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Graphics Processing Unit Based Acceleration of
Electromagnetic Transients Simulation

Jayanta K. Debnath, Student Member, IEEE, and Aniruddha M. Gole, Fellow, IEEE,
and Wai-Keung Fung, Senior Member, IEEE

Abstract—This paper presents a novel approach to speedup
EMT simulation, using GPU-based computing. This paper ex-
tends earlier published works in the area, by exploiting additional
parallelism inside EMT simulation. A 2D-parallel matrix-vector
multiplication is used that is faster than previous 1D-methods.
Also this paper implements a GPU-specific sparsity technique to
further speed up the simulations, as the available CPU-based
sparsity techniques are not suitable for GPUs. Additionally,
as an extension to previous works, this paper demonstrates
modelling of a power electronic subsystem. The efficacy of
the approach is demonstrated using two different scalable test
systems. A low granularity system, i.e. one with a large cluster
of busses connected to others with a few transmission lines is
considered, as is also a high granularity where a small cluster
of busses is connected to other clusters thereby requiring more
interconnecting transmission lines. Computation times for GPU-
based computing are compared with the computation times for
sequential implementations on the CPU. The paper shows two
surprising differences of GPU simulation in comparison with
CPU simulation. Firstly, the inclusion of sparsity only makes
minor reductions in the GPU-based simulation time. Secondly
excessive granularity, even though it appears to increase the
number of parallel computable subsystems, significantly slows
down the GPU-based simulation.

Index Terms—EMT simulation, Power systems simulation,
Power system modelling, GPU-computing, CUDA-C program-
ming, parallel algorithms.

I. INTRODUCTION

Electromagnetic transients (EMT) simulation is commonly
used to study fast transients in power systems such as lightning
induced transients, switching transients including transients
from power electronic switches, and so on [1], [2], [3]. Many
attempts have been made to speed up EMT simulation, such
as: parallel implementation of the EMT algorithm [4], use of
the multi area Thevenin equivalents (MATE) algorithm [5],
multi-processor based parallel EMT simulation [6], etc. These
approaches have improved the performance of EMT simula-
tions. The approach presented in this paper, uses Graphics
Processing Units (GPUs) [7], [8], as a high performance and
potentially cost effective alternative [9], [10], [11], [12] for
EMT simulation of large power systems. The authors of this
paper first reported GPU-based EMT simulation in 2011 [9]
and further developments of the work were reported in [10],
[11]. Recently Zhou et al. [13] reported on another approach
for GPU-based EMT simulation, known as Node Mapping
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Structure (NMS). The approach presented in this paper is to
speedup EMT simulation using GPU-based computing and is
a potential alternative to the NMS algorithm.

Our current paper extends our previous work with the im-
plementation of additional parallelization techniques to further
accelerate the GPU-based EMT simulation. In this paper the
EMT algorithm is explored and algorithmic steps for power
systems with various equipment that may run in parallel are
identified. In particular, this paper includes the following new
aspects:

« Implementation of matrix-vector multiplication using par-
allel threads deployed in 2D directions.

o Implementation of parallel computations for transmission
lines on the GPU and an optimized GPU-based algorithm
for synchronous generators.

o Implementation of power electronic switching on the
GPU platform and investigation of its effect on the
performance gain.

o Implementation of sparsity based algorithm on special
hardware, such as a GPU with primitive processing cores.

o Investigation of the effect of test-system granularity on
the performance gain of the simulation, i.e., the tradeoff
between performance gains for test systems with a larger
subsystem size versus test systems with a smaller sub-
system size but having more interconnecting transmission
lines.

In the sections to follow, this paper discusses GPU-
computing and the sequential EMT models of various equip-
ment in a power system and the parallelization techniques used
to implement them on the GPU platform. It then discusses
the selection of appropriate test systems. Total computation
times for the GPU based simulation of various test cases
are presented and compared with the total clock times for
sequential (CPU based) simulations. Finally, the performance
gains for GPU based simulations of various types of systems
are presented.

II. OVERVIEW OF GPU-COMPUTING

GPUs have many primitive processing cores on board and
are capable of performing general purpose computations in
parallel. The GPU accelerates computationally intensive appli-
cations by operating in a Single Instruction Multiple Thread
(SIMT) mode [7], [14], [15]. The SIMT is an extension of the
commonly known Single Instruction Multiple Data (SIMD)
mode of parallelism [14]. SIMD describes the execution of
an instruction on various data, whereas SIMT introduces a



dynamic way for thread level parallelization of the task on
various data [14]. In SIMT mode an instruction is executed
with different data in parallel, using multiple threads that
run on the identical GPU cores [7], [14], [15]. NVIDIA’s
parallel computing architecture is called Compute Unified
Device Architecture (CUDA) [7], [16], [14]. CUDA based C
programming is used in this work.

III. OVERVIEW OF EMT SIMULATION

Time domain EMT simulation is carried out using the
following commonly known Nodal equation [1], [17], [12],
[18]:

Y] x [V]=J —In (1)

where [Y] is the nodal admittance matrix of the network,
[V]] is the vector of unknown node voltages at instant ¢, [J] is
the vector of injected currents at the network nodes at instant
t, and [Ip] is the vector of history currents injected at the
nodes.

The solution for equation 1 requires the calculation of the
inverse of the admittance matrix. This matrix inversion is
performed at the start of the simulation or when a circuit
breaker or power electronic switch operates and changes the
circuit impedances. In this paper, the Gauss-Jordan method
for inversion of the admittance matrix is implemented on the
CPU [19]. When power electronics subsystems are present, the
inverses of the anticipated post-switching configurations are
pre-calculated and inserted into the solution when required.

IV. EMT SIMULATION USING GPU-COMPUTING

As mentioned in Section I, many attempts have been made
to reduce the total clock time for EMT simulation. The
approach presented by Zhou et al. [13], used a special node
mapping structure (NMS) to change the admittance matrix into
a perfect block diagonal matrix. Although this approach has
improved the performance of EMT simulations, there may
be room for further acceleration. For example, the splitting
of the admittance matrix into smaller subsystems require
additional book-keeping effort and memory access calls during
the simulation. Additionally, this approach introduces more
virtual transmission lines into the system, which (as shown
later), can result in a larger communication volume and also
result in an additional computation-burden for the transmission
lines themselves.

The principal differences between the approach of this paper
and previous approaches are: i) An equitable distribution of the
parallel tasks of the multiplication process was implemented,
which intrinsically has a smaller communication overhead
and so does not require any special node mapping structure.
Additionally, parallelized matrix-vector multiplication with
parallel threads deployed in 2D directions is implemented
on the GPU-platform, which uses high performance shared
memory on the GPU to reduce the memory access bottleneck.
ii) History currents and generator related computations were
performed on the GPU in parallel, in a more optimized
way than the authors’ earlier work [11]. iii) Transmission
lines, which interconnect subsystems were modeled outside
the admittance matrix framework and used parallelization
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Fig. 1. Schematic of implementing GPU-based matrix-vector multiplication.

specific to GPU applications. iv) A sparsity based algorithm
suitable for GPU-based EMT simulation was developed for the
inverse-admittance matrix to further accelerate the simulation.
v) Finally, the effect of test system granularity on the total
clock times for simulation was investigated. It is shown that
excessive granularity has a negative impact on the overall
performance gain of the simulation using GPU-computing. It
should also be noted that the parallelization algorithms used in
this work are significantly different from the authors’ earlier
work [11] (as mentioned earlier). Details of the parallelization
approaches used in this work are presented below:

A. Matrix-Vector Multiplication on the GPU with parallel
threads in 2 — D directions and using shared memory

Matrix-vector multiplication, which consumes up to 90% of
the total simulation times [10], is highly parallelizable [10].
A traditional one-dimensional matrix-vector multiplication ap-
proach, where a single row is multiplied by the entire column,
was implemented in the authors’ earlier approaches [9], [10],
[11]. By further dividing the matrix along the rows into
smaller blocks allows for additional parallelism. This approach
is relatively uncommon on traditional multi-core CPUs as
the number of cores is much smaller, i.e., in the range of
tens, than those available on a GPU, which in our case
had 512 cores per GPU. In order to explain the parallelism
in matrix-vector multiplication, let us consider a matrix of
size M x N. The total number of floating point operations
required to perform the multiplication of this matrix with the
vector is M (2N — 1). Now, if the matrix is divided into 4-
parallel blocks along the rows and 5 parallel blocks along



the columns (i.e. 2D parallelism), essentially the total number
of operations will be reduced to 2 (2 — 1) per block. As
the computations for all of these 20-blocks will be performed
in parallel, total clock time to perform this multiplication
will be reduced accordingly. This type of 2D parallelism
of matrix-vector multiplication is applied in this paper as
opposed to one-dimensional parallelism applied in the authors’
earlier works [9], [10], [11]. In order to implement parallel
thread deployment in 2D directions, appropriate algorithmic
changes have been performed in the current paper, as shown
schematically in Fig. 1. This figure shows the deployment
of parallel blocks along the = and y axis directions during
the invocation of the kernel-function (i.e. invocation of a set
of parallel tasks on the GPU [14], [15], [20]). In this case,
parallel threads are deployed along the rows and columns
simultaneously for each block.

B. History current computations on the GPU

History currents in EMT simulations [2], [1] are a function
of state variables from the previous time steps. History cur-
rents from all elements such as capacitors, inductors, coupled
circuits (transformers) can be simultaneously computed. In this
paper parallelized history current computations are performed
on the GPU. This paper optimizes history current computations
by implementing a regular pattern of the necessary data-
structure for history currents as compared to the authors’
earlier work [9], [10], [11]. The kernel-function for history
current computations deploys parallel threads for every block
and simultaneously performs the history current computations
on the GPU.

C. Simulation of Synchronous Generators on the GPU

In this work electrical generators were modelled using the
method presented in [1], [21], [22]. In this case, the generators
are modelled as Norton equivalent circuits having a current
source in parallel with an equivalent admittance. The generator
model takes the terminal voltages as inputs and calculates
the currents to be injected back into the network. All the
computations related to the generators are performed in the
dq0 domain. Phase domain to dg0 domain conversions are
conducted at the interface to the external EMT solver and
dq0 domain computations are used internally for the machine
module. To adapt generator related computations to the GPU,
all generator related data were fitted into a matrix form.
Finally, this matrix was divided into several blocks containing
parallel threads, which were deployed during the invocation
of the kernel-function for generators. The generators also
have a simple excitation control system as shown in Fig 2.
The ac voltage magnitude (Ej;,.) is measured by full wave
rectification of the three phase ac voltage waveform and first
order filtering. It is compared with a reference (V;..¢) and the
error (err) is passed to a PI controller. The output of the
controller determines the field voltage (V;). The control blocks
are converted to state equation form and numerically integrated
independently of the network solution. The measurements
from the network (i.e. measured voltage) is an input to this
controller model and the calculated field voltage is the output
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Fig. 2. Schematic of of the synchronous generator excitation control system
as used in this work.
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Fig. 3. Single phase transmission line model (Bergeron’s model) [1], [21].

to the network solution. This approach is identical to that
used in the very widely used commercial programs such as
PSCAD [23] and real time simulators such as RTDS [24].

D. Current vector updating on the GPU

This part of the EMT-simulation has the least amount
of parallelism. Due to low parallelism, these computations
appears to be suited to being performed on the CPU in a
sequential manner. However, it was shown in the authors’
earlier work [10] that performing these computations on the
GPU is more efficient as it does not require data transfer
between the CPU and the GPU. Therefore, in this implementa-
tion, computations related to the current vector updating, were
performed on the GPU with only three parallel threads.

E. GPU-based implementation of other Power System Com-
ponents

1) Transmission lines: In this paper, transmission lines
(TLs) have been included using a lossless Bergeron model [1],
to demonstrate the methodology for GPU-based implementa-
tions. TLs are normally used to interconnect the basic test
systems to create large networks. Implementation of more
complex TL models on the GPU, including frequency de-
pendent parameters will not change the basic parallelism, but
will increase the computational burden of the TL model. The
GPU implementation of other models for TLs are left for
future work. Fig. 3 shows the schematic of a single phase
TL. Multi-phase TL parameters are transformed into single-
phase equivalent lines, using modal transformation matrices.
They interface into the EMT solver as history terms in parallel
with a Norton resistive network. The Norton network and
the current sources are calculated by applying inverse modal
transformation to the corresponding modal quantities [2], [17].

In this case, parallelism is achieved in two ways. Firstly, as
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information does not propagate faster than the speed of light,
if the line travel time is longer than one time-step, effectively
the two sides of the TL are computationally decoupled and can
be executed in parallel on the GPU. This fact is used in many
real-time simulators such as [25], [26]. Also, calculations in
the modal domain themselves can be performed in parallel.
Both of these parallelization techniques are implemented in
this work. Additionally, a special approach was taken to align
the transmission line related data into a matrix form to ensure
faster access to the GPU. Finally, calculations related to the
receiving and sending ends of the TLs were performed in
parallel using parallel kernels, which ensured a further speedup
in the simulation.

2) Power-Electronic Subsystems: In this work, a typical
power electronic subsystem (full bridge diode based converter)
was implemented to demonstrate the switching operations
on the GPU-platform. A more realistic HVDC-system would
require implementation of a controller model and is left
for future work. Fig. 4 shows the schematic of the power
electronic subsystem, where the switches (diodes) turn ON
and OF F multiple times within a cycle. The switches were
modeled as resistors with binary switching states (i.e. very
large conductance for the ON-state and zero conductance
for the OFF state) [27]. Additional logic (such as tracking
the current through the switch [1]) determines the transitions
between the conducting and non-conducting states of the
switches (diodes). It should be noted that this basic power
electronic subsystem (i.e. Fig. 4) was included in each of the
building blocks presented in section V.

The converter bridge required a very minimal amount of
space on the GPU memory to store the inverse admittance
matrices. For example, the particular bridge of Fig. 4, results
in 13 unique matrices for normal operating modes and requires
about 130 kB of GPU memory (please note, each GPU of our
workstation has 1.5 GB of memory on board). It should be
noted that implementation of switching introduces changes in
the admittances of the network, hence introduces additional
admittance matrices in the simulation. Inverses corresponding
to these admittance matrices were pre-computed on the CPU
and stored in the GPU memory and were inserted into the
simulation when the corresponding switchings occurred. This
approach can be used even if a Pulse Width Modulation
(PWM) type of inverter is used with multiple switchings in
each cycle, because, matrices for subsystems with converters
can also be pre-inverted and stored on the GPU memory. It
may be possible that some configurations are missed in the

pre-computation process. In that case, the CPU can be used
to quickly compute the required inverses. Once computed, the
new inverted admittance matrix could be properly tagged and
used later in the simulation if required again. Note that this is
not a real-time simulation, so occasional slowing down caused
by this process is acceptable. Additionally, any subsystem with
switching may be given a smaller size, in order to minimize
the storage and computational burden. It is possible to model
larger power electronic systems on the GPU such as bipolar
HVDC transmission systems, although that would require the
inclusion of phase locked loops and other control blocks that
have not yet been developed by the authors.

3) Sparsity Technique implementations: There are various
computationally efficient approaches (e.g., [28], [29]) to imple-
ment sparsity on a CPU, but require additional work to explore
and implement the parallelism in sparsity on the GPU. Here,
a commonly used lookup table [28] based approach has been
applied to ignore multiplications involving zeros. Simulation
based tests showed that the inverse-admittance matrix is highly
sparse. Therefore, a lookup table was developed for the
inverse-admittance matrix. During the simulation process an
instruction reads the address of the non-zero elements from
the table and the corresponding elements of the admittance
matrix. Finally, multiplication with the corresponding elements
of the vector is performed. Additionally, this lookup table was
partitioned into various blocks involving parallel threads to
perform 2D matrix-vector multiplications in parallel.

V. TEST CASES USED FOR GPU BASED EMT SIMULATION

For performance evaluation of the proposed GPU based
EMT simulation, various test cases had to be scalable. Hence,
rather than using distinct networks of different sizes which
would all have different simulation properties, it was de-
cided to implement a test network that could be grown in
a predictable manner by adding pre-defined building blocks.
It should also be noted however that the parallelization ap-
proaches presented in this paper are general and will work
for any arbitrary networks. Using several different test cases,
the authors’ earlier work [9], showed that GPU-based EMT
simulation produces exactly the same result as the commercial
tools. Other researchers also used this approach for creating
large test cases [5], [12], [13], [30].

Two sets of test systems with different granularity were
used in this paper. Granularity is a measure of how the
original network is divided into smaller clusters, where each
cluster is simulated on a separate kernel. As T-lines connect
various clusters together, a highly granular representation of
a network will have more interconnecting lines. Hence, a
quantitative measure for granularity used in this paper is
the ratio of the number of TLs used to interconnect various
subsystems to the total size of the network. Earlier research
with real-time simulation (such as [26]) indicates that high
granularity systems allow for faster simulation speeds. This
paper investigates the impact of granularity on the simulation
speed when GPU based simulation is used.
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A. Low Granularity Test Systems

Here, arbitrary sized test systems (with low granularity)
were created by interconnecting a basic building block (shown
in Fig. 5) consisting of an IEEE 39 bus system connected,
to the power electronics subsystem of Fig. 4. Test systems
constructed using this basic block have an asymptotic value
of granularity equal to 0.154 as the network size approaches
infinity (i.e. % granularity(N) = 0.154, where N is the size
of the network). Henceforth the system of Fig. 5 is referred
to as building block 1. This system has 10 three phase gener-
ators, 12 three phase transformers, and one power electronic
subsystem. Larger test cases were created by interconnecting
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block 2 system of Fig. 7 (example of high granular test system).

the building block 1 system using TLs. As an example, Fig. 6
shows the schematic of a test system having 975 busses which
was created by interconnecting 25 instances of building block
1. The system of Fig. 6 has 250 three phase generators, 25
power-electronic subsystems (i.e. 150 switches), 300 three
phase transformers, and 120 three-phase T-lines.

B. High Granularity Test Systems

A second set of test cases was created to investigate the
effect of system granularity on the performance gain. A more
granular system compared to the one presented above was
created with a basic building block of just 3 busses with
one generator and one three phase transformer as shown in
Fig. 7. This system is referred to as building block 2. Test
systems could be scaled to larger sizes by interconnecting
this 3 bus system using TLs. As more and more building
block 2’s are added to increase the system size, the granularity
approaches 1.33 in the limit. As an example, Fig. 8 shows
the schematic of a 78 bus test system created using building
block 2. A system consisting of 2 instances of building block 1
has 78 buses, but has only 3 interconnecting TLs. In contrast,
the system in Fig. 8 also has 78 buses. However, it has 26
instances of building block 2 with a much lower computational
burden compared to building block 1. On the other hand, the
number of TLs interconnecting these blocks is significantly
higher, namely 80. In this case, the computational burden for
the interconnecting TLs (which also includes pipe-lined data




TABLE 1
DETAILS OF THE HYBRID SIMULATION PLATFORM

Main Computer (CPU) details

Type Intel core i7 CPU 2600K
CPU speed 3.40 GHz
Total RAM 16GB
GPU Details
Type INVIDIA GeForce GTX 590
Number of multiprocessors 16
Number of cores 512
Global memory 1.5GB
Shared memory per block 64KB

Warp size 32
Max. No. of threads per block| 1024

transfer through the transmission line delay buffers) becomes
larger than that of the system built with building block 1.

VI. PERFORMANCE EVALUATION OF GPU BASED
SIMULATION

The proposed GPU-based EMT-simulation was evaluated
by conducting several simulations on the various test cases
presented in section V. The duration of simulation for all
the test cases was 10 s and the simulation time-step used
was 50us. Total clock times for the GPU based simulations
were compared with the total clock times for the CPU based
simulations. The algorithms to be run on the GPU and the
CPU were written in CUDA-C and ANSI C respectively. The
performance gain, to quantify the amount of improvement in
simulation speed using the GPU based approach as compared
to the CPU based approach, is quantified via the index, B¢ py,
defined by the equation below [7]:

Processing time (CPU only)
Processing time (CPU+GPU)

The specifications of the workstation used in this work
are listed in Table I. The operating system of this work-
station was Linux (distribution Fedora 14) [31]. This work-
station consists of an Intel core i7 CPU 2600K and two
NVIDIA GeForce GTX 590-GPUs. The GPUs are con-
nected to the CPU through the PCle bus on the mother-
board. Each NVIDIA GeForce GTX 590-GPU contains
two identical GPU with 512 cores, [7]. Hence, the workstation
had four GPUs with 2048-primitive cores to perform compu-
tations in parallel. However, only one GPU with 512 cores
was used to implement the largest test case of this paper.

Bapru =

A. Dypical simulation results

Simulated wave-shapes for a test case of 312-buses im-
plemented using the proposed GPU-based EMT simulation
and using the commercial tool PSCAD/EMTDC ([23] are
presented in Fig. 9. This 312-bus test system was created by
interconnecting eight instances of building block 1 using TLs.
Fig. 9 shows the DC voltage at the output of the converter, the
voltages at the converter’s AC bus bar, and the AC-currents en-
tering the converter. As mentioned in section IV-E2, the diode
bridge was included only to demonstrate the implementation
of switching on the GPU. As can be seen from Fig. 9, GPU-
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Fig. 9. Simulated DC voltage at the output of the converter, AC voltage at
the input of the converter and AC currents entering the converter in a 312 bus
system using commercial tool PSCAD/EMTDC and the proposed GPU-based
EMT simulation.
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Fig. 10. Voltage at bus 24 of a 39 bus system for a 3-phase to ground fault.

computing produces essentially the same results as produced
by the commercial tool, PSCAD/EMTDC. Note that the visible
minor differences between the wave shapes is likely due to
the slight modelling differences in transmission line models,
generator models and use of interpolations in the commercial
tool, PSCAD/EMTDC [23].

Finally, Fig. 10 shows the voltage at bus 219 following
a 3-phase to ground three cycle fault, in a 234 bus test
system, simulated using the presented GPU-based simulation.
The recovery transients are observed and balanced operation
resumes after about 100 ms of fault clearance.

B. Computational performance gain for test systems with low
granularity

Total clock times for simulation on the CPU in serial and on
the GPU in parallel, for test cases of different sizes created by
interconnecting building block 1, are shown in Table II. The
number of buses and the number of T-lines for each system



TABLE II
TOTAL TIME FOR SIMULATION AND PERFORMANCE GAIN FOR TEST
CASES CREATED BY INTERCONNECTING BUILDING BLOCK 1 SYSTEM OF
FIG. 5, [TIME IN SECONDS]

Without Sparsity With Sparsity
No. of] No. of| GPU CPU | Gain GPU CPU Gain
Buses | T-Lines| Only (s)| Only (s)| Bgpu| Only (s)| Only (s)| Bapru
39 0 11.890 | 22.280 | 1.874 | 11.250 | 11.560 | 1.028
78 3 14.530 | 44.019 | 3.029 | 14.080 | 27.761 | 1.972
156 9 14.530 | 89.331 | 6.148 | 14.650 | 55.747 | 3.805
273 21 14.750 [154.434(10.470| 14.760 | 98.223 | 6.655
858 102 | 23.060 [491.358(21.307| 19.790 |310.882 15.709
936 | 114 | 23.370 [535.942(22.932| 20.380 [337.218| 16.546
975 120 | 23.850 [561.537(23.544| 20.780 |354.224| 17.046
1365 | 174 | 28.461 |784.544(27.566| 24.200 [494.93220.451
1599 | 204 | 29.940 |926.433|30.942| 25.660 |578.723 | 22.553
3471 | 474 | 52.407 2013.161{38.414| 42.879 (1261.134]29.412
3861 | 534 | 57.146 [2249.380/39.362| 46.888 |1403.705| 29.937
Total clock times for simulating various test cases using modified IEEE 39 Bus System
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Fig. 11. Total clock times for simulating various test cases with CPU and the
parallelized GPU implementations created by interconnecting building block
1 (Fig. 5).

Gain using GPU computing, test cases interconnected densely with T-lines

I
=3

| E———

—

w
]

|
|

,«"'MM

N
i}

el

[—Gain without sparsity technique|.—
——Gain with sparsity techniques

n

Gain in the simulation
N
S

=)

/
/

0 400 800 1200 1600 2000 2400 2800 3200
Number of Buses in the network

n

o

3600 3900

Fig. 12. Computational performance gains with GPU computing, with and
without sparsity (for total clock times presented in Table II).

size are also indicated. Computation times for simulation with
and without sparsity are shown in Table II. The performance
gain, Bgpy is also shown with and without sparsity. Fig. 11
shows in a graphical form, the total clock times for the
simulated cases presented in Table II. As an example of a
system with 3861 busses, without sparsity, the total clock times
for simulation are 57.146 s and 2249.380 s on the GPU and
CPU respectively, whereas with sparsity these times become
46.888 s and 1403.705 s respectively. Therefore, Fig. 11 and
Table II show that exploiting sparsity on the CPU, reduces
the computation times from 2249.380 s to 1403.705 s (i.e. a

TABLE 11
TOTAL TIME FOR SIMULATION FOR VARIOUS TEST CASES CREATED WITH
THE MORE GRANULAR BUILDING BLOCK 2 SYSTEM OF FIG. 7, [TIME IN

SECONDS]
Test cases using 3 bus Test cases using IEEE

No. system of Fig. 7 39 bus system
of | No.of| CPU | GPU No. of| CPU| GPU
Buses| 3-phase| times | times| Gain | 3-phase| times| times| Gain

T-lines| (sec) | (sec) | Bgpul| T-lines| (sec)| (sec) | Bapu
39 32 | 16.426| 15.441] 1.064 0 [10.430 9.739| 1.071
78 80 | 34.011|23.484] 1.448 3 |23.738 13.022] 1.823
117 130 | 51.318]32.611| 1.574 6 [36.290 13.232] 2.743
195 226 | 87.761|49.335 1.779 12 | 60.086 13.327] 4.509
234 | 276 |103.348 58.480| 1.767 15 |66.642 14.406/ 4.626
273 324 | 123.364{ 67.356 1.832| 21 |87.204 14.161] 6.158

speedup of 1.602). However, there is only a small benefit (i.e.
from 57.146 s to 46.888 s, which is a speedup of 1.193) on
the GPU. This means that the exploitation of sparsity is highly
beneficial for CPU based implementations. This is as expected
because the elimination of unwanted computations involving
zeros greatly decreases the total number of sequential compu-
tations on the CPU. On the other hand, exploitation of sparsity
on the GPU results in only a marginal benefit. Even though the
implementation of sparsity on the GPU reduces the parallel
multiplications involving zeros it also reduces the number
of parallel threads to be deployed to perform the matrix-
vector multiplication. The tasks have already been parallelized
using smaller blocks which involve parallel threads, and the
computational benefits from the additional sparsity are modest.
Fig. 12 shows the performance gain, Sgpy without and with
sparsity as presented in Table II. As can be seen, the speed
gains for both the cases (i.e. without and with sparsity) are
significantly high, but tend to a limit of about 40 without
sparsity and 30 with sparsity as the system size approaches
4000 busses.

C. Simulation based tests on high granularity test systems

Table III presents total clock times for the simulation of
various test cases created by interconnecting the building block
2 system of Fig. 7. As mentioned earlier, these systems have
finer granularity compared to the systems created using build-
ing block 1. In this case the asymptotic value for granularity is
1.33, in contrast with 0.154 for the systems presented above.
Table III also includes total clock times to simulate similar test
cases created by interconnecting building block 1, without the
power electronic subsystem (this is essentially the standard
IEEE 39 bus system). Once again, the duration of the runs
was 10s using a 50us time-step. Table III lists the number
of busses, the number of transmission lines and total clock
times for simulating various test cases on the CPU and on
the GPU. It is to be noted that the subsystem admittance
matrices for the test cases created by interconnecting building
block 2 are much smaller in size compared to those created by
interconnecting building block 1. Therefore, it was expected
that test cases with smaller subsystem sizes would run faster
than the others. But the actual simulation results (Table III)
are to the contrary. For example, for the more granular system



with 273 busses constructed using the 3-bus building block 2,
the total simulation time on the GPU was 67.356 s and on the
CPU was 123.364 s. On the other hand, the total simulation
time for the other system with the same number of busses
constructed using the 39 bus building block 1, was 14.161 s
on the GPU and 87.204 s on the CPU. This is because the
increased number of TLs increases the computational burden
in the test systems. It should be noted that inclusion of a
frequency dependent parameter model for TLs will introduce
an additional computational burden and thus give an even
higher penalty for excessively granular network. Hence, proper
attention must be given to the number of interconnecting TLs
when partitioning big networks into smaller subsystems and
the subsystems sizes. Initially, when only a few numbers of
TLs are present in the network, their computational burden
is much smaller than the computation time required for the
admittance matrix based network solution. However, increas-
ing the number of TLs causes the computational burden for
TLs to become comparable to the admittance matrix related
computations. Therefore, partitioning a large power system
into arbitrarily smaller subsystems using TLs is not always
efficient for GPU-based simulation.

GPU based computations can have some drawbacks. Firstly
it is important to map the algorithm into groups of 32 threads
(called a warp). In case the total threads in the job are not
integer multiples of the warp size then there would be some
warp groups having less than the maximum number of threads,
which will result in poorer speed performance. This provides
some programming challenges to the code designer. Also, in
the rare case of extremely sequential algorithms, the CPU will
outperform the GPU computations. However, in power system
simulation cases, the algorithms are inherently parallelizable
and so this is not a real concern. Also a great deal of work
is required to transport the full set of traditional simulation
tools and previously developed models to the GPUs, which
ultimately require new investment, programming, developing
the new platform, etc. [7], [14].

VII. CONCLUSIONS

A novel and potentially cost effective alternative to accel-
erate EMT-simulation using GPUs, is presented in this paper.

Simulation with several different test cases show that GPU-
based computations are significantly faster, even for dense
matrix-vector multiplication. Using GPU-based simulation
over CPU-based simulation has yielded a speedup by a factor
of 40 for system sizes approaching 4000 three phase AC buses.

The parallelization algorithm used in this paper is different
from earlier GPU-based algorithms in that it inherently tried
to reduce the communication burden so that special node
mapping structures are not required. Other modifications such
as a GPU-specific algorithm was derived and implemented,
which showed a very large performance gain in the simulation
speed.

A sparsity algorithm is introduced for the inverse admittance
matrix to ignore computationally expensive multiplications
involving zeros. A surprising result of this work is the
marginal impact of implementing sparsity on the GPU-based
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Fig. 13. Transmission line geometry as used in this work [23].

simulations, in contrast to the CPU-based simulations where
implementing sparsity has a very significant impact. This
can be attributed to the fact that tasks have already been
parallelized on the GPU using smaller blocks with parallel
threads and the computational benefits from additional sparsity
are minor.

A highly efficient parallelization technique to accommodate
transmission lines on the GPU was implemented. This ap-
proach also contributed to the overall performance gain in the
simulation process.

The paper investigated the effect of building-block granu-
larity on performance gains using GPU computing. Another
interesting and surprising conclusion was that increasing the
granularity of the test systems negatively impacts the perfor-
mance gain. In these cases, the communication overhead for
a large number of transmission lines cancels any advantage
resulting from the smaller matrix sizes.

APPENDIX

Other system details are listed below:

1) IEEE 39 bus system data are as in [32].

2) All interconnecting transmission lines are three-phase
non-transposed with data as in Fig. 13.

3) Resistive load for the diode bridge of building block 1
of Fig 4 was 825¢).
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