect of hypoxia was assessed 47 

against exercise of different durations.  48 

Method 49 

This meta-analysis followed the principles outlined in the Preferred Reporting Items for Systematic 50 

Reviews and Meta-analyses (PRISMA) guidelines. 51 

Eligibility criteria 52 
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The research question was formulated using PICO method (Population, Intervention, Comparison and 53 

Outcomes) and used to inform the eligibility criteria of selected studies. The population of the review 54 

were healthy male and females (≥ 18 yrs old), including healthy to highly trained individuals. Samples 55 

that included acclimatised or altitude natives were excluded from the review. The intervention involved 56 

the assessment of exercise outcomes equivalent to sea level and an exposure to an acute hypoxic stress 57 

for less than 24 hrs prior to the assessment of performance. This timeframe was selected as a large 58 

degree of acclimatisation in exercise performance has been observed following 24 hrs of exposure 59 

(Wyatt, 2014). Investigations that utilised normobaric and hypobaric hypoxic exposures were included 60 

in this review. However, only laboratory simulations were included as equivalent power outputs elicit 61 

faster velocities at high terrestrial altitudes compared to sea level due to the lower air density, therefore 62 

mitigating performance decrements associated with the diminished O2 availability (Garvican-Lewis et 63 

al., 2015). The comparisons for this review were randomised controlled trials that involved a sea level 64 

exercise trial. Where a sea level trial was not performed (i.e. at 0 m elevation or a fractional inspired 65 

oxygen (FiO2) equal to 21%) the difference between the lowest hypoxic exposure and experimental 66 

hypoxic exposure was used for analysis. The FiO2 used during experimental trials were converted to the 67 

equivalent altitude elevation for analysis, however all outcomes are interpreted as the effect of acute 68 

hypoxia only. If room air was used as the sea level trial, the elevation of the testing laboratory was 69 

checked to ensure the correct elevation was tested.  The outcomes included in this review involved 70 

exercise performance and exercise capacity. Exercise performance was defined as activities that were 71 

self-paced continuous (e.g. TT) or intermittent tasks, while exercise capacity referred to tests that 72 

required individuals to work to a point of volitional exhaustion at an established controlled intensity.   73 

Search strategy and study selection 74 

A literature search was conducted to identify all relevant original investigations that assessed the 75 

influence of acute hypoxic exposure on exercise performance, capacity and physiological thresholds of 76 

intensity. This involved two investigators (S.K.D and L.A.G) independently inputting key search terms 77 

into three scientific data bases (Google Scholar, PubMed and SPORTDiscus). The search terms were 78 

combined to include a term referring to the environmental conditions (‘altitude’ ‘hypoxia’, and 79 
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‘fractional inspired oxygen’) with exercise performance (‘time trial (TT)’ repeated sprint exercise 80 

(RSE)’, ‘anaerobic exercise’, ‘Wingate’ and ‘sprint performance’) or exercise capacity (‘time to 81 

exhaustion (TTE)’, ‘exercise capacity’); with all searches restricted to the article titles. The articles were 82 

then all reviewed for relevance, which was assessed by the title, with all remaining articles downloaded 83 

for further screening and assessment against the eligibility criteria of this review. The reference lists of 84 

all retrieved articles and of relevant review articles were also screened for additional eligible articles. 85 

The abstracts of all studies were subsequently reviewed to narrow the pool the studies reviewed in full. 86 

This list of eligible studies obtained independently were then compared and amalgamated for data 87 

extraction. The last search was undertaken in April 2017.  88 

Data collection process  89 

The data from all eligible studies were extracted into a standardised excel template (S.K.D) and checked 90 

for accuracy (L.A.G). The extracted data included author name, year, sample characteristics, VO2max, 91 

type of hypoxic exposure, arterial oxyhaemoglobin saturation (including SaO2 obtained from blood 92 

samples, and SpO2 obtained via pulse oximetry), exercise test description. Furthermore, the mean data 93 

and standard deviation (SD) of control and experimental conditions were extracted, in addition to an 94 

exact p value or a value that indicated the variance in the intervention effect (e.g. 95% confidence 95 

intervals or SD of mean difference). Instances where mean ± SD were displayed in figures only, a graph 96 

digitiser software was used to extract the data (Digitize, Germany). This extraction was performed 97 

independently by two researchers (S.K.D and L.A.G) and compared for consensus, where this was not 98 

apparent a third researcher (D.R.B) performed the extraction for agreement. 99 

Data were primarily extracted as mean power output (or velocity) or total work done from the TT and 100 

intermittent exercise protocols, while exercise duration was extracted for all exercise capacity tests. 101 

Authors of studies where required data were missing or outcomes were not reported appropriately for 102 

this review were contacted for further information. Where performance data was not reported in mean 103 

power output or work done, but rather test completion time, the available datum was converted into 104 

mean power (Carr, Hopkins, & Gore, 2011). Investigations that included multiple exercise tests and 105 
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varying magnitudes of hypoxia and experimental data from independent groups were extracted as 106 

separate outcomes.  107 

Data were categorised into sub-groups based on exercise type and duration of exercise bout. The 108 

exercise subgroups reflected the outcomes outlined in the eligibility criteria: TT performance, 109 

intermittent exercise, TTE and sprint tests. Exercise was also categorised into three time based sub-110 

groups (< 2 mins, 2 – 10 min and > 10 mins) as the ergolytic effect of hypoxia is proposed to be 111 

dependent on duration (Wyatt, 2014). The first category was chosen as exercise below 2 min is 112 

suggested to be unaffected by acute hypoxia (Wyatt, 2014); whereas the category between 2-10 min 113 

was chosen to include the range of exercises that are likely to require an anaerobic energy contribution 114 

(Duffield, Dawson, & Goodman, 2005). Exercise beyond 10 min is included in this review to represent 115 

exercise intensities that predominantly require an aerobic energy contribution. Intermittent exercise, 116 

which involved controlled repetitions of work and recovery, were categorised on the total duration of 117 

high intensity activity periods. Furthermore, outcomes were categorised by training status with a sea 118 

level VO2max ≥ 55 ml·kg-1·min-1 classified as trained and < 55 ml·kg-1·min-1 as healthy untrained (De 119 

Pauw et al., 2013). Where VO2max was not reported, articles were not included in analysis to maintain 120 

objectivity.  121 

Quality and bias assessment  122 

The overall quality of evidence for each outcome was determined by S.K.D and L.A.G independently, 123 

using the Grades of Recommendation, Assessment, Development and Evaluation Working Group 124 

(GRADE) approach. The GRADE protocol offers a systematic method to evaluate the quality of 125 

research whilst considering methodological limitation, consistency of outcomes, reporting or 126 

publication bias and indirectness of evidence. Furthermore, to increase specificity to the current 127 

research question three discipline specific factors were considered under the category methodological 128 

limitation: 1) the control of prior altitude/hypoxic exposure to reduce any confounding effects of 129 

acclimatisation; 2) standardisation of dietary intake prior to experimental trials; and 3) familiarisation 130 

to exercise trials. In addition to the traditional quality control criteria to limit bias: 1) blinding of 131 

participants; 2) blinding of researcher; 3) blinding outcome assessment; and 4) complete outcome data. 132 
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However, the indirectness of evidence was not considered in this review, due to inclusion criteria 133 

requiring the assessment of exercise performance directly; while a traditional funnel plot was not used 134 

to assess publication bias due to the natural negative skew expected in the data, given the strong 135 

physiological basis that exercise performance will not be enhanced under acute hypoxia.  136 

Data analysis  137 

The ratio of means (ROM) method was used to establish pooled effects and variances of hypoxic 138 

interventions. This method allows outcomes of different units to be pooled and compared, whilst also 139 

allowing for easy interpretation for practitioners, athletes, and coaches because outcomes can be 140 

expressed as a percentage change. The natural logarithm of each ROM (equation 1) and its variance 141 

(equation 2) were calculated using the mean values of sea level (�̅�𝑐) and hypoxia (�̅�𝑇), their respective 142 

standard deviations (SD), number of participants (N) and a correction (r) between sea level and hypoxic 143 

trial performance:  144 

log(𝑅𝑜𝑀) = [log
�̅��̇�

�̅�𝑐
]        [Equation 1] 145 

𝑉𝑎𝑟[𝑙𝑜𝑔(𝑅𝑜𝑀)]=
(SDC)2

Ncx̅2
c

+
(SDT)2

NTx̅2
T

+
2rSDCSDT

x̅cx̅T√NcNT

            [Equation 2] 146 

The calculation of the variance of ROM requires knowledge of the correlation (r) between sea level and 147 

hypoxic trial outcomes, which is not commonly reported. Estimates from individual studies were 148 

obtained using reported t statistics as follows (equation 3): 149 

𝑟 =  
(𝑆𝐷𝑐)2+(𝑆𝐷𝑇)2−𝑡−2𝑁(�̅�𝑇−�̅�𝑐)2

2SDCSDT
       [Equation 3] 150 

Appropriate information was only available for 23 studies; therefore, a pooled single estimate of the 151 

correlation r was calculated from the available data using the Meta package in r (R Foundation for 152 

Statistical Computing, Vienna Austria). The pooled correlation value (r = 0.78, 95% confidence 153 

interval: 0.62 to 0.87) was then applied to all studies. Sensitivity analyses using correlation values of r 154 

= 0.68 and r = 0.88 were also carried out to validate the primary model. 155 
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A three-level mixed effects meta-regression was used to analyse ROMs and variances whilst accounting 156 

for dependencies in the data set. The three levels can be described by regression equations at the sample 157 

(level 1), outcome (level 2) and study (level 3) level (Van den Noortgate, López-López, Marín-158 

Martínez, & Sánchez-Meca, 2013). The fixed effects categorical moderators included exercise type 159 

(TT, intermittent, TTE and Sprint), exercise duration (< 2 min, 2-10 min and > 10 min) and training 160 

status (trained vs. healthy). The overall and interaction effects with altitude elevation in km equivalent 161 

to the FiO2 exposure and end exercise mean difference in SaO2 between normoxic and hypoxic 162 

conditions were also evaluated as continuous moderators. Furthermore, given the reported non-linear 163 

relationship between acute hypoxia and VO2max (Macinnis et al., 2015) and critical power (Townsend, 164 

Nichols, Skiba, Racinais, & Périard, 2017), the review also assessed curvilinear effects of altitude 165 

elevation using quadratic models. Regression analyses were constrained to a zero intercept to enhance 166 

external validity. Pooled effects on the logarithmic scale were subsequently back transformed and 167 

multiplied by 100 to provide percentage change of effects. A normal distribution was assumed for log-168 

transformed effects and therefore 95% confidence intervals were obtained from ± 1.96 × standard error 169 

and back transformed. All outcomes are reported as percentage effect estimate ± standard error and the 170 

corresponding 95% confidence intervals, unless otherwise stated. All analysis was performed using the 171 

metaphor package in R (R Foundation for Statistical Computing, Vienna Austria). Statistical significant 172 

was assessed through 95% confidence intervals, with estimates that cross the zero-boundary interpreted 173 

as non-significant.    174 

Results 175 

Study characteristics  176 

Fifty-three studies met the inclusion criteria set for this review (Table 1), which provided effect statistics 177 

for 82 outcomes within 798 participants and ranged from 500-5700 m altitude (mean ± SD: 3000 ± 178 

1300 m). These studies were categorised into an exercise modality and an exercise duration category 179 

for analysis. Training status was explicitly reported in 47 outcomes, with 33 cohorts classified as trained 180 

against 14 cohorts classified as untrained healthy participants; whilst SaO2 was available in 54 outcomes 181 
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(13.2% ± 7.2%). Only five studies were performed utilising hypobaric hypoxia and therefore the type 182 

of hypoxic exposure was not considered as a moderator in this study.  183 

Quality assessment 184 

Under the GRADE research quality assessment, the overall quality is rated high due to the inclusion of 185 

only randomised control trials in this review and the limited evidence to warrant the downgrading of 186 

quality. Methodological limitations and bias in the included articles, were assessed against pre-187 

determined criteria, with the percentage of studies demonstrating each criterion as follows: (1) the 188 

control of prior altitude/hypoxic exposure: 47%; (2) standardisation of dietary intake: 62%; (3) 189 

familiarisation to exercise trials: 87%; (4) blinding of participants: 43%; (5) blinding of researcher: 190 

23%; (6) blinding outcome assessment: 0%; and (7) complete outcome data: 42%. 191 

Overall effect 192 

The intercept only three-level mixed effects model identified a negative 17.1 ± 3.7% (95% CI -22.8% 193 

to -11%) effect on all categories of exercise capacity and performance with 20.8%, 62.5% and 16.7% 194 

of the variance explained by the sample, between study and between outcome variance, respectively. 195 

The outcomes from the sensitivity analysis found no substantive difference in effect or variance between 196 

models using r = 0.67, r = 0.87 and r = 0.77 correlation values. Acute hypoxic exposure was calculated 197 

to have a significant moderating effect that equates to a 6.5% reduction for every 1000 m elevated (-6.5 198 

± 0.9%; 95% CI -8.2% to -4.8%). No evidence was obtained for a non-linear effect of altitude on the 199 

overall dataset. Similarly, for a 1% reduction in SaO2 a significant negative 2.0 ± 0.4% (95% CI -2.9% 200 

to -1.2%) effect was reported.  201 

Moderating effects of exercise types 202 

Exercise type was found to have a moderating effect on exercise performance under acute hypoxic 203 

conditions (Figure 1), with TT performance and TTE tests experiencing a significant -16.2 ± 4.3% (95% 204 

CI -22.9% to -9.0%) and -44.5 ± 6.9% (95% CI -51.3% to -36.7%) change. However, the overall effect 205 

on intermittent exercise (-5.6 ± 4.8% ;95% CI -13.9% to 3.5%) and sprint performance (-2.9 ± 8.0; 95% 206 

CI -16.5% to 12.8%) were non-significant. Moreover, interaction effects were reported between 207 
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exercise type and magnitude of altitude elevation. Additionally, altitude2 moderator improved model fit 208 

compared to the linear model when exercise type was included (χ(10) = 8.0; p = 0.005), indicating a 209 

curvilinear effect of acute hypoxia. The exercise type category was subsequently reduced to TT and 210 

TTE sub-groups to determine the interaction effects with linear and quadratic effects of altitude 211 

elevation (Table 2), which are depicted in Figure 2. The magnitude of SaO2 decline was also determined 212 

to have the largest moderating effect on TTE exercise compared to the three other exercise types, with 213 

a -4.5 ± 0.5% (95% CI -5.4% to -3.6%) for every 1% reduction in SaO2. A lower -1.3 ± 0.4% (95% CI 214 

-2.1% to -0.5%) moderating effect for every 1% reduction in SaO2 was also evident on TT performance. 215 

Moderating effects of exercise duration 216 

Acute hypoxia had no effect on exercise of < 2 min duration (-6.3 ± 5.6%; 95% CI -16.1% to -3.8%), 217 

however exercise between 2-10 min and > 10 min had a significant -18.0 ± 6.0% (95% CI -25.8% to -218 

8.2%) and -26.8 ± 5.5% (95% CI -33.2% to -18.2%) effect, respectively. A similar interaction effect 219 

with altitude was also found for exercise between 2 to 10 min and > 10 min, with a negative -13.6 ± 220 

2.4% (95% CI -17.8% to 9.7%) and -18.2 ± 2.1% (95% CI -21.5% to -14.8%) per 1000 m, respectively. 221 

A similar moderating effect of SaO2 was noted for the 2-10 min category at -2.4 ± 0.7% (95% CI -3.8% 222 

to -1.0%) and over 10 min category at -2.8 ± 0.6% (95% CI -3.9% to -1.6%) for every 1% reduction in 223 

SaO2.  224 

Moderating effect of training status 225 

Trained and healthy individuals were found to have a pooled -21.8 ± 6.8% effect (95% CI -31.2% to -226 

11.1%) and -29.5 ± 9.6% (95% CI -41.1% to -15.5%) decline in performance with acute hypoxia, 227 

respectively. Given the variance in the range of altitude elevations and greater mean elevation in the 228 

healthy cohort, further analysis that controlled for altitude found a non-significant effect between sub-229 

groups. There was however, a difference in the moderating effect of SaO2 between the sub-groups, with 230 

a significant moderating effect for every 1% reduction in SaO2 apparent in trained (-2.8 ± 0.5%; 95% 231 

CI -3.8% to -1.7%) but not in untrained healthy participants (-2.0 ± 1.6%; 95% CI -5.1% to 1.1%).  232 

Further analysis 233 
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Owing to the large proportion of outcomes in the intermittent exercise group also classified as < 2 min 234 

(17 of the 23), the main effect in the intermittent sub-group may have been skewed. Therefore, further 235 

analysis to determine the pooled effect on intermittent exercise bouts > 2 min were performed. An 236 

overall pooled estimate of -4.7 ± 1.3% (95% CI -7.2% to -2.2%) was observed, however acute hypoxia 237 

elevation was not found to be a significant moderator of intermittent exercise over 2 min (95% CI -238 

7.7% to 3.1%). 239 

Discussion 240 

This is the first meta-analysis to study the effects of acute hypoxic exposure on exercise capacity and 241 

performance; and assess the effect against moderators of altitude elevation based on FiO2 tested, SaO2, 242 

training status, exercise duration and type of exercise. This review is the first to show the curvilinear 243 

relationship between exercise and acute hypoxic exposure during TT and TTE exercise tests, and 244 

exercise activity > 2 min.  In contrast, no ergolytic effect was found during intermittent exercise and 245 

sprint tests; and exercise < 2 min. When exercise < 2 min were removed from the analysis of intermittent 246 

exercise, a significant negative effect was seen, suggesting prolonged intermittent exercise is impaired 247 

under acute hypoxic conditions. Training status was demonstrated to be a significant moderator, with 248 

trained and healthy individuals exhibiting a similar negative effect. While reductions in SaO2 displayed 249 

a negative moderating effect in the overall model, however these effects were more pronounced within 250 

trained participants. Together, these results highlight the magnitude dependent moderating effects of 251 

acute hypoxia, while also showing potential factors that are likely to influence exercise performance at 252 

acute hypoxia.  253 

The curvilinear relationship between exercise and hypoxic exposure is described by a quadratic model. 254 

This is equivalent to the meta-analytic model previously used to describe the relationship with VO2max 255 

(Macinnis et al., 2015). Furthermore, critical power (CP), a suggested marker of maximal sustainable 256 

aerobic power, has been fitted to a higher order cubic model to show the negative relationship within 257 

nine trained cyclists (Townsend et al., 2017). Nonetheless, this is the first study to describe a curvilinear 258 

relationship during TT performance and TTE tests, given previous experimental studies have reported 259 

a linear 7.0% reduction in TT performance per 1000 m (Clark et al., 2007) and TTE decline linearly by 260 
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14.5% per 1000 m up to a moderate 3000 m elevation (Wehrlin & Hallén, 2006). When comparing the 261 

quadratic models of the current dataset at a hypoxic exposure equivalent to 3000 m. TTE and TT 262 

performance can be predicted fall by 47.7% and 17.7%, respectively, whereas previous research would 263 

suggest a 43.5% reduction in TTE and 21.0% reduction in TT performance. The small but important 264 

difference in the magnitude of decline and the curvilinear model is likely to be explained by the greater 265 

range of acute hypoxic magnitudes, equivalent 500 m to 5700 m elevation, in the present model, which 266 

includes severe hypoxic exposures, whereas previous experimental work only assessed low and 267 

moderate altitudes (< 3000 m) (Clark et al., 2007; Wehrlin & Hallén, 2006). Indeed, earlier articles that 268 

also reported a curvilinear relationship, also included severe hypoxic exposures (Macinnis et al., 2015; 269 

Townsend et al., 2017), which suggests alternative fatiguing mechanisms may be operating. Current 270 

evidence alludes to an exacerbated central fatigue action through diminished group III/IV afferent 271 

feedback with exposure to severe hypoxic conditions, whereas the central motor output is unchanged 272 

from sea level at moderate hypoxic exposures (Amann, Romer, Subudhi, Pegelow, & Dempsey, 2007). 273 

This diminished central motor output may, in part, explain the exponential decline in performance 274 

observed with greater elevation.   275 

The magnitude of the impairment with acute hypoxia is dependent on the type and duration of exercise, 276 

with TT performance and TTE tests found to elicit ergolytic effects, while sprint and intermittent tests 277 

found to be largely unchanged from sea level. This effect may be explained by the duration of exercise 278 

within these sub-groups, given sprint exercise and the repeated sprint exercise (RSE) within the 279 

intermittent group formed the < 2 min sub-group. Indeed, experimental studies assessing the various 280 

magnitudes of hypoxia on RSE have only reported performance decrements above 4000 m (Bowtell et 281 

al., 2014; Goods et al., 2014). However, the current model did not show this due to the assessment of 282 

performance against a continuous hypoxic moderator rather than at 1000 m categorical intervals used 283 

in experimental studies. Nonetheless, sprint and RSE performance, which is equivalent for the < 2 min 284 

duration category, are sustained with acute hypoxia; an effect that can be explained through greater 285 

reliance on anaerobic energy sources, which provides the greatest contribution to RSE and sprint 286 

performance (Scott et al., 2016). The separation of exercise activity less than 2 min in the intermittent 287 
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sub-group did however, suggest prolonged intermittent exercise is impaired under acute hypoxia, which 288 

may explain the decrement in physical output during team sports competition at altitude (Aldous et al., 289 

2016). However, the moderating effect of acute hypoxia were not evident, which may be attributed to 290 

the lack of available outcomes; therefore, further research should aim to assess effects of several 291 

incremental magnitudes of acute hypoxia on prolonged intermittent performance.  292 

The lack of effect during short duration (< 2 min) exercise bouts is also reflected in previous research 293 

assessing the impact of altitude on track athletes (Hamlin, Hopkins and Hoolings, 2015) and may also 294 

be mechanistically explained when viewed through the two parameter CP concept (Simpson et al. 2015; 295 

Sherman et al., 2016; Townsend et al., 2017). When analysing track performances of major international 296 

competitions at varying degrees of altitude, Hamlin et al., (2015) reported track sprint events (100-400 297 

m) did not exhibit a negative effect associated with hypoxia, but rather, a performance improvement 298 

due to the reduced aerodynamic resistance caused by the lower barometric pressure present at terrestrial 299 

altitudes.  Whereas, longer track events (800 -10000 m) that require a larger relative aerobic energetic 300 

contribution exhibit a performance decrement at elevations ≤ 150 m. As such, demonstrating the 301 

outcomes of this meta-analysis are also reflected during athletic competition. Further to this, with 302 

hypoxic exposures, critical power exhibits a substantial decline in performance corresponding to the 303 

performance impairment noted during longer TT and TTE exercise that requires a greater aerobic 304 

contribution. Whereas, W’, the ability to perform work above CP is unchanged under moderate hypoxic 305 

conditions (Simpson et al. 2015; Sherman et al., 2016; Townsend et al., 2017). Traditionally, W’ is 306 

purported to represent the anaerobic work capacity and as such, the lack of change reported during 307 

exercise < 2 min in the current study may be explained through the two parameter CP model.  308 

There is evidence to suggest an individual variability in exercise response to acute hypoxic exposure, 309 

which is predominantly accounted  by superiorly trained individuals exhibiting the largest decrement 310 

in VO2max (Macinnis et al., 2015) under acute hypoxic conditions, given their inability to maintain SaO2 311 

during exercise compared to untrained individuals (Chapman et al., 2011). Chapman et al., (2011) 312 

further identified that individuals that exhibited the greatest reductions in SaO2 during a 3000 m running 313 

performance, experienced a greater impairment in running performance. In the current study, 314 
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performance decrements between healthy and trained cohorts could not be differentiated when 315 

controlling for differing hypoxic exposures. However, the moderating effects of SaO2 were more 316 

evident within trained individuals with a significant 2.8 ± 0.5% fall in performance for every 1% 317 

reduction in SaO2, while no significant moderating effect was noted in healthy individuals. This is 318 

however, presented with a caveat as fewer outcomes were included in the healthy cohort sub-group, 319 

which may have contributed to the null findings. Nonetheless, SaO2 was demonstrated to have an 320 

overall moderating effect, which was most evident during TTE tests and TT performance.  321 

In this review, the effects of the type of hypoxic exposure (i.e. normobaric vs hypobaric) could not be 322 

evaluated due to the lack of available data. Research has suggested the different physiological response 323 

to exercise between normobaria and hypobaria (Coppel, Hennis, Gilbert-Kawai, & Grocott, 2015); 324 

while it is important to highlight the reduced air density at terrestrial altitude, result in fast velocities at 325 

equivalent power outputs (Garvican-Lewis et al., 2015), therefore the results of this study are not 326 

directly applicable to field based performance. Nonetheless, this review quantifies the non-linear 327 

relationship between acute hypoxia and both TTE and TT performance, whilst also highlighting the 328 

lack of effect during Sprint and RSE. Additional, noteworthy limitations to this study are apparent in 329 

the interpretation of the effect of SaO2 and training status moderators. End exercise SaO2 was used in 330 

the current study as opposed to mean SaO2 due the much greater frequency in measurement of the 331 

former. The use of mean SaO2 would take in to account the different rates of change in oxygen saturation 332 

during exercise and within exercise SaO2 may have implications for pacing, therefore further 333 

experimental research should consider this effect. In the present study, training status was defined with 334 

a cut off in mean VO2max to maintain objectivity of physiological fitness, however, this categorical 335 

approach is limited, in that, participant cohorts may not be homogenous with VO2max of individuals 336 

ranging above and below the cut off. The moderating effects of VO2max should therefore be interpreted 337 

with this caveat. Nonetheless, this review offers a useful practical interpretation for practitioners, 338 

coaches and athletes when planning training during a range of acute hypoxic levels.  Furthermore, this 339 

review highlights the importance of mitigating the reduction of SaO2 to maintain exercise performance 340 
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under acute hypoxia, particularly within trained cohorts who are suggested to experience a larger 341 

moderating effect of SaO2. 342 
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Figure 1. Results from categorical moderator analysis. 

QEdf: residual heterogeneity test statistic; QMdf: omnibus moderator test statistic.  

Between outcome and study variance are accompanied by a percentage showing the proportion of 

total variance in the model that they account for. 

Confidence intervals crossing the zero-boundary show non-significant effects. 

 

  



 18 

 

 

 
 

Figure 2. A scatterplot showing the outcomes included this meta–analysis categorised by exercise 

type, with quadratic regression lines shown for TTE and TT performance. Wingate, intermittent and 

TT performance are shown as a percentage change in mean power output, while TTE as a percentage 

change in exercise tolerance duration.   
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Table 1. Summary table of all outcomes by exercise type included in this review with effect and standard error of outcomes in this meta-analytic model. 

Author 
Participants [VO2peak] 

(ml·kg-1·min-1) 

SaO2 

(%) 

Altitude elevation 

(NH or HH) 

Exercise 

duration 

category 

Exercise protocol 
Effect (%) 

(95% CI) 

Exercise performance – Continuous TT exercise 

Amann et al., 2000 8 [63.0 ± 1.3] 14.0 2700 m (NH) 2 5 km TT -10.4 (-12.2 to -7.7) 

Beidleman et al., 

2014 

6 [49.5 ± 5.0] 17.6 4300 m (NH) 3 Time to complete 72 J work -25.9 (-31.6 to -19.7) 

6 [47.5 ± 4.3] 19.5 4300 m (HH) 3  -38.7 (-41.7 to -35.6) 

Bourdillon, Fan, & 

Kayser, 2014 
13 30.0 5000 m (NH) 3 15 km TT -30.9 (-33 to -29.5) 

Bourdillon et al., 

2015 
12 28.3 5000 m (NH) 3 15 km TT -37.5 (-44.6 to -30.2) 

Castellani et al., 

2010 
7 [44.1 ± 4.9] 20.0 3000 m (HH) 3 Total Work done during a 30 min TT -12.2 (-19.7 to -3.9) 

Clark et al., 2007 10 [67.7 ± 1.3] 

4.0 1200 m (HH) 

2 
Total Work done during a 5 min TT 

-5.8 (-10.4 to -1.0) 

13.0 2200 m (HH) -10.4 (-14.8 to -5.8) 

12.0 3200 m (HH)  -19.7 (-23.7 to -15.6)  

Dahlstrom et al., 

2013 
8 [52 ± 7.3]  2750 m (NH) 3 20 km TT -16.5 (-18.1 to -13.9) 

Deb et al., 2017  11 [59.2 ± 6.8] 10.5 3000 m (NH) 2 Total Work done during 3 min  -10.4 (-15.6 to -5.8) 

Fan et al., 2013  10 [63.3 ± 6.6] 30.0 4600 m (NH) 3 15 km TT -30.2 (-32.3 to -28.1) 

Foss, 2015  10 [66.5 ± 5.2] 3.90 2500 m (NH) 3 20 km TT -9.5 (-15.6 to -3.9) 

Gore et al., 1997 
10 [72.3 ± 2] 1.8 580 m (HH) 

2 Total Work done during a 5 min TT 
-3 (-3.9 to -2.0) 

10 [60.8 ± 2] 3.4 580 m (HH) -3.9 (-4.9 to -3.0) 

Jacobs et al., 2011 
20 [56.5 ± 1.2] 21.0 

3900 m (NH) 
2 6 km TT -20.5 (-21.3 to -18.9) 

15 [45.3 ± 1] 18.0 3  -28.8 (-29.5 to -28.1) 

Koelwyn et al., 2013 11 (58.3 ± 2.8) 10.8 1950 m (NH) 3 10 km TT -10.4 (-13.1 to -7.7) 

Kressler et al., 2011 5.0 2100 m (NH) 3 15 km TT -6.8 (-8.6 to -4.9) 
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21 [11 males: 55 ± 1.3] 

10 females: [42.8 ± 0.6] 
17.0 3900 m (NH) -22.9 (-25.2 to -21.3) 

MacLeod et al., 

2015 
   11 [67.5 ± 5.8] 9.0 2500 m (NH) 3 10 km TT -15.6 (-18.9 to -13.1) 

Salazar-Martínez et al., 

2017 
16 [46.4 ± 8.7]  2500 m (NH) 2 Total Work done during a 10 min TT -5.8 (-11.3 to 1.0) 

Simpson et al., 

2015 
   12 [41.6 ± 6.3]  3800 m (NH) 2 Total Work done during 3 min  -14.8 (-18.9 to -10.4) 

Périard & Racinais, 

2016 
12 [59.5 ± 3.8] 13 3000 m (NH) 3 Time to complete 75 J work -19.7 (-23.0 to -16.5) 

Peltonen et al., 

1995 
6  2250 m (NH) 2 2.5 km rowing TT -13.9 (-17.3 to -11.3) 

Puype et al., 2013 

10 [55.1 ± 2.5]  3000 m (NH) 

2 Total Work done during a 10 min TT 

-14.8 (-17.3 to -13.1) 

9 [53.3 ± 3.5]  3000 m (NH) -15.6 (-16.5 to -14.8) 

10 [55.1 ± 1.7]  3000 m (NH) -16.5 (-18.9 to -13.9) 

Shearman et al., 

2015 
      11 [61.5 ± 5.7] 11.4 2500 m (NH) 2 Total Work done during 3 min -7.7 (-12.2 to -3.9) 

Weavil et al., 

2015 
7 [61.5 ± 1.4] 9 1750 m (NH) 2 5 km TT -7.7 (-11.3 to -4.9) 

Exercise performance – Intermittent exercise 

Aldous et al., 

2016 
12 [57.0 ± 2.0]  1000 m (NH) 3 90 min intermittent soccer performance test -2.9 (-3.9 to -1.0) 

Billaut & 

Buchheit, 2013 
14  3800 m (NH) 1 10 x 10 sec sprints with 30 s rest  -7.6 (-13 to -2.9) 

Billaut et al., 2013 10  3300 m (NH) 1 
3 sets 5 x 5 s sprints with 25 s passive 

recovery  
-8.6 (-18.1 to 2.0) 

Bowtell et al., 

2014 
9 

20.7 2700 m (NH) 

1 10 X 6 sec sprints with 30 a rest  

-3.9 (-8.6 to 1.0) 

26.2 3200 m (NH) -8.6 (-12.2 to -3.9) 

13.6 3800 m (NH) -8.6 (-13 to -5.8) 
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18.1 4500 m (NH) -14.8 (-18.1 to -10.4) 

Brosnan et al., 

2000 
8 [61.0 ± 4.0] 

 

1500 m (NH) 

3 
3 x max work in 10 min with 5 min active 

recovery (< 100w) 
-7.7 (-13.1 to -3.9) 

 2 
3 sets 6 x 15 s sprints with 45 s recovery (< 

100 w). 3 min recovery between sets  
-7.7 (-10.4 to -2.0) 

Girard et al., 2015 13 
8.1 1800 m (NH)) 

1 8 x 5 s sprint with 25 s passive recovery  
-1 (-2.9 to 1.0) 

15 3600 m (NH) -1 (-5.8 to 3.0) 

Girard et al., 2016 6  3600 m (NH) 1 5 x 5 s sprint with 25 s passive recovery  -3 (-4.9 to -1.0) 

Goods et al., 2014 10 

5.4 2000 m (NH) 

1 

3 sets 9 x 4 sec max sprints non-motorised 

treadmill  

-5.8 (-9.5 to -3.0) 

10.9 3000 m (NH) -11.3 (13.9 to -7.7) 

20.2 4000 m (NH)  -19.7 (-22.9 to -17.3) 

Goods et al., 2016 9     -10.4 (-16.5 to -3.9) 

Kon et al., 2015 7 
 2000 m (NH) 

2 
4 x 30 s all out sprint with 4 min passive 

recovery 

1.0 (0 to 2.0) 

 3500 m (NH) -3.9 (-4.9 to -2) 

Morrison, 

McLellan, & 

Minahan, 2015 

10  3800 m (NH) 1 4 sets of 4 x 4 sec sprints  -1.0 (-3.0 to 2.0) 

 Lovell, McLellan, 

& Minahan, 2015) 
7  3800 m (NH) 1 10 x 26 sec sprint with 24 sec recovery  -5.8 (-11.3 to 0) 

Smith & Billaut, 

2010 
13 12.1 3700 m (NH) 1 

10 x 10 s sprint with 30 sec passive 

recovery  
-7.7 (-10.3 to -4.9) 

Smith & Billaut, 

2012 

10 male  12.5 
3700 m (NH) 1 

10 x 10 s sprint with 30 sec passive 

recovery  

-7.7 (-13.1 to -3) 

10 female 14.7 -6.8 (-29.5 to -18.1) 

Sweeting et al., 

2017 
7 [59.5 ± 5.1] 

 2000 m (NH) 
3 26.4 min repeated sprint protocol 

2.0 (-6.7 to 11.6) 

 3000 m (NH) -13.1 (-23.7 to -1.0) 

Turner et al., 2014 9 [40.1 ± 4.6] 5 1600 m (NH) 3 80 min cycling intermittent sprint protocol  -4.9 (-13 to 3.0) 

Witmer, 2011 14 [44.8 ± 8.0] 1.2 3000 m (NH) 1 10 X 6 sec sprints with 30 sec rest -1.0 (-3.0 to 1.0) 

Zinner et al., 2015 10 [72 ± 7.2]  2000 m (NH) 2 3 x 3 min ‘all-out’ double poling -3.0 (-8.6 to 3.0) 
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Anaerobic exercise – Sprint 

Calbet et al., 2015 11 [50.7 ± 4.0]  5300 m (NH) 1 30 s Wingate -7.7 (-10.4 to -3.0) 

Calbet et al., 2003 
5 [62.0 ± 2.0]  

5300 m (NH) 1 30 s Wingate 
-1.0 (-3.0 to 1.0) 

5 [72.0 ± 1.0]  -6.7 (-9.5 to -3.9) 

McLellan et al., 

1990 
12 

15.7 
5700 m (NH) 1 

30 s Wingate 0 (-2.0 to 2.0) 

13.7 45 s Wingate -1.0 (-3.0 to 1.0) 

Morales-Alamo et 

al., 2012 
10  5500 m (NH) 1 30 s Wingate -4.9 (-9.5 to -1.0) 

Ogura et al., 2006 7 
 2000 m (NH) 

1 40 s Wingate 
0 (-5.8 to -5.1) 

 4000 m (NH) -3.9 (-8.6 to 2.0) 

Oguri et al., 2008 
9 [62.5 ± 4.1] 8 

2000 m (NH) 1 30 s Wingate 
1.0 (-5.8 to 7.3) 

9 [49.9 ± 5.2] 6 -2.0 (-6.8 to 3.0) 

Exercise capacity – time to exhaustion tests 

Amann et al., 

2007 
8 [67.2 ± 2.5] 

12 2700 m (NH) 
2 

81.4% normoxic Wpeak -57.7 (-60.1 to -55.1) 

27 5700 m (NH)  -81.0 (-82.1 to -79.6) 

Billat et al., 2003 8 [57.3 ± 3.3] 13 3400 (NH) 2 Velocity at VO2max 5.1 (-7.7 to 19.7) 

Flinn, Herbert, 

Graham, & 

Siegler, 2014 

12 [53.5 ± 10.0] 2.7 3000 m (NH) 2 
Intermittent 30 s work at 120% Wpeak and 30 

s recovery at 30% Wpeak 
-27.4 (-33.6 to -20.5) 

Girard & 

Racinais, 2014 
11 8 2500 m (NH) 3 66% normoxic VO2peak -38.1 (-48.3 to -26.7) 

Goodall et al. 

2014 
9 [61.1 ± 4.6] 17.4 3800 m (NH) 2 

60% of the difference between the VT1 

and˙VO2max 
-55.5 (-62.1 to -47.8) 

Heubert, 

Quaresima, 

Laffite, 

Koralsztein, & 

Billat, 2005 

9 15 2200 m (NH) 2 90% Maximal aerobic power -18.1 (-20.5 to -14.8) 
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Kelly et al., 2014 13 [58.3 ± 6.3] 14 3800 m (NH) 3 
75% of the difference between the VT1 

and˙VO2max 
-54.2 (-58.9 to -48.8) 

Romer et al., 2007 
9 [56.5 ± 2.7] 

 
17 3800 m (NH) 3 92 ± 1% of Wpeak -68.7 (-70.2 to -67.0) 

Wehrlin & Hallén, 

2006 

8 [66.0 ± 1.6] 

 

2.8 500 m (HH) 

2 107% VO2peak 

-13.1 (-16.5 to -9.5) 

4.8 1000 m (HH) -14.8 (-17.3 to -12.2) 

7.2 1500 m (HH) -25.9 (-28.8 to -22.9) 

9.8 2000 m (HH) -29.5 (-31.6 to -27.4) 

12.4 2500 m (HH) -35.6 (-37.5 to -34.3) 

NH: normobaric hypoxia; HH: hypobaric hypoxia.  

Exercise duration categories are numerically defined as: (1) < 2min; (2) 2-10 min; and (3) > 10 min.  
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Table 2. Linear and quadratic interaction between altitude and subgroups within exercise type, with an 

illustrative example of percentage effect on performance at 3000 m 
 

 

 
 

 

 
 

 
*Represents a statistically significant interaction determined through 95% confidence intervals 

Data reported as mean ± standard error. 

Intercept for all models are constrained to zero.		

Exercise 

Category 
Model Altitude Altitude

2
 

Example performance  

effect at 3000 m  

TT 
Linear -6.4 ± 0.4%*  -58.0% 

Quadratic -1.7 ± 3.5% -1.4 ± 0.3% * -47.7% 

TTE 
Linear -19.6 ± 2.0% *  -19.2% 

Quadratic -10.2 ± 2.6% * -1.9 ± 0.4% * -17.7% 
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