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Abstract

A capsule system driven by a harmonic force applied to its inner mass is considered in
this study. Four various friction models are employed to describe motion of the capsule in
different environments taking into account Coulomb friction, viscous damping, Stribeck
effect, pre-sliding, and frictional memory. The non-linear dynamics analysis has been
conducted to identify the optimal amplitude and frequency of the applied force in order
to achieve the motion in the required direction and to maximize its speed. In addition,
a position feedback control method suitable for dealing with chaos control and coexisting
attractors is applied for enhancing the desirable forward and backward capsule motion.
The evolution of basins of attraction under control gain variation is presented and it is
shown that the basin of the desired attractors could be significantly enlarged by slight

adjustment of the control gain improving the probability of reaching such an attractor.

Keywords: capsule, vibro-impact, friction, motion control, position feedback control.

1. Introduction

In the last few years, there was a growing interest in developing mobile mechanisms
for minimally invasive surgical operation [1, 2, 3, 4] and engineering pipeline inspection
[5, 6, 7]. Particularly, investigation of a capsule system moving under internal force when
overcoming environmental resistance has attracted significant attention, e.g. [8, 9, 10, 11].
The merit of such a system is its simplicity in mechanical design and control which does
not require any external driving mechanisms while allows it to move independently in a

complex environment unaccessible to the legged and wheeled mechanisms [12, 13]. How-
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ever, any small uncertainties in friction or system parameters may lead to qualitative
change of the dynamics of the capsule system [14]. Therefore understanding of the dy-
namics and motion control under different frictional environments for such a system is
essential.

This paper studies the vibro-impact dynamics of a capsule system in the environments
described by four friction models under variation of the amplitude and the frequency of
harmonic excitation. The physical model of the vibro-impact capsule system is shown in
Fig. 1 which consists of a capsule main body interacting with an internal harmonically
driven mass. An initial bifurcation study of this system was carried out in [11]. The
study has shown that the dynamic behaviour of the system is mainly periodic, and the
best progression can be achieved through a careful choice of system parameters, such as
mass ratio, stiffness ratio, amplitude and frequency of excitation. The dynamics of the
capsule system in various frictional environments under variation of the mass ratio was
investigated in [14] which suggested that directional control of the system can be achieved
either by varying its mass ratio or by switching between coexisting attractors. This paper
proposes a position feedback control law in order to control the capsule moving along a
desired direction. Additionally, we also show that our proposed control method is capable
for the control of chaos or coexisting attractors for ensuring an efficient performance of

the system.

Figure 1: Physical model of the vibro-impact capsule system

Control of vibro-impact systems has attracted great attention for many years, e.g.
[15, 16, 17, 18, 19, 20]. In [15], control of a double impacting oscillator using displacement
feedback was studied, and the effect of how grazing impacts limit the stability regions
of certain periodic orbits was discussed. To retain the existence of a desired attractor
near the grazing trajectory, Dankowicz and Jerrelind [16] employed a discrete linear feed-

back control strategy. In [17], Souza and Caldas introduced a transcendental map to
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determine the value of parameter perturbation for controlling the vibro-impact systems
which exhibited desired unstable periodic orbit embedded in a chaotic attractor. Lee
and Yan studied the control algorithms for position control of an impact oscillator and
synchronization of two impact oscillators in [18]. A feedback control technique using a
small-amplitude damping signal was studied in [19] for suppressing chaotic behaviour of
an impact oscillator. Later on, Wang et al. [20] developed an impulsive control method
to stabilize the chaotic motion for a class of vibro-impact systems. In [21], Liu et al. pro-
posed an intermittent control method for a class of non-autonomous dynamics systems
that naturally exhibited coexisting attractors, and demonstrated its applicability to an
impact oscillator numerically and experimentally. Basically, vibro-impact systems mainly
fall into two categories: the impact oscillator with fixed impact body, e.g. [22, 23] and the
impact oscillator with one-side drifting impact body e.g. [24, 25, 26]. However this paper
studies the control of a vibro-impact system with impact body drifting forward and back-
ward which has never been considered in the literature before. Compared to the impact
oscillator with fixed impact body, this structure induces more complicated dynamics when
experiences various environmental resistance. Both optimization and directional control
issues must be considered for our proposed system, while only optimization is needed for
the impact oscillator with one-side drifting impact body. This paper also uses basins of
attraction for the first time to investigate the possibility of switching between coexisting
attractors by using the proposed control method.

The rest of this paper is organized as follows. In Section 2, mathematical modelling
of the vibro-impact capsule system is presented, and the four different friction models
used in this paper are briefly introduced. In Section 3, a non-linear dynamic analysis
of the capsule system is conducted by varying the amplitude of excitation. In Section
4, influence of excitation frequency on capsule dynamics is investigated, and its global
and local optima are studied. In Section 5, forward and backward motion control of the
capsule system is studied by using a position feedback control law. Here the capabilities
of the proposed control method for the control of chaos and coexisting attractors are
demonstrated through extensive numerical studies. Finally, some concluding remarks are

drawn in Section 6.



2. Mathematical Modelling

2.1. Equations of motion

This work considers a two degrees-of-freedom dynamical system depicted in Fig. 1,
where a movable internal mass m; is driven by a harmonic force with amplitude P; and
frequency €2 interacting with a rigid capsule msy via a linear spring with stiffness k; and
a viscous damper with damping coefficient ¢. X; and X, represent the absolute displace-
ments of the internal mass and the capsule, respectively. The internal mass contacts a
weightless plate connected to the capsule by a secondary linear spring with stiffness ko
when the relative displacement X; — X5 is larger or equals to the gap G. When the force
acting on the capsule exceeds the threshold of the dry friction force Fj, between the capsule
and the supporting environmental surface, the bidirectional motion of the capsule occurs,
and the friction force Fj is applied to the capsule.

To simplify the analysis, we introduce the following non-dimensional variables

k1 dx; kroo . dy ki F Fy
= Qot iziXia P = - iy Yi — - Xia s — 5 =)
T 0f & Pf Y dr Q()Pf 4 dr Q%Pf f Pf fb Pf

and parameters
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where ¢ = 1,2, and Py is the threshold of Coulomb friction. The considered system

operates in bidirectional stick-slip phases which contain the following modes: stationary
capsule without contact, moving capsule without contact, stationary capsule with contact,
moving capsule with contact. A detailed consideration of these modes and dimensional
form of the equations of motion can be found in [11]. The comprehensive equations of

motion for the vibro-impact capsule system are written as

jjl = Y1,
91 = acos(wT) + (xe — 1) +26(y2 — y1) — H3PB(x1 — 29 — 0),
iy = yo (Hi(1— H3)+ HyH3), (1)

Yo = (Hi(1— H3)+ HoH3) (—fs — (z2 — 21) — 2§(y2 — 41)
+ H3fB(x1 — x2 —9)) /7.

where H(-) is the Heaviside function and functions H; (i = 1,2, 3) are defined as

Hy = H(|(v2—21)+2(y2 —y1) | —fb),
Hy = H(| (v2—21)+28(y2 — 1) — B(z1 — 22 = 0) | = f3),
H3 = H(Z‘l — X9 —5)



2.2. Friction models

In [14], the environmental resistance was described by four different friction mod-
els given in Table 1 which took into account Coulomb friction, viscous damping, Stribeck
effect, pre-sliding, and frictional memory. As it is known, the Coulomb friction model pro-
vides the first approximation of dry frictional contact, and the Coulomb viscous damping
model takes into account the viscosity of lubricated contact. Both Coulomb Stribeck and
seven-parameter models [27] describe the friction of thicker lubricated contact, while the
later one can comprehensively interpret the resistant force at a very low relative speed.
The work in [14] has revealed that when the weight of the internal mass is smaller than
the weight of the capsule, the nature of the friction mechanism becomes less significant as
it does not influence so much the capsule dynamics. This paper further investigates the
capsule dynamics under variation of the amplitude and frequency of external excitation
using these four friction models, and proposes a control method which can switch the

system state from chaotic to periodic motion or from a current attractor to a desired one.

Table 1: Friction models [14]

Friction model Description Static friction Dynamic friction f; Threshold f;

Coulomb Dry contact 0 sign(i2) 1

Coulomb  viscous Lubricated contact 0 sign(Za) + flyd2 1

damping

Coulomb Stribeck  Thicker lubricated 0 sign(dz) + 2
contact sign(iy) e~ %21/vs

Seven-parameter Lubricated contact ksxo sign(io) + ppds + 2

sign(a2)

at very low relative THZ (r—a)?

speed

3. Influence of Excitation Amplitude

This section compares capsule dynamic responses with dry, lubricated, and thicker
lubricated contact surfaces, and investigates the influence of amplitude of excitation on
capsule motion. The comparison was carried out using the bifurcation diagrams as shown
in Fig. 2 where the velocity y;, which is a projection of the Poincaré map on the
axis, was plotted as a function of the amplitude of excitation for the systems with (a)
the Coulomb, (b) the Coulomb viscous damping, (c¢) the Coulomb Stribeck, and (d) the

seven-parameter models. The main attractors of the system are shown by black dots and
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Figure 2: (colour online) Bifurcation diagrams for the systems with (a) the Coulomb, (b) the Coulomb
viscous damping, (c¢) the Coulomb Stribeck, and (d) the seven-parameter models constructed for varying
the amplitude of excitation, « calculated for v = 5.0, w = 0.95, § = 15.0, § = 0.02, £ = 0.01, p, = 0.1,
1s = 0.1, 7y = 0.05, and k, = 4 x 10*. Coexisting attractors are shown by red dots.

the coexisting attractors are marked by red dots. The calculations were run for 300 cycles
of the external excitation, and the data for the first 200 cycles were omitted to ensure
the steady state response, whereas the next 100 values of the velocity y; were plotted in
the bifurcation diagrams for each value of the amplitude of excitation. For simplicity, we
use abbreviations in bifurcation diagram to describe periodic motion of the system, e.g.

P-1-2 represents a periodic-1 motion with two impacts per period of external excitation.

3.1. Periodic motion

As can be seen from Fig. 2(a), when the system has dry contact surface, periodic
motion of the capsule is observed for a € [0.1,0.132) and « € [0.928,2.0]. When the
system has lubricated contact surface, similar periodic motion is found for « € [0.1,0.132)
and « € [0.942,2.0] in Fig. 2(b). When the lubrication becomes thicker, periodic motion
is recorded for o € [0.1,0.228), o € [0.572,0.84), and a € [1.65,2.0] in Fig. 2(c) for



the system with the Coulomb Stribeck model, and a € [0.1,0.228), a € [0.724,0.914),
and « € [1.722,2.0] in Fig. 2(d) for the system with the seven-parameter model. Our
bifurcation study reveals that the system has similar dynamic response when its contact
surface is dry and thinly lubricated, and periodic motion of the system can be obtained
when the amplitude of the harmonic force F; is greater than the threshold of friction P
(i.e. @ > 1). When the capsule has thicker lubricated contact, capsule motion becomes
more complicated and the range of excitation amplitude for periodic motion is quite
narrow. Therefore forward and backward motion control of the capsule system through
adjusting excitation amplitude is limited.

Comparing the periodic motion in « € [0.1,0.132) for the systems with the Coulomb
and the Coulomb viscous damping models with the periodic motion in « € [0.1,0.228) for
the systems with the Coulomb Stribeck and the seven-parameter models, it is noted that
the periodic motion with thicker lubricated contact exists for a broader range of excitation
amplitude than the one with dry and thinly lubricated contacts. The reason for such a
difference is caused by the threshold of friction model which dominates the capsule motion
at a very low absolute speed as illustrated in Fig. 3. As can be seen in Fig. 3(a) and
(d), the system with the Coulomb model has a similar period-4 motion with the one with
the Coulomb viscous damping model at @ = 0.13. Both capsules have small forward
progression, although minor difference can be observed between the displacements in Fig.
3(b) and (e) which is due to the dependence of the capsule velocity for the Coulomb
viscous damping friction as shown in Fig. 3(f). Similar period-4 motions are observed at
a = 0.20 for the systems with the Coulomb Stribeck and the seven-parameter models as
shown in Fig. 3(g)-(i) and (j)-(1), where similar mass motion but no capsule progression
can be observed. The comparison of Fig. 3(i) and (1) indicates that the elastic force
acting on the capsule does not overcome the threshold of friction but the seven-parameter

model can better interpret the friction force between two sticking surfaces.

3.2. Grazing induced chaotic motion

When amplitude of excitation is o = 0.802, the chaotic motions for the Coulomb and
the Coulomb viscous damping models are compared with the period-1 motions for the
Coulomb Stribeck and the seven-parameter models in Fig. 4. As can be seen in Fig.
4(b) and (e), the time histories of the mass and the capsule displacements are shown
which indicate the grazing induced chaotic response where the mass just contacts with
the secondary spring of the capsule. When the elastic force acting on the capsule is larger

than the threshold of the friction, backward motion of the capsule is observed. For the
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Figure 3: (colour online) The trajectories on the phase plane (x1 — x2,y1 — y2), the time histories of
displacements of the mass, z; (shown by black solid line) and the capsule, o (marked by red dash
line), and the time histories of friction (marked by blue dots) for the systems with (a)-(c) the Coulomb
(a = 0.13), (d)-(f) the Coulomb viscous damping (o = 0.13), (g)-(i) the Coulomb Stribeck (« = 0.20),
and (j)-(1) the seven-parameter (o = 0.20) models calculated for v = 5.0, w = 0.95, 8 = 15.0, § = 0.02,
€=0.01, , = 0.1, g = 0.1, 75 = 0.05, and ks = 4 x 10*. The locations of the impact surface are shown

by green lines, and Poincaré sections are marked by red dots.
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Figure 4: (colour online) The Poincaré sections and the trajectories on the phase plane (x1 — z2, y1 — y2),

the time histories of displacements of the mass, 21 (shown by black solid line) and the capsule, x5 (marked
by red dash line), and the time histories of friction (marked by blue dots) for the systems with (a)-(c)
the Coulomb, (d)-(f) the Coulomb viscous damping, (g)-(i) the Coulomb Stribeck, and (j)-(1) the seven-
parameter models calculated for o = 0.802, v = 5.0, w = 0.95, 8 = 15.0, § = 0.02, £ = 0.01, u, = 0.1,
ps = 0.1, 7y = 0.05, and k, = 4 x 10*. The locations of the impact surface are shown by green lines, and

Poincaré sections are marked by red dots.



displacements of the systems with the Coulomb Stribeck and the seven-parameter models,
only forward period-1 motions are observed in Fig. 4(h) and (k). In this case, the speed
of the capsule with thicker lubricated contact is much faster than the speed with dry and
thinly lubricated contacts although its frictional threshold is larger than the other two
cases. This observation reveals that at some situations, larger friction may help to retain

system stability and keeps system response in an optimal regime.

3.3. Evolution of chaotic motion
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Figure 5: (colour online) Poincaré sections on the phase plane (r1 — z2,y1 — y2) for the systems with
(a)-(d) the Coulomb Stribeck and (e)-(h) the seven-parameter models calculated for (a, ¢) a = 1.1, (b,
fa=13,(c,g) a=14, (d, h) a =16,y =5.0, w =095 g =15.0, 6 = 0.02, £ = 0.01, p, = 0.1,

ps = 0.1, 7y = 0.05, and k, = 4 x 10*. The locations of the impact surface are shown by green lines.

As can be seen from Fig. 2(c) and (d), the chaotic motions for the systems with the
Coulomb Stribeck and the seven-parameter models are recorded for o € [0.84,1.65) and
a € [0.914,1.722), respectively. As the amplitude of excitation increases, both chaotic
motions are settled down at a period-3 motion with five impacts via a reverse period
doubling cascade at o = 1.65 for the Coulomb Stribeck model and a = 1.722 for the
seven-parameter model. Poincaré maps for both chaotic motions using different values of
amplitude of excitation are shown in Fig. 5 which presents two series of strange attractors.
The development of the strange attractor for the system with the Coulomb Stribeck model
is shown in Fig. 5(a)-(d), and the development of another one for the system with the

seven-parameter model is given in Fig. 5(e)-(h). As can be seen from these figures, the
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larger the amplitude of excitation, the less complex the behaviour of the system. Fig. 6
depicts a special bifurcation for the system with thicker lubricated contact which is the
transition of the capsule motion from forward only to forward and backward. It can be
seen from Fig. 6, as the amplitude of excitation increases from a = 1.1 to a = 1.3, the
backward motion of the capsule is recorded. As the amplitude of excitation increases,
the best progression for the system with the Coulomb Stribeck model is achieved by a
period-3 motion with five impacts per period at a = 1.762, while the best progression for

the system with the seven-parameter model is achieved at o = 1.882.

(2)

a=1762 (b)

| S0 I a=1.882
ol 20 o1 4 e 20 P-3-5 a=2.0
= =] —
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A A
[0} Q
25 . ERRRL \
g, Forward motion only a.
S . 8 o Forward motion only

0 30 60 90 120 0 30 60 90 120

Time, ¢ Time, ¢

Figure 6: (colour online) The time histories of displacements of the capsule, x5 for the systems with (a)
the Coulomb Stribeck and (b) the seven-parameter models calculated for v = 5.0, w = 0.95, § = 15.0,
§=0.02, £ =0.01, g, = 0.1, py = 0.1, 74 = 0.05, and k, = 4 x 10*. The displacements of the capsule by

different values of excitation are shown by different colours.

3.4. Average progression of the capsule

The speed of capsule progression is a critical performance index for monitoring the
system under the optimal regime of control parameters. Fig. 7 shows the calculation of the
average progression of the capsule per period of external excitation for the systems with
the four friction models. As can be seen in Fig. 7(a) and (b), the average progressions
for the systems with the Coulomb and the Coulomb viscous damping models increase
when their amplitudes of excitation increase. For the systems with the Coulomb Stribeck
and the seven-parameter models in Fig. 7(c) and (d), the fastest average progression is
recorded for a period-3 motion with five impacts which has been introduced in Fig. 6. The
average progression made by coexisting attractor is marked by red dots in Fig. 7 where
no significant improvement on capsule average progression is obtained. For the systems
with the Coulomb and the Coulomb viscous damping models shown in Fig. 7(a) and (b),

the average progression made by the coexisting period-3 motion is even smaller than the
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one made by the main period-2 attractor. Therefore in this situation coexisting attractor

should be avoided, and the system should be controlled within its main attractor.
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Figure 7: (colour online) Average progression per period for the systems with (a) the Coulomb, (b) the
Coulomb viscous damping, (c¢) the Coulomb Stribeck, and (d) the seven-parameter models calculated for
v=50,w=0095 8=150,8 =0.02, £ =0.01, jt, = 0.1, g = 0.1, 74 = 0.05, and ks = 4 x 10*. Average

progressions of coexisting attractors are shown by red dots.

3.5. Influence of damping ratio

Fig. 8 presents a series of bifurcation diagrams which shows the evolution of the main
attractors of the capsule system with the Coulomb model under variation of damping ratio
€. As can be seen from Fig. 8(a), the chaotic motion of the capsule system is observed
for o € [0.132,0.928) when the damping ratio is 0.01. When the damping ratio is 0.02,
the chaotic motion is observed for o € [0.01,0.452] and « € [0.686,0.796] as shown in
Fig. 8(b).

as seen in Fig. 8(c) until it ceases to exist in Fig. 8(d).

As the damping ratio increases, the region of the chaotic motion decreases
The evolution of the chaotic
motion indicates that the behaviour of the capsule system becomes less complicated as its
damping ratio increases which means that this parameter could be tuned in the system

design for avoiding chaotic motion.
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Figure 8: Bifurcation diagrams for the system with the Coulomb model calculated for v = 5.0, w = 0.95,
B =15.0,0 =0.02, (a) £ =0.01, (b) £ = 0.02, (c) £ =0.03, and (d) & = 0.05. The series of the bifurcation
diagrams show the evolution of the main attractors of the system which indicate that the behaviour of

the capsule system becomes less complicated as the damping ratio increases.

4. Influence of Excitation Frequency

This section investigates the influence of frequency of excitation on capsule dynamics
and average progression using the bifurcation diagrams with the four friction models as
shown in Fig. 9. The main attractors are marked by black dots and the coexisting
attractors are shown by red dots. Here we are interested in the global and local optima
of the frequencies of excitation which give the capsule the best progression within the
range of w € [0.8, 1.2]. The main idea of control of excitation frequency is to operate
the capsule system within the range of global (or local) optimum which gives the fastest

global (or local) average speed of the capsule progression.

4.1. Bifurcation analysis
It can be seen from Fig. 9 that the capsule system has very similar behaviour for all
four friction models under varying the frequency of excitation. As the frequency increases,

the capsule system bifurcates from a period-1 motion with two impacts into a period-1
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Figure 9: (colour online) Bifurcation diagrams and the average progression per period for the systems
with (a) the Coulomb, (b) the Coulomb viscous damping, (c) the Coulomb Stribeck, and (d) the seven-
parameter models constructed for varying the frequency of excitation, w calculated for v = 5.0, a = 0.8,
B =15.0, 6 = 0.02, £ = 0.01, p, = 0.1, g = 0.1, 74 = 0.05, and k, = 4 x 10*. Coexisting attractors are
marked by red dots.
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motion with one impact through a grazing bifurcation followed by a period doubling
cascade leading to chaos. Then the chaotic motion bifurcates into a period-1 motion with
one impact through an inverse period doubling cascade.

Coexisting attractors are recorded for w € [0.9312,0.959] and w € [0.9304,0.9612]
for the capsule system with the Coulomb and the Coulomb viscous damping models,
respectively. Both of them are observed as a period-3 motion with five impacts, which
bifurcates into a period-6 motion with ten impacts followed by a period-3 motion with five
impacts as the frequency of excitation decreases, and eventually through period doubling

cascade leads to the chaotic motion. However these coexisting attractors do not have

significantly higher average progression of the system.

4.2. Global and local optima
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Figure 10: (colour online) The time histories of displacements of the mass, x; (shown by black solid
line) and the capsule, x5 (marked by red dash line) for the attractors shown in red in Fig. 9 with (a)
the Coulomb, (b) the Coulomb viscous damping, (¢) the Coulomb Stribeck, and (d) the seven-parameter
models calculated for v = 5.0, a = 0.8, w = 0.846, § = 15.0, § = 0.02, £ = 0.01, u, = 0.1, us = 0.1,

74 = 0.05, and ks = 4 x 10%.

Coexisting attractors are recorded for the system with the four friction models at where
grazing bifurcation is encountered. Fig. 10 shows the time histories of attractors shown

in red in Fig. 9 for w = 0.846 where grazing is observed at the second impact of each
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period. It is worth noting that Fig. 10(a) and (b) depicts the global optimum frequency
of excitation for the systems with the Coulomb and the Coulomb viscous damping models
which gives the fastest average progression of the system. However the coexisting global
optima for the systems with the Coulomb and the Coulomb viscous damping models are

difficult to be obtained due to their very limited basins of attraction as shown in Fig. 11.

1
-1t i
2

-12 06 00 06
xx

I@

12 06 00 06
XX

y;_yz
O

Velocity, v,
o

2

Yy,
=

Relative displacement, x -x,
(a) (b)

Figure 11: (colour online) (a) Basin of attraction for the systems with the Coulomb friction model
calculated for v = 5.0, a = 0.8, w = 0.85, 8 = 15.0, 6 = 0.02, £ = 0.01; (b) trajectories and Poincaré

maps for the coexisting period-1 with one impact and period-1 with two impacts solutions.

Fig. 12 shows the time histories of displacements of the systems with the four friction
models on the main attractors at w = 0.842. It is seen from the phase planes that the
systems have period-1 motion with two impacts, but backward motions are observed in
Fig. 12(a) and (b) for the systems with the Coulomb and the Coulomb viscous damp-
ing models, so smaller average progression of the system is recorded. For the Coulomb
Stribeck and the seven-parameter models, the global optimum frequencies of excitation
are obtained because of their larger thresholds. To some extent, this scenario somehow
demonstrates that friction may help to stabilize system and to improve capsule progres-
sion.

Local optima are recorded for the systems with the four friction models just before
their inverse period doubling from the period-2 motion with three impacts to the period-1
motion with one impact. Fig. 13 demonstrates their local optima at w = 1.124 where

backward motion of the capsule with the Coulomb and the Coulomb viscous damping
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Figure 12: (colour online) The Poincaré sections and the trajectories on the phase plane (z1 —x2,y1 —y2),
and the time histories of displacements of the mass, x1 (shown by black solid line) and the capsule, x4
(marked by red dash line) for the systems with (a) the Coulomb, (b) the Coulomb viscous damping, (c)
the Coulomb Stribeck, and (d) the seven-parameter models calculated for v = 5.0, a = 0.8, w = 0.842,
B =15.0,6 =0.02, £ =0.01, i, = 0.1, s = 0.1, 74 = 0.05, and k, = 4 x 10*. The locations of the impact

surface are shown by green lines, and Poincaré sections are marked by red dots.
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Figure 13: (colour online) The Poincaré sections and the trajectories on the phase plane (1 — 22, y1 —y2),

and the time histories of displacements of the mass, z; (shown by black solid line) and the capsule, zo

(marked by red dash line) for the systems with (a) the Coulomb, (c¢) the Coulomb viscous damping, (d)

the Coulomb Stribeck, and (f) the seven-parameter models and their corresponding coexisting attractors
(b), (d), (e), and (g) calculated for v = 5.0, « = 0.8, w = 1.124, 8 = 15.0, 6 = 0.02, £ = 0.01, p, = 0.1,

1s = 0.1, 79 = 0.05, and k, = 4 x 10*. The locations of the impact surface are shown by green lines, and

Poincaré sections are marked by red dots.
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models is observed. In these cases the capsule progression in Fig. 13(a) and (c) does
not have significant improvement in comparison with the progression obtained for their
coexisting attractors in Fig. 13(b) and (d).

5. Position Feedback Control

5.1. Control Point
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Figure 14: (colour online) (a) Average progression of the capsule with the Coulomb model calculated for
a=16,w=1.1,6 =0.02,£ =0.05, and 8 = 3.05. (b) The trajectory on the phase plane (x; — 2, y1 —y2)
obtained for the control point v = 0.235. The location of the impact surface is shown by red line, Poincaré
section is marked by red dot. (c) The time history of displacements of the mass, x; (shown by black solid

line) and the capsule, x5 (marked by red dash line) obtained for the control point v = 0.235.

In this section our proposed feedback control law will be applied to the control point
which is defined as a ~ value where the system has no average progression but only
oscillation, and then we will also show that our control method is applicable for chaos
control and control of coexisting attractors. Fig. 14 (a) shows the average progression of
the capsule per period of external excitation, and its control point is observed at v = 0.235.

Fig. 14 (b) and (c) presents the trajectory on the phase plane (z; — 2, y1 — y2) and the
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time history of displacements of the mass, x; and the capsule, x5 obtained for the control
point, respectively. As can be seen from Fig. 14 (c), the mass and the capsule oscillate

around their origins which leads to no average progression for the entire system.

5.2. Position feedback control

Consider the position feedback control law
u =k |ra — 21|,

where k), is a linear position control gain. The resulting equation of motion of the capsule

system is described by

il = Y,
1 = acos(wt) + fp(r1,22) +286(y2 — y1) — Haf(x1 — 20 — 9),
iy = y2 (Hi(1— H3)+ HyHj), (2)

U2 = (Hi(1— H3)+ HyH3) (—fs — (22 — 1) — 2§(y2 — v1)
+ H3f(x1 — 2 = 0)) /-

where

(1—ky)(xe — 1) ifazg > a9,

(1 + kp)<$2 — 1'1) if r1 < To.

fol@e, @2) = Ky |w — 21| + (22 — 21) = { (3)
As we have found in [11], the optimal parameters of the capsule system for the best
progression and for the minimum energy consumption are different. Here we use the
control efficiency which is the ratio of the capsule progression per period of the external
excitation, T' to the work done by the external force and the controller over one period
_ 22(T) — 25(0)
[ Tacos(wr) + u(r)] -y (1) dr

(4)

in order to take the energy consumption into account for evaluating our proposed position
feedback control law.

Fig. 15 (a) presents the bifurcation diagram where the position control gain k, is
used as a branching parameter. Additional windows in Fig. 15 (a) show the trajectories
on the phase plane, where the relative displacement (x; — x3) is given on the horizontal
axis, and the relative velocity (y; — y9) is on the vertical axis. It can be observed that
the system response is period-one motion for all the values of the position control gain

for k, € [—0.2, 0.2], and the system behaviour changes from period-one motion with one
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impact per period of excitation to period-one with two impacts when the control gain
varies from negative to positive. The average progression of the system as a function of
the control gain k, is shown in Fig. 15 (b), where the bidirectional motion of the system
is depicted. Additional windows show the time history of displacements of the mass and
the capsule, where we notice that negative control gain leads to the backward motion of

the capsule, while positive control gain leads to forward motion.
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Figure 15: (colour online) (a) Velocity of the internal mass, y7 and (b) average progression of the capsule
with the Coulomb model for varying position control gain, &, calculated for o = 1.6, w = 1.1, § = 0.02,
& = 0.05, = 3.05, and v = 0.235. Additional windows show the trajectories on the phase plane
(1 — x2,y1 — y2), and the time history of displacements of the mass, z; (shown by black solid line) and
the capsule, x5 (marked by red dash line) obtained for k, = —0.2, —0.1, 0.1 and 0.2, respectively. The

locations of the impact surface are shown by green lines, Poincaré sections are marked by red dots.

5.3. Chaos control

Fig. 16 demonstrates the chaotic motion of the system with the Coulomb Stribeck
model at o« = 1.3 controlled by the position feedback control law when the control gain is
chosen as k, = 1.0. Fig. 16(a) shows that the chaotic response of the system is changed

to a period-2 response with four impacts per period of excitation when the control law is
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Figure 16: (colour online) (a) The trajectories of the chaotic motion without position feedback control
(shown by grey line) and the period-2 motion by applying position feedback control (marked by red line)
on the phase plane (z1 — x2,y1 — y2), (b) the time histories of displacements of the capsule, xo for the
chaotic motion (shown by grey line) and the period-2 motion (marked by red line), and (c) the time
histories of friction for the chaotic motion (shown by grey dots) and the period-2 motion (marked by
red dots) for the system with the Coulomb Stribeck model calculated for k, = 1.0, a = 1.3, v = 5.0,
w=0.95, §=15.0,9 =0.02, £ =0.01, us = 0.1. The locations of the impact surface are shown by green

lines.

applied. Fig. 16(b) depicts the capsule displacements when the control action is switched
on (marked by red line) and off (shown by grey line). It can be seen that despite the
capsule speed is lower when the control is on, the capsule motion is periodic and forward
only. Fig. 16(c) shows that no negative friction is recorded when the control action is
switched on which confirms again that the capsule only has forward motion. The external
excitations for the capsule system with and without applying the position feedback control
action are depicted in Fig. 17(a) by using red and grey lines respectively, which shows
much smaller amplitude of excitation with control than the one without control. Fig.
17(b) indicates that the capsule system without control has lower control efficiency than

the one with control.

5.4. Control of Coexisting Attractors

The position feedback control law proposed here is not only used for chaos control,
but also for control of coexisting attractors for the capsule system. Here we use the
capsule system with the Coulomb model whose coexisting attractors are observed for
a € [0.682,1.654] as an example. The evolution of the basins of attraction computed
for the range where coexisting attractors exist is presented in Fig. 18. As can be seen
from this figure, the dominant chaotic attractor is marked by green dots, and its basin

is given in yellow. The period-3 attractor marked by black dots emerges at @ = 0.682 in
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Figure 17: (colour online) (a) Time history of external excitation with (shown by red line) and without
(marked by grey line) control action and (b) control efficiency with (shown by red dots) and without
(marked by grey dots) control action as a function of the number of period of external excitation for the
system with the Coulomb Stribeck model calculated for k, = 1.0, @ = 1.3, v = 5.0, w = 0.95, § = 15.0,
§ =0.02, £ =0.01, pg = 0.1.

Fig. 18(a), and bifurcates into a period-6 attractor as shown in Fig. 18(b). The chaotic
attractor is turned into a period-2 attractor in Fig. 18(c) while its basin is gradually
shrinking when the amplitude of excitation increases. The period-6 attractor becomes a
period-3 attractor again in Fig. 18(c) whose basin shrinks from Fig. 18(d) to Fig. 18(f)
until disappearing completely at &« = 1.654. On the other hand, the period-2 attractor
bifurcates into a period-1 attractor as seen in Fig. 18(d) to (f), and its basin is expanded
gradually.

The evolution of the basins of attraction for the system with control at a = 1.5 is
shown in Fig. 19. As can be seen in Fig. 19(a), the basin area for the period-3 attractor is
approximately equivalent to the one for the dominant period-1 attractor when the control
action is not applied. Once the control is on for k, = 0.05 in Fig. 19(b), the period-3 orbit
is turned into a period-6 orbit whose basin is shrunken. Then the period-6 orbit moves to
the period-3 orbit again at k, = 0.1 in Fig. 19(c) at where its basin remains very small
and fractal while the basin for the dominant period-1 orbit is expanded significantly. The
result reveals that the basin of the dominant period-1 orbit can be expanded by adjusting
the control gain k,, thus improving the probability of the control from a current attractor
to a desired one.

Fig. 20 demonstrates the control from a period-3 motion to a desired period-1 motion
by applying the position feedback control law for one period. Fig. 20(a) shows the

projection of the Poincaré map on the y; axis as a function of the number of period of

23



—
(]
—

(a) 4
2.
= =
£ 0 £
= =
5] (5]
Z >
4
Relative displacement, x -x, Relative displacement, x,-x, Relative displacement, x -x,
o=0.682 a=0.8 a=1.07
(d) (e) (f) 4
2]
= BNy =
E E 5 04
] o G}
> = > )

IS

Relative displacement, x -x,

Relative displacement, x X, Relative displacement, x =,
o=1.2 o=1.338 o=1.6
Colour of basin [ /1
Colour of attractor o (]

Figure 18: (colour online) Evolution of the basins of attraction for the system with the Coulomb model
computed for a € [0.682,1.654] where coexisting attractors are observed. The dominant chaos, period-2

and period-1 orbits shown in green have yellow basins; the period-3 and period-6 orbits in black have red

basins.

external excitation. It can be seen that the control is applied at the period n = 300 and the
system is stabilized into the period-1 motion after a transient behaviour. The trajectories
of the period-3 motion with five impacts before control and the desired period-1 motion
with one impact after control are presented in Fig. 20(b). Fig. 20(c) confirms the control

action again by showing the time history of displacements of the mass and the capsule.

6. Concluding Remarks

A capsule system driven by a harmonic force applied to its inner mass was considered
in this study. Four various friction models were employed to describe motion of the
capsule in different environments taking into account Coulomb friction, viscous damping,
Stribeck effect, pre-sliding, and frictional memory. The non-linear dynamics analysis was

conducted to identify the optimal amplitude and frequency of the applied force in order
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Figure 19: (colour online) Evolution of the basins of attraction for the system with the Coulomb model
computed for o = 1.5 (a) without control, (b) with control k, = 0.05, and (c¢) with control k, = 0.1.
The dominant period-1 orbit shown in green have yellow basins; the period-3 and period-6 orbits in black
have red basins. Additional windows demonstrate the trajectories and Poincaré maps for the coexisting
solutions. The dominant period-1 orbit is shown by black line, the coexisting period-3 and period-6 orbits
are given in red lines. The locations of the impact surface are shown by green lines, and Poincaré sections

are marked by blue dots.
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Figure 20: (colour online) (a) The projection of the Poincaré map on the y; axis as a function of the
number of period of external excitation, (b) The trajectories of the period-3 motion without applying
position feedback control (shown by grey line) and the period-1 motion by applying position feedback
control (marked by red line) on the phase plane (z1—x2,y1 —¥y2), and (c¢) the time history of displacements
of the mass, 1 (shown by solid lines) and the capsule, xo (shown by dash lines) for the system with
the Coulomb model calculated for k, = 0.1, o = 1.3, v = 5.0, w = 0.95, 8 = 15.0, 6 = 0.02, £ = 0.01,

s = 0.1. The locations of the impact surface are shown by green lines, and Poincaré sections are marked

by blue dots.

to achieve the motion in the required direction and to maximize its speed.

The variation of the amplitude of external excitation was considered in the range
a € [0.1,2.0] for the mass ratio of v = 5.0 and the stiffness ratio of 5 = 15.0. Our
studies revealed that for amplitudes of the harmonic force smaller than the threshold of
friction, the dynamic behaviour of the system was mainly chaotic. Once the amplitude
of the harmonic force overcomes this limit, the motion of the capsule system becomes
periodic. It was also obtained that when the amplitude of the harmonic force was close
to the threshold of friction force, the period-3 responses obtained for the systems with
the Coulomb Stribeck and the seven-parameter models were very close to the coexisting
period-3 responses recorded for the systems with the Coulomb and the Coulomb viscous
damping models. This means that similar behaviour of the capsule system can be expected
for the amplitude of the harmonic force close to the threshold of friction in all friction
conditions.

The excitation frequency was varied in the range w € [0.8,1.2]. Here the capsule
system with all four friction models has similar bifurcation structure. As the frequency
increases, the capsule system bifurcates from periodic motion to chaos through a period
doubling cascade, and then bifurcates into periodic motion via an inverse period doubling

cascade. Global and local optima which gave the fastest speed of the system were observed.
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It is noted that the global optima for the systems with the Coulomb and the Coulomb
viscous damping models are obtained for those of their co-existing attractors which have
very limited basins of attraction. The global optima for the systems with the Coulomb
Stribeck and the seven-parameter models belong to the attractors with large basins. The
larger thresholds of frictional force in these models result in the stabilization of the system
and improvement of capsule progression.

The variation of damping ratio has shown that the behaviour of the system becomes
less complex as the damping ratio increases, which means that this parameter could be
tuned in the system design for avoiding chaotic motion.

The position feedback control law was applied to the capsule system with the Coulomb
friction model. With the control in place, the capsule system is able to move forward and
backward under variation of its position control gain, k,. When the value of this gain
varies from negative to positive, the system response is transformed from period-one
motion with one impact to period one with two impacts, while the direction of motion
changes from backward to forward. Here the larger the control gain is, the faster the
average progression of the capsule is.

To demonstrate the application of the proposed position feedback control law for chaos
control, the system with Coulomb Stribeck model was considered at o = 1.3, where for
the chosen system parameters the chaotic motion was observed. When the control law
was applied, a period-2 response with four impacts per period of excitation was obtained.
In this case the capsule speed was lower when the control was applied, but the capsule
motion was periodic and forward only. Also the capsule with control has higher control
efficiency than the one without control.

The evolution of the basins of attraction was also studied for the system with the
Coulomb friction model for the range of excitation amplitude where a number of attractors
coexist, and the effect of the control law on the evolution of the basins was investigated.
The result showed that the basin of the desired attractor can be significantly enlarged
by adjusting the control gain slightly. Therefore, a chance of switching from the current

attractor to a desired one can be improved.
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