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Abstract. The possibility of combining the flexibility and light-weight of polymers with the highest 

insulation of ceramics, drives the field of nanocomposites for potential commercial application. The 

inclusion of nano-sized insulating particles in the polymer matrix, and orienting the fillers along the 

direction of heat flow results in modifying the induced interfaces for effective phonon propagation. 

Such flexible polymer nanocomposites (PNC) offer easy workability and refined insulating effect with 

high thermal conductivity and fire-retardancy. Hence, opening a wider arena of applications with 

the advantage of their light-weight. The engineering of the interfaces, is the key for dictating the 

desired properties at the macro-scale. Consequently, silane functionalisation of nanoparticles with 

designed dispersion technique was tried for achieving this purpose. Transmission electron 

microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, Differential scanning calorimetry 

(DSC), Thermogravimetric analysis (TGA), and Dynamic mechanical analysis (DMA) were done to 

characterize the properties and structure of the synthesised nanocomposite. 

This paper reports that surface modification of the nanoparticles can effectively solve the dispersion 

problem and reduces the electric field charge concentration at the interface. Synthesising PNC with 

selective nanoparticle loading percentage can yield almost 6-12% increase in the thermal capacity 

and fire retardability of the base polymer. Presenting an effective way of resulting in a commercially 

promising PNC suitable for various defence applications of radome technology, energy storage (e.g. 

batteries), structural bodies and cables in general. 

 

Keywords.  
Nanocomposite, Aluminium oxide, Barium titanate, Thermal conductivity, Dielectric, Piezoelectric, Fire 
retardant. 

 

1. Introduction 

Polymers are by far taken as the best insulators, for various applications. Considering polymers 

already are light weight, easy to fabricate and chemically resistive, but if could also have increased 

thermal conductivity capability, then it’ll have even huge application area as thermal interface materials 

[1].  Likewise, to improve the thermal conductivity value of polymer, various filler additives like ceramic 

particles [2], carbon black [3], metal powders [4], etc. have been added to the polymer matrix. Though 

the high thermal resistance between the inclusions and the polymer matrix, limits the enhancement of 

thermal conductivity [5,6]. Hence, demanding higher proportion of filler contents to fulfil a genuinely 

thermally conductive network; and often deteriorating the physical properties with high overall cost [7-9]. 

Inorganic nanoparticles (NPs) included in polymer matrix can face challenges with the discontinuous 

filler network, high interfacial thermal resistance, and requirement of short distance for phonon 

transmission. Hence, any filler to be selected is judged on its ability to form robust and continuous 

network with least specific surface area, alongside presenting lowest interfacial thermal resistance. 

Several techniques are being tested, like including enhanced thermal conductivity of polymer [10,11], 
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hybrid fillers [12-17], surface modification of the additives [18-21], selective distribution of fillers [22-25], 

controlling orientation of fillers [26], etc. Though these methods individually have still resulted in limited 

betterment as far as improved thermal conductivity is concerned; demanding a detailed study of them or 

development of a synergetic method combining benefits of multiple methods. 

Regarding flame retardancy, inorganic NPs have already been used and tested in textile polymers, 

and are awaiting more developments for various futuristic application. The NPs can act as carrier to heat 

and mass transfer, limit the polymer chain mobility, and modify degradation pathway of the polymer. The 

increased heat transfer can tend to slow down the bubble migration, reduction in heat release and local 

oxygen content of the oxides via oxidation-reduction mechanisms [27,28]. Hence with inorganic NPs 

inclusion the improvements in flame retardant parameters is very promising.  

In this paper we report a more reliable, most importantly cost-effective and scalable method for 

achieving high-TC and fire retarding capability in polymer nanocomposites, that can be used for various 

fields and in-particular for demanding defence applications. 

 

2. Materials and Methods 

A.  Materials. 

Polyethylene-Low Density (LDPE) granules with a melt flow rate of 2 g and density 920 kg/m3 was 

received from Goodfellow (UK). Trimethoxy(octadecyl)silane of technical grade, 90%; Heptane, 

anhydrous, 99%; Aluminium oxide (Al2O3) nanopowder, less than 50 nm particle size (TEM) and; Barium 

titanate(IV) (BaTiO3) nanopowder, less than 100 nm particle size (BET) with dielectric constant of 150 and 

density 608 kg/m3; Cis-cyclooctene containing 100-200 ppm irganox 1076 FD as antioxidant, 95% were all 

purchased from Sigma Aldrich (UK). Other laboratory agents were used as standard. 

B.  Experimental Methods. 

Firstly, the mixture of Al2O3 and BaTiO3 in the ratio 50-50 weight % was prepared and put in the oven 

at 500 °C for 20 minutes, in order to remove any entrapped moisture content. Afterwards 2 gm of this 

mixture was dispersed in 600 ml of n-Heptane solvent and silane added alongside while ultrasonicating at 

100 kHz intensity. It was left under sonication for 30 minutes, to ensure that the NP clumps, if any, were 

thoroughly broken down and the particles would start the reaction for coating. Here a small sample was 

collected to observe the size-distribution in zeta-sizer, and the results were in the range of 60-140 nm. 

This can imply that the silane coating has raised the mean diameter size of the particles. After sonication, 

the mixture was left overnight at 25 °C under magnetic bar stirring for complete reaction to take place. 

Later next day the particles were separated under centrifuge. Centrifuging was done for 3 times on IEC 

Centra – 4X Centrifuge make of International Equipment Company; to eliminate any excess silane from 

the particle surface. It was run at 3000 rpm speed and for 8 minutes time, and using fresh solvent to clean 

the particles after every run. Another sample was collected here to observe the size distribution under 

zeta-sizer, and it yielded a satisfactory result of 100 -140 nm. The collected particles were then put in 

oven for drying at 1000 °C for 10 minutes.  

The extrusion process was carried on Twin-tech 10 mm twin-screw extruder at temperatures of all 

the zones fixed at 140 °C, viz. considered optimum temperature for extruding the polymer grade that we 

had ordered. Before extruding, the nanoparticles were mixed together with the polymer granules using 

0.5 ml of cis-cyclooctene. The polymer taken was 15 gm and NPs were in 3 wt %, and the cis-cyclooctene 

made the NPs stick on the surfaces of the polymer granules, making a layered-coating on them. The 

inclusion of cis-cyclooctene was to prevent any oxygen to react with the NPs during the processing and 
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extrusion period. The screw speed was set to 60 rpm and the mixture was fed through the feeding 

hooper. After the first run the extruded sample was collected and chipped into pieces, so as to be fed 

again. This was done to improve the dispersionabilty of the NPs in the polymer melt. Same was repeated 

twice for effective results. Finally, the synthesised polymer nanocomposite was collected as wire samples 

and also in film form for further tests and characterisations. 

C.  Characterisation. 

Transmission electron microscopy (TEM) spectroscopy was done on JEOL 1400 plus attached with 

AMT UltraVUE camera with accelerating voltage of 120kV; basically, to characterise the changes brought 

about by the silane coating on the NPs morphology and to confirm whether the same was effectively 

achieved. 

For picking up on the bond changes of the polymer due to silane coating and the NPs inclusion itself, 

the Perking Elmer Attenuated Total Reflection- Fourier Transmission Infrared (ATR-FTIR) Spectrum Gx 

system with DGS-KBr sensor at a resolution of 4 cm-1 was used. 

Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA) was performed using a 

TA Instruments DSC Q100 and TGA Q500 at a heating rate of 10°C/min and nitrogen cooling environment 

with a temperature range of 22 to 170 °C and 30 to 500 °C respectively. The main purpose of these were 

to study the thermal stability, or the thermal conductive behaviour of the nanocomposite and the 

influence of NP fillers on shifting the glass transition and subsequent thermal decomposition.  

Lastly, the mechanical properties of the samples were studied by Dynamic mechanical analysis 

(DMA), carried out at 1 Hz frequency and 0.3 mm static displacement.  
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3. Results and Discussions 

 

There are various types of silane coupling agents, and they are commonly used as grafting agents to 

strengthen interfacial behaviour of certain inorganic oxides, at the nanoscale, thus increasing dispersion 

levels of these nanoparticles when dispersed in various polymer matrix. The silanisation process initiates 

with a hydrolysis reaction which converts the trimethoxyl groups into trihydroxyl groups. This is then 

followed by a polycondensation reaction of these hydroxyl groups with the hydroxyl groups on the NPs 

surface. 

 

  
Figure 1 (a): Bare Al2O3 (left) and BaTiO3 (right) nanoparticles. (Scale: 100nm) 

 

 
Figure 1 (b): Silane coated Al2O3 + BaTiO3 nanoparticles mixture. (Scale: 100nm) 

The TEM images as shown in above figure-1 (a) & (b), distinguishes the smooth surface of the 

uncoated NPs with that of the silane coated NPs with a faint layer of silane around. Also, in the uncoated 

image the particles are quite clustered together due to the dipole-dipole attraction of NPs, whereas, the 

coated particles are seen to be more spread out, though connected with each other but very less overlaps 

are seen. The images simply confirm the fact that the silane has been effectively adsorbed on the NPs 

surface, giving them such faint textures on the surface. Interesting observation can be seen in the aligned 

arrangement of the coated particles, hence hinting on the effect of the designed interfaces. 
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Figure 2: FT-IR spectra for different wt% of NP loading. 

The FT-IR spectra investigation particularly highlights the changes due to the silane coated NPs 

inclusion in the base LDPE polymer matrix. Initial stretch bonds of the LDPE like the backbone stretch peak 

of (C-H) is seen around 1600-1800 cm-1, then the other representative peaks of (C=O), δ(C-H), γ(=C-H) 

and γ(C-H) is subsequently seen at around 1550 cm-1, 1500 cm-1, 1050 cm-1 and 1200 cm-1 respectively; 

though with subsequent slight shifts with increasing wt% of NP loading, as distinctive in the figure 2. 

These indicative peaks, though slightly suppressed at higher wt% loading, represent that the polymer 

backbone is effectively maintained, even with the highest wt% loading of the NP. Also, peaks for Al2O3 and 

BaTiO3 are subsequently seen gradually increasing in size, as the wt% loading increases; hence confirming 

the increased NPs presence. And even the silane stretching is seen to be gradually increasing at around 

1000-1100 cm-1, since more NPs implies more silane coating also; though the stretching is not to 

drastically changing in the plot, this confirms that the particles are not overly coated, or neither there are 

any huge variations in silane coating between the different samples. This hint to the proportional coating 

volume in the different samples. Hence, the FT-IR spectra proves to be a very helpful medium to confirm 

and check the various functional groups and track their variations with the increase in NP wt% loading. 

 
Figure 3: TGA curves for different wt% of NP loading. 
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To establish the relevance of the thermal stability of the composite, TGA and DSC investigation was 

undertaken. Firstly, from the TGA plot, as shown in figure 3, we can clearly see the effect of filler NPs on 

the sample decomposition.  With the increasing weight proportion of NPs, there is a reduction in % 

weight loss, indicating that the tendency of the PNC to resist deterioration due to heat also increases. 

Quantitively there is an increase of almost 9-12% (from the universal analysis software, installed to work 

with the setup) in the resistance to weight loss, from the virgin LDPE to the 12 wt% NP loading; as can be 

seen from the plot in figure 3.  

 
Figure 4: DSC curves for different wt% of NP loading. 

Secondly, the DSC plots in figure 4 show a noticeable decline in the Tg as the NP loading increases in 

the PNC; as observed in earlier instances [29]. This can be attributed to the fact that increased NPs 

loading ease the thermal transfer, due to increased interfaces; hence decreasing the temperature 

gradient inside the sample. This implies the fact that the sample showing early glass transition has higher 

thermal conductivity compared to the one with later glass transition. There is almost a change of 6-8 % in 

the occurrence of the Tg in the NP loaded samples as compared to the pure LDPE sample. Hence, both the 

results of TGA and DSC prove our attempts successful in creating better thermally conductive and fire 

retarding PNC. 

The dynamic mechanical results (DMA) were taken for storage modulus (E′) and as plotted in figure 5. 

Figure 5 shows the temperature dependence of storage moduli (E′) of the composites, and were found to 

be higher than those of the corresponding LDPE. The gradient of moduli with respect to temperature was 

lower. It shows that the deformation of the nanocomposite was lower at lower temperature (<0 °C) but it 

increased more as temperature reached above 0 °C.  The storage modulus E′ of the nanocomposites 

increased with increasing the nanoparticle contents.  

The polymer part of the nanocomposite consists of free macromolecular chains which is similar to 

that of pure polymer, however, the interphase between NPs and polymer changes due to confinement of 

NPs between molecular chains. Stronger the interaction more changes would occur in interphase region 

and volume of region would be high as well. If particles are well dispersed, the interphase region would 

be higher, leading to different behaviour of PNC than the pure polymer. Because of such region, the 

polymer deformed more than nanocomposite. Here the interphase region in nanocomposite was 

crystallised and prevented deformation. 
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Figure 5: DMA plot for different wt% loading of NP. 

 

 

4. Conclusions 

This method proves our attempts successful in creating better thermally conductive and fire 

retarding PNC. Also, the functionalisation of NPs has improved the dispersion and subsequent filler 

variations have given a distinctive idea on the behaviour of the base polymer matrix. Considering the past 

works for similar achievements, we can note that the improvements reported in the thermal conductivity 

behaviour of PNC is always above 25%, but this achievement comes under a great cost, as the nano-

inclusions that they used for this achievement was carbon nano-tubes (CNT) or rods or even carbon nano-

platelets, which are comparably at least 20 times costlier than the ceramics that we have used in this 

reported work. And the main challenge is to control the effective dispersion, most importantly the 

alignment of CNT or platelets length along the direction of phonon propagation, without which there 

won’t be any appreciable improvements in the conductivity of the composites. The alignment is a least 

concern in our case, as the NPs are spherical in shape, and the functionalisation takes care of the 

dispersion. Hence, the work reported here is easily scalable and very cost-effective to be brought into 

commercial application. 
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