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 The time independent nonlinear reaction-diffusion equations have been formulated and 

solved analytically for the first time 

 Applied the new approach of Homotopy perturbation method 

 Analytical solutions are compared with zero order analytical solutions. 

*Highlights (for review)
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Abstract 

For the first time a mathematical modelling of the enzymatic glucose membraneless fuel cell 

with direct electron transfer has been reported. The niche of this mathematical modelling is the 

description of the new Homotopy perturbation method to solve the nonlinear differential 

equations that describes glucose concentration and hydrogen ions respectively. The analytical 

results of an enzymatic fuel cell should be used, while developing fuel cell, to estimate its 

various kinetic parameters to attain the highest power value. Our analytical results are compared 

with limiting case results and satisfactory agreement is noted. The influence of parameters on the 

concentrations are discussed. 

 Keywords: Mathematical modelling; Nonlinear differential equation; Enzyme; Biofuel cell; 

New Homotopy perturbation method. 

1.  Introduction 

Glucose cells are energy devices that convert chemical energy from glucose fuel to electricity [1-

2]. Theoretically, glucose can be completely oxidized to carbon dioxide and water, releasing 24 

electrons per glucose molecule [3]. An enzymatic glucose biofuel cell uses glucose as fuel and 
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enzymes as biocatalyst, to transform biochemical energy into electrical energy [4]. Enzymatic 

fuel cells convert the chemical energy of biofuels into electrical energy. Unlike traditional fuel 

cell types, which are mainly based on metal catalysts, the enzymatic fuel cells employ enzymes 

as catalysts [5]. 

Enzymatic fuel cells (EFCs) have been proposed that can catalyse oxidation of fuels at anodes 

and/or reduction of oxidants at cathodes to provide electrical power. Electron transfer as opposed 

to hydrogen transfer was demonstrated in the oxidation-reduction of the flavour protein enzyme 

system [6]. Recent research into enzymatic fuel cells has focused on the use of glucose as a fuel 

[7]. 

Modeling biofuel cells play an important role in understanding and developing new energy 

devices. The enzymatic fuel cells mathematical models are based on a system of non-linear 

equations, including reaction and transport kinetics [8, 9], statistical analysis [10] and metabolic 

control analysis [11].Theoretical, numerical and experimental methods for estimating the biofuel 

cell performance was discussed by various authors [12 - 15]. Ivan Ivanov presented the major 

research activities concerned with the enzymatic biofuel cells by highlighting the current 

problems [5]. Osman et al. [15] developed a two-dimensional steady-state and dynamic models 

for an enzymatic fuel cell. Baronas et al. [16], discussed a mathematical model of a chemically 

modified amperometric biosensor. Nonlinear reaction-diffusion equations in this model are 

solved using the finite difference technique. Saravanakumar et al. [17] analyzed the current-

potential response of the enzyme-catalyzed as well as the redox polymer mediated kinetic 

scheme pertaining to biofuel cells. Saravanakumar et al. [18] discussed theoretical treatment of a 

reaction and diffusion processes in a biofuel cell electrode, for the steady and non-steady state 

condition. Rasi et al. [19] solved the one-dimensional nonlinear reaction-diffusion equation in an 

enzyme-catalyzed oxygen reduction reaction in biofuel cells. Malini Devi et al. [20] analyzed the 

theoretical behavior of biofuel cell/biosensor. 

Rubin developed an analytical model for enzymatic glucose membraneless fuel cell with direct 

electron transfer [1]. Though there are several models and expressions available in the literature 

that corresponds to various phenomena and processes at biofuel cells, to the best of our 

knowledge, there are not rigorous analytical expressions for the steady state current for 

enzymatic glucose biofuel cells. In this paper we have derived the analytical expression for the 
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concentration of glucose and hydrogen ions in the enzyme layer and outside the enzyme layer, 

corresponding current density and electrical power in the enzymatic fuel cells.  

2. Mathematical formulation of the problem 

 The change of hydrogen ions concentration and glucose is associated with the diffusion 

and the enzymatic reaction. The kinetics and mass transport in the enzyme layer )0( Lx   can 

be represented by the following non-linear differential equations for steady state condition. 
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where GD , H
D are the diffusion coefficients of glucose and hydrogen ions respectively, H

c is 

the concentration of hydrogen ions and ][G  is the concentration of glucose .  

Outside of the enzyme layer )( dxL  , the hydrogen ions diffusion can be expressed by the 

following equation: [1]. 
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Boundary conditions 

Let 0x represents the anode surface, while Lx   is the boundary between the anode and the 

buffer solution. The concentration of hydrogen ions and glucose at the anode surface ( 0x ) are 

represented by the following equations: [1]. 
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where 0c is the hydrogen ions concentration between the glucose reservoir and an anode and 

][ 0G is the glucose concentration in the glucose reservoir. Since the amount of charge is 

proportional to the amount of material passed through the interface, another boundary condition 

is represented by the following equation: 

G

s

x zD

g

x

G 1

0d
]d[ 


                                                                                                                                                    

(6) 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

where
][
]][[

1
GK

GEk
g

M

scat
s


 is the surface reaction rate and z is the number of elementary ionic 

charges. In the bulk solution the hydrogen ions concentration remain constant [1]. 

d
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(7) 

On the boundary between two regions having different diffusivities, the matching conditions are 

defined by the Eq. (8) and Eq. (9) [1]. 
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These conditions mean that the equal species fluxes through the same surface and conditions of a 

continuity for concentrations. Eq. (8) and Eq. (9) describe the boundary conditions between the 

anode and the bulk where Lx  for hydrogen ions. Boundary conditions employed in the 

enzymatic glucose fuel cell for the glucose and hydrogen ions are also represented in Figure 1. 

Current density j occurring at the electrode surface due to reduction or oxidation of H
c is given 

by Eq. (10): 
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3. Dimensionless form 

We make the nonlinear PDE (Eqs. (1) – (3)) dimensionless by defining the following parameters 

which are depicted in Eq. (11): 
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where iH
cXGc  and ,,,,],[, 21  represent dimensionless concentration of hydrogen ions for 

glucose, distance, reaction diffusion parameter, saturation parameter, ratio between diffusion 

coefficients and ratio between initial concentration of glucose and hydrogen ions respectively. 

Now in )/0( dLX  , Eq. (1) and Eq. (2) reduces to the following dimensionless forms which 

are represented by Eqs. (12) and (13): 
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In the bulk )1/(  XdL , the hydrogen ions (Eq. (3)) reduced to 

0
d

d
2

2




X

c
H

                                                                                                                                                            
(14) 

The boundary conditions Eqs. (4) - (7) are reduced to [1]. 
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The matching boundary conditions (8) and (9) are defined in dimensionless form as follows. 
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The dimensionless current density I becomes 
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4. Analytical expression of substrate and products concentration using new Homotopy 

perturbation method  

By solving the Eqs. (12) and (13) using boundary conditions Eqs. (15) - (20), we can obtain the 

glucose concentration and hydrogen ions (Appendix A) inside the enzyme layer )/0( dLX   

as follows: 
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By solving the Eq. (14) using boundary conditions (Eqs. (15)- (20)), we can obtain the 

concentration of hydrogen ions in outside the enzyme layer )1/(  XdL   as follows: 
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The dimensionless current density becomes 
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Electrical power is given by the Eq. (29) 
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The kinetic response of an enzymatic fuel cell depends on concentrations of ][G  and H
c . The 

concentrations of the species depend upon concentration of the substrate ][G . However, the 

substrate ][G also depends on two factors which are  and  . MK is the Michaelis-Menten 

constant, an intrinsic character of an enzyme. 

 

5. Limiting case results 

5.1. Saturated (zero order) catalytic kinetics 

 We initially consider the situation where the concentration of glucose is very much greater than 

Michaelis-Menten constant MK . In this case 1 and Eqs. (12) and (13) reduced to: 
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Solving the Eqs. (30) and (31) using boundary conditions (Eqs. (15) - (20)), we can obtain the 

concentration of glucose and hydrogen ions inside the enzyme layer )/0( dLX   as follows; 
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Solving the Eq. (13) using boundary conditions (Eqs. (15) - (20)), we can obtain the 

concentration of hydrogen ions outside the enzyme layer )1/(  XdL  as follows; 
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The current density becomes  
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where 2 is defined by Eq. (28). In this case electrical power becomes: 
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5.2. Unsaturated (first order) catalytic kinetics 

Now we consider the second major limiting situation found in practice, when the glucose 

concentration is less than Michaelis-Menten constant MK . This situation will pertain when .1

Hence Eqs. (12) and (13) are reduced to: 
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Hence, the nonlinear Eqs. (12) and (13) have been reduced to one equation which is linear. By 

solving the Eq. (37) and Eq. (38) using boundary conditions (Eqs. (15) - (20)), we can obtain the 

concentration of glucose and hydrogen ions inside the enzyme layer )/0( dLX   as follows; 

    X
dz

L
XXG 


 sinh

2
cosh)]([
















                                                                                           

(39) 

   










































 X

dz

L
XcX

d

L
Xc iH







sinh 
2

cosh1111)( 143
2

                    

(40) 

Solving the Eq. (14) using boundary conditions (Eqs. (15) - (20)) we can obtain the 

concentration of hydrogen ions outside the enzyme layer )1/(  XdL  as follows; 

 
0

432
2

11)(
c

c
-X

d

L
Xc d

H

















 


                                                                                                   

(41) 

In this case current density becomes represented by the following Eq. (42): 
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where 2  is defined in Eq. (28) and 3  and 4 are described by Eqs. (43) and (44) as follows: 
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Therefore, by re-organising those equations, the electrical power becomes as: 
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(45) 

 

6. Results and discussion 

Here Eqs. (22) – (24) are the analytical expressions of concentration of glucose, hydrogen ions 

inside of the enzyme layer )/0( dLX  and hydrogen ions outside of the enzyme layer 

)1/(  XdL . For an enzymatic fuel cell to be analytically useful, its response must be 

quantitatively related to the substrate concentration. Based on this principle, 1 is not the 

proper case for an enzymatic fuel cell, because in the zero order reaction, hydrogen ions 

concentration is independent of the glucose concentration. Eq. (22) represents the most general 

approximate new analytical expression for the glucose concentration profiles for all values of 

parameter  (or distance between electrodes) and  (or initial concentration of glucose). 

    Dimensionless concentration of hydrogen ions ( H
c ) inside the enzyme layer )/0( dLX 

and outside the enzyme layer )1/(  XdL  versus dimensionless distance from the anode X  

using Eq. (23) and Eq. (24) is plotted in Fig. 2. From this figure it is inferred that the 

concentration of Hydrogen ion increases absurdly from the anode surface and reaches the 

maximum near the boundary of the enzyme layer )/( dLX  and then decreases slowly to 0/ ccd

in the bulk solution. Because the hydrogen ions are generating on the anode, moving towards the 

cathode and consumed on the cathode. Also this is due to the effect of 0/ ccd  as an individual 

term in the equations (23) and (24). 

    Dimensionless concentration of hydrogen ions H
c  in the inside the enzyme layer as a 

function of distance from the anode X are plotted in Figs. 3(a)-3(e) for various values of  

1,,,  ic  and 2  and some fixed values of other parameters using Eq. (23) and Eq. (40). From 

Figs. 3(a)-3(e), it is inferred that the concentration of hydrogen ions in the interface between  
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inside the enzyme layer and outside the enzyme layer )/( dLX   is high because generation of 

hydrogen ions.  

 

Figs. 4(a)-4(b) represent dimensionless concentration profiles of the concentration of hydrogen 

ions H
c )1/(  XdL  versus distance from the anode surface X for various values of 

parameters using Eq. (24) and Eq. (41). From this figures, it is observed that the concentration of 

the hydrogen ions decreases in outside the enzyme layer due to consumption of the hydrogen 

ions in this layer. 

 

     Eq. (25) represents the simple closed form of analytical expression of current density. Figs. 

5(a)-5(d) represent the dimensionless current density I versus dimensionless parameter for 

various values of other parameters. From this figures it is observed that the current density is 

directly proportional to enzyme concentration or square of the distance between electrodes. Also 

current density is linear with respect to dimensionless thickness of enzyme layer and ratio 

between diffusion coefficient of glucose and hydrogen ions ( 1) (Fig. 6(a)-6(c)). 

  

Figs. 7(a)-7(c) to 9(a)-9(c) represent dimensionless power versus dimensionless glucose 

concentration ][G , dimensionless parameter  and   for various values of parameters using Eq. 

(29). From this figures it is observed that the power density increases when concentration of 

glucose, enzyme, initial concentration of glucose and dL cc / . Also from this figures it is also 

observe that power density p attains the maximum value and then remains constant because of 

external resistance and consequence of a current reduction. Increasing the enzyme concentration 

or distance between electrodes has an important effect on the fuel cell (Fig. 7(a)). Power does not 

differ significantly give to due to increase of glucose concentration. 

 

7. Conclusions 

    The time independent nonlinear reaction-diffusion equations have been formulated and solved 

analytically for the first time. The analytical expressions for glucose, hydrogen ions inside and 

outside the enzyme layer, current density and power are derived for all parameters using a new 

approach of Homotopy perturbation method. In addition, these analytical solutions are compared 
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with zero order analytical solutions. This analytical result is useful to investigate the effects of 

various parameters of the fuel cell on power. A good agreement with limiting case results for the 

experimental values of the all parameters is also noted. 
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9. Appendixes 

Appendix A: Approximate analytical solution of nonlinear Eq. (13) using a new approach 

to the Homotopy perturbation method (NHPM)  

 In this appendix, we have indicated how to determine the solution of Eq. (13). To solve 

Eq. (13), we first construct the Homotopy for the equation as follows: 
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The approximate solution of (A2) is given by 

...][p][ p][][ 2
2

10  GGGG                                                                                                 (A3) 

Substituting Eq. (A3) comparing the coefficient of p0 we obtain the following differential 

equation: 
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Solving Eq. (A4) by using boundary conditions Eq. (17) and Eq. (18), we obtain the following 

equation: 
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Similarly, we can obtain the Eq. (23) and Eq. (24). 
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Appendix B.  Nomenclature and units 

Symbols Definitions Units and Experimental 

values 

[G]                    Glucose concentration 0.1M, 0.01M, 0.001M 

H
c  Hydrogen ions concentration M 

x  Distance m 

catk  Kinetic enzyme reaction rate 10^3 Sec-1 

MK  Kinetic enzyme reaction rate 0.019M 

][ TE  Volume enzyme concentration 0.7x10-5M, 0.5x10-5M,  

0.3x10-5M, 0.1x10-5M 

L Thickness of an enzyme layer 0.001-0.0005m  

d Distance between electrodes 0.003-0.004m 

GD  Diffusion coefficients of glucose 10-5m2 s-1 

H
D  Diffusion coefficients of 

hydrogen ions 

10-5 m2 s-1 

bH
D  Diffusion coefficients of 

hydrogen ions in bulk 

10-5 m2 s-1 

0c  Hydrogen ions concentration 

between the glucose reservoir 

and an anode 

0.002M   

 0G  Glucose concentration in the 

glucose reservoir 

0.001, 0.01, 0.1, 0.19, 1.9 mol 

m-3 

d

L

c

c
 

Ratio between initial 

concentration of hydrogen ions 

at Lx  and dx  . 

5x103, 50 

0c

cd
 

Ratio between initial 

concentration of hydrogen ions 

at dx  and 0x . 

1 
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LRIP 2

 

Power Watt(W) 

P

 

Power density W/cm2 

(or) 

Watt = J/s=kg*m2/s3 

LR
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0.01  - 1  

( 322*/ sAmkgAV  ) 

MG
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Reaction diffusion parameter 16,50,84,117 
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Figure1. Boundary conditions employed in the enzymatic glucose fuel cell for the substrate ][G

and product H
c . 

Figure



 

 

Figure 2. Combined plot of dimensionless concentration of hydrogen ions ( H
c ) inside the 

enzyme layer )/0( dLX  and dimensionless concentration of hydrogen ions ( H
c ) outside the 

enzyme layer )1/(  XdL versus dimensionless distance X  using Eq. (23) and Eq. (24). Where 

L/d  is the interface between inside the enzyme layer and outside the enzyme layer. 



 

Figure 3(a)-3(e). Comparison of dimensionless concentration profiles of the product H
c versus 

dimensionless distance X for various values of 1i ,,,, L/dcβα and 2 and some fixed values of 

other parameters using Eq. (23) and Eq. (40). The key to the graph: ( _) represents the Eq. (23) 

and (…) represent the Eq. (40). 



 

 

Figure 4(a)-4(e).Comparison of dimensionless concentration profiles of the product H
c versus 

dimensionless distance X for various values of 1,/,,,  dLci  and 2 and some fixed values of 

other parameters using Eq. (24) and Eq. (41). The key to the graph: ( _ ) represents the Eq. (24) 

and (…) represent the Eq. (41). 

 

 



 

 

Figure 5.Plot of dimensionless current density I versus dimensionless parameter for various 

values of  1,/,,  dLci
 and 2 and some fixed values of other parameters using Eq. (28). 

 

 

 

 

 



 
 

Figure 6(a)-6(c). Plot of dimensionless current density I versus 1,/ dL  and 2 for various values 

of   and some fixed values of other parameters using Eq. (28). 

 

 

 



 

 

Figure 7(a)-7(c). Plot of dimensionless power versus p dimensionless concentration ][G  for 

various values of  ,  and dL cc / and some fixed values of other parameters using Eq. (29). 

 



 
Figure 8(a)-8(c). Plot of dimensionless power p versus dimensionless parameter  for various 

values of ][, G  and dL cc / and some fixed values of other parameters using Eq. (29). 

 



 

 

Figure 9(a)-9(c). Plot of dimensionless power p versus dimensionless parameter   for various 

values of ][, G  and dL cc / and some fixed values of other parameters using Eq. (29). 
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