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Abstract- This paper compares the capabilities of the artificial 

neural network (ANN) and multiple linear regression (MLR) for 

recognizing and discriminating partial discharge (PD) defects. 

Statistical fingerprints obtained from a several PD measurement 

were applied for training and testing both the ANN and MLR. The 

result indicates that for both the ANN and MLR trained and tested 

with the same insulation defect, the ANN has better recognition 

capability. But, when both ANN and MLR were trained and tested 

with different PD defects, the MLR is generally more sensitive in 

discriminating them. In this paper, the results were evaluated for 

practical PD recognition and it shows that both of them can be used 

simultaneously for both online and offline PD detection. 

 

Keywords - Partial discharge; regression analysis; artificial neural 

network. 

 

I.  INTRODUCTION 

 

Partial discharge (PD) is a breakdown activity commonly 

found in the high-voltage (HV) insulation apparatus [1]. It often 

leads to changes in electrical field configuration accompanied by 

sustained electrical discharges. If PD, such as internal, is not 

detected at the initial stage, these discharges can bridge the 

insulation system with complete breakdown of the insulation 

and serious financial implications [2]. Therefore, PD 

measurement and recognition has been the focus of condition 

monitoring engineers [3]. 

Over the years, much effort has been exhausted in applying 

the artificial neural network (ANN) in recognizing a number of 

PD defects and tremendous success has been recorded [1, 4]. 

This is because the ANN has the capability to learn from few 

training data. However, ANN has number of disadvantages, 

which include lengthy training time and sensitivity to different 

initial weights and biases [4]. Of recent multiple linear 

regression (MLR) has shown the potential for accurate PD 

recognition [5]. However, it has not applied to recognize and 

discriminate complex PD patterns. Therefore this paper 

compares the capabilities ANN and MLR to recognize and 

discriminate PD patterns in order to understand to identify a 

robust system for both online and offline PD detection. Both the 

ANN and MLR will be trained and tested using statistical 

features of the PD patterns. These statistical fingerprints are 

extracted from the φ-q-n (phase-amplitude-number) patterns 

representing different PD sources. For φ-q-n evaluation, 

statistical fingerprints have been widely applied because of their 

capability for well-defined pattern quantification [1, 3]. In order 

to simplify the φ-q-n analysis, statistical fingerprints are usually 

extracted from 2D plots derived from the φ-q-n patterns. The 

main 2D distributions of interest are the pulse count Hn(φ), mean 

pulse-height Hqn(φ) and amplitude number Hn(q) plots. These 

plots are presented in both the positive (+) and negative half 

power cycles (-) [4].   

The overall aim of this paper is to classify and discriminate 

different PD patterns commonly occurring in practice using the 

ANN and MLR and to compare the result in order to determine 

the robust for practical application. PD data captured over long 

stressing period will be applied for training and testing both the 

ANN and MLR models. 

 



II. PD MEASUREMENT SET UP 

 

The PD measurement process was carried out in accordance 

with the IEC 60270 PD Standard 2001 [6]. The PD detection 

system developed in the HV laboratory of Glasgow Caledonian 

University produces real time φ-q-n patterns and possesses 

functions for automatic data logging patterns at different time 

periods as well as controlling changes in the resolution sizes. 

This is vital for the work presented in this paper, as several 

experiments require longer stressing period and data and must be 

captured and stored systematically over fixed resolution size for 

a more reliable analysis. PD calibration was carried out for PD 

apparent charge determination. In this paper, four PD sources 

were manufactured. These include corona in air, corona in oil, 

internal PD in a single void from polyethylene-terephthalate 

(PET) PET and surface PD in air, as illustrated in Fig. 1. 

The corona discharge model is a point-plane configuration as 

shown in Fig. 1(a). A needle of length 3cm and tip radius 10mm 

is connected to the HV, while an electrode of 60mm in diameter 

is connected to the ground. Two points to ground gap distances 

are considered namely 5mm and 10mm.Test voltages are 1.5kV 

1.9kV 2kV and 2.2kV for the 5mm gap and 1.7kV 1.9kV 2.3kV 

and 2.8kV for the 10mm gap distance. Measurements were taken 

at different voltages over 2 gap distances of 5mm and 10mm 

because of the PD behavior of the positive corona discharge.  

They have low repetition rate and higher amplitude [7]. They are 

then combined to form φ-q-n corona set for evaluation by the 

ANN and MLR models. 

  

 

               (a)                                               (b) 

       
   

               (c)                                               (d) 

 
 

Fig 1: Manufactured PD faults: (a) corona PD in air; (b) internal PD into a void 

in PET; (c) corona PD in oil, and d) surface discharge in air. 

 

Corona PD in oil is studied from a point-plane configuration 

immersed in Castrol insulating oil (see Fig. 1(c)). The applied 

voltage was 28kV and a needle electrode was placed at a 

distance of 25mm from a ground plane. In all the experiments, 

only a few discharges were seen to occur within both half-power 

cycles and these observations are consistent with other 

previously published work literature [8]. 

For the single void experiments, measurements were made 

with 5mm void created at the center of the PET layers, Fig. 1(b). 

Nine layers were created similar to the literature [3]. The 

inception voltage for void 5 was 3.4kV and all measurements 

were taken at approximately 4.4kV. PD data was captured over 

250 power cycles from the start up to 7-hours continuous 

stressing. 

       Surface PDs in air were studied by placing a small brass ball 

of 55mm diameter on Perspex insulation as shown in Fig. 1d. 

The Perspex is of size 65mm x 65mm x 8mm. The inception 

voltage is 4.2kV and the experiment was carried out at 20% 

above the PD inception voltage. The Perspex was stressed up to 

4hours and φ-q-n patterns recorded for up to 4hours. 

 

III. THE NEURAL NETWORK 

 

ANNs are mathematical models that imitate the way humans, 

learn tasks, classify patterns and find solutions to problems [9, 

10]. The multilayer perceptron neural network (MLPN) using 

the back propagation (BP) is the most widely applied for PD 

classification because of its capability to classify complex PD 

fingerprints [1, 3]. The basic structure of an MLPN consists of 

the input layer, hidden layer and the output layer. However, it 

can have many layers and normally has sigmoid-type functions 

in the hidden layer. There are no certain criteria for selecting the 

number of neurons in the hidden layer, but enough neurons are 

needed to obtain a very good performance. The MLPN is a feed 

forward network (Fig. 2) where the training parameters move 

from the input layer to the hidden layer and finally to the output 

layer. The MLPN is trained in such a way as to find the weight 

that minimizes the mean square error (MSE) at the output, i.e. 

when the output closely matches the target output.  

 

 
 

Fig 2: The MLPN. 



In designing and training the MLPN, certain considerations 

have to be taken to be able to get the best performance, i.e. by 

choosing the number and types of neurons in the hidden layer 

and finding the best solution to avoid local minima in the error 

space. Local minima are a sudden termination of the training 

error curve resulting from instability of the ANN [9]. In this 

paper, the MLPN will be applied to classify different PD fault 

geometries and the results were compared with that of the MLR 

model. 

 

IV. MULTIPLE LINEAR REGRESSION 

 

The MLR adopts a linear relationship between a dependent 

variable yj and a set of descriptive variables or regressors x’j = 

(xj0, xj1, ..., xjN). The first regressor xj0 = 1 is a constant [5, 11]. 

For a sample having M observations, every observation j can be 

expressed according to an equation forms as [11]: 

 

jji xy αβ += ,
 (1) 

 

where β is a (N + 1) column parameter vector, x’j is a (N+1) row 

vector and µ represent an error vector. Equation (1) can be 

compactly written as: 

 

αβ += Xyi  (2) 

 

where y is a M- column dimensional vector, X is a M × (N + 1) 

matrix and α is a M-column dimensional vector consisting of 

error terms. 

To predict the value of β, least squares approach similar to 

simple linear regression case is adopted, i.e. to minimize over all 

possible intercepts. 
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Equation (3) is actually minimized by setting: 
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V. PD FINGERPRINTS FOR ANN AND MLR 

 

For φ-q-n analysis, statistical fingerprints were widely 

applied because of their capability for well-defined pattern 

quantification [1, 3, 12]. In order to simplify the φ-q-n 

evaluation, statistical fingerprints are usually extracted from 2D 

plots derived from the φ-q-n patterns. The key 2D distributions 

of interest are the pulse count Hn(φ), mean pulse-height Hqn(φ) 

and amplitude number Hn(q) plots. These plots are presented in 

both the positive (+) and negative half power cycles (-). This 

paper applies 15 statistical parameters that serve as input 

fingerprints for training and testing both the ANN and MLR. 

These include the skewness (sk) and Kurtosis (ku) of the 

Hqn(φ)+, Hqn(φ)-, Hn(q)+, Hn(q)-, Hn(φ)+ and Hn(φ)- 

distributions, the cross-correlation (cc), discharge factor (Q) and 

modified cross-correlation (mcc). Out of this statistical 

fingerprints, the sk and ku of the Hn(q) have never being applied 

for complex PD evaluation and will therefore be applied in this 

paper.  

The sk and ku are determined as follows: 
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where µ is the average value, σ is the standard deviation and Pj is 

the probability of the discrete value xj and yj as the case may be. 

The Q and cc are determined as follows: 
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where mcc is the product of Q and cc. n represent the sample 

size of the data. QS
+ and QS

- represent the sum of discharge 

amplitudes in both the +ve and negative half power cycles, 

Similarly NS
+ and NS

- represent the number of discharges in both 

the +ve and –ve half power cycle. 

Figs. 3-6 compare the 95% limits for several statistical 

parameters when applied as input to the ANN and MLR. Four 

statistical parameters (Q, cc, sk (Hn(φ)+), ku (Hqn(φ)+)) were 

chosen for comparison because they show clear discrimination 

between the PD patterns as compared to the other fingerprints. 

From Fig. 3, it is obvious that corona in air has the least value of 

Q. This is expected, as there are few PD pulses in the positive 

half cycle of cycle of corona. The average value of Q for corona 

in oil and void are almost close to 1 showing similarity in their 

discharge amplitude distribution in both half of the power 

cycles. It is also evident that the cc for corona type discharges is 

low compared to void and surface discharges showing highly 

asymmetrical positive and negative half cycle discharges (Fig. 

4). From Fig. 5, it can be seen that the sk of Hn(q)+ have wider 



complete intervals for corona in air and void  as compared to the 

others because of large number of discharges with lower 

amplitude level with uneven distribution. The ku of the Hqn(φ)+ 

distributions appears to be more peaked for corona in air and 

surface discharges as compared to the others. This shows that 

the mean discharges are concentrating within certain amplitude 

levels unlike the others that have wider distribution of 

discharges over the φ-q-n plane. 
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Fig. 3: Comparison of Q for different PD sources. 
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Fig. 4: Comparison of cc for different PD sources. 
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Fig. 5: Comparison of sk (Hn(q)+) for different PD sources. 
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Fig. 6: Comparison of ku (Hqn(φ)+) for different PD sources. 

 

 

VI. SIMULATION RESULTS 

 

In this section, emphasis would be drawn to the behavior of 

ANN and MLR in classifying and discriminating PD patterns of 

corona in air, corona in oil, internal PDs in voids and surface 

PDs. The training and testing parameters for ANN and MLR 

consist of statistical parameters obtained from the Hqn(φ), Hn(q) 

and Hn(φ) distributions in both the positive and negative voltage 

half cycles. Two strategies are employed. Firstly, the ANN is 

trained with either (corona in air, corona in oil, internal PDs and 

surface PDs and then tested with the others. Similar strategy is 

then applied for the other 3 other PD faults. The input 

parameters are the sk and ku of the (Hn(φ)+, Hn(φ)-, Hqn(φ)+ and 

Hqn(φ)-), Q, cc and mcc. The output parameters are chosen to be 

[0 0], [0 1], [1 0] and [1 1] for the corona in air, corona in oil, 

voids, surface discharges classification. For each PD defect, 24 

samples are applied as training fingerprints while remaining 8 

are the testing parameters. 

Due to unstable behavior of the ANN, a number of iterations 

of the ANN result were obtained with different initial states in 

order to obtain the overall average performance for a more 

reliable PD diagnosis. After several trial and errors, 8 hidden 

layers, momentum rate of 0.4 and learning rate of 0.04 are 

chosen for the ANN model. On the other hand, the MLR is 

trained in order to determine the weight matrix β. The input data 

for each PD faults are normalized in order to reduce the 

variance. 

Table 1 compares the classification results from using ANN 

and MLR. The results show that ANN and MLR are capable of 

recognizing the PD faults. However, for ANN or MLR trained 

and tested with the same PD defects, the ANN appears to 

demonstrate higher recognition rate. Recognition efficiency of 

96% has been obtained when training the ANN with corona in 

oil and testing with the same corona in oil. However, for the 

ANN and MLR trained and tested with different PD defects, the 



MLR generally appears to be more sensitive in discriminating 

the defects. Recognition rate of 31% was recorded when training 

MLR with corona in air and testing carried out with surface PD 

in air. 

 
Table 1: Comparison of classification results using ANN and MLR. 

 

Training data  Testing data and the corresponding recognition rate 

cor-air cor-oil int-void surf-air 

 

ANN 

cor-air 95% 75% 70% 63% 

cor-oil 74% 96% 72% 73% 

int-void 67% 69% 95% 82% 

surf-air 65% 77% 79% 96% 

 

MLR 

cor-air 81% 66% 58% 31% 

cor-oil 62% 83% 69% 41% 

int-void 61% 63% 88% 58% 

surf-air 40% 64% 59% 82% 

 

 

VII. CONCLUSION AND FUTURE WORK 

 

This paper has compared the capabilities of the ANN and 

MLR for recognizing PD defects of corona in air, corona in oil, 

internal PD in voids and surface PDs. Statistical φ-q-n PD 

fingerprints have been applied for training and testing both the 

ANN and MLR. The result shows that the ANN is better suited 

for recognizing the same PD defects but the MLR has shown 

more sensitivity in discriminating them. The implication of the 

results is that both ANN and MLR can be utilized 

simultaneously for both online and offline PD detection but their 

performance depends on the training and testing parameters 

used. Future work concentrates on applying denoising 

techniques for PD evaluation in order to determine the robust 

pattern recognition tool between ANN and MLR. 

 

ACKNOWLEDGEMENT 

 

This paper is based on work supported by the Ministry of 

Higher Education (MOHE) of Malaysia under grant 

20160104FRGS. Any opinions, findings and conclusion or 

recommendation expressed in this paper are those of the authors 

and do not necessarily reflect those of the Ministry of Higher 

Education (MOHE) of Malaysia. 

 

 

REFERENCES 

 
 

[1] E. Gulski and A. Krivda, “Neural network as a tool for recognition of 
partial discharges,’’ IEEE Transaction on Electrical Insulation, vol.28, 
no.6 ,pp.  984-1001, 1993. 

[2] A. Krivda, automated recognition of partial discharges, IEEE Trans on 
Dielectrics and     Electrical Insulation, vol.2, no.5, 792-821, 1995. 

[3] P. Gill. Electrical power equipment maintenance and testing. CRC press, 
2008. 

[4] A. Abubakar Mas’ud, B.G.Stewart, S.G.McMeekin, Application of 
Ensemble neural networks for classifying partial discharge patterns, 
Electric Power System Research 110 , 154-162, 2014. 

[5] S, Ludpa., S.,N,Pattanadech,M,Leelajndakrairerk. Pattern classification of 
partial discharges in high voltage equipment by the regression analysis 
In;Proceedings of ECTI-CON, pp921-924, 2008. 

[6] IEC 60270 , British standard guide for partial discharge measurement, 
2001. 

[7] N. Giaot Rinh, Partial discharge XIX: Discharge in air part I: Physical 
mechanisms. Electrical Insulation Magazine, IEEE 11, no. 2, 23-29 , 1995. 

[8] Niasar, M. Ghaffarian, et al. Partial discharge characteristics due to air and 
water vapor bubbles in oil.  International Symposium on High Voltage 
Engineering, 2011. 

[9] P. Cunningham, J. Carna and S. Jacob, Stability Problems with the 
Artificial  Neural Networks and the Ensemble Solution, Art Intelligence in 
Medicine, vol.20, no.3, 217-225, 2000. 

[10] S. Haykin, Neural networks: A comprehensive foundation, Prentice Hall, 
1998. 

[11] Ngo, Theresa Hoang Diem, and C. A. La Puente. The steps to follow in a 
multiple regression analysis.  Proceedings of the SAS Global Forum 2012 
Conference, Orlando, Florida, April 22–25, 2012. 

[12] A. Mas’ud, R. Albarracín, J. Ardila-Rey, F. Muhammad-Sukki, H. Illias, 
N. Bani, and A. Munir, “Artificial Neural Network Application for Partial 
Discharge Recognition: Survey and Future Directions,” Energies, vol. 9, 
no. 8, p. 574, Jul. 2016. 

 


	coversheetConferences
	MAS'UD 2017 Comparison of artificial neural

	OA: GREEN
	OA Logo: 
	AUTHORS: MAS'UD, A.A., MUHAMMAD-SUKKI, F., ALBARRACIN, R., ARDILA-REY, J.A., ABU-BAKAR, S.H., AZIZ, N.F.A., BANI, N.A. and MUHTAZARUDDIN, M.N.
	TITLE: Comparison of artificial neural network and multiple regression for partial discharge sources recognition.
	YEAR: 2017
	Publisher citation: MAS'UD, A.A., MUHAMMAD-SUKKI, F., ALBARRACIN, R., ARDILA-REY, J.A., ABU-BAKAR, S.H., AZIZ, N.F.A., BANI, N.A. and MUHTAZARUDDIN, M.N. 2017. Comparison of artificial neural network and multiple regression for partial discharge sources recognition. In Proceedings of the 9th IEEE-GCC conference and exhibition 2017: solutions for a smarter economy, 8-11 May 2017, Bahrain, Saudi Arabia. New York: IEEE [online], pages 1-5. Available from: https://doi.org/10.1109/IEEEGCC.2017.8448033
	OpenAIR citation: MAS'UD, A.A., MUHAMMAD-SUKKI, F., ALBARRACIN, R., ARDILA-REY, J.A., ABU-BAKAR, S.H., AZIZ, N.F.A., BANI, N.A. and MUHTAZARUDDIN, M.N. 2017. Comparison of artificial neural network and multiple regression for partial discharge sources recognition. In Proceedings of the 9th IEEE-GCC conference and exhibition 2017: solutions for a smarter economy, 8-11 May 2017, Bahrain, Saudi Arabia. New York: IEEE, pages 1-5. Available from: https://doi.org/10.1109/IEEEGCC.2017.8448033 Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk
	Version: AUTHOR ACCEPTED
	Publisher: IEEE
	Conference: 9th IEEE-GCC conference and exhibition 2017: solutions for a smarter economy, 9-11 May 2017, Bahrain, Saudi Arabia.
	ISBN: 9781538627563
	eISBN: 
	ISSN: 2473-9391
	Set statement: © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
	License: BY-NC 4.0
	License URL: https://creativecommons.org/licenses/by-nc/4.0
	CC Logo: 
		2018-09-06T14:44:59+0100
	OpenAIR at RGU




