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Abstract: This paper studies the synchronization in two mechanical oscillators coupled by im-

pacts which can be considered as a class of state-dependent impulsively coupled oscillators. The

two identical oscillators are harmonically excited in a counter phase, and the synchronous (anti-

phase synchronization) and the asynchronous motions are considered. One- and two-parameter

bifurcations of the system have been studied by varying the amplitude and the frequency of

external excitation. Numerical simulations show that the system could exhibit complex phe-

nomena, including symmetry and asymmetry periodic solutions, quasi-periodic solutions and

chaotic solutions. In particular, the regimes in anti-phase synchronization are identified, and it

is found that the symmetry-breaking bifurcation plays an important role in the transition from

synchronous to asynchronous motion.

Keywords: impact oscillators, state-dependent impulsively coupled oscillators, anti-phase syn-

chronization, symmetry-breaking bifurcation

1. Introduction

Synchronization phenomena are ubiquitous in nature, and they have been extensively stud-

ied by using different methods (e.g. [1–3]). Nowadays, various types of synchronization have been

investigated, including complete synchronization [4], phase synchronization [5], lag synchroniza-

tion [6, 7], generalized synchronization [8], and so on. In particular, a special phenomenon in
∗Corresponding author. Tel.:+86 515 88239915, E-mail address: yctcjhb@126.com (H. Jiang).
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the coupled oscillators called anti-synchronization has attracted significant attention from re-

searchers, e.g. [9, 10]. When the coupled oscillators achieve anti-synchronization, their states

have the same absolute values but opposite signs. The scientist Huygens first observed the anti-

synchronization in two pendulum clocks in [11], and this phenomenon was also known as the

anti-phase synchronization (APS), e.g. [12, 13].

Since the transition of synchronization can be revealed through dynamical analysis, the

synchronization of coupled oscillators was always investigated by studying its dynamics, e.g.

[14–16]. In [14], Rene investigated different dynamical states of synchronization for a ring of four

mutually inertia coupled self-sustained electrical systems which were described by the coupled

Rayleigh-Duffing equations. He also studied the stability properties of periodic solutions and

the transition boundaries between different dynamical states by using the Floquet theory. The

dynamical behaviors and synchronization of a ring of mutually coupled Van der Pol oscillators

were studied by Barrón and Sen [15]. Later on, Perlikowski et al. [16] investigated the dynamics of

a ring of unidirectionally coupled autonomous Duffing oscillators which indicated that although

the individual uncoupled oscillator has one globally stable equilibrium, the response of the

coupled oscillators could evolve into periodic, quasi-periodic, and chaotic motions when the

coupling strength increases. In [17], Kapitaniak et al. considered the dynamics of two planar

elastic pendula mounted on a horizontally excited platform in order to identify any possible

synchronous states.

The couplings between the oscillators reviewed above are continuous, while not all the

coupled systems are continuous, e.g. the species-food model in biology, the information transfer

and exchange in ants, and the model of integrated circuit. The impulsively coupled oscillators

which interact with each other at discrete time is a counter example of continuous coupling.

They have drawn considerable attention from researchers because of their board applications in

image processing, circuit design and implement, and the others (e.g. [18–21]). Han et al. [18]

studied a class of impulsively coupled complex dynamical systems and established several criteria

regarding to the eigenvalues and the eigenvectors of the coupling matrix for synchronization of

such systems. Yang et al. studied a class of impulsively coupled complex switched networks

and their robust synchronization in terms of parametric uncertainties and time-varying delays

in [19]. Jiang and Bi introduced the concept of partial contraction theory of impulsive systems

and investigated the synchronization problem of impulsively coupled oscillators in [20]. Jiang

et al. [21] studied the complex dynamics of a non-smooth system which was unidirectionally
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impulsively coupled by three Duffing oscillators in a ring structure.

Recently, synchronization of various coupled dynamical systems have been extensively con-

sidered. For example, in [22–24], the impulsive control protocols have been introduced for

networked linear and nonlinear dynamical systems. Blazejczyk-Okolewska et al. [25] studied

the dynamics of two mechanical oscillators coupled by impacts and observed the anti-phase

synchronization phenomenon when the distance between these oscillators exceeded some critical

thresholds. In [26–29], the dynamics of multi-degree-of-freedom vibro-impact systems has been

studied by using numerical simulations and qualitative analysis. This paper will use the physical

model in [25] to study the dynamics and the synchronization of impulsively coupled oscillators

under variations of amplitude and frequency of external excitation. In particular, the transition

between the synchronous (APS) and asynchronous motions will be analyzed. One- and two-

parameter bifurcation analysis will be conducted for investigating the relationship between the

dynamic response and the synchronization phenomenon of the system. The symmetry-breaking

bifurcation will be discussed in order to emphasize its role on the transition from synchronous

to asynchronous response.

The remainder of this paper is organized as follows. In Section 2, the physical model

of the impulsively coupled oscillators is presented. Event-based hybrid system modeling and

stability analysis are given in Section 3. In Section 4, one- and two-parameter bifurcations and

synchronization analysis of the system are analyzed, and then conclusions are given in Section

5.

2. Physical model

The physical model of the impulsively coupled oscillators is shown in Fig. 1. X1 and X2 are

displacements of mass 1 and 2, respectively. Both masses are connected to the supporting base

by two identical springs with stiffness k and two identical linear viscous dampers with damping

coefficient c. The external forcing on the masses is harmonic with amplitude F and frequency

Ω in a counter phase (i.e. φ = π, where φ is the phase shift of external forcing). The initial

gaps between the masses and the origin point X = 0 are E. The impacts of these two masses

are assumed to be rigid and described by a restitution coefficient r. It should be noted that

the coupling between these two oscillators is non-continuous so that they can be considered as

state-dependent impulsive coupling.
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Fig. 1. Physical model of the state-dependent impulsively coupled oscillators (adapted from [25]).

Without impacts, the equations of motion for the impulsively coupled oscillators can be

written as mẌ1 + cẊ1 + kX3
1 = F sin(Ωt),

mẌ2 + cẊ2 + kX3
2 = F sin(Ωt + π),

when X2 − X1 > 0. (1)

Using the rule of restitution coefficient and the law of conservation of momentum, the impact

equations of the system are governed by Ẋ+
2 − Ẋ+

1 = −r(Ẋ−
2 − Ẋ−

1 ),

m(Ẋ+
1 − Ẋ−

1 ) + m(Ẋ+
2 − Ẋ−

2 ) = 0,
when X2 − X1 = 0, (2)

where Ẋi (i = 1, 2) is the differentiation of Xi with respect to the time t, and Ẋ−
i and Ẋ+

i

represent the velocities of the ith oscillator before and after impact, respectively.

We introduce the following non-dimensional variables and parameters: τ = Ωnt, Ωn =√
k/my0, x1 = X1/y0, x2 = X2/y0, e = E/y0, ξ = c/(2mΩn), a = F/(ky3

0), ω = Ω/Ωn, where

y0 is some arbitrary reference distance. Then the non-dimensional equations of motion are

rewritten as x′′
1 + 2ξx′

1 + x3
1 = a sin(ωτ),

x′′
2 + 2ξx′

2 + x3
2 = a sin(ωτ + π),

when x2 − x1 > 0,

 (x′
1)+ = ((1 − r)(x′

1)− + (1 + r)(x′
2)−)/2,

(x′
2)+ = ((1 + r)(x′

1)− + (1 − r)(x′
2)−)/2,

when x2 − x1 = 0.

(3)

It should be noted that v1 and v2 are defined as the differentiations of x1 and x2 with re-

spect to the non-dimensional time τ , respectively, which will be used in the following numerical

simulations. In addition, the following definition is given.

4



Definition 1. The impulsively coupled oscillators are in APS if limτ→+∞ |x1 + x2| = 0 and

limτ→+∞ |v1 + v2| = 0.

3. Event-based hybrid system modeling and stability analysis

In this section, we transform the system (3) into vector fields, event functions and jump

functions by using the modeling approach of the event-based hybrid system studied in [30, 31],

and provide the method for determining the stability of periodic solutions.

Let

y =



y1

y2

y3

y4

y5


=



x1

x′
1

x2

x′
2

(ωτ) mod (2π)


(4)

represent the state of the state-dependent impulsively coupled oscillators in (3). Then the

smooth motion of the system is governed by the vector field

fsmooth(y) =



y2

−2ξy2 − y3
1 + a sin(y5)

y4

−2ξy4 − y3
3 + a sin(y5 + π)

ω


. (5)

Impact occurs when

himpact(y) = y3 − y1 = 0 (6)

resulting in a discontinuous jump in state given by the state jump function

gimpact(y) =



y1

((1 − r)y2 + (1 + r)y4)/2

y3

((1 + r)y2 + (1 − r)y4)/2

y5


. (7)

Furthermore, a discontinuous jump in the phase coordinate y5 occurs when

hphase(y) = 2π − y5 = 0, (8)
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which corresponds to the state jump function

gphase(y) =



y1

y2

y3

y4

y5 − 2π


. (9)

A periodic trajectory of hybrid dynamical systems (e.g. impulsive switched systems) can

be characterized by a sequence of triplets in the form (f, h, g) which includes a solution seg-

ment governed by the vector field f terminating on the event surface h and connecting to the

next solution segment by using the state jump function g. It is therefore that the periodic

trajectories of the system in (3) consist of two signatures, I1 = (fsmooth, himpact, gimpact) and

I2 = (fsmooth, hphase, gphase). For a given signature of the periodic trajectory, the Jacobian ma-

trix of the smooth part uses the monodromy matrix of the smooth trajectory, and the Jacobian

matrices of the impact and the phase use their corresponding saltation matrices [32]. Using such

an approach, one can get the periodic solution and the corresponding Jacobian matrix of the peri-

odic trajectory. Four basic types of bifurcations including saddle-node (SN), symmetry-breaking

(SB)/pitchfork, period-doubling (PD), and Neimark-Sacker (NS) bifurcations are responsible for

destabilization of the observed periodic solutions. The bifurcations are analyzed by using the

continuation toolbox CoCo [33, 34], which is a general-purpose tool for continuation and bifur-

cation analysis of smooth and non-smooth dynamical systems. For the system in (3), CoCo

can distinguish the types of bifurcations based on the Floquet theory (see [34] for details) by

calculating four Floquet multipliers of periodic solutions. When all multipliers are within the

unit circle, the considered periodic solution is stable. As the two impact oscillators are iden-

tical and symmetric, SN or SB bifurcation occurs when one of the real multipliers leaves the

unit circle through +1, and -1 for PD bifurcation, or two pairs of complex multipliers leave the

circle in the case of NS bifurcation. Although the variations of the multipliers for SB and SN

bifurcations are the same, their effects on periodic orbit are different. For example, two periodic

orbits can be annihilated by each other for SN bifurcation, while for SB bifurcation, the stability

of the symmetric periodic solution will be affected so that the responses of the system are not

symmetric thereafter. For PD bifurcation, the period of the solution could be doubled at where

synchronization is achieved, and the periodic motion of the system will become quasi-periodic

after NS bifurcation.
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4. Bifurcation and synchronization analysis

In this section, bifurcation and synchronization analysis of the impulsively coupled oscillators

will be carried out to show the influence of frequency and amplitude of external excitation on the

dynamics of the system. For simplicity, we use the abbreviation n−p : n−q (∗) in the bifurcation

diagram to describe different types of periodic motions of the system, where n is the number of

periods of the external excitation in the motion period T = 2π/ω, p is the number of impacts

for the first impact oscillator, q is the number of impacts for the second impact oscillator, and

“∗” is “S” or “AS” representing symmetric or asymmetric periodic motion, respectively.

4.1. Two-parameter bifurcation and synchronization analysis

Inspired by [25], we choose the parameter regions ω ∈ [0.6, 1.6] and a ∈ [0.3, 1.6] to show

some typical dynamical behaviors and transitions of the system. Within the selected region,

the dynamics of the system is rich so that the APS via various bifurcations could be studied.

The diagram of two-parameter bifurcation and synchronization is shown in Fig. 2 which has

been divided into ten regimes including a number of SB, PD, and NS bifurcation curves which

were obtained by following the corresponding bifurcation points [33,34]. As can be seen from the

figure, the system exhibits complex dynamics including chaotic motions and periodic windows in

the regime marked by 1⃝ at where the system is not anti-phase synchronized. SB bifurcation is

observed on the boundary of the regimes 1⃝ and 2⃝, and the response of the system evolves into

a period-1 motion with two impacts per period of external excitation. Then the period-1 solution

with two impacts in the regime 2⃝ losses stability and bifurcates into a period-2 solution with four

impacts in the regime 3⃝ via a PD bifurcation. As the frequency ω increases, the system regains

its stability via a reverse PD bifurcation in the regime 4⃝ at where the period-1 solution with two

impacts is observed again. It is worth noting that the anti-phase synchronization of the system is

achieved in the regimes 2⃝, 3⃝, and 4⃝, and all of the periodic motions are symmetric. It is seen

from the figure that the transition from the regime 4⃝ to 5⃝ is through a SB bifurcation, and the

symmetry period-1 solution with two impacts bifurcates into an asymmetry period-1 solution

with two impacts which is not in APS. As the frequency ω increases in the regime 5⃝, a SB

bifurcation causes the asymmetry period-1 solution with two impacts losing stability followed by

a symmetry period-1 solution with two impacts in the regime 6⃝. Thereafter the system evolves

into an asymmetry chaotic motion via a SB bifurcation in the regime 7⃝ which contains chaos,
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quasi-periodic motion, and periodic windows. The transition between the regimes 7⃝ and 8⃝ is

manifested through a NS bifurcation from an asymmetry period-2 solution with two impacts to

a quasi-periodic motion. Later on, the regime 8⃝ is followed by a small window of asymmetry

period-1 solutions with one impact through a PD bifurcation in the regime 9⃝. Finally, the

symmetric period-1 solution with one impact becomes asymmetric after a SB bifurcation as the

frequency of external excitation increases. It can be seen from the two-parameter bifurcation

diagram that the regimes 2⃝, 3⃝, 4⃝, 6⃝, and 10⃝ which are marked by gray are in APS, and all

of them emerge and cease to exist through SB bifurcation. It is therefore that SB bifurcation

is crucial for symmetry and APS of the impulsive coupled oscillators. A summary of these

transitions are given in Table 1. The representative phase portraits of the impulsively coupled

oscillators for the parameters in these regimes will be given in the next subsection by fixing the

amplitude of excitation a = 1.

0.6 0.8 1.0 1.2 1.4 1.6
0.3

0.6

0.9

1.2

1.5

SB

APS

2-2:2-2(AS)

1-1:1-1(AS)

1-2:1-2(AS)

2-4:2-4(S)

1-2:1-2(S)

1-1:1-1(S)
 

 

a

PD
NS

Complex
dynamics

Fig. 2. (Colour online) Two-parameter bifurcation and synchronization diagram obtained for

ξ = 0.05, r = 0.9 and e = 1. The regimes are marked by the numbers 1⃝-10⃝ , and the regimes in

APS are shown by gray shadow. The SB, PD, and NS bifurcations are indicated by red, green,

and blue curves, respectively.
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Table 1. Summary of the transitions observed from Figure 2.
No. Regimes Dynamical transition APS APS transition Bifurcation

1 2⃝ → 3⃝ 1-2:1-2(S) → 2-4:2-4(S) Y→ Ya N PD

2 3⃝ → 4⃝ 2-4:2-4(S) → 1-2:1-2(S) Y→ Y N PD

3 4⃝ → 5⃝ 1-2:1-2(S) → 1-2:1-2(AS) Y→ N Y SB

4 5⃝ → 6⃝ 1-2:1-2(AS) → 1-2:1-2(S) N→ Y Y SB

5 8⃝ → 9⃝ 2-2:2-2(AS) → 1-1:1-1(AS) N→ N N PD

6 9⃝ → 10⃝ 1-1:1-1(AS) → 1-1:1-1(S) N→ Y Y SB

a“Y” and “N” represent yes and no, respectively.

4.2. One-parameter bifurcation and synchronization analysis

In order to investigate the dynamics of the system in detail, one-parameter bifurcation anal-

ysis is carried out in this section by varying the frequency of external excitation ω. Bifurcation

diagrams were constructed for the frequency range ω ∈ [0.6, 1.6] by plotting the solution once it

converged onto a periodic response, otherwise plotting the next 200 values of displacements if no

convergence was found after calculating 2000 periods of external excitation. Fig. 3 presents the

bifurcation diagrams constructed for (a) x1+x2, (b) x1, x2, and (c) the Lyapunov exponents. The

Lyapunov exponents which measure the exponential rates of divergence/convergence of adjacent

orbits of the attractors in the state space were calculated by using the Müller’s method [35].

The spectrum of the Lyapunov exponent is an effective diagnostic method for monitoring chaotic

attractors. The chaotic attractor has at least one positive exponent, and the periodic attractor

has only negative exponents with exception of one zero exponent indicating the convergence to

another periodic obit. For the quasi-periodic attractor, it has a number of zero exponents and

the rest are negative.

As can be seen from Fig. 3, a chaotic regime with a small window of periodic motion

is recorded for ω ∈ [0.6, 0.671] and the system is not in APS. A SB bifurcation is observed

for ω = 0.671 at where the chaotic solution becomes a symmetric period-1 solution with two

impacts. The time histories and the phase trajectories of the chaotic solution for ω = 0.67

are shown in Fig. 4 showing that the APS is not achieved before SB bifurcation. The APS is

achieved for ω ∈ (0.671, 0.935] including a small window of symmetric period-1 motion with two

impacts followed by a symmetric period-2 motion with four impacts for ω ∈ (0.708, 0.782] via a

PD bifurcation, and the system bifurcates again into the symmetric period-1 motion with two

impacts for ω ∈ (0.782, 0.935] through a reverse PD. The stable symmetric period-1 solution
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Fig. 3. (Colour online) Bifurcation diagrams obtained for (a) x1 + x2, (b) x1 (blue dots) and x2

(red dots), and (c) the Lyapunov exponents by varying the frequency of excitation, ω calculated

for ξ = 0.05, r = 0.9, a = 1.0 and e = 1. The regimes of APS are highlighted by grey shadow,

and the Lyapunov exponents are marked in different colours.
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Fig. 4. (Colour online) (a) Time histories of x1 (blue line) and x2 (red line), (b) the trajectories

of mass 1 on the phase plane (x1, v1), (c) the trajectories of mass 2 on the phase plane (x2, v2),

and (d) the trajectories of the impulsively coupled oscillators on the phase plane (x1, x2) for the

chaotic solution calculated for ξ = 0.05, r = 0.9, a = 1.0, e = 1, and ω = 0.67. Poincaré sections

are marked by green dots.
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(x2, v2) (red line), and the trajectories of the impulsively coupled oscillators on the phase plane

(x1, x2) for (a) the symmetric period-1 solution with two impacts (ω = 0.68), (b) the symmetric

period-2 solution with four impacts (ω = 0.71), and (c) the asymmetric period-1 solution with

two impacts (ω = 0.94) calculated for ξ = 0.05, r = 0.9, a = 1.0, e = 1. Poincaré sections are

marked by green dots.
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with two impacts loses stability via a SB bifurcation occurring at ω = 0.935 followed by a stable

asymmetric period-1 solution with two impacts per period of external excitation which is not in

APS. The time histories and the phase trajectories of the symmetric period-1 motion with two

impact, the symmetric period-2 motion with four impacts, and the asymmetric period-1 motion

with two impacts for ω = 0.68, ω = 0.71, and ω = 0.94 are presented in Fig. 5, where the phase

plane (x1, x2) shows APS clearly.

It can be seen from Fig. 3 that the asymmetric period-1 motion with two impacts ceases

to exist at ω = 1.036, and a symmetric period-1 solution with two impacts emerges afterwards

through a SB bifurcation. Hence the system transits from a non-APS regime into a APS one

which exists until ω = 1.144 followed by a chaotic regime for ω ∈ (1.144, 1.43) via a SB bi-

furcation. For ω ∈ [1.487, 1.6], a stable period-1 solution with one impact in APS is recorded.

As the frequency ω decreases, this periodic solution undergoes a SB bifurcation at ω = 1.487

and becomes an asymmetric period-1 solution with one impact. Then the asymmetric periodic

solution bifurcates into an asymmetric period-2 solution with two impacts via a reverse PD at

ω = 1.456. Time histories and phase trajectories of the asymmetric period-2 solution with two

impacts at ω = 1.45, the asymmetric period-1 solution with one impact at ω = 1.48, and the

symmetric period-1 solution with one impact at ω = 1.49 are shown in Fig. 6. The asymmetric

period-2 solution is recorded for ω ∈ [1.43, 1.456) and bifurcates into a quasi-periodic solution at

ω = 1.43 via a NS bifurcation. As the frequency ω decreases, the quasi-periodic solution exists

shortly following by the chaotic solutions for ω ∈ (1.144, 1.43). Fig. 7 presents the time histories

and the phase trajectories of the quasi-periodic solution at ω = 1.43 at where the zoom-in of

the Poincaré sections are shown in the blow-up windows.

5. Conclusions

This paper studies the dynamics and the synchronization in two mechanical oscillators

coupled by impacts which can be considered as a class of state-dependent impulsively coupled

oscillators. The two identical oscillators are harmonically excited in a counter phase, and the

synchronous (APS) and the asynchronous motions of the system were considered. Event-based

hybrid system modeling and stability analysis were given and the numerical continuation method

was employed to carry out bifurcation analysis. One- and two-parameter bifurcations of the

system were studied by varying the amplitude and the frequency of external excitation. From

13



0 10 20 30 40
-2

-1

0

1

2

-1 0 1

-1

0

1

-2 -1 0 1 2
-2

-1

0

1

2

0 10 20 30 40
-2

-1

0

1

2

-1 0 1

-1

0

1

-2 -1 0 1 2
-2

-1

0

1

2

0 10 20 30 40
-2

-1

0

1

2

-1 0 1

-1

0

1

-2 -1 0 1 2
-2

-1

0

1

2

2-2:2-2(AS)

1-1:1-1(AS)

x 1, x
2

t

1-1:1-1(S)
x 2

x1

(c)

(b)
v 1, v

2

x
1
, x

2

(a)

x 1, x
2

t

x 2

x1

v 1, v
2

x
1
, x

2

x 1, x
2

t

x 2

x1

v 1, v
2

x
1
, x

2

Fig. 6. (Colour online) Time histories of x1 (blue line) and x2 (red line), the trajectories of

mass 1 on the phase plane (x1, v1) (blue line) and the trajectories of mass 2 on the phase

plane (x2, v2) (red line), and the trajectories of the impulsively coupled oscillators on the phase

plane (x1, x2) for (a) the asymmetric period-2 solution with two impacts (ω = 1.45), (b) the

asymmetric period-1 with one impact (ω = 1.48), and (c) the symmetric period-1 with one

impact (ω = 1.49) calculated for ξ = 0.05, r = 0.9, a = 1, e = 1. Poincaré sections are marked

by green dots.
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Fig. 7. (Colour online) (a) Time histories of x1 (blue line) and x2 (red line), (b) the trajectories

of mass 1 on the phase plane (x1, v1), (c) the trajectories of mass 2 on the phase plane (x2, v2),

and (d) the trajectories of the impulsively coupled oscillators on the phase plane (x1, x2) for the

quasi-periodic solution calculated for ξ = 0.05, r = 0.9, a = 1.0, e = 1, and ω = 1.43. Poincaré

sections marked by green dots are shown in blow-up windows.
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the two-parameter bifurcation study, we would be able to identify the regimes of APS in a

two-parameter domain (ω, a). Furthermore, the conclusion that SB bifurcation dominates the

transition from APS to asynchronous motion was verified by following bifurcation curves using

the continuation technique.

Two-parameter bifurcation was carried out by varying the frequency and the amplitude

of external excitation, and ten regimes and a number of SB, PD, and NS bifurcation curves

were obtained. It has shown that all the regimes in APS emerge and cease to exist through

SB bifurcation. The transition between the regime of complex dynamics and the regime of

asymmetric period-2 solution with two impacts is manifested through NS bifurcation. We also

observed that the system underwent quasi-periodic motions before completely changed to chaos

as the frequency of excitation decreased.

One-parameter bifurcation was studied for the frequency range ω ∈ [0.6, 1.6] with a fixed

amplitude a = 1. The Lyapunov exponents were presented with the bifurcation diagrams in

order to interpret different bifurcation scenarios. From one-parameter bifurcation study, we

would be able to study the dynamical transitions of the system by observing its time history

and phase portrait. Numerical simulations have shown that the system could exhibit complex

phenomena, including symmetry and asymmetry periodic solutions, quasi-periodic solutions and

chaotic solutions. In addition, we could conclude that the symmetric periodic solutions which

are in APS may emerge after SB bifurcation.
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