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Abstract: An effective method to estimate the integrated state of charge (SOC) value for the lithium-ion battery 

(LIB) pack is proposed, because of its capacity state estimation needs in the high-power energy supply applications, 

which is calculated by using the improved extended Kalman filter (EKF) method together with the one order 

equivalent circuit model (ECM) to evaluate its remaining available power state. It is realized by the comprehensive 

estimation together with the discharging and charging maintenance (DCM) process, implying an accurate 

remaining power estimation with low computational calculation demand. The battery maintenance and test system 

(BMTS) equipment for the aerial LIB pack is developed, which is based on the proposed SOC estimation method. 

Experimental results show that, it can estimate SOC value of the LIB pack effectively. The BMTS equipment has 

the advantages of high detection accuracy and stability and can guarantee its power-supply reliability. The SOC 

estimation method is realized on it, the results of which are compared with the conventional SOC estimation 

method. The estimation has been done with an accuracy rate of 95% and has an absolute root mean square error 

(RMSE) of 1.33% and an absolute maximum error of 4.95%. This novel method can provide reliable technical 

support for the LIB power supply application, which plays a core role in promoting its power supply applications. 
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1. Introduction 

The accurate SOC estimation is a core factor of a variety of applications for the LIB-based energy storage and 

supply systems. Because of their high energy, high power, long cycle life and low purchase price when compared 

with other battery types such as lead acid and nickel cadmium batteries, the LIB has become popular in many 

energy-powered applications. For the high reliability requirement characteristics of aviation application, the LIB 

packs are used as alternate emergency equipment in the aerial control system. It is used to solve the instantaneous 

energy shortage problems and provide the energy supply protection for other emergency situations. Because of its 

high energy density advantage, the LIB packs are increasingly used in the aerial applications, which are becoming 

to substitute the nickel-cadmium batteries to be the main power supply batteries.  

With respect to the cell continuous mutation in the high power supply aerial LIB packs, the SOC value should be 

estimated real-time accurately in the approximated BMS equipment and becomes an increasingly challenging 

problem that requires rigorous calculation limits. Especially in the aircraft environment, the actual SOC estimation 

of the LIB pack is rather a crucial factor to be predicted accurately. As the ECM is commonly used to assess the 

performance of the LIB electric-power operating state, the dynamic and closed-loop model named as EKF 

combining with ECM is extensively used in the SOC estimation process of the power LIB packs, reducing the 

computational requirements in the traditional SOC estimation method. The on-line adaptive battery impedance 

parameter and state estimation is conducted by Fleischer et al. (2014) considering physical principles in reduced 

order ECM battery models. The relationship between SOC and OCV is usually used for the SOC value correction 

in the accessional BMS real-time control application of the power LIB packs. The improved SOC estimation 

method is proposed in this paper, which is based on the real-time online ECM electrolysis parameters. The stage 

optimization for cascade and optimized EKF approach is used for the accurate SOC estimation, which is suitable 
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for the BMS control in the aerial LIB pack power supply applications due to its simplicity computational process. 

The symbols used in the paper can be described in Tab.1. 

Tab.1 List of symbols 
Symbol Description Symbol Description 

LIB Lithium-Ion Battery EKF Extended Kalman Filter 

KF Kalman Filter BMS Battery Management System 

SOC State of Charge SEI Solid Electrolyte Interface 

DCM Discharging and Charging Maintenance PNGV Partnership for New Generation of Vehicles 

OCV Open Circuit Voltage HPPC Hybrid Pulse Power Characterization Test 

ECM Equivalent Circuit Model Ah Ampere hour 

EVs Electric Vehicles MMSE Minimum Mean Square Error 

CC Constant Current CV Constant Voltage 

BMTS Battery Maintenance and Testing System ANN Artificial Neural Network 

NN Neural Network SVM Support Vector Machine 

RC Resistor-Capacitor NASA National Aeronautics and Space Administration 

EIS Electro-chemical Impedance Spectroscopy UKF Unscented Kalman Filter 

During the lifetime of the aerial LIB, the capacity and SOC values of the individual battery cell will change along 

with the electrochemical degradation process, due to the decomposition of the electrolytes and the SEI growth of 

the anode surface. These variables are difficult to measure directly in the aircraft control system, but they should be 

aware of the precise scope to know its energy state. The aircraft control system undergoes the over-charging, over-

discharging, over-temperature and limited energy acceleration risks with no SOC correction and control that can be 

done by the assorted BMS of the aerial LIB pack. Because of the positive correlation relationship that is existed in 

the energy consumption and weight in the aircraft, the high energy density is an important basis for the battery 

selection of the performance indicators. However, because of the aircraft 787 incidents spontaneous events caused 

by the combustion event of the LIB pack, the high stability and reliability advantages of power LIB packs are 

worried and questioned, restricting power LIB pack application seriously. 

Due to reliable SOC prediction necessity and urgent needs, a lot of research work has been done on it in last few 

years. Kim J et al. (2015) studied the DCM to increase the capacity and SOC prediction accuracy, in which the 

voltage-temperature pattern is recognized at various temperatures based on the Hamming network-dual EKF 

application. These smart approaches are particularly dependent on the training samples and the estimation accuracy 

decreases seriously when the LIB cell performance changes. Andre D et al. (2015) tries the standard KF interaction 

and UKF combined SVM for the SOC estimation of LIBs by the detailed deduction algorithm. There are many 

other researchers in this field to conduct in-depth research as well. The SOC estimation of LIB using square root 

spherical UKF is conducted by Aung el al. (2015) in the nano-satellite. The temperature dependent SOC estimation 

of LIB using dual spherical UKF is studied by Aung et al. (2015). The OCV characterization technique and 

hysteresis assessment is studied by Barai et al. (2015) of LIB cells. The electrochemical model-based SOC and 

capacity estimation algorithm is studied by Bartlett  et al. (2016) for the composite electrode LIB. The experimental 

study is conducted by Bazinski et al. (2015) on the influence of temperature and SOC for the thermo-physical 

properties of the LIB cell. The particle-filtering-based estimation of maximum available power state is conducted 

by Burgos-Mellado et al. (2016) in LIBs. The SOC estimation for the LIB is conducted by Chen et al. (2016) with a 

robust adaptive sliding-mode observer using RBF NN algorithm in EVs. The electrochemical model-based SOC 

estimation is conducted by Corno et al. (2015) for Li-ion cells. The OCV-based SOC estimation is conducted by 

Dang et al. (2016) for the LIB using dual NN fusion battery model. The online SOC estimation and OCV hysteresis 

modeling of LIB is conducted by Dong et al. (2016) using invariant embedding method. The discrete wavelet 

transform-based de-noising technique is studied by Lee et al. (2015) for the advanced SOC estimator of the LIB in 

EVs. However, the SOC estimation of high power LIB packs still lack of effect systematic methods. In order to 

adapt to different working environments, deterministic models have been used, especially in high safety 

applications like EV or HEV to avoid the SOC estimation failure. At the same time, it is necessary to track the error 

in the BMS, which should be also used attached the LIB pack for the real-time correction and self-learning dynamic 

traction by using the KF-based SOC estimation method. 

A novel SOC estimation method is proposed for the aerial LIB pack available energy assessment based on the 

DCM algorithm, providing a comprehensive remaining capacity state estimation of the LIB pack. Even if the aging 
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mechanism or source can be obtained from the SOC estimation algorithm, there is no direct understanding that may 

be a collection of information on the deterioration of specific aging factors. Therefore, the main factors of LIB 

working status can be identified and determined. A brief description of the mathematical method used in this 

approach is given after the theoretical guidance and presentation of the SOC estimation. Then, the design and 

implementation of BMTS equipment is done to estimate the real-time SOC of the LIB pack. 

2. The real-time battery model 

In this section, a brief description of the mathematical method applied to this study is given. The LIB is classified 

as lithium ion cobalt oxide, lithium ion manganese oxide, lithium iron phosphate and other types of batteries 

according to the type of anode material. Lithium cobalt oxide has been used in the aircraft and other areas of the 

pilot application, due to its high energy density, good safety and reliability, etc. The proposed SOC estimation 

method based on EKF and DCM plays an important role in promoting the application of the LIB pack. 

2.1. The DCM mechanism of the aerial LIB cell 

Due to the perspective of the material, the aerial LIB cell is composed of a positive electrode, a separation, a 

negative electrode and the organic electrolyte, the different parts of which are shown as follows. The most positive 

electrode active material is cobalt oxide. The polymer separator is a special kind of molding, the micro-porous 

structure of which allows the free passage of the lithium ion, while blocking the electrons. The active material of the 

graphite anode is carbon graphite or other similar structural materials, which can be used as conductive electrolytic 

lithium-ion collectors. Excessive charging and discharging of LIB will lead to irreversible damage to the battery 

which reduces its performance and lifetime. The organic solvent of the electrolyte is carbonate. The shape and size 

of the battery shell are steel and square. The internal reaction of LIB in its DCM process is shown in Fig. 1. 

 

Fig. 1. Discharging and charging mechanism of the LIB cell 

The LIB attracts more and more attention as an green energy source with the development of lithium-ion 

components and materials, which is mainly due to the high energy, high power density and long cycling life 

advantages. The intelligent monitoring system is used to estimate the SOC value of the LIB pack accurately. When 

the LIB pack is in the working process of the emergency power supply, the two electrodes are connected to an open 

module, which can be described as shown in Fig. 2.  
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Fig. 2. Aerial LIB pack energy supply principle 

Then, the data download module and critical load equipment may constitute a closed circuit. Because of the 

potential difference effect, the electrons travel from the cathode to the anode outside the LIB cell. Meanwhile, the 

lithium ions travel from the negative electrode to the positive electrode, through the electrolyte and a separator in the 

internal LIB cell until the lithium-rich plasma state appears. The OCV characterization is studied by pattipati et al. 

(2014) for LIBs. Lithium ions travel from the cathode to the anode, until the lithium ion thin the state appears, in 

which the electrolyte solution is immersed in to these two identical current flows between the electrodes. The 

overall reaction of the cathode against the negative electrode reaction is displayed as follows. 
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2.2. The ECM for the LIB characterization 

In order to maintain the safety and performance of the LIB, a reliable and accurate SOC estimation method is 

necessary for modern BMS. The SOC is a crucial factor that shows the remaining battery capacity and system to 

help predict the remaining driving range of the spectrum. More importantly, the precise SOC estimation can prevent 

the LIB pack from the over-charge and over-discharge risks that will damage the battery and brings in danger for 

the aerial power supply system, making it to be an important role in the aircraft control systems. Mounts of SOC 

estimation methods for the on-chip management systems have been proposed, in which the Coulomb counting 

method is the most popular because of its simplicity and low computational cost. The electrochemical machining 

method uses the resistors, capacitors and other electrical components for the LIB equivalent modeling, it is very 

simple to achieve and can capture the dynamic response to the LIB accurately, making it applicable to the LIB 

control and simulation purposes.  

The Coulomb counting algorithm is an open loop estimation, the accuracy of which depends on the accuracy of 

the sensor and suffered from the initial error and measurement error accumulation, because it depends on the 

current flowing out of the LIB cell unit. The SOC estimation method includes current integration, OCV 

corresponding, and filtering methods based on black box method and model. Each method has its own advantages 
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and disadvantages. The current integration method is simple and low computational effort to achieve, but the 

estimation accuracy is reduced, because of the accumulated current error due to the sensor noise. 

Black box model-based approaches typically use a black box model training data, such as neural networks and 

support vector regression, the estimated value of its systems. The estimation may be quite accurate with particularly 

high computational effort, if there is enough training data offline. Model-based filtering method is usually used in 

the state space model and is considered to be the most promising method to estimate the SOC of the LIB, because 

of the high estimation accuracy and error correction capability online advantages. A simplified PNGV battery 

model is proposed for the high power LIB cell, aiming to characterize it and obtain the state-space equations for the 

SOC estimation. The accurate SOC estimation model can be constructed according to the draw HPPC curve, 

calculated OCV-SOC, ECM and battery parameters. 

The SOC estimation method is based on the state-space equation, such as a sliding mode observer, security, EKF 

and UKF, etc., have been used in SOC estimation. ECM has been widely used, unlike the estimated long-term 

aging of on-board chip. A large number of studies have been done on the LIBS modeling the ECM. The model-

based condition monitoring is conducted by Kim et al. (2015) for the LIBs. The LIB pack is usually composed of 

many cells in order to meet high capacity requirements and provide the required voltage for the high power energy 

supply applications, which are connected in series and parallel. It is based on the assumptions that the behavior of 

all the cells in the package. Therefore, the LIB pack can easily be modeled as a unit cell having higher voltage and 

larger capacity. In its simplest form, the LIB cell has been proposed in a very complex form, the electrical and 

electrochemical behaviors of which can be obtained and shown in Fig.3. The ECM consist of the resistance and 

capacitance values can be achieved by using different techniques, such as EIS and pulse power testing. These 

techniques can be well understood and described by the general relationship between the different real-world 

working conditions of the circuit parameters. 

 

Fig. 3. The ECM for the LIB characterization 

The above figure shows the polarization model of a LIB cell and there are some parameters should be known in 

the figure. The resistor RΩ represents the instantaneous voltage drop during the battery ECM process. The RC 

network composed by the parameter RP and CP is used to model the relaxation effects of LIB in the DCM process. 

The RC network models the short term transient response of LIB and the long term transient response. In the ECM, 

the parameter UOC represents the OCV, the parameter UL represents the terminal voltage of LIB and the parameter 

IL represents the LIB current. In general, it provides good modeling accuracy and has simple structure, less 

computation and fast processing speed advantages. As the production variability and uneven working environment 

cannot be avoided, the thermal and energy imbalance exists in the DCM process. The SOC identification is 

essential when the OCV path dependence lags a distinctive feature and its exact estimation are correct. 

Experimental results show that the OCV and capacity value of the LIB is directly related to DCM working 

conditions. A dynamic hysteresis model is used to obtain better accuracy for the SOC estimation, which can be 

realized on-chip in the associated BMS equipment, rather than using the Ah integral method. The results show the 

importance of the OCV characterization in the experimental test program. 

The difference among the connected cells should be a big problem, which makes the cell ECM model do not fit 

the LIB pack. In addition, the battery pack and the ability to store energy chip and transmission power, so the 
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system is highly dependent on the performance of every single cells. A real-time joint estimator is constructed by 

Gao et al. (2015) for model parameters and SOC of LIBs in EVs. The state equation can be obtained by the analysis 

of Fig.3. A systematic review is conducted by Nejad et al. (2016) for the LIB state real-time estimation of lumped-

parameter ECMs. It has just one RC circuit to simply the computational complexity, compared with the multiple 

RC circuit ECM used by Wang L et al. (2015) as shown in Fig.1 and the two order RC circuit used by Tong SJ et 

al. (2015). 

 L OC b L L p pU U C I dt R I R I                        (2) 

In the HPPC experiment, the parameters of a, b, c and d are selected as four different sample time moments and 

the Eq.3 can be obtained accordingly.  
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                    (3) 

The parameter of UOC represents the open-circuit voltage of lithium batteries. The parameter of Cb represents the 

line equivalent capacitance. The parameter of RO represents the line equivalent resistance. The parameter of RP 

represents the internal equivalent resistance of the battery. The parameter of IL is on behalf of the line current. The 

parameter of IP represents the current flowing through the resistance. The parameter VL indicates the external load 

terminal voltage of lithium batteries. The subscript of a, b, c and d denote four different sample times, which are 

used as time parameters to characterize different state values.  

The open circuit voltage UOC parameter of LIB has a nonlinear relationship with SOC. In order to obtain a non-

linear function, the OCV testing was performed using and aerial LIB packs with 45Ah as the experimental samples. 

Hysteresis effect in this study is neglected by assuming that there is an additional voltage source in parallel with the 

digital parameters UOC increased complexity. The CC-CV charging method is used for the LIB packs. Then, it is set 

to be rest for an hour to make it in the steady state and the parameters are measured by the fully charged state at the 

end of the rest. In the different level SOC measurement successor is designed more than an hour, rest for one hour 

when the experimental LIB reaches a steady state, so that the SOC-OCV relationship can be obtained from the 

series experiments. The OCV value of the LIB is directly related to the DCM working conditions and the 

polynomial fitting curves can be used to describe the relationship between the OCV and SOC, in which the 

obtained sufficient error norm is 0.01 by using a seven-order equation. The SOC-OCV relations will be used in the 

next section, the estimated terminal voltage lithium-ion battery. The state-space equation of the LIB can be obtained 

and expressed in discrete time as shown in Eq.4. 

   1 L

d

I t
SOC k SOC k

Q

 
                                  (4) 

Wherein, the parameter Qd is the discharging capacity of the LIB and the parameter IL is the discharging current of 

the LIB. Meanwhile, the parameter △t is the sampling time and the parameter η is the Coulomb efficiency. The 

circuit dynamics of the RC network can be rewritten as shown in Eq.5 by using the Kirchhoff circuit law. 

P P L

P P P

dU U I

dt R C C
                                  (5) 

The LIB state-space equation can be obtained by taking [SOC UP]T as the state variables, which can be described 

in Eq.6. 
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   (6) 

The LIB terminal voltage UL is set as the system output and the LIB current IL is set as the system input, then, the 

measurement function H for the output signal UL can be obtained as shown in Eq.7. 

    
 

, 1 1L P L

P

f SOC
U H f SOC U I R

U


 
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 
            (7) 

In order to estimate the parameters of SOC and UP, the LIB parameters of  RΩ, RP and CP are required, which will 

be experimentally identified and discussed afterwards. Transfer function method is introduced and applied to the 

library parameters required for recognition. Through the above analysis, the preparation can be obtained at the free 

end of the voltage in the frequency domain as shown in Eq.8. 
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The output voltage UL and open circuit voltage UOC difference parameter as the output current IL and set the 

parameters as input parameters, the transfer function G(s) can be obtained as shown in Eq.9. The OCV value is the 

free thermodynamic equilibrium potential with no current and connected loads. The OCV is an important feature as 

a function of the ECM for the SOC estimation. As an ideal, but a variable voltage source, electrolysis process in the 

electrolytic machining over-potential increased residual resistance and capacitive elements. Instead, a lithium-ion 

battery SOC based on the open circuit voltage of the battery is known, this is the key to the system. One to one 

relationship between the open-circuit voltage and the SOC, and is generally considered to use, however, due to the 

lag exists, LIB battery open circuit voltage of the DCM process changes. Any lag thus implying potential LIB 

battery open circuit voltage, insufficient knowledge of history do not understand the characterization of free Cell 

DCM to determine the SOC value. 
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   (9) 

Power supply applications free library package from a single cell is composed of a combination of series and 

parallel. Batteries in parallel to meet the high capacity requirements and provide the required system voltage in the 

series. The influence of memory effect on the SOC estimation is conducted by Shi et al. (2016) for large format 

LIBs based on LiFePO4 cathode. In a pack, the battery capacity and internal resistance of the battery parameters, 

from cell to cell due to manufacturing variation, aging, and different operating conditions, such as temperature 

gradients within the package. The SOC modeling is conducted by Kuo et al. (2016) for the LIBs using dual 

exponential functions. Changes in the battery voltage, capacity, internal resistance and the sheet of the available 

energy adversely affect the battery system, reducing battery performance and life. Therefore, different from the 

BMS balance control method for treating cell changes, thereby improving battery performance. The model based 

condition monitoring is conducted by Singh et al. (2014) in LIBs. The detection and the date of the forecast date in 

fig.4. are shown in the figure we can see, as a predictor of a good agreement, have the detection with SOC. In the 

present study, the combination of PNGV model is used, the simulation model of which is shown in Fig. 4. 
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Fig. 4. The simulation model for the ECM of LIB 

2.3. The SOC estimation model construction 

A recursive solution can be provided by using the KF algorithm to estimate the state by a linear optimal filter 

system variables. This method is widely used in SOC estimation process, can well be combined with other 

observers and estimation algorithms include Neural Network. However, it is the experience of limitations such as 

stability and precision filter, improved EKF introduced aimed at reducing dependency on computing Jacobian 

matrix, wherein the weighted point estimates free sample mean and covariance. If the estimated parameter vector 

changes slowly change over time or a change of time estimated to the estimation it can be named. Meanwhile, if the 

estimated parameter vector change over time, the estimated dynamic estimation can be named. From the battery 

equivalent circuit model may know, it is estimated that the process of on-chip system is the dynamic estimation. In 

practical engineering problems, there are many signals are noise pollution. Assume parameter X(t) is a useful signal, 

parameter random noise parameter V(t), and then the detection signal Z(t)=X(t)+V(t), which is superimposed on the 

useful signal and noise signal. KF algorithm for linear discrete stochastic system can be described as follows. 

Discrete stochastic linear systems can be assumed to be shown in Eq.10. 

             
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       


 
   (10) 

Wherein, 

X(k)——n dynamical state vector. 

U(k)——r dynamical control vector. 

W(k)——p dynamical random interference noise vector. 

Y(k)——m dynamical observation vector. 

V(k)——m dynamical random  observation noise vector. 

EKF algorithm is widely used in SOC estimation, linear approximation of nonlinear function but it increases the 

complexity of implementation. An adaptive remaining energy prediction approach is proposed by Wang et al. 
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(2016) for LIBs in EVs. A SOC estimation method is proposed by Wang et al. (2015) for LIBs based on multi-

model switching strategy. The dynamic battery cell model and SOC estimation is done by Wijewardana et al. 

(2016). The model parameter estimation approach is proposed by Wu et al. (2015) based on incremental analysis 

for LIBs without using OCV. The dimension of the coefficient matrix is shown in Eq.11. 
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             (11) 

The parameters of W(k) and V(k) are zero mean white noise or Gaussian white noise series and they are 

independent with each other. The enhanced closed loop SOC estimator is constructed by Perez et al. (2015) for the 

LIBs based on the EKF algorithm. A novel on-board SOC estimation method is proposed by Sepasi et al. (2014) for 

aged LIBs based on the model adaptive EKF algorithm. Detected inside, they are a constant value, which is 

characterized as shown in Eq.12. 

       

       

    

    

0, ,

0, ,

, 0

1 ; 0 .

k kj

k kj

kj kj

E W k Cov W k W j Q

E V k Cov V k V j R

Cov W k V j

if k j else





 

  


 





  

             (12) 

The parameter Qk is p×p dimensional nonnegative definite matrix, which is the variance matrix of the parameter 

W(k). The parameter Rk is m×m dimensional positive definite matrix, which is the variance of the parameter V(k). 

The improved EKF approach is proposed by Sepasi et al. (2014) for the SOC estimation of battery pack. The on-

line estimation of SOC of LIBs in EV is conducted by Shao et al. (2014) using the re-sampling particle filter. The 

statistical properties of the initial value X(0) for the parameter of state vector X(k) are shown in Eq.13. 

  

       
0

0 0 0

0

0 0 0
T

E X

Var X E X X P



 

 



          

             (13) 

The LIB security guaranteeing method is studied by Wang et al. (2015) based on the SOC estimation. The 

elimination is studied by Wang et al. (2015) for the SOC errors of distributed battery energy storage devices in 

islanded droop-controlled micro-grids. The modeling analysis of dual KF is studied by Wang et al. (2014) in SOC 

estimates of LIB. The initial value X(0) is unrelated with the parameter W(k) and V(k), which is shown in Eq.14. 

         , 0 0, , 0 0E W k X E V t X                   (14) 

The SOC estimation for LIB based on the strong tracking sigma point KF algorithm is studied by Li et al. (2015). 

A mixed SOC estimation algorithm is proposed by Lim et al. (2016) with high accuracy in various driving patterns 

of EVs. The probability based remaining capacity estimation is conducted by Wang et al. (2016) using data-driven 

and NN model. For the system described by the state equation and measurement equation, the observation sequence 

of Z(0), Z(1), …, Z(k) can be given and it is necessary to find the linear optimal estimation X(j|k)  for the parameter 

X(j) to make the error variance to be minimum which is shown in Eq.15. 

        ˆ ˆ| | min
T

E X j X j k X j X j k     
                     (15) 

It is also means that all the state variable estimation error variance is required to be minimum. The SOC imbalance 

estimation is conducted by Lin et al. (2015) for battery strings under reduced voltage sensing. A geometrical 

approach is proposed by Lu et al. (2014) for the LIB capacity estimation. The SOC estimation for LIB is studied by 

Meng et al. (2016) based on adaptive UKF and SVM. Meanwhile, the estimation is required to be the linear 

function of the observation vector Z(0), Z(1), …, Z(k) and the estimation is unbiased as shown in Eq.16. 

     ˆ |E X j k E X j                          (16) 
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The fading KF-based real-time SOC estimation is conducted by Lim et al. (2016) in the LIB-powered EVs. A 

novel multi-model probability battery SOC estimation approach is proposed by Lin et al. (2016) for EVs using the 

H-infinity algorithm. A systematic SOC estimation framework is constructed by Sun et al. (2016) for  the multi-cell 

battery pack in EVs using bias correction technique. In the derivation of the Kalman prediction, it is necessary to 

consider not affect the control signal, so that U(k) = 0, then the discrete linear system can be described as Eq.17. 

         

       

1 1, 1,X k k k X k k k W k

Y k H k X k V k

     


 
   (17) 

Wherein, the parameters of W(k) and V(k) are zero mean white noise series and independent with each other. In 

the detection interval process, they are constant value and the statistical properties of the initial value of the state 

vector X(0) is set in advance. The observation sequence of Y(0), Y(1), …, Y(k) can be given, aiming to find the 

linear optimal estimation X(k+1|k)  for the parameter X(k+1) to make the error variance to be minimum. Then, the 

orthogonal principle and mathematical induction method are used to do the derivation  of the Kalman predication 

estimation functions. When the observation values of Y(0), Y(1), …, Y(k-1), it is reasonable to assume that the 

optimal linear prediction estimation for the state vector X(k) is found. When the new observation value Z(k) for k 

time point is not obtained, how the state vector X(k+1) estimation for k+1 time point can be done according to the 

existing observation values is analyzed. As can be found from the system state function, because the parameter 

W(k) is a unpredictable white noise sequence, the equation below can only be chosen to do the prediction estimation 

for the system state vector X(k+1) that is shown in Eq.18. 

     ˆ ˆ1| 1 1, | 1X k k k k X k k                    (18) 

The improved adaptive SOC estimation is conducted by Fang et al. (2014) for batteries using a multi-model 

approach. When the parameter X(k|k+1) is the optimal linear estimation of the state vector X(k), then the estimation 

X(k+1|k-1) should be the optimal linear prediction of X(k+1). The optimal linear prediction  for the observation 

vector Z(k) at the k time point can be obtained by using the function Y(k)=H(k)X(k)+V(k) as shown in Eq.19. 

     ˆ | 1 1X k k H k X k                      (19) 

When X(k|k-1) is the optimal linear estimation of X(k), the estimation X(k+1|k-1) is also the optimal linear 

prediction  of the parameter X(k+1) which can be proved by the orthogonal theorem. A novel SOC estimation 

method is proposed by Xia et al. (2014) for LIBs using a nonlinear observer. The SOC is estimated by Xie et al. 

(2016) for LIBs using an H-infinity observer with consideration of the hysteresis characteristic.  By substituting the 

Eq.18 from Eq19, the estimation equation can be obtained as shown in Eq.20. 

       ˆ 1| 1 1, 1X k k k k H k X k                         (20) 

A modified model based SOC estimation is conducted by Tian et al. (2014) for the power LIBs using the UKF 

algorithm. The on-line optimization of battery OCV is done by Tong et al. (2015) for improved SOC and SOH 

estimation. The SOC estimation and uncertainty is conducted by Truchot et al. (2014) for the LIB strings. The 

battery SOC estimation is conducted by Unterrieder et al. (2015) using approximate least squares. The battery 

available power prediction of HEV is conducted by Wang et al. (2014) based on improved Dynamic Matrix 

Control algorithms. By extracting the common factor Φ(k+1,k), the estimation error Xe function can be converted 

into Eq.21. 

         

     

1| 1 1, | 1 1,

ˆ| 1 | 1

e e

e

X k k k k X k k k k W k

X k k X k X k k

        


   

     (21) 

As X(k|k-1) is the optimal linear prediction estimation of X(k), according to the orthogonal theorem, the 

estimation error as shown in Eq.17 should be orthogonal with the vector sequence Y(0), Y(1), …, Y(k-1). As a result, 

its linear conversion by multiplying Φ(k+1,k) also should be orthogonal with the vector sequence. The parameter 

W(k) is zero mean white noise sequence and independent with the vector sequence Y(0), Y(1), …, Y(k-1). As a 

result, the estimation X(k+1|k-1) is also the optimal linear prediction of the parameter X(k+1). Then, it is necessary 
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to study how to amend the prediction estimation X(k+1|k-1) for X(k+1) when the new observation value Y(k) is 

obtained. If the new observation value Y(k) equals to the prediction estimation Y(k|k-1)=H(k)X(k|k-1) for Y(k), the 

new prediction value Y(k) does not supply any useful new message for the amending process. It can be proved if the 

orthogonal relationship between the estimation error for X(k+1|k-1) and the predication Y(k|k-1) can be proved. 

According to the orthogonal theorem, the estimation X(k|k-1) is orthogonal with its estimation error as shown in 

Eq.22. 

    ˆ| 1 | 1 0T

eE X k k X k k                    (22) 

The online dynamic equalization adjustment of high-power LIB packs based on the SOB estimation is conducted 

by Wang et al. (2016). The fast SOC estimation is studied by Wu et al. (2014) for LIBs. The SOC estimation is 

conducted by Xia et al. (2015) for LIBs using an adaptive cubature KF algorithm. The comparisons of modeling 

and SOC estimation for LIBs are studied by Xiao et al. (2016) based on fractional order and integral order methods.  

Then, the estimation error for X(k+1|k-1) is also orthogonal with the estimation X(k|k-1) because of the equation 

shown in Eq.23. 

                 ˆ1| 1 | 1 1, | 1 1, | 1
T

T

e e eE X k k X k k E k k X k k k k W k H k X k k                 (23) 

As a result, if the new observation value Y(k) equals the estimation value Y(k|k-1), the estimation X(k+1|k-1) 

should be the optimal linear prediction of X(k+1). The recursive bayesian filtering framework is constructed by 

Tagade et al. (2016) for LIB cell state estimation. The accurate and versatile simulation of transient voltage profile 

of LIB employing internal ECM is studied by Tanaka et al. (2015). The SOC estimation of a LIB cell is conducted 

by Tanim et al. (2015) based on a temperature dependent and electrolyte enhanced single particle model. The 

similarity recognition of online data curves based on dynamic spatial time warping is studied by Tao et al. (2015) 

for the estimation of LIB capacity. Actually, the parameter Z(k) cannot just equal to the estimation value Y(k|k-1), 

the usual value of which can be described as shown in Eq.24. 

               ˆ | 1 | 1eY k H k X k V k H k X k k X k k V k       
    (24) 

An adaptive gain nonlinear observer is constructed by Tian et al. (2014) for the SOC estimation of LIBs in EVs. 

The SOC estimation is conducted by Xing et al. (2014) for LIBs using the OCV at various ambient temperatures. 

The correlation between SOC and Coulombic efficiency is studied by Zheng et al. (2015) on for commercial LIBs. 

Then, the prediction error for Y(k) can be calculated as shown in Eq.25. 

           ˆ| 1 | 1 | 1e eY k k Z k X k k H k X k k V k            (25) 

The reasons of producing this estimation error are that: (1) the prediction for X(k|k-1) which is done for the state 

vector X(k) at k time point has estimation error; (2) the white noise interference V(k) is attached. This estimation 

error should be used to correct the prediction of the state vector X(k+1) at k time point appropriately. As a result, the 

linear estimation and weighted method is usually used for the calibration process. In addition, it is sensitive to initial 

error convergence state estimation error and inaccurate estimation matrix may cause the filter divergence and affect 

its stability. In order to overcome this disadvantage in the SOC estimation process, the improved EKF-based 

compromising is a necessary part of constructing the ECM estimation model into practice. By adding a correcting 

parameter that is proportional to the estimation error of Y(k|k-1), the follow equation can be obtained as shown in 

Eq.26. 

         ˆ ˆ1| 1, | 1 | 1eX k k k k X k k K k Y k k               (26) 

The robust and adaptive estimation of SOC is conducted by Zhang et al. (2015) for LIBs. An online SOC 

estimation method proposed by Xu et al. (2014) with reduced prior battery testing information. A comparative 

study of three model-based algorithms for estimating the SOC value of LIBs under a new combined dynamic 

loading profile is conducted by Yang et al. (2016).  By the combined application of above two equations, the 

equation can be transformed as shown in Eq.27. 
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             ˆ ˆ ˆ1| 1, | 1 | 1X k k k k X k k K k Z k H k X k k        
    (27) 

A multi time-scale SOC and SOH estimation framework is constructed by Yin et al. (2015) using nonlinear 

predictive filter for LIB pack with passive balance control. The SOC estimation is conducted by Yu et al. (2015) for 

LIBs using a KF based on local linearization. The stability analysis for LIB model parameters and SOC estimation 

by measurement uncertainty consideration is conducted by Yuan et al. (2015). Wherein, the K(k) is a undetermined 

matrix which is named as optimal gain matrix or weighted matrix that is shown in Eq.28. 

               ˆ ˆ1| 1, | 1 | 1eX k k k k X k k K k H k X k k K k V k          (28) 

A data-driven based adaptive SOC estimator of LIB is constructed by Xiong et al. (2014) used in EVs. The SOC 

estimation is conducted by Xu et al. (2014) for the LIBs based on a proportional-integral observer. An integrated 

approach is proposed by Zhang et al. (2015) for real-time model-based SOC estimation of LIBs. As the system state 

function at k+1 time point is set as shown in the second part of Eq.21, the estimation error of X(k+1) can be obtained 

as shown in Eq.29. 

                     ˆ1| 1 1| 1, | 1 1,e eX k k X k X k k k k K k H k X k k k k W k K k V k                 (29) 

For the right part of the equation, the parameters of W(k), V(k) and the estimation error of X(k|k-1) are all 

orthogonal to observation vector Y(0), Y(1), …, Y(k-1), so the estimation error for X(k+1|k) is also orthogonal to the 

observation vector. If the estimation error of X(k+1|k) is also orthogonal to Y(k), the estimation of X(k+1|k) will be 

the optimal linear prediction of X(k+1). As a result, the orthogonal condition between the estimation error of X(k+1) 

and Z(k) as shown in Eq.30, which can be used to determine the undetermined optimal gain matrix K(k). 

    1| 0T

eE X k k Y k                     (30) 

The EKF method is used by Xiong et al. (2014) for the SOC estimation of vanadium redox flow battery using 

thermal-dependent electrical model. A data-driven based adaptive SOC estimator of LIB used in EVs. By 

introducing the estimation error of X(k+1|k) as shown in Eq.28 and the observation vector function as shown in 

Eq.25, the follow equation can be obtained. 

                

        

ˆ[ 1, | 1 1,

ˆ ˆ| 1 | 1 ] 0
T

E k k K k H k X k k k k W k K k V k

H k X k k X k k V k

        

     
 

  (31) 

Considering that the estimation X(k|k-1) and its estimation error, together with the parameters of W(k) and V(k) are 

all orthogonal with each other, the above equation can be simplified as shown below. 

                  1, | 1 | 1 0T T T

e eE k k K k H k X k k X k k H k K k V k V k             (32) 

The vector P(k|k-1) can be used to describe the estimation error variance matrix as shown in Eq.33. 

      

    

| 1 | 1 | 1T

e e

T

k

P k k E X k k X k k

E V k V k R

    




               (33) 

A SOC estimation method can be proposed for the LIB pack based on in-pack cells uniformity analysis and the 

follow equation can be obtained. 

           1, | 1 0T

kk k K k H k P k k H k K k R            (34) 

A data-driven bias-correction-method-based LIB modeling approach can be obtained by the above calculating 

process and the optimal gain matrix can be calculated as shown in Eq.35. 

               
1

1, | 1 | 1T TK k k k P k k H k H k P k k H k R k


            (35) 

Then, it is necessary to determine the recursion formula of the estimation variance matrix P(k+1|k). According to 

the definition, the description of the estimation variance matrix is shown in Eq.36. 
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      1| 1| 1|T

e eP k k E X k k X k k                    (36) 

However, if the system is nonlinear, linear processing in each step, which is used for linear approximation of 

nonlinear systems varying systems. As a result, it is necessary to use this linearization process for the non-linear 

system of the power LIB. The state and measurement equations in the modeling of the nonlinear LIB system and 

calculation procedures are shown in Eq.37. 

        

        

1 ,

1 ,

X k f X k U k w k

Y k g X k U k v k

   


  

                           (37) 

Wherein, the first part of Eq.37 represents all the system dynamics expressed in state equations and the second 

part of it indicates the system measurement equation with a static relationship. The function f{X(k),U(k)} is a 

nonlinear transition function and the function g{X(k),U(k)} is a nonlinear measurement function. The vectors w(k) 

and v(k) denote process and measurement noise which are uncorrelated zero-mean white Gaussian stochastic 

processes with covariance matrixes Q and R respectively. At each time step, the linearization is done for the 

matrices of f{X(k),U(k)} and g{X(k),U(k)} which are close to the operation point by the first order in Taylor-series 

and the rest series are truncated.  

3. Experimental results and discussion 

In order to verify the validity of the proposed method, the BMTS equipment is designed and used for the aerial 

LIB packs, aiming to perform the aerial environmental conditions for subsequent experiments and shown in Fig.5.  

 

Fig. 5. The BMTS designed for the LIB packs 

As shown in above figure, the DC power supply is used to simulate the antenna output power and DC electronic 

load simulation loading system. The data acquisition subsystem is designed to record the voltage, current and 

temperature characteristics, which is used for computing the on-chip reference system. The high-precision current 

sensors are used for the on-chip reference chip system, the current accuracy of which is between 0.10% and 0.15%. 

The C# type program is used to control the hardware devices. The hot chamber is used to maintain the temperature 

of the LIB to be about 23 ℃ to keep the temperature stable for the aerial application. The comparative data 

processing and real-time test systems use the dsPIC6014A as the acquired microcontroller. In addition, the internal 

resistance tester is designed for the further reference. The SOC estimation model is designed and used as shown in 
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Fig.6, in which the factors of current density, temperature, Coulombic efficiency and other parameters are 

considered in the estimation process. 

 

Fig. 6. The SOC estimation model with multi-factors 

In the LIB pack, the storage of energy and energy transfer capability are important, so the system-level chip is 

highly dependent on the performance of individual cells and chips, in which electrical topology and balance control 

are very important. In this work, the state estimation problems of the LIB pack using cells in series consisting of 

configuration are particularly considered. The ability to define the concept of extending the package into a single 

cell level definitions, packaging capacity is the total ampere hours from the rechargeable battery in the LIB pack 

until the pack is fully discharged and the LIB packs with 7-ICP series are used as the experimental samples.  

3.1. Discharging voltage characteristics 

The following diagram depicts the same type of LIB cell terminal voltage different fading characteristics of CC 

charge and discharge rates. The voltage drop rate is different from the cross-flow of the various discharge rates (i.e., 

different discharge currents) of the maintenance procedure. After changing the LIBs by CC-CV method, the LIB 

needs to be placed on hold to obtain the charging maintenance voltage  to enhance the terminal voltage to be stable 

between the electrodes. And the discharge voltage characteristics under different discharge rates are measured and 

analyzed. When doing the discharge test, the discharging terminal voltage reaches the discharging cutoff voltage, 

which is set to be 3.0V at different discharge currents. Experiments are performed at different ambient temperatures 

and different discharging rates, and the discharging voltage curves corresponding to the final properties are 

obtained. The different discharge voltage - time curves can be obtained by modeling the experimental environment 

in different discharge rates. The discharge voltage characteristics of different discharge rates are shown in Fig. 7. 
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Fig. 7. Discharging voltage characteristics 

The above graph can be divided into three regions, namely 1 (steep drop zone), 2 (linear region), and 3 (steep drop 

zone), which are separated from the three solid lines. As can be seen from the above figure, the voltage dropped 

drastically over time firstly. In the second district, the voltage decreases slowly with time. At the third zone, the 

sudden voltage drop happens to be the minimum threshold value. In the energy supply process, most of the working 

time is in the second region and only a small part of working hours in the first and three time areas. Fortunately, this 

phenomenon is what we want to see. In the presence of a radical LIB hysteresis, the radicals are several possible 

reasons for the thermodynamic equilibrium potential, corresponding to a positive electrode and lithium cobalt oxide 

as the active material which is known from the exhibit hysteresis. The particles and OCV potentials are 

corresponding to the chemical potential of SOC which may be different depending on the composition of the 

particles. In addition, the lithium graphite anode is a complex process, which is dependent on the path and provide 

help to further lag. 

For free parameters extracted under various experimental DCM mounts different SOC injection interval detection 

and the corresponding voltage responses. In order to obtain the desired voltage response, freedom is by using CC-

CV charging method, which is half an hour 0.2C5A periodically removed half hour break. At each time interval of 

rest, different charge and discharge current pulses with duration of 10 seconds is injected into the library. Suppose 

the open circuit voltage UOC parameters in a short time constant, the corresponding voltage response with respect to 

each recording pulse current. Repeat at intervals of 5% every time a system until the free library is fully released. 

On different chip voltage response current pulse is injected, and then used in the identification and recognition of 

the transfer function. With the corresponding current pulse voltage response, the coefficient parameters of A2, A1, A0 

and B0, B1 of the transfer function G(s) can be calculated with reasonable values. Then, the parameters of RΩ, RP and 

CP can be obtained by solving these coefficients, which are shown in Eq.38. 
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26 ; 10 ; 300P PR m R m C F                            (38) 

Different transfer functions and parameter sets are determined in each of the detected voltage at the system level. 

Due to parameter changes, it is respected to consider the negligible organic carbon and the average determined 

parameters. The HPPC load curve is used to verify the determined parameters, in which the experimental value of 

the voltage and the estimation errors are compared and analyzed. The results showed that the parameters of the 

state-space model can determine an accurate estimation of the terminal voltage for the aerial LIB pack. The average 

estimation error is less than 8mV and the maximum error is 43mV in the charge and discharge pulse. The important 

indicators of working status are used in the two working areas for the length of time scope of the LIB pack. At 

different discharge rates, the LIB working time is divided in two different zones. In the process of evaluating the 

SOC value of the LIB pack, it should be a different type of processing power or energy application environment  

and can be carried out a detailed analysis and evaluation that should be done. 

3.2. Discharging capacity characteristics  

Experiments at different temperatures (-20℃, -10℃, 0℃,10℃, 20℃, 60℃) and different CC discharge current for 

the LIB pack samples. All-electric SOC values are considered from the last record to the discharge terminal voltage 

together with the battery capacity obtained by experiments and thus the total energy can be released. As can be seen 

from different experiments, the battery discharge rate has a constant affect on the final released energy. With the 

impact of this effect, the performance is evident at a relatively low temperature, such as 0 degrees Celsius. As can 

be seen from the experimental results, that the high-capacity LIB discharge rate almost has no effect on the size of 

capacity, when the temperature is greater than 0 °C. However, the LIB capacity increased significantly when 

reducing the temperature and the discharge rate, in which the temperature is lower than 0 ° C. That is to say, the LIB 

will has less emission rate and greater release capacity when the temperature is low. 

A possible method of estimating the OCV value for the LIB is to do the DCM process with a small current, and 

use the average voltage value as the OCV value, which is obtained from the measurement voltages detected during 

the charging and discharging process. As a result, the low current can be applied to minimize the diffusion-limited. 

However, even at lower current DCM, the contribution of the LIB battery experiences dynamics is almost fully 

charged due to electrical discharge or high voltage and a measured voltage OCV cannot be assumed to be more 

free. The discharge capacity law of the LIB released from a full power state is shown in Fig. 8. 
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Fig. 8. Battery discharging capacity from full power status 

The impact effects of the discharge capacity are analyzed under different discharge rates (1C, 10C, 20C, and 25C). 

Basically, the LIBS higher the temperature, the larger discharge capacity. For example, the impact on the 1C rate 

discharge capacity of ambient temperature, as shown below, mainly for 9A discharge current curve. As we have 

seen, the digital whole area is divided into 0 partial longitudinal axis, in degrees Celsius. The model-based dynamic 

power assessment is conducted by Hu et al. (2014) for the LIBs considering different operating conditions. When 

the temperature is higher than 0 °C, the capacity is with little change in the variation on discharging rates and 

environmental temperatures. The SOC estimation for the LIB is conducted by Li et al. (2015) based on strong 

tracking sigma point KF algorithm. When the temperature is below 0 °C, when the temperature is below 0 °C, with 

the discharge rate and temperature changes, changes in the larger capacity. As described above, the discharge 

capacity of the battery from full power is released to the discharge terminal voltage. Herein, the acquisition process 

is described as shown in Fig. 9.  

0 T/h

C
/A

h

Discharging

T1 T2

Charging

Capacity 

calculation 

Capacity 

calculation 

Discharging Discharging

Charging Charging

 

Fig. 9. Remaining capacity cycle calculation process 

The parameters of T1 and T2 in the above figure indicate the charging and discharging cycle time period. As we 

can see, the capacity will be calculated from the highest point of the lowest point in the figure. The SOC estimation 

is conducted by He et al. (2014) for the LIBs using NN modeling and UKF-based error cancellation. The online 
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estimation of LIB capacity using sparse Bayesian learning is conducted by Hu et al. (2015). The capacity cycling 

maintenance test is also done by Yin H et al. (2015) as shown in Fig.13 and has similar experimental process. 

3.3. Capacity degradation of the LIB 

With the aging influence, the capacity of LIB will decrease, but there is no clear conclusion mechanism that exists 

in the attenuation process. The degradation data is analyzed for the SOC estimation process by means of correct the 

realistic capabilities of the LIB. The following diagram is the cycling life test results by discharging it at 1C5A rate 

at room temperature. By analyzing the actual capacity and the corresponding cycle number of the LIB, as can be 

seen from the following figure, the LIB capacity is changed in a certain number of DCM cycles. When the LIB 

cycling number is changed, the capacity value of the LIB will change along with it. By doing the DCM with 1C 

discharge rate under the normal temperature conditions, the relationship between the capacity of LIB and the 

corresponding cycle number is described as shown in Fig. 10. 

 

Fig. 10. Relationship between capacity and cycle numbers 

The SOC estimation accuracy can be influenced by the impact of the ECM parameters, which are depending on 

the cellular changes in the internal structure of the LIB. As the LIB usage increases, the processing parameters such 

as RΩ will change along with it. The SOC algorithm and its associated model are related to the existing data and 

altitude experimental data of the aerial LIB with ICP series. By the comparison of experimental data and the rated 

battery data, the adaptability of the algorithm is analyzed. The SOC estimation is conducted by Hua et al. (2015) for 

two types of LIBs using the nonlinear predictive filter for EVs. These parameters are considered as a state of the 

LIB power supply system, it is estimated by the nonlinear observer discrete values, and the relationship between 

these parameters are obtained from the experimental data of the battery capacity. 

3.4. The SOC estimation characteristics 

The SOC estimation method, considering the LIB characteristics, is verified by doing the DCM process and the 

experimental results are compared with other SOC estimation methods. Estimation performance estimation method 

utilizing the proposed on-chip system. True system on a chip set to 100% and an initial estimation value of 90%. 
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Experimental results show that the estimated SOC converges to real values in over 50 years of age, the initial 

estimate of SOC is set to an initial value is not accurate. To further verify the convergence performance of the 

proposed method of estimation error during the entire discharge system on a chip are summarized. Experimental 

results show that the proposed method is able to converge to the maximum estimation error over the entire 

operating range of 4.23%. The results showed that the initial estimation error does not affect the convergence of 

SOC estimated using the ECM-EKF methods. As the structure of LIB materials has changed, it should also 

experience behavioral changes in mathematics. The SOC performance factor of LIB is described by actual SOC 

chart. Therefore, it is necessary to provide charge-discharge characteristics of the LIB. The performance test data is 

analyzed and the parameter identification model is designed to obtain the charging and discharging parameters for 

the accurate extraction in the useful parameter characterization process of LIB. Temperature, voltage, current, aging 

and other factors are used to estimate the SOC characteristics accurately in the application of associated BMS 

system of the aerial LIB pack. The SOC estimation results are compared with the experimental results when doing 

the discharging process as shown in Fig. 11, which has similar regulation with the experimental results obtained by 

Zhang CH et al. (2014). 

 

Fig. 11. SOC estimating normalization characteristics 

As can be seen from the experimental results, it can be observed on the basis of Coulomb counting algorithm from 

the on-chip system referenced to the accumulation of errors. In order to evaluate the different performance of the 

SOC estimation methods, the absolute average, maximum error and RMSE is calculated according to the formula 

as shown in Eq.39. 
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The percentage error of the estimated percentage increase from its Coulomb counting error can be observed linear, 

because the error accumulation. Experimental results show that, the proposed SOC estimation method has a lower 
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average absolute, absolute maximum and RMSE than all other methods. In addition, it is more effective than other 

model-based estimation methods. 

3.5. SOC estimation based on the improved EKF algorithm 

In this study, the correlation is used to model the experimental data and the parameters of the battery and the least 

square fitting method is used between the OCV and SOC values. The relationship between the OCV and SOC is 

obtained, which is also characterized by using the least square fitting method with 7-order equation. The detection 

data and the fitting curve are shown in Fig. 12, according to which the resistance and electrical capacity values used 

in the ECM can be obtained. 

 

Fig. 12. Least-square fitting for the voltage and SOC  

The result of fitting various OCV relaxation models to the OCV relaxation curve measured for LIBs is also 

obtained by Waag W et al. After obtaining the estimated parameters using the EKF method combined with the 

battery model estimation, the battery SOC estimation model combined with the EKF is tested. The real-time 

estimation is conducted by He et al. (2016) for the battery SOC with UKF and RTOS mu COS-II platform. 

Experimental results show that the value of a high concentration obtained SOC credibility integrated SOC 

estimation method based reasoning. The comprehensive SOC evaluation strategy method is used to determine the 

accuracy of greater than 90%, indicating that the method can effectively estimation. This comprehensive system 

based on SOC estimation method can work well. 

4. Conclusion 

In this study, a new and powerful SOC estimation method is proposed by using the construction and application of 

the ECM-EKF estimation model. The proposed estimation method is based on linear matrix advantage of 

utilization. In addition, the square root characteristics of the proposed method can improve the state covariance 

value property. The pulsed power characteristics of the test results and OCV curve can verify the system 

performance. The estimation accuracy can be regarded as superior to existing publications. Experimental results 

show that the proposed method can achieve the comprehensive evaluation based on the credibility reasoning of 

LIBs. By using the proposed SOC estimation method, a verification system is established with the implementation 
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of a new estimation model. The integrated SOC estimation model can work well for LIBs, effectively ensuring the 

reliability of the battery-powered applications. It has beneficial effects on the promotion and application of high 

power LIB packs. 
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