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The focus of carbon management has shifted from operational carbon towards 

Embodied Carbon (EC) as a result of zero carbon agenda. Even though effort is made 

to quantify EC in detail design stage and choose the best solution for design there is 

no such approaches in managing EC during early stages of the design. The reason for 

this is lack of sufficient design information to quantify EC at early design stages. 

Hence, this research intends to fill that gap by using a unique approach of predicting 

EC by capturing the relationship between design and morphological parameters (such 

as plan shape, storey height, no. of storeys, finishes quality, services quality, etc.) and 

EC. Some building elements can be considered as ‘carbon hotspots’ (carbon 

intensive). Since carbon and cost are known to be the currencies of sustainable 

construction projects, the aim of the study is to develop a decision support system to 

optimise design in terms of carbon and cost during early stages of design. The aim is 

to be achieved by developing a database of elemental (NRM compliant) EC and cost 

(using Hutchins UK Building Blackbook and other data sources) of sample office 

buildings in the UK and identifying the correlations of EC and cost with design 

parameters. Consequently, regression models will be derived as the key component 

for the DSS development. This paper presents a detailed literature review of EC and 

EC estimating tools, a detailed discussion of the proposed research method and 

exemplar case study of an office building and EC and capital cost analysis of the 

building. The paper concludes with the identification of the carbon hotspots for the 

building (mainly, substructure, frame, upper floor and external walls) and compares it 

with published case studies while exploring the implications of the case study for the 

DSS to be developed. 

Keywords: carbon hotspots, early stage design, embodied carbon, office building. 

INTRODUCTION 

Industrial revolution between 18th and19th centuries is one of the main reasons for 

significant rise in the global mean temperature. As a result, climate started to change 

radically due to excessive presence of heat trapping gases like carbon dioxide in the 

atmosphere. Consequently, economic, environmental and social conditions of the 

world regions started to be affected. Especially, poor nations are reported to be 

suffering more due to insufficient financial means to safeguard themselves against 

climate impacts (Intergovernmental Panel on Climate Change, 2012, 2013; Stern, 

2007). Hence, developed regions came on board to combat climate change or to 

reduce greenhouse gas emissions by policy formulation and commitments to 

international climate change agreements like Kyoto Protocol  (United Nations, 1998). 

More importantly, the UK government has set more stringent national targets to meet 

the 2050 emission reduction target of Kyoto Protocol through UK Climate Change 
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Act 2008. Furthermore, action plans are also continually reviewed to suite the 

projected climate change and reported to the government periodically by Committee 

on Climate Change. Mainly, carbon control in the building sector is identified as one 

of the significant action plans to reach the target because building sector is one of the 

major exploiters of resources and energy (Committee on Climate Change, 2013). 

However, in the action plans more focus was given to reduce carbon emissions during 

the operation of the building (known as 'operational carbon') which contributed to 

nearly 70-80% of total emissions from buildings until the zero carbon agenda for 

buildings was introduced. Eventually, zero carbon agenda implicitly emphasise the 

need to control the other component of the building sector emissions, namely 

'embodied carbon'. EC is driven by process and affected by the supply chain, thus, 

hard to manage. However, dual currency approach of clients and consultants highlight 

the importance of EC estimating and management. Therefore, it can be expected that 

the knowledge of cost and carbon relationship will become a valuable asset for the 

construction practices in the near future which makes the study outcomes significant. 

LITERATURE REVIEW 

Carbon in buildings 

There are two types of carbon emissions in buildings namely: operational carbon and 

embodied carbon (also known as capital carbon). The contribution of the two in total 

emissions varies depending on the type of the building and design variables. The 

relationship between operational and embodied carbon was studied by Ibn-

Mohammed, Greenough, Taylor, Ozawa-Meida, and Acquaye (2013) by drawing 

evidence from various studies from different countries. Accordingly, the findings of 

the above study suggested that there is no static relationship and it often varies. 

However, generally, operational carbon emissions are much higher than embodied 

emissions in most of the building types while there are exceptions like warehouses 

(See, RICS, 2014).  

Operational carbon in buildings  

RICS (2014) defines operational carbon in buildings as emissions related to energy 

consumption during the operation of the building. These emissions include both 

regulated loads (e.g. heating, cooling, ventilation and lighting) and unregulated/plug 

loads (e.g. ICT equipment, cooking and refrigeration appliances). Building Regulation 

Part L has provisions of controlling regulated operational carbon in buildings as the 

unregulated emissions are entirely depended on occupants’ behaviour. 

As per the Part L of the Building Regulations, the operational emissions or the Target 

CO2 Emission Rate (TER) for the notional building design is calculated using either 

Standard Assessment Procedure (SAP), or Simplified Building Energy Model 

(SBEM) or other approved software tools where actual Building CO2 Emission Rate 

(BER) should be less than the TER for the building design to be approved. The 

operational emissions are expressed in mass of CO2 emitted per year per square meter 

of usable floor area of the building (kg/m
2
/year). Although the benchmarks are set for 

the BER, there is a performance gap between predicted emission levels and actual 

emission levels (Pan and Garmston, 2012; UK-GBC, 2008, 2014) which is a serious 

issue to be addressed at the earliest possible in order to meet 2050 target. 

Conceptually, in a zero carbon building operational carbon (regulated energy use) will 

be zero whereas the remaining component to be controlled becomes the embodied 

carbon in buildings. Further, Ibn-Mohammed et al. (2013) also stress that serious 

attention needs to be given on embodied carbon during design decision making. 
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Embodied carbon in buildings  

Ibn-Mohammed et al. (2013) reviewed various interpretations of embodied energy 

and carbon from various studies. The review demonstrated variations in the definitions 

in terms of the terminologies used and the scope of the emissions considered. 

However, the definition proposed by Hammond and Jones (2008) can be regarded as 

acceptable as they are the producers of the very first inventory of embodied carbon 

and energy which drives most of the embodied carbon researches. Hammond and 

Jones (2011) revised the older definition (Hammond and Jones, 2008) and define 

embodied carbon as “the sum of fuel related carbon emissions and process related 

carbon emissions”. Authors did not confine the scope of emissions in the definition as 

embodied carbon can be calculated from cradle (earth)-to-gate (factory gate), cradle-

to-site, cradle-to-end of construction, cradle-to-grave, or even cradle-to-cradle 

(includes recycle, reuse etc.) depending on the scope of data available. This is called 

as the system boundary of embodied carbon calculations. Few scholars noted that 

many embodied carbon datasets available are cradle-to-gate due to difficulties in 

capturing data (Hammond and Jones, 2011; Sansom and Pope, 2012). However, 

transport of materials to site adds significantly to total embodied carbon emission for 

some materials which has less embodied emissions in other phases (Hammond and 

Jones, 2008). Furthermore, lesser transport distance not necessarily means lesser 

carbon emissions as mode of transport and type of fuel also plays a significant role in 

addition to distance of travel (RICS, 2014; Sundarakani, de Souza, Goh, Wagner, and 

Manikandan, 2010). 

Managing embodied carbon requires great deal of understanding and attention to 

detail. In a construction project, most (around 70 - 85%) of the cost is committed 

during design stage of the project (Asiedu and Gu, 1998) and so as with the carbon as 

both carbon and cost depends on the same factors like, material quantity, transport, 

construction method and so on. On the other hand, as more cost and carbon is 

committed into the project, the reduction potential decreases increasingly as possible 

design solutions are constrained by previous design decisions. Then, during 

construction phase the reduction potential can be regarded as nearly zero unless there 

is a design change (see Figure 5). Therefore, any measures to minimise the embodied 

carbon or cost in buildings has to be taken at very early stages of design due to the fact 

that reduction potential diminishes as design progresses (RICS, 2014). Further, the 

design becomes static as the project progresses and changing the design at a later stage 

will result in loss of time and money.  

 

Figure 5: Behavioural pattern of Embodied Carbon and Capital Cost over project stages 

After, RICS (2014) 
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Furthermore, RICS (2014) states that investigating embodied carbon emissions in 

different types of buildings is a completely new research avenue. Evidently, there are 

limited regulatory standards or academic researches to aid decision making at early 

stages of projects. In addition to that intense calculations involved in embodied carbon 

measurement also makes it complex and undesirable (Ibn-Mohammed et al., 2013). 

Nevertheless, this research identified carbon hotspots in buildings as an ideal way of 

dealing with this issue; according to 80:20 Pareto rule, it can be assumed that 80% of 

emissions are to be coming from 20% of elements. However, that 20% of elements 

(carbon hotspots) are not yet firmly configured. 

RICS (2014) defines ‘Carbon hotspots’ as the carbon significant aspect of the project. 

It not necessarily means the carbon intensive elements but also the elements where 

measurement data is easily available and reduction is possible. These carbon hotspots 

may vary from project to project depending on the type of the building. Generally, 

foundations, frame, roof, walls, and floors are considered as carbon hotspots. 

Furthermore, due to the complex nature of measurements of services in early design 

stages and lower reduction potential among others make building services less 

significant carbon hotspot even though it might contribute 10-25% of total embodied 

carbon (Hitchin, 2013; RICS, 2014). However, a study found that cladding finishes 

and services are to be the biggest component of recurring carbon emissions of an 

office building (Cole and Kernan, 1996). Hence, services and finishes cannot be 

disregarded when taking initial design decision as the contribution is significant. 

Therefore, it is important that the indication of likely embodied carbon of building 

services and finishes are revealed at the early stages of design to understand the 

carbon accountability of the project. 

Subsequently, the study identified and analysed some of the embodied carbon case 

study findings of office buildings in the UK (Clark, 2013; Halcrow Yolles, 2010a; 

2010b, WRAP; Sturgis Associates, 2010). It was noticed that the element 

classification differs from one study to the other (for example, NRM, SMM/BCIS - 

older version, British Council of Offices 2011, some studies did not follow any 

standards) makes it difficult to compare. Further, Clark (2013) also observed that 

findings of two different experienced consultants for the same building greatly 

differed. Dixit, Fernández-Solís, Lavy, and Culp (2010)  identified a list of factors that 

affects the embodied carbon measurements. However, diversity of assumptions, 

source of embodied carbon factor and variation in methodology adopted (Clark, 2013) 

can be regarded as the most significant factors for the reported variations. 

Furthermore, element classification also highly alters the findings. Especially, analysis 

of embodied carbon in building services remains as a mystery due to lack of 

comprehensive published dataset. Furthermore, most studies lack elaboration on the 

methodology which questions the validity and applicability of the findings. 

Eventually, this study attempts to eliminate the drawbacks identified in previous 

studies and develop a robust hierarchy of carbon hotspots in office buildings in the 

UK. The study follows NRM element classification, the standard which is in practice 

at the moment in the UK and makes it comparable with cost estimates. From that the 

study proposes a novel technique of predicting embodied carbon at early design stages 

based on well-established relationship of cost and design variables (Ashworth, 2010; 

Seeley, 1996) as both capital cost and EC depends on the same factors. Accordingly, 

the research tries to capture building morphological parameters and quality parameters 

(plan shape, storey height, total height, finishes quality, service quality and the like) 
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related to the carbon hotspots and modelling them into a mathematical equation to 

capture carbon at early design stage.  

Finally, the research idea can be presented in a conceptual regression model as 

follows: 

             ⌊
      

  
⌋                       (  )  

             ⌊
      

  
⌋   (        )  

             ⌊
      

  
⌋                   (  )  

             ⌊
      

  
⌋                    (  )  

             ⌊
      

  
⌋   (

    

     
)    (             )    (            )     

                                         

(a, b, c…k = regression) 

Yet, it is useful to review the existing early stage carbon prediction models and 

underlying methodologies so that the strengths and weaknesses of the tools can be 

identified and issues can be addressed during the development of the decision support 

system. 

Carbon Estimating Tools 

Carbon estimating tools are in abundance and access is either free or licensed. Even 

though all tools tend to perform the same function there are differences in input 

information, system boundary, outputs, methodology and data sources. The study 

identified some freely accessible early stage carbon estimating tools include: 

Construction Carbon Calculator developed by Build Carbon Neutral; Embodied CO2 

Estimator developed by Phlorum (Phlorum, 2011), in collaboration with the 

University of Brighton; Green Footstep developed by Rocky Mountain Institute 

(Rocky Mountain Institute 2009); Building Carbon Calculator developed by 

University of Minnesota(University of Minnesota, 2014); and Steel Construction 

Embodied Carbon Tool developed by TATA steel (TATA Steel, 2014). First three are 

web based tools whereas Building Carbon Calculator is an excel based tool and Steel 

Construction Embodied Carbon Tool is a computer based tool. Each tool has its own 

limitations. Major limitation is to be the applicability of the tools which depends on 

the context and type of the building. This limitation becomes unavoidable for small 

scale projects with limited funds. Another common factor among these tools is the 

system boundary. Most of the tools cover cradle to construction (excluding transport) 

system boundary while this is not clearly stated in few identified tools which is a 

drawback.  

In addition to those there are tools that estimate carbon in detailed design stages such 

as Carbon calculator for construction projects (an excel tool developed by 

Environment Agency), The Green Guide Calculator (A web based tool developed by 

BRE in compliance with ‘The Green Guide to Specification’), Interoperable Carbon 

Information Modelling (iCIM - a tool developed in a BIM platform by “OpenBIM”  ), 

Sturgis Carbon Profile Model (model developed by Sturgis which combines both 

operational and embodied carbon into one unit and proposed a methodology to 

measure life cycle carbon of a building in kgCO2/m
2
/year) are to name few. In 

summary, it is clear that each tool is different and do have limitations. Further, among 

early stage carbon estimating tools cost is rarely incorporated.  
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Nevertheless, cost also changes along with embodied carbon when design variables 

change. Further, construction clients are becoming more conscious about dual 

currency, cost and carbon, in building development. Therefore, it is ideal to club both 

carbon and cost in one tool so that decision making is made easy with cost and carbon 

information that can be easily generated during early design stages. The shortfalls like 

differing element classification of previous studies and lack of cost consideration 

among the identified early stage carbon estimating tools justify the case for the study. 

Therefore, this study capitalises existing limitations in the literature and current tools 

and tries to develop a decision support system (DSS) that predicts embodied carbon 

and capital cost of early stage designs based on the correlations between design 

variables, and carbon and cost. 

METHODOLOGY  

Primary source of data for this research will be building data and published data. 

Building data (Bills of Quantities and architectural drawings) is obtained from 

consultancy organisations. Sample of 30 buildings' data are expected to be collected to 

build the principal database for the research.  

Firstly, embodied carbon will be calculated for each building manually with excel 

aided functions and carbon intensive elements will be analysed. The major data 

sources to perform this task would be Inventory of Carbon and energy (ICE) version 

2.0, UK Building Blackbook and where necessary manufacturer’s data. Then, 

hypothesis will be test to understand whether there is a significant relationship 

between different morphological (i.e. plan shape, building height etc.) and quality 

parameters (services quality and finishes quality) of the building with that of the 

respective carbon emissions and cost. Subsequently, correlation coefficient will be 

calculated as it is an appropriate measure of the strength and direction of the linear 

correlation between two numerical variables. Finally, algorithms will be developed 

with multiple variables to predict carbon and cost at early design stages with the aid of 

SPSS software and significance of each identified design parameters will be 

investigated subsequently during modelling and a best predictive model (algorithm) 

will be derived from the database of processed building data. 

However, this paper presents a case study of an office building as an exemplar due to 

the ongoing nature of the research. The case study involves cost and carbon estimating 

of the building using detailed cost plan of the building and the data sources mentioned 

above. The cost and carbon estimating follows the conventional cost estimating 

process (Pre-tender estimate pricing) and both unit cost and unit carbon data are 

obtained from the same source to maintain consistency and comparability. 

FINDINGS   

Case study 

Office A 

 Gross Internal Floor Area : 33,663 m
2
 

 Net Internal Area  : 22,634 m
2
 

 Number of Floors  : Above Ground- 18, Below Ground - 2 

 Brief Description  : Raft foundation with concrete core walls, 

hybrid framed building comprising flat roof, curtain walling system and 

aluminium cladding, brick, block, dry lined partitions and glazed units, 

moderate finishes and highly sophisticated services including mechanical, 
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electrical and plumbing as well as specialised services like Building 

Management System (BMS). 

 Capital cost : £23,131,452.04 

 Embodied carbon : 23,769,592.57 kgCO2 

Figure 6 and Table 5 below presents the findings of the study in compliance with 

NRM element classification. 

Figure 6: Elemental Embodied carbon and cost profile of case study office building  

Table 5: Hierarchy of carbon and cost intensive elements- Findings of the case study 

Findings suggest that there is a close relationship between cost and carbon. In terms of 

both carbon and cost the intensive element hierarchy remains the same. This 

knowledge can lead to effective decision making in early stages of design. However, 

this finding is based on one case study and more case studies to be conducted in the 

future. Further, external work is not included in the cost and carbon estimates as it 

depends on client's special needs, landscape and location of site, thus, tends to have a 

wider range irrespective of the scale of project. 

Despite the benefits that the study yields there are also various problems encountered 

during this process. Major issue was carbon and cost calculations are performed from 

detailed cost plans of the office building, thus, some items are combined and measure 

in 'Item' or 'Lump sum' which makes it difficult to analyse the lowest level of 

specifications and details. Then, the UK Building Blackbook does not contain data for 

all the items, in which case a closer item specification is matched to obtain the carbon 

and cost factors. More importantly, building services embodied carbon data are 
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limited
3
 due to the sophisticated nature of the element as mentioned by RICS (2014) 

and Hitchin (2013). Hence, calculations are not holistic and some of the items could 

not be included in the quantification due to lack of sufficient information or published 

data. However, care was taken to include most of the significant items. Moreover, 

author presumes that under representation of building services among other elements 

in terms of embodied carbon may be due to lack of published data. Further, the study 

points out the importance of embodied carbon data of building services and it is 

envisaged that the need for it will rise in the future.  

Comparison with other studies 

Table 6 presents and compares the findings of the study with other studies. Findings 

of other studies are altered to be aligned with the element classification of the study 

(NRM compliant classification). Accordingly, substructure and superstructure 

together are to contribute to more than 80%, in line with the findings of most of the 

studies. Services element demonstrates a huge variation among presented studies 

ranging from 0.93% - 25%. This is due to difference in the scope of analysis of 

services element and the methodology employed. The study had limitations in EC 

quantification of major services like electrical installations, gas installations, 

communication installations, fire and lighting protection installation and various other 

specialist installations due to lack of EC data. As a result, EC of building services of 

the study is comparatively very low. Furthermore, many studies do not clarify what 

constitutes the services element in the analysis which becomes a drawback for 

comparisons. Moreover, when EC of building services items are closed analysed it 

appears to be very small resulting in less contribution. If that is the case, then as RICS 

(2014) claims, services can be disregarded during early stage decision making.  

Table 6: Comparison of the case study findings with other studies 

However, the findings are based on single case study and the project is yet to progress 

with more case studies. Therefore, the study does not draw any conclusions regarding 

building services EC. 

CONCLUSIONS 

Increasing significance of embodied carbon in buildings and difficulty in prediction 

during early stages of design due to very little design information became the driver 

for the study. Eventually, analysis of relationship between embodied carbon and 

3  Except for that are available in Blackbook - plumbing, drainage, electrical and transport systems. 

Especially electrical data are for two storey housing installation which cannot be used in the context, 

which is why electrical installation is not presented in figure 6. 
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design variables provided the direction for the study as some of the building elements 

are to be carbon critical (hotspots). Therefore, modelling design variables related to 

carbon hotspots tends to make the predictive model simple and closer to the actual 

figure which is also supported by 80:20 Pareto rule. However, it was also noticed that 

there are many studies that analysed carbon hotspots and often reflected inconsistency 

in findings. Subsequently, a standard method of presenting building elements was 

adopted in the study which is NRM compliant element classification, making it easier 

for interpretations and re-use of results. Consequently, case study of an office building 

was presented and the findings were compared with other studies. Substructure and 

superstructure (especially, frame, upper floor and external walls) are identified to be 

the carbon hotspots being responsible for more than 80% of embodied carbon 

emissions. It was also noticed that there is a huge variation in embodied carbon 

figures of building services among studies due to the variation in the scope of analysis 

which is not transparent.  Findings of the case study demonstrated a similar hierarchy 

of elements in embodied carbon and cost profile of the building which knowledge is 

mostly missing in other studies. This knowledge will become crucial for designers to 

economically achieve 2050 emission reductions target of the Kyoto Protocol.  

FUTURE WORK 

The project will conduct more building case studies (approximately 30) and analyse 

the relationship between carbon and cost. Further, early stage carbon and cost models 

will be derived based on design variables. The derived models will lay the foundation 

for the development of the decision support system to optimise design in terms of 

carbon and cost during early stages of design. 

CONTRIBUTION TO THE KNOWLEDGE 

The research contributes to the knowledge by: identifying carbon hotspots in office 

buildings; capturing the relationship between EC and design variables; showcasing 

capital cost and EC relationships; and developing a DSS to optimise design during 

early stages. 
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