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ABSTRACT 

Polyallylamine (Paa) was quaternised by methylation of its primary amines using methyl iodide to yield 

quaternised Paa (QPaa). Average level of polymer quaternisation was determined by elemental analysis and was 

found to be 72 ± 2mol%. Subsequent thiolation of Paa (15kDa) and QPaa using two different thiolation 

procedures involving carbodiimide mediated conjugation to N-acetylcysteine (NAC) and modification of the 

polymers using 2-iminothiolane hydrochloride yielded their respective NAC and 4-thiobutylamidine (TBA) 

conjugates: Paa-NAC/QPaa-NAC and Paa-TBA/QPaa-TBA.  

Estimation of the free thiol content of thiomers by iodometric titration showed that Paa-NAC and QPaa-NAC 

displayed 60 ± 1.2 and 60 ± 4.3µmol free thiol groups per gram polymer respectively, while Paa-TBA and 

QPaa-TBA conjugates displayed 490 ± 18 and 440 ± 21µmol free thiol groups per gram polymer respectively.  

Assessment of polymer mucoadhesion using the mucin adsorption assay method revealed that Paa-NAC and 

Paa-TBA had the best mucoadhesive profile both adsorbing >20% more mucin than the parent polymer Paa. 

However, thiolation of QPaa was not observed to result in a marked improvement in adsorption of mucin. Also, 

while other thiolated derivatives were stable in tris/phosphate buffer pH 8 with no change in free thiol content, 

Paa-TBA solutions displayed in-situ crosslinking of free thiol groups to a disulphide network which was evident 

after 2 hours. These results show that thiolation of Paa enhanced its mucoadhesive properties, with Paa-TBA 

also exhibiting in-situ gelling properties. Hence, these novel thiolated Paa derivatives exhibit properties which 

may be useful in facilitating  transmucosal drug delivery and controlled drug release. 

Key words: mucodhesion; thiolation; quaternisation; thiomer, in-situ crosslinking; amide; amidine. 

1. INTRODUCTION 

Mucoadhesive polymers have gained increasing importance in the systemic delivery of drugs through mucosal 

routes due to their unique ability to adhere to the mucus layer via chain interpenetration and entanglements, 

covalent and non-covalent (charge-based, hydrogen bonding, hydrophobic) interactions with components of 

mucus [1, 2, 3]. This mucoadhesive process extends the residence time of the dosage form at the application site 

allowing adequate time for polymers that enhance mucosal wall permeation to exert their effect while also 

creating a steep concentration gradient which facilitates the process of passive diffusion necessary for optimal 

drug absorption [4, 5]. Polymers which have been used successfully in mucoadhesive dosage form design 

include chitosan, polyacrylic acid and alginate [2, 6, 7, 8]. Their distinctive mucoadhesive property has been 

attributed to the availability of charged functional groups within their structure which are able to foster 

ionic/electrostatic interaction with components of mucin . Cationic polymers like chitosan have however been 

found to have better mucoadhesive properties that anionic ones as they exert their mucoadhesive effect by 

interaction of their positively charged (primary amine) groups with negatively charged terminal sialic acid or 

sulphonated residues on the caborhydrate residues of mucin [9, 10].  

Page 2 of 22Colloid and Polymer Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

3 

 

Optimisation of the structure of these polymers for mucosal drug delivery often necessitates modification of the 

polymer backbone. This may involve processes like trimethylation of primary amine groups (quaternisation) 

which addresses the pH-dependent solubility of polymers like chitosan while also stabilising the positive surface 

charge of polycations [11, 12, 13]. Thiolation of these polymers, which involves the immobilisation of reactive 

thiol groups on the primary amine groups of the polymer has also been reported to enhance mucoadhesion; thiol 

groups can oxidise to the reactive thiolate anion S- above pH 5 initiating thiol-disulphide interactions with 

cysteine-rich subdomains of mucin glycoproteins [14, 15, 16]. Other desirable properties that may be associated 

with thiomers include their ability to chelate metal ions of endogenous proteases thereby offering increased 

enzymatic protection to their proteinous substrates [17, 18] and their tendency to form in-situ crosslinked 

networks/gels above pH 5 which can be useful in controlled drug release [19, 20]. 

The work carried out by our group focuses on progressive alteration of the structure of Paa aimed at improving 

its function in the areas of transmucosal/transepithelial transport of drugs and macromolecules, enzymatic 

protection of proteins and peptides intended for oral delivery and controlled drug release. Previous research 

carried out with Paa includes modification of Paa by quaternisation of its primary amine groups imparting a 

permanent pH-independent positive charge to the polymer and the attachment of hydrophobic pendant groups 

(palmitoyl, cholesteryl and cetyl chains) to the Paa backbone yielding amphiphillic polyelectrolytes (AP) with 

improved potential for hydrophobic interaction and increased enzymatic protection [21, 22, 23].  

This paper reports further work to expand the application of Paa by assessing the impact of thiolation on 

mucoadhesion while also evaluating the potential of using the obtained thiomers in other drug delivery 

applications. Thiolation of QPaa was also carried out in order to ascertain if a synergistic mucoadhesive effect 

based on both electrostatic and thiol-disulphide interactions with mucin can be obtained. Thiolation of Paa and 

QPaa was possible either through carbodiimide mediated coupling of the primary amine groups of the polymer 

to N-acetylcysteine  creating a stable amide bond or by reacting the polymers with 2-iminothiolane which yields 

the 4-thiobutylamidine derivatives of the parent polymer. The thiomers obtained were subsequently 

characterised and their mucoadhesive profile evaluated in comparison to that of their parent polymers. 

2.  MATERIALS AND METHOD 

2.1. MATERIALS 

Poly(allylamine hydrochloride) (average Mw = 15kDa), tris(hydroxymethyl)aminomethane (Tris base) (≥ 99%), 

iodomethane, amberlite IRA-96 resin (20-50 mesh), sodium iodide, N-(3-Dimethylaminopropyl)-N’-ethyl 

carbodiimide hydrochloride (EDAC), sodium hydroxide, N-hydroxysuccinimide (NHS), N-acetylcysteine, 2-

iminothiolane hydrochloride, sodium borohydride, phosphate buffer saline(PBS), iodine solution(0.5M), starch 

solution(2%) and Porcine gastric mucin (crude type II) were all purchased from Sigma-Aldrich UK.  
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2.2. SYNTHESIS OF POLYMERS 

2.2.1. Quaternisation of polyallylamine 

The methods used for the purification of the polymers polyallylamine from poly(allylamine hydrochloride) and 

subsequent quaternisation of Paa to yield QPaa have been previously described in earlier reports published by 

our group [21]. The degree of quaternisation of the product was estimated by elemental analysis and results 

were obtained in triplicate. 

2.2.2. Synthesis of Paa and QPaa N-acetylcysteine conjugates 

Thiolation of Paa/QPaa by conjugation to N-acetylcysteine via an amide bond was carried out separately using a 

similar method to Yin et al. [25] (figure 1). N-acetylcysteine (250mg; 1.53mmol) was dissolved in 100ml of 

deionised water into which EDAC and NHS were added consecutively up to a final concentration of 200mM to 

activate the carboxylic acid groups of N-acetylcysteine. The mixture was adjusted to pH 4-5 using 2M HCl and 

left stirring at room temperature for 1 hour, after which Paa/QPaa (250mg) was added into the reaction mixture 

and the pH of the mixture readjusted to between pH 4-5. The reaction was carried out under nitrogen at room 

temperature for 5 hours without exposure to light. A control experiment containing equivalent concentrations of 

N-acetylcysteine and Paa without EDAC/NHS was also set up in the same way and allowed to run 

simultaneously. 

The reaction mixtures for the test and control experiments were then dialysed (molecular weight cut-off - 7kDa) 

in the dark at 4°C, once against 5mm HCl, twice against 5mm HCl containing 1% NaCl, once again against 

5mm HCl and finally against 0.4mM HCl. The polymer conjugates were isolated by dialysis and then freeze 

dried (VirTis advantage freeze drier, Biopharma Process Systems, UK). The lyophilised product obtained was 

characterised and stored at -20°C. 

Where ‘R’ represents Paa/QPaa 

Fig. 1 Thiolation reaction for EDAC/NHS mediated coupling of N-acetylcysteine to Paa/QPaa 

2.2.3. Modification of Paa and QPaa using 2-iminothiolane 

The thiolation of Paa and QPaa using amidine linkages was carried out separately following the method 

previously described by Bernkop Schnurch et al. [26] (figure 2). Paa/QPaa (500mg) was dissolved in 50ml 

deionised water and the pH adjusted to 6.5 using 5M HCl. 2-iminothiolane hydrochloride (400mg) was added 

into the flask, and the reaction left stirring under nitrogen. The experiment was conducted at in the dark at room 

temperature for 14 hours. The polymer conjugates were then isolated by dialysis and freeze dried as described in 

2.2.2, after which they were also characterised and stored at -20°C.  

Where ‘R’ represents Paa/QPaa 

Fig. 2 Reaction scheme for Paa/QPaa thiolation using 2-iminothiolane 
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2.3. CHARACTERISATION OF POLYMERS  

2.3.1. Elemental analysis 

The elemental analysis protocol used for estimating the degree of quaternisation of QPaa was carried out as 

reported previously by our group [21]. QPaa samples (1mg) were analysed for the abundance of carbon, 

hydrogen, nitrogen and halogens using a Perkin Elmer series 2 elemental analyser (Perkin Elmer, UK). While 

samples of each thiomer were analysed as described for QPaa but also for the presence of sulphur. 

 

2.3.2. Determination of free thiol content 

The amount of free thiol groups immobilised on each thiolated conjugate was estimated by iodometric titration 

using a 2% starch solution as indicator. Each thiomer (10mg) was dissolved in 1ml of deionised water acidified 

with a drop of 2M HCl. 1% starch indicator (300µl) was added into the polymer solution before titrating the 

solution with a 1mM iodine solution until a permanent blue colour characteristic of the iodine-starch complex 

was observed [27]. The amount of thiol groups (in mols) per gram polymer was estimated from a calibration 

plot prepared from titrating iodine against increasing concentrations (2-100mgml-1) of an N-acetylcysteine 

reference standard (R
2
= 0.99).  Iodometric titrations for each polymer as well as the controls were carried out in 

triplicate. 

2.3.3. Estimation of total thiol substitution and disulphide bond content 

The total amount of thiol substituents per gram polymer was obtained by reducing the disulphide bonds formed 

during the thiolation reaction using sodium borohydride (NaBH4) followed by determination of free thiol 

content as described in section 2.3.1. [27]. A 1ml solution (1mgml-1) of each thiomer in tris buffer pH 7.4 was 

prepared in a glass vial and mixed with 4% sodium borohydride solution (2ml) and the reaction incubated at 

37°C for 1hour in a shaking water bath. The reaction was then stopped by slowly adding 400µl of 5M HCl with 

gentle stirring. Each reaction mixture was subsequently subjected to iodometric titration as described above and 

the free thiol content obtained used to obtain the total thiol substitution. The disulphide bond content of each 

thiomer was estimated by subtracting free thiol content obtained for each polymer prior to the reduction process 

from the total thiol content which was obtained after treatment with the reducing agent. This was done in 

triplicate. 

2.3.4. Zeta potential 

The zeta potential (mV) of 1mgml
-1

 solutions of each polymer in tris buffer was determined at 25°C by photon 

correlation spectroscopy (PCS) (Zetasizer Nano-ZS, Malvern Instruments, UK). 
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2.3.5. Differential scanning calorimetry (DSC) 

Polymer samples (2-3mg) were placed in hermetic aluminium pans and subjected to DSC analysis  within -90°C 

to 370°C  at a heating rate of 20°Cmin-1 under nitrogen using a Q100 differential scanning calorimeter (TA 

instruments, UK) precalibrated with indium [15, 22].  

2.4. IN-VITRO EVALUATION OF MUCOADHESIVE CAPACITY OF POLYMERS 

Serial dilutions (0.1-1mgml-1) of mucin in tris buffer were prepared from a 1mgml-1 stock solution of porcine 

mucin in tris buffer pH 7.4 obtained by probe sonication. The absorbance of each diluted mucin sample at 

251nm was obtained by UV spectrometry (Agilent G1103A photo diode array, Agilent Technology, China) and 

the values plotted against the equivalent sample concentration to obtain a standard calibration curve (R
2
= 0.99).  

Assessment of the mucoadhesive capacity of each polymer was determined by measurement of the amount of 

mucin adsorbed by each polymer using a similar method to that described by Modi. et al. [28]; 0.25ml of a 

0.5mgml
-1

 solution of each polymer in tris buffer pH 7.4 was mixed with 1mgml
-1

 mucin in tris buffer pH 7.4 

and the mixture incubated at 37°C in a shaking water bath for 5 hours. Control samples were also prepared by 

mixing the aforementioned mucin in tris buffer solution with only 0.25ml  tris buffer pH 7.4  and then incubated 

as described above. All control and test samples were subsequently transferred into separate eppendorf tubes 

and centrifuged at 10,000rpm for 30minutes, and the concentration of mucin in each supernatant measured by 

UV spectrometry at 251nm as described earlier.  

Percentage (%) of total mucin adsorbed to each sample of polymer was calculated as shown below: 

 % mucin adsorption (Mad) = [Mo – Ms] / Mo  x 100 

Where, Mo = concentration of free mucin in control supernatant 

Ms = concentration of free mucin in the sample supernatant 

2.5.  IN-SITU CROSSLINKING AND REDUCTION IN FREE THIOL CONTENT OF THIOMERS 

Samples (4mg) of each thiomer were hydrated in 1ml of tris buffer and buffered to pH 8 using 0.1M tris base, 

after which 3ml of PBS was added into each thiomer solution. The samples were incubated at 37°C in a shaking 

water bath and the change in the free thiol content of each sample with time estimated over 8 hours, by 

withdrawing 1ml of each sample every 2hours and titrating with iodine solution as described in 2.3.2. ( any 

solids formed were separated out by centrifuging the sample at 10,000rpm for 10minutes, prior to titration).  

3. RESULTS AND DISCUSSION 

3.1. POLYMER SYNTHESIS AND CHARACTERISATION 

3.1.1. Validation of polymer synthesis  

The average degree of quaternisation of QPaa as estimated by elemental analysis was found to be 72 ± 2% and 

average yield of the process was found to be 76.2 ± 5% . Immobilisation of reactive thiol groups on primary 
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amino groups on the Paa/QPaa backbone was carried out using two types of covalent bonds. Paa and QPaa were 

coupled via a stable amide bond to N-acetylcysteine using a water-soluble carbodiimide cross-linker (EDAC) 

and NHS to form Paa/QPaa-N-acetylcysteine conjugates (presumptive structures shown in figure 3 below).    

Fig.  3 Presumptive structure of repeating units of N-acetylcysteine conjugates of a) Paa: Paa-NAC b) QPaa: 

QPaa-NAC 

Paa and QPaa were also coupled to 4-thiobutylamidine via a reaction with 2-iminothiolane hydrochloride, a 

thiol-containing imidoester forming Paa/QPaa-4-thiobutylamidine conjugates. These TBA conjugates have a 

protonated amidine bond which bears an extra positive charge on the thiol constituent at pH 7.4 as can be seen 

in figure 4 below [19, 29].                                      

                                

Fig. 4 Presumptive structure of repeating units of thiobutylamidine conjugates of a) Paa: Paa-TBA b) QPaa: 

QPaa-TBA 

Optimisation of the coupling reaction between the polymers and N-acetylcysteine necessitated the inclusion of 

NHS in the cross-linking reaction as shown in Fig. 1 to stabilise the O-acylisourea intermediate product of the 

EDAC-carboxylic acid reaction which is susceptible to hydrolysis and consequently has a short life span in 

aqueous media [30]. The reaction was also carried out under nitrogen and at pH 4.5 to limit air or pH-induced 

oxidation of thiol groups to the reactive thiolate anion S
-
 resulting in the formation of intramolecular disulphide 

bond formation [31]. An N-acylated amino acid was used during the reaction to prevent the occurrence of 

unwanted side reactions resulting in the formation of oligo/poly cysteine conjugates [27]. After lyophilisation, 

all polymer conjugates appeared as white, powders of fibrous structure which were readily soluble over a wide 

pH range (3-8). The mean percentage yield (n=3) of Paa-NAC and QPaa-NAC conjugates were estimated at 

68.8 ± 2.8% and 73.6 ± 2.3 %  respectively, while the percentage yield of the Paa-TBA and QPaa-TBA 

conjugates was estimated at 73.1 ± 4.4%  and 83.6 ± 7.7 %, respectively. The total sulphydryl group content of 

each conjugate as well as the amount available as free thiols (SH) and disulphide (S-S) bonds was estimated by 

iodometric titration as described in section 2.2.4 and the results shown in Table 1. 

Table 1: Total thiol content, free thiol and disulphide bond content of thiomers (µmolg
-1

 polymer). Indicated 

values are mean ± S.D. (n = 3) 

Polymer Free SH content 

(µmolg
-1

) 

S-S bond content 

(µmolg
-1

) 

Total thiol Substitution  

(µmolg
-1

) 

Paa-NAC  60 ± 1.2 280 340 ± 4.1 

QPaa-NAC  60 ± 4.3 220  280 ± 3.3 

Paa-TBA                     490 ± 18 590 1080 ± 28 

QPaa-TBA  440 ± 21 560 1000 ± 31 
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Covalent attachment of N-acetylcysteine to Paa and QPaa was confirmed by the negligible amount of thiol 

groups (0.2
 
± 0.06µmolg

-1 
polymer) detected in the control samples prepared without EDAC/NHS after the 

dialysis process. The coupling efficiency of the EDAC/NHS mediated thiolation process was relatively low 

resulting in the attachment of fewer molecules of the sulphydryl-containing moiety on the polymer backbone 

than polymer conjugates obtained using 2-iminothiolane. This contributed to the relatively low levels of 

thiolation observed in Paa/QPaa-NAC conjugates as can be seen from Table 1. The relatively low coupling 

efficiency of the EDAC-mediated thiolation process has previously been reported by other research groups [25, 

27] working on the thiolation of similar polycations using EDAC concentrations ranging between 25-200mM 

and has been attributed to a side reaction of EDAC with the nucleophilic thiolate anion that results in the 

formation of an adduct that is subsequently hydrolysed to one of the reaction by-products, urea [32]. In contrast, 

the reaction of Paa/QPaa with 2-iminothiolane was observed to proceed with greater efficiency considering the 

relatively high levels of sulphydryl groups substitution obtained for TBA conjugates (table 1) . 

3.1.2. Zeta potential 

The surface charge of each polymer in tris buffer pH 7.4 as analysed by zeta potential measurement is detailed 

in table 2 below. 

Table 2: Zeta potential (mV) of 1mgml-1 solutions of polymers in tris buffer pH 7.4. Values indicated are mean 

± S.D. (n=3) 

 

Results show that the surface charge of the polymers was found to vary with the nature of the substituting group. 

Quaternisation enhanced the cationic charge of both Paa and thiolated Paa derivatives, while conjugation of 

Paa/QPaa to NAC resulted in a reduction of cationic surface charge. On the other hand, thiolation using 2-

iminothiolane resulted in retention of cationic charge of both parent polymers (Paa and QPaa).This difference is 

probably because while the cationic substructure of the amidine group (figure 4) facilitates the retention of 

cationic charge in TBA-based thiomers, the substitution of protonable primary amine groups with uncharged 

amide bonds reduces the cationic charge in NAC-based thiomers. This marked variation in the surface charge of 

the different thiomers obtained could have significant implications on their capacity to complex with insulin and 

influence processes like tight junction opening and mucoadhesion that benefit from charge-based interactions 

[33]. Polymer surface charge could also influence the biodistribution and cellular uptake of insulin PECS 

formed from the polymers [33]. 

3.1.3. DSC 

Thermal analysis carried out on the various polymers and conjugates by DSC also indicated that the synthesis 

process resulted in novel derivatives of Paa/QPaa. 

Polymer Paa   QPaa Paa-NAC QPaa-NAC Paa-TBA QPaa-TBA 

Zeta potential 41.9 ± 2 45.0 ± 3 35.7 ± 1 37.4 ± 1 46.9 ± 1 48.4 ± 1 
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Fig. 5 DSC thermograms of Paa and Thiolated Paa derivatives 

The impact of variations in the structure of different Paa derivatives on their physical and mechanical properties 

was reflected by DSC. Paa has no bulky side groups attached to it and hence has a relatively streamlined shape. 

This facilitates packing of the polymer molecules into crystallites increasing Tm [34, 35]. The DSC thermogram 

of Paa (figure 5) showed a sharp Tm occurring at about 138°C suggesting a semi-crystalline structure. The Tm 

appeared to occur simultaneously with decomposition of the polymer chains and may imply that the temperature 

required to disrupt the polymer crystallites also led to degradation of polymer chains. The Tg of Paa was found 

to be -12°C which implies that the polymer is rubbery at ambient or body temperature (consistent with 

experimental observations). Thiolation of Paa was found to be associated with a slight increase in Tm from 

approximately 138 to about 150°C. However, while Paa-TBA which contains the amidine bond appears to have 

retained a semi-crystalline structure exhibiting a sharp Tm at about 140°C -150°C, Paa-NAC exhibited a 

shallow, broad endotherm at about the same temperature. This difference could likely be due to the fact that the 

amidine group exhibits relatively less branching than N-acetyl cysteine and the protonated amidine bond is also 

more likely to partake in intermolecular bonding strengthening the crystal lattice. Although both thiolated Paa 

samples showed no Tg on their DSC thermograms, Paa-TBA samples were observed to change from glassy to 

rubbery at room temperature, indicating that this polymer may have a Tg which was too subtle to be observed in 

the DSC thermograms. 

Fig. 6 DSC thermograms of QPaa and thiolated QPaa derivatives 

The attachment of bulky side groups to polymers increases the stiffness of the chain raising Tg [34]. 

Quaternisation which involves the attachment of bulky quaternary groups to the Paa/thiolated Paa backbone 

may hinder close packing of the crystallites and limit intermolecular hydrogen bonding thereby increasing 

system disorder [36]. This could be seen by the broad endothermic peaks exhibited by quaternised samples 

(figure 6). The quaternary group also creates steric bulk limiting chain flexibility and mobility of the polymer 

molecules. Hence, all quaternised polymers remained partially amorphous and brittle at ambient temperature 

except for QPaa-NAC which was soft but not rubbery. Quaternised derivatives exhibited no Tg and the Tm of 

quaternised samples was much higher than their non-quaternised counterparts (290-300°C). This is similar to 

the thermal profile of QPaa-based AP, which showed similarly higher Tm than their non-quaternised Paa-based 

AP and no detectable Tg [21].  

The relatively higher Tm exhibited  by quaternised polymers may be because these polymers are already in an 

extended conformation in their crystallite as a result of the increased stiffness of the polymer chain caused by 

the bulky quaternary group [36, 37]. This reduces their entropy of melting (∆Sm) or “gain in randomness” 

during their melting transition. According to the equation which defines Tm as ∆Hm/∆Sm (where ∆Hm 

represents the enthalpy of melting), this reduction in ∆Sm will lead to an increase in Tm [36, 37]. The increase in 

Tm of quaternised polymers has also been attributed to a possible ionic interaction between CH2N
+
(CH3)3 and Cl

-
 

facilitating packing of the chains into a crystal structure restoring some degree of order to the polymer structure 

[21]. QPaa also appeared to show decomposition of polymer chains occurring alongside its Tm. The 
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disappearance of the sharp endothermic peaks seen in Paa and Paa-TBA suggested substitution of constituent 

primary amine groups. 

3.2. IN-VITRO EVALUATION OF MUCOADHESIVE PROPERTIES 

Evaluation of the mucoadhesive capacity of each polymer based on their in-vitro mucin adsorption profile 

indicated that both quaternised and thiolated polymers showed better mucoadhesive properties than the 

unmodified Paa backbone as can be seen in figure 7.  

Thiolated Paa (Paa-NAC and Paa-TBA) exhibited the highest level of mucin adsorption amongst the different 

polymers tested performing better than their quaternised counterparts exhibiting similar levels of thiolation. This 

highlights the fact that mucoadhesive interactions are dependent on the ability of the functional groups present 

on the backbone of the carrier polymer to access and efficiently interact with compatible components of the 

mucin glycoproteins [3]. Thus polymer-mucin interactions are governed by multi-factorial mechanisms which 

determine the nature and strength of the mucoadhesive bonds and consequently, the mucoadhesive performance 

of the polymer [3]. A high level of polymer charge density and substitution (quaternisation, hydrophobic or 

thiolation) could result in a greater degree of interchain repulsion resulting in conformational changes which 

may decrease chain flexibility and limit interpenetration/entanglements between polymer-mucin molecules [38, 

39]. Also, steric hindrance created by the presence of a high proportion of attached groups on the polymer 

backbone shielding charged groups may limit access to compatible groups thereby reducing mucoadhesive 

interaction [40]. 

Fig. 7 Mucoadhesive capacity (% mucin adsorption) of  Paa, QPaa and their thiolated derivatives 

Hence in consideration of the aforementioned facts, assessing the mucoadhesive performance of the various 

thiomers as a function of level of thiol substitution indicated that although the thiol content of Paa-TBA greatly 

outnumbers that of Paa-NAC, Paa-TBA was slightly less mucoadhesive than Paa-NAC.  

This could be associated with the high level of thiol substitution of Paa-TBA influencing polymer conformation 

and affecting mucin interaction or could also be as a result from the polymer thiol groups being more reactive 

with themselves (intra-chain thiol-disulphide crosslinking) than with those of the mucin glycoproteins . 

However, it appears steric effect becomes more pronounced with the QPaa-based thiomers which were already 

substituted with quaternary groups as can be seen from figure 7, only QPaa-NAC which had a low level of 

thiolation exhibited better mucoadhesive properties than QPaa as a result of thiolation. On the contrary, QPaa-

TBA showed reduced mucoadhesive properties, as this thiomer exhibited similar levels of mucoadhesion with 

the unmodified backbone which signifies a noticeable loss in the mucin-interaction facilitating effects of both 

quaternisation and thiolation. This was probably caused by steric hindrance as well as reduced chain flexibility 

as a result of the high degree of both quaternary and thiol substitution present in QPaa-TBA, therefore resulting 

in a cumulative inhibition of effective polymer-mucin interactions realised with both Paa-TBA and QPaa. This 

effect has been observed by other groups working with similar quaternised thiomers. 
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Therefore, although the mucoadhesion facilitating effects of polymer thiolation can be clearly seen by the 

marked increase in mucin adsorption of Paa due to thiolation, the results also highlight the need to optimise 

levels of substitution/quaternisation of the parent polymer to obtain the beneficial effects of these alterations on 

mucoadhesion.  

3.3 IN-SITU CROSSLINKING PROPERTIES 

Oxidation of free thiol groups above pH 5 results in the formation of intermolecular and intramolecular 

disulphide bonds [14]. This means that thiolated polymers are capable of forming in-situ crosslinked gel 

networks above pH 5.  The change in free thiol content of the different thiomers in phosphate buffer pH 8 was 

monitored by iodometric titration. It was observed that with the exception of Paa-TBA all other thiomers did not 

show any drop in level of free thiol content over the 8 hour incubation period and their solutions remained clear. 

Paa-TBA solutions on the other hand became cloudy in 1 hour and at the 2 hour time period, a visibly 

crosslinked network was observed within the vial as shown in figure 8. Centrifugation of this sample and 

analysis of the supernatant for the presence of free thiol by iodometric titration indicated that no free thiols 

could be detected. This confirms the crosslinking of free thiols to disulphides at pH 7.4 occurred simultaneously 

with the formation of this network structure, a characteristic exhibited by thiolated polymers.  

The crosslinking process was observed to be initiated by the addition of PBS into the solution of Paa-TBA in 

Tris buffer, implying that the process of thiol oxidation to disulphides may have been catalysed by the metal 

ions present in the buffer solution. This ability of metal ions to catalyse such oxidative processes has been 

previously documented by other research group [41]. The presence of tris in the buffer mixture was also 

observed to play a role in the formation of the swollen or expanded crosslinked network shown in figure 8. 

Hydration of the dry polymer sample (Paa-TBA) with PBS was observed to lead to the formation of a collapsed 

gel, therefore the expanded network observed when PBS is added into a solution of Paa-TBA in tris buffer could 

be a direct effect of the increase in cationic charge of the polymer in tris buffer pH 7.4 (protonation of the 

primary amine group of tris base by HCl creates more positive charges within the system) resulting in increased 

interpolymer chain repulsion and consequent swelling [42]. Such crosslinked polymer networks that undergo 

volume phase transitions like shrinking/swelling in response to external environmental conditions have been 

used in the design of hydrogels and bioadhesive systems that control the release of incorporated drugs based on 

changes in the porosity of the dosage form in response to different stimuli. 

The disparity in the crosslinking behaviour of Paa-TBA and Paa-NAC could be associated with the difference in 

the nature (charge) of the linkage bearing the thiol substitutents. Paa-NAC thiol groups are attached via an 

uncharged amide bond while the amidine linkage through which the thiol groups of Paa-TBA are attached to the 

Paa backbone is cationic, hence creating a significant electrostatic difference in the local environment of the 

respective thiol moieties of Paa-TBA and Paa-NAC. Such differences in the charge density of neighbouring 

attached groups have been shown to greatly influence thiol-disulphide exchange reactions and are consistent 

with the findings of other groups working with similar thiolated chitosans [18, 43]. The formation of disulphide 

crosslinks by thiolated groups attached to the quaternised thiomers could have been impeded by the bulky 

quaternary ammonium groups present on the polymer backbone sterically limiting inter-chain thiol-disulphide 
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interactions, as the close proximity of interacting thiol groups has been shown to improve the crosslinking 

process [44].  The tendency of Paa-TBA to form an in-situ crosslinked network at physiological pH would be 

considered advantageous as such crosslinked systems have been used in various drug delivery applications due 

to their ability to offer controlled (pH-dependent) release of incorporated materials as well as extend the 

residence of dosage forms at the site of application [19, 20, 45, 46]. 

Fig. 8 In-situ crosslinked network formed by Paa-TBA after 2 hours incubation in tris/phosphate buffer solution 

4. CONCLUSION 

The report has shown that thiolation of Paa and QPaa was possible either through EDAC/NHS mediated 

coupling of the primary amine groups of the polymer to N-acetylcysteine or by modifying the polymers with 2-

iminothiolane yielding the N-acetyl cysteine and 4-thiobutylamidine derivatives respectively. Thiolated Paa 

derivatives were shown to have improved mucoadhesive qualities, with Paa-TBA also exhibiting in-situ 

crosslinking properties. However, thiolation of QPaa did not yield thiomers with significant improvements in 

mucoadhesive properties when compared to the parent polymer, QPaa. Therefore implying that these polymers 

would need further optimisation of their structure in order to satisfy the rational for their development. 
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