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ABSTRACT 

 

Graphene and its magnetite derivative were used as adsorbents for removal of 

emulsified oil from produced water. The experimental parameters for maximum 

emulsified oil removal efficiency and effective regeneration of these adsorbents 

were determined. The best parameters in terms of dosage, contact time, pH, salinity 

and temperature were 3.00 g/L, 60.0 minutes, 10.0, 1500 ppm and 25.0 oC for 

graphene nanoplatelets, and 4.00 g/L, 30.0 minutes, 3.5, 1000 ppm and 25.0 oC, for 

graphene magnetite, respectively. Packed column studies were carried out utilizing 

graphene magnetite as adsorbent for the removal of oil from produced water. The 

packed column operation was assessed using Thomas, Yan et al., Clark, Bohart and 

Adams and Yoon and Nelson models. Thomas model was found to best describe 

the column experimental data. The column was regenerated using n-Hexane and 

reused several times for produced water treatment with negligible decrease in its 

initial capacity.    

 

 

 

 

 

Keywords: adsorption; equilibrium isotherms; graphene magnetite; kinetic models; 

produced water; column studies 
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1. Introduction 

Produced water is a major contributor to generation of wastewater streams, which 

is generated during the oil and gas extraction processes. It is estimated that around 

3–9 barrels of water are produced per barrel of oil production by oil and gas 

industries[1]. Produced water contains many organic and inorganic materials; 

however, its chemical and physical characteristics vary depending on geographic 

location of the oil reservoir, existence of the reservoirs, nature of hydrocarbons  

produced, operating conditions and the added chemicals. Although the composition 

of the produced water can fluctuate according to different sources, they have 

common constituents analogous to the composition of oil/gas production [1-3].  

Produced water is usually discharged to oceans and lakes without proper 

treatment and as such invokes serious environmental concerns. One of these 

concerns is the contamination of water body by oil which is hazardous to human 

and marine lives. Adverse negative effects on health have been reported related to 

the water contamination with oil and organic compounds. It is therefore necessary 

to treat produced water before it being discharged to the environment by the oil and 

gas companies [1-3]. 

Several methods have been applied to remove oil from produced water 

including hydrocyclones and membrane separation technologies [4-8]. Although 

both methods have been shown to be efficient, each of them has its drawbacks. 

Hydrocyclones are known to be widely used to treat produced water; however, its 

major disadvantage is the production of large slurry of solid waste. The difficulties 

of membrane are due to its scaling and fouling of the membrane as well as it requires 

extensive pretreatment. It is reported that the selection of appropriate technology 
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for produced water treatment depends on the influent and effluent water qualities, 

the waste generated as well as the overall cost [1, 9, 10].  

Adsorption is another commonly used technique to remove oil from 

produced water. Activated carbon is one of the known and most promising 

adsorbent that is commonly used for the removal of a wide variety of organic 

compounds including oil. United States Environmental Protection Agency 

(USEPA) approved the use of activated carbon in adsorption applications as one of 

the best available technologies for the removal of organic compounds from air and 

water treatment processes. Since oil is mainly composed of organic compounds, 

activated carbon materials could be considered a suitable adsorbent for its removal 

[7,8]. Okiel et al. [11] conducted a study to remove emulsified oil from produced 

water using three different adsorbents, powdered activated carbon, deposited 

carbon, and bentonite. The adsorbents showed good oil removal efficiency in the 

range between 20 and 90 %. Adsorbents from biological origin have also been 

considered for this regard [12-15]. For example, eggshells was used as adsorbent 

for oil removal from water contaminated with oil (none emulsified)  with 100% oil 

removal efficiency when using adsorption dosage of 1.8 g/L [12]. Banana peels was 

also proved to remove100% oil using 267 mg/L of the adsorbent at a contact time 

of 35 minutes [13].  

Graphene is an emerging adsorbent to treat various pollutants, and could be an 

alternative to many other adsorbents. The special characteristics of this material 

make it an excellent candidate for different applications including electronics, 

energy storage, sensors, quantum dots and water treatment uses; as it has high 

mobility, high thermal conductivity, and admirable electronic and mechanical 

properties [16]. It has been applied successfully for the removal of metal ions and 
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organic contaminants from wastewater. When compared to zeolites, clay minerals, 

and other carbon materials, graphene showed higher adsorption capacity and better 

recycling capability for the removal of heavy metal ions [17, 18]. Graphene 

nanosheets are considered an excellent adsorbent for the treatment of wastewater 

produced from mining, dying and pesticides industries [19]. Graphene and graphene 

based materials were also used as adsorbents for different pollutants present in water 

including Methylene blue, Endosulfan, Saphranin T and Tetracycline [20]; the 

maximum adsorption capacity of these pollutants by such adsorbents were 

considered relatively high [20].  

The objective of this work is to investigate the effectiveness of graphene 

nanoplatelets and its magnetite derivatives for the removal of emulsified oil from 

produced water and to determine the best conditions for the treatment process. Other 

related aspects will be also studied including sorption kinetics, sorption isotherms 

and graphene regeneration efficiency. 

To the best of our knowledge, we present for the first time the applicability 

of graphene nanoplatelets and graphene magnetite for the removal of emulsified oil 

from produced water. 

2. Materials and methods 

2.1 Materials 

 

Surfactant (ENDCOR OCC9783), heavy crude oil (having API < 22.3o), Industrial 

graphene nanoplatelets (GRAFEN®-iGP2, purity 99%), and n-Hexane (purity > 

95%) were obtained from General Electric UAE, ADNOC UAE, Grafen Chemical 

Industries (Turkey) and J.T. Baker (Netherlands), respectively. Analytical grade 

chemicals were used, unless otherwise specified. 1.0 M sodium hydroxide and 1.0 
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M hydrochloric acid were used for pH adjustments. Salinity was adjusted using 1.0 

M sodium hydroxide solution. GRAFEN®-iGP2 has diameter, thickness, density 

and surface area of 5-10 μm, 5 – 8 nm, 0.05 g/cm3 and 120 -150 m2/g, respectively. 

The graphene was cleaned with doubled distilled water and then washed with 

hexane and finally, dried in a vacuum oven prior to its use.  

2.1 Instrumentations  

The following instruments were used to perform the experimental part of this study: 

a temperature controlled shaker (Edmund Buhler, Germany) at 150 rpm, centrifuge 

(HERMLE Labortechnik GmbH, Germany) at 4000 rpm, Orion 201A+ basic pH 

meter (Thermo Electron Corporation, USA), and Cary 50 Conc (Varian, Australia) 

for UV-Visible measurements. Syringe filters (45 μm, PTFE Membrane, Chrom 

Tech, Germany) were also used. Characterization of adsorbents, before and after 

adsorption of oil, was carried out using several complementary techniques. 

Scanning electron microscopy (SEM) (TESCAN VEGA.3-LMU, USA), Z-

potential measurements were conducted on Anton Paar Litesizer 500 (Austria),  x-

ray diffraction measurements (XRD) were performed using a Bruker D8 

ADVANCE system with a Cu tube and a linear detector (LYNXEYE XE). The 

measurements were performed with a step size of 0.03°, 2θ range of 5° to 80°, and 

time per step of 2 s. Raman spectrum was performed using Rainshaw Raman InVia 

Microscope with laser excitation of 514 nm. The scan was performed for 600 s using 

a laser power of 0.5 W.  XRD and Raman experiments were done at the Advanced 

Materials Research Laboratory at the University of Sharjah (UAE). Infrared spectra 

were recorded using Fourier transform infrared spectrometer (PerkinElmer, USA). 
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2.2 Preparation and stability of emulsion 

Stable emulsion, to mimic industrial produced water, was prepared using 6:4 v/v 

ratio of surfactant to deionized water. Surfactant and deionized water were added in 

required quantities and stirred for homogeneity. 

 

2.3 Preparation of graphene magnetite  

Graphene magnetite was prepared as described elsewhere [21]with modification. 

Briefly, graphene (G) was placed in 100 mL aqueous solution, while Fe3O4 was 

prepared by adding Fe2+ (FeSO4) :Fe3+ (FeCl3) in a ratio1:2 by mass to another 100 

mL aqueous solution sonicated by ultrasound for 10 minutes, and then 2-3 drops of 

concentrated HCl (6M) was added to ensure acidity of the solution. The Fe3O4 

solution was added to the aqueous graphene solution, in ratio of graphene: Fe3O4 of 

3:2, and then sonicated for 10 minutes for the purpose of homogeneity. 

Concentrated ammonia (15 M) was added to the solution to achieve a pH between 

11 and 12. The solution was kept in a shaker hot bath at 50 oC for an hour. At this 

point, the solution was separated and the graphene magnetite (GM) precipitated. 

The solution was left for 1-2 days to digest and then the water-ammonia solution 

was filtered. The GM particles were washed with deionized water three times to 

ensure removal of any remaining water-ammonia on the surface. The GM particles 

were dried initially for two days at 60oC in an oven and then finally dried in a 

vacuum oven at 60oC for 3 hours.  
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2.4 Sorption tests 

Batch tests as well as packed column adsorption modes were carried out. In all 

cases, a pre-specified emulsified oil concentration was prepared using surfactant: 

water ratio of 6:4. The salinity and pH of the sample was adjusted using either 1.0 

M NaCl solution or 1.0 M NaOH solution.  

In batch bench-scale experiments, known volume of emulsified oil was added into 

a flask and the known amount of adsorbent was added. The best results were 

achieved by varying the following parameters: adsorbent dosage (1-7 g/L), contact 

time (0-120 min), salinity (0-2000 ppm), pH (2-12) and temperature (25-50oC). 

Upon achieving equilibrium, or a prescribed time for the case of studying kinetics 

of adsorption, the suspension was filtered using 0.45 μm syringe filters and known 

volume of filtrate was stirred with n-Hexane (3 times) for oil extraction from the 

samples. UV-Vis Spectroscopy, at a wavelength of 245nm was used to quantify the 

oil content [18]. The effect of experimental parameters was optimized for oil 

removal using G and GM.  

In packed column mode, the effect of column height and flow rate was studied at 

the best conditions of pH, temperature and salinity as deduced from batch bench 

scale studies. The GM particles (0.3g – 0.6 g) were packed into a glass column (1 

cm in diameter and bed depth 0.3 – 0.6 cm). Glass wool was placed at the bottom 

and top of the GM bed to ensure even distribution of solution and prevent particle 

floating. The produced water was fed to the bed and at regular time intervals 

samples were collected, filtered and quantified for the remaining oil content.  

 A
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2.5 Sorption isotherms analyses 

The applicability of different equilibrium isotherm models, including Temkin, 

Langmuir and Freundlich isotherm models, were assessed for the adsorption 

equilibrium isotherms data collected in this study for the different sorbate-sorbent 

systems. These models are described by equation 1A, 2A, and 3A, respectively, 

while 1B, 2B, and 3B represents the linearized forms of these isotherms, 

respectively. 

qe = B ln[KTCe]        (1A) 

qe = B lnKT + B They lnCe       (1B) 

qe =
qm𝐾′Ce

[1+𝐾′Ce]
         (2A) 

Ce

qe
=

1

𝐾′qm
+

Ce

qm
        (2B) 

qe = kfCe
n         (3A) 

ln qe = lnkf + nlnCe        (3B) 

where qe, Ce, qm and kf represents amount of oil being adsorbed at equilibrium per 

gram of adsorbent (mg/g), equilibrium concentration (mg/L), maximum adsorption 

capacity (mg/g) and Freundlich capacity parameter (mg(1-1/n)L1/n/g), respectively; K’ 

and n are adsorption constants for Langmuir and Frendulich isotherms, related to 

energy of adsorption and adsorption intensity, respectively; KT and B are Temkin 

sorption constants.  

 

2.6 Thermodynamics 

It is important to understand the thermodynamic nature of the adsorption process, 

which is achieved by calculating thermodynamic parameters such as Gibbs free 

energy (∆𝐺′), enthalpy (𝛥𝐻′) and entropy(𝛥𝑆′). Due to the nature and complexity 
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of the oil matrix under study, the average molar mass of the oil content was used to 

determine the equilibrium constant. Hence Sip’s equation [22-25], was used to 

estimate the equilibrium constant as function of temperature. The Following 

equations are used to calculate these parameters for the considered sorbate-

sorbent systems [22-25]. 

∆𝐺 ′ = −𝑅𝑇𝑙𝑛𝐾𝑒𝑞        (4) 

𝐾𝑒𝑞 = 𝑒−𝛥𝐺′/RT        (5) 

𝐾𝑒𝑞 = 𝐾𝑎𝑑
−1         (6) 

𝑄𝑒 =
𝑄𝑇

𝐾𝑎𝑑
𝐶𝑒

𝑁         (7) 

𝑙𝑛𝐾𝑒𝑞 = −
𝛥𝐻′

𝑅𝑇
+

𝛥𝑆′

𝑅
        (8) 

∆𝐺 ′ = 𝛥𝐻′ − 𝑇𝛥𝑆 ′        (9) 

where, ∆𝐺′, ∆𝑆′ and ∆𝐻′are the apparent changes in Gibbs free energy (J/mol),  

entropy (J/mol.K) and enthalpy (J/mol) of adsorption, respectively. R, T and Keq 

represent ideal gas constant (8.314J/mol.K), temperature (K) and apparent 

equilibrium constant. Keq is found using equation (6). Ce, Qe, and QT are the 

concentration of adsorbate in solution at equilibrium (mg/L), theoretical amount of 

oil being adsorbed at equilibrium per gram of adsorbent (mg/g) and theoretical 

maximum adsorption capacity (mg/g), respectively. Kad and N are the fitting 

parameter. Plotting lnKeq versus 1/T yields a straight line with -∆H′/R as the slope 

from which the change in enthalpy can be calculated. ∆𝐺′ can be obtained from 

equation (4), hence using equation 6-7, ∆𝑆′ can be readily obtained. Determination 

of such parameters helps in deciding the endothermic or exothermic nature of the 

sorption process as well as whether the adsorption process of physisorption or 

chemisorption.  
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2.7 Sorption kinetics  

Sorption kinetics provides an overview of the reaction path followed and the time 

required to attain equilibrium. Thus, sorption kinetics analysis is an important issue 

for understanding the extent of adsorbate uptake by the adsorbent; it helps in 

determining the mechanisms of the adsorption process itself [26, 27]. The 

commonly used models in this regard are the linearized forms of Lagergren model 

(pseudo first order kinetic model) and pseudo second order kinetic model; these are 

given by equations 10 and 11, respectively. 

𝑙𝑛(𝑞𝑒 − 𝑞𝑡) = −𝑘𝐼𝑡 + 𝑙𝑛𝑞𝑒       (10) 

𝑡

𝑞𝑡
=

𝑡

𝑞𝑒
+

1

𝐾𝐼𝐼𝑞𝑒
2         (11) 

Where qt, kI, kII represent instantaneous adsorbate amount (mg/g), pseudo first order 

rate constant (1/min) and pseudo second order rate constant (g/mg.min), 

respectively.  

3. Results and Discussions 

3.1 Characterization of graphene and graphene magnetite  

Figure 1 represents the SEM images for G and GM before and after adsorption.  

These images enable explaining the mechanism of the oil adsorption on the 

adsorbent’s surface. Figures 1A and 1C, show the cavities and voids present on the 

surfaces of G and GM, respectively, while Figures 1B and 1D reflect the 

disappearance of these voids due to occupancy by the sorbate oil which results in 

changes of the surface of G and GM after adsorption.  
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Figure 1: SEM images of Graphene (G) before (1A) and after (1B) adsorption and 

Graphene magnetite (GM) before (1C) and after (1D) adsorption.  

 

Figure 2 (a) shows the x-ray diffration pattern (XRD) of G, while figure 2 (b) shows 

the XRD pattern of GM. The XRD patterns confirm the structure of graphene nano 

particles in both samples.   The pattern of GM sample shows the coexistance of 
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graphene and magnetite phases in the sample. Diffration peaks of garaphene are 

marked with (G) while those of magnetite are marked with (M)  [28, 29].    Figure 

3 shows the Raman spectra of G and GM samples. The spectrum of each sample 

shows the excepeted Raman structure of graphene nano partcles (or multilayers). 

The signiture of magnetite in GM was very week and shwon in figure 3 (c) [30-

32].   

 

 

(a)                                                (b)  

Figure 2: (a) XRD pattern of graphene (G); (b) XRD pattern of graphene 

magnetite (GM). Peaks of graphene nano particles are marked with G, 

while  peaks of magnetite are marked with M. 
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(a)                                                (b) 

 

(c)  

Figure 3: Raman Spectra of (a) pure graphene nano particles (G) showing the D 

band at 1354 cm-1, the G band at 1580 cm-1 and the 2D (G’) band at 2700 

cm-1; (b) the Raman spectrum for graphene magnetite GM sample 

basically showing the strure of graphene nano particles; and (C)  

enlargement of spectrum (b) showing the low peak of mgnetite at about 

675 cm-1. 

Figure 4 displays the FTIR spectra of G and GM before and after emulsified oil 

adsorption. Inspection of this figure reveals that upon magnetization of graphene, 

new peak appears a ca 600 cm-1. This peak is attributed to Fe-O stretching [33]. 

Furthermore, additional peaks were observed in G and GM spectra after batch 

adsorption of emulsified oil. In particular, new peaks appear in the range of 3500-
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3800 cm-1. Furthermore, the range 1000-1500 cm-1, showed additional peaks 

indicating the presence of emulsified oil on these surfaces.  

 

 

Figure 4: FTIR spectra  of (a) G and (b) GM after oil adsorption (c) G and (d) GM 

before oil adsorption   

 

The zeta potential of graphene and graphene magnetite are presented in figure 5 

Inspection of this figure reveals that the zeta potential of graphene and its magnetite 

derivative is  pH dependent. The point of zero charge (PZC) for graphene occurs at 

pH 2.2 while that of graphene magnetite occurs at pH 3.2. This indicate that at pH 

< 2, both surfaces are positively charged while at pH > 3.5, both surfaces are 

negatively charged.  These results are used to explain the affinity of these adsorbents 

towards emulsified oil   removal from produced water as function of pH.  
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Fig. 5: Zeta potential of graphene (G) (blue) and graphene magnetite (GM) (red) at 

different pH values.  

 

3.2 Effect of adsorbent dosage 

Figure 6 shows the percent removal of emulsified oil by G and GM as a function of 

adsorbent dosage in the range of 1.0 – 6.0 g/L. At low dosages, the removal 

efficiency increased with the adsorbent dosage. The removal efficiency reached 

constant levels at dosages greater than 3.0 g/Land 4.0 g/L with maximum removal 

efficiency of 70.0 % and 49.6 % for G and GM, respectively. This could be due to 

the saturation of the adsorbent with the sorbate oil where all surface sites become 

occupied by the oil or adsorption is thermodynamically limited with no further 

driving forces under the specified conditions. Thus, the optimum adsorbent dosage 

was chosen to be 3.0 g/L and 4.0 g/L of G and GM, respectively.  
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Figure 6: Effect of adsorbent dosage on the removal efficiency of emulsified oil by 

respective adsorbent. Initial oil concentration: 200 ppm; initial pH: 6.5 for 

GM and 7.98 for G; temperature  25oC;contact time: 120 minutes; shaker 

speed: 150 rpm. 
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3.3 Effect of contact time 

Figure 7 shows the percent removal efficiency of oil by G and GM as a function of 

contact time. Initially, the removal efficiency of emulsified oil increased rapidly 

with increasing the contact time. This is expected, as adsorption is normally a fast 

process. This would also indicate the spontaneous nature of the considered 

adsorption system due to the presence of available surface sites on the adsorbents, 

which with time become saturated with emulsified oil. Based on these results, the 

optimum time for removal of emulsified oil is 30 min for both adsorbents.  

 

Figure 7: Effect of contact time on the removal efficiency of emulsified oil by G 

and GM adsorbents. Initial oil concentration: 200 ppm; initial pH: 6.5 (GM) 

7.98 (G); temperature: 25oC; shaker speed: 150rpm:dosage: 3 g/L (G) and 4 

g/L (GM). 
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3.4 Effect of initial pH 

Solution pH is an important parameter for any sorption system, and should be 

determined. The results for the percent removal of emulsified oil by G and GM as 

a function of pH, covering acidic and basic ranges, are shown in Figure 8. The figure 

shows that the removal efficiency increases with pH reaching 75.0% removal at pH 

of 10.0 for the case of G, while the maximum removal efficiency of emulsified oil 

in case of GM reached a level of 68.5% at a pH of 3.55. The different behavior of 

the two adsorbents in response to pH could be attributed to the nature of the surface 

of GM, as it is prepared from basic medium of G. The addition of iron particles to 

the GM might have significant influence on the removal efficiency. Furthermore, 

the higher efficiencies could be attributed to the instability of oil and related ions in 

aqueous medium. Based on these results, the optimum pH of 10.0 and 3.5 were 

chosen for G and GM, respectively. 

 

 

 

 

 

  

ACCEPTED M
ANUSCRIP

T



20 

 

Figure 8: Effect of initial pH on the removal efficiency of emulsified oil by G and 

GM adsorbents. Initial oil concentration: 200 ppm; temperature: 25oC; 

shaker speed: 150 rpm;sorbent dosage: 3g/L (G) and 4g/L (GM); contact 

time: 60 min (G) and 30 min (GM). 

 

 

3.5 Effect of salinity 

Figure 9 shows the effect of salinity on the percent removal of emulsified oil by G 

and GM. The percentage removal efficiency of the oil by both adsorbents showed 

almost same trends and it seems that removal efficiency slightly increases with 

increasing salinity up to1500 ppm. This increase could be due to the instability of 

emulsified oil in the aqueous medium as a result of higher affinity of NaCl ions 

towards water [12, 27]. Only very slight decrease in removal efficiency is noticed 

for salinity above 1500 ppm that can be because some adsorption sites might be 

blocked by saline ions and thus lowering the effective number of sites for emulsified 

oil adsorption. 
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Figure 9: Effect of salinity on the removal efficiency of emulsified oil by the 

adsorbents G and GM. Initial oil concentration: 200 ppm; temperature: 

25oC; shakerspeed: 150 rpm;adsorbent dosage: 3 g/L (G) and 4 g/L (GM); 

contact time: 60 min (G), 30 min (GM); pH: 10 (G), 3.92 (GM) 

3.6 Effect of temperature 

The results for effect of temperature on the removal efficiency of emulsified oil 

using G and GM are shown in Figure 10. The experimental parameters were set at 

optimum values as deduced from the previous results. The removal efficiency of 

emulsified oil by graphene is highly affected by temperature while this effect is not 

pronounced when using the GM adsorbent. The percentage removal, in the case of 

graphene, decreased from 80 percent to 60 percent when increasing the temperature 

from 25 to 40oC, respectively.  However, the percentage removal of oil using GM 

remained almost constant even at 50oC; this would suggest the possibility of using 

GM at various temperatures without losing its adsorption capacity and properties. 
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Thus, a temperature of 25 oC would be an optimum for both adsorbents. The 

decrease in percentage removal of emulsified oil with temperature by G could be 

attributed to the nature of interactions of the adsorbate with the active sites on G 

and the exothermic nature of the adsorption of emulsified oil by G [18]. On the other 

hand, for the case of GM, the adsorption process seems to be endothermic (ΔH = 

27.6 ±0.8 kJ/mol). This explains the slight increase in the removal efficiency at 

higher temperatures. However, this slight increase in removal efficiency is not 

significant and thus the optimum temperature in case of GM is also 25oC.  This 

change in the nature of reaction from exothermic (in case of G) to endothermic (in 

case of GM) could be attributed to different mode of interactions between the 

various constituents of the emulsified oil and iron oxides modified surface. 
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Figure 10: Effect of temperature on the removal efficiency of emulsified oil by G 

and GM adsorbents. Initial oil concentration: 200 ppm: shakerspeed: 150 

rpm;adsorbent dosage: 3 g/L (G), 4 g/L (GM); contact time: 60 minutes (G), 

30 minutes (GM); pH: 10 (G), 3.92 (GM);salinity: 1500 ppm (G), 1000 ppm 

(GM) 

 

 

3.7 Effect of initial concentration of oil 

The effect of initial emulsified oil concentration on percentage removal efficiency 

was studied at optimum conditions and the results are presented in Figure 11. It is 

clear that both adsorbents followed the same trend as the removal efficiency of both 

adsorbents declined appreciably by increasing the initial oil concentration. This is 

due to the fact that active sites gets occupied and saturated in case of higher 
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concentrations thus, decreasing the effective number of sites available for remaining 

oil to be adsorbed on adsorbent surface.  

 

 

Figure 11: Effect of initial concentration on the removal efficiency of emulsified 

oil by G and GM adsorbents. Shaker speed: 150 rpm;temperature: 

25oC;adsorbent dosage: 3 g/L (G), 4 g/L (GM); contact time: 60 minutes 

(G), 30 minutes (GM); pH: 10 (G), 3.92 (GM);salinity: 1500 ppm (G), 1000 

ppm (GM). 
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3.8 Adsorption isotherm 

Experimental data for adsorption isotherms were collected for both adsorbent by 

varying the initial oil concentrations at the predetermined optimum conditions. The 

adsorption uptake at equilibrium, qe, was calculated using the following equation 

 

𝑞𝑒 =
𝑚𝑖−𝑚𝑓

𝑚𝑔
         (12) 

where mi and mf are the initial and final mass of oil in the solution in milligrams, 

and mg is the mass (i.e. dosage) of the adsorbent in solution in grams.  

The experimental adsorption data of the amount of oil adsorbed on G and GM were 

plotted as a function of final equilibrium concentration according to the different 

models previously described. Figures 12-14 show Langmuir, Freundlich and 

Temkin isotherms representations, respectively, for the two adsorbents. The 

parameters of these models were obtained from the slops and intercepts of the linear 

plots and summarized in Table 1. The relatively higher values of the R2 for these 

adsorbents when using Freundlich model compared to that of Langmuir and Temkin 

models indicate better representation of the isotherm data by Freundlich. This 

indicates that the adsorption of emulsified oil on G and GM adsorbents is a function 

of the heterogeneity of the sample and the adsorption sites[34]. The value of the 

Freundlich constant 𝑛 was less than one (Table 1) for both adsorbents indicating the 

favourable adsorption of emulsified oil onto each adsorbent. The Freundlich 

parameter, kf, related to adsorption capacity is smaller for the case of GM than that 

of G. This could be due to the nature of the GM adsorbent that is characterized by 

iron particles impeded within the graphene framework. Although these magnetic 

particles renders the adsorbent to be easily recovered from solution by physical 
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magnetic field, it did not improve the adsorption capacity that could attribute to 

changes in the morphology and affinity of the surface toward oil removal.  

Table 2 presents the emulsified oil adsorption capacities of different adsorbents. 

Graphite and carbon nanotube sponges showed higher sorption capacities for oil 

[18]. Organo-clay and modified bentonite clay used for emulsified oil treatment 

showed relatively lower adsorption capacities. In case of emulsified oil (oil with 

surfactant) treatment, the adsorption capacity of G and GM is significantly higher 

than the adsorption capacities of other adsorbents used for emulsified oil removal.  
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Figure 12: Langmuir adsorption isotherm for removal of emulsified oil by G and 

GM adsorbents. Shaker speed: 150 rpm;temperature: 25oC;adsorbent 

dosage: 3 g/L (G), 4 g/L (GM); contact time: 60 minutes (G), 30 minutes 

(GM); pH: 10 (G), 3.92 (GM);salinity: 1500 ppm (G), 1000 ppm (GM). 
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Figure 13: Freundlich adsorption isotherm for adsorption of emulsified oil. 

Parameters: shaking rate = 150 rpm, Temperature =25oC, Dosage = 3 g/L 

(G), 4 g/L (GM), contact time = 60 minutes (G), 30 minutes (GM), pH = 10 

(G), 3.92 (GM), Salinity = 1500 ppm (G), 1000 ppm (GM), temperature = 

25oC 
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Figure 14: Temkin adsorption isotherm for adsorption of emulsified oil. 

Parameters: shaking rate = 150 rpm, Temperature =25oC, Dosage = 3 g/L 

(G), 4 g/L (GM), contact time = 60 minutes (G), 30 minutes (GM), pH = 10 

(G), 3.92 (GM), Salinity = 1500 ppm (G), 1000 ppm (GM), temperature = 

25oC 

 

 

3.9 Kinetic models 

Understanding the sorption kinetics of emulsified oil on the graphene nanoplatelets 

is an essential issue for scaling up the system. Various kinetic models are reported 

in the literature. However, the pseudo first order and pseudo second-order models 

were used for the experimental data of this work as they are simple, most suited and 

widely used models. Representations of the experimental data following these 

models are shown in figures 15 and 16 with corresponding parameters determined 

from these figures displayed in Table 3. The low values of R2 for pseudo first order 

kinetics of 0.891 and 0.734 for the case of G and GM, respectively, indicates poor 
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representation of the data by the pseudo first order kinetic model. The higher R2 

values following pseudo-second order kinetics, 0.999 and 0.999 using G and GM, 

respectively, indicate excellent representation of the data by this model (Table 3). 

Kinetics data following the pseudo-second order model indicate intra-pore diffusion 

of the emulsified oil on the adsorbent. The maximum adsorption capacity, qe, 

calculated by pseudo-second order model is comparable to the actual maximum 

adsorption capacity value with a percentage error of 1.10 % and 4.30 % in case of 

G and GM, respectively. The absolute relative error in the maximum adsorption 

capacity calculated from other models is very high as compared to qe value 

measured experimentally (Table 3). 

 

 

Figure 15: Pseudo first order kinetics for emulsified oil adsorption usinf G and GM 

adsorbents. Shaker speed: 150rpm;temperature: 25oC;adsorbent dosage: 3 g/L (G), 

4 g/L (GM), pH: 6.5 (GM), 7.98 (G). 
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Figure 16: Pseudo second order kinetics for emulsified oil adsorption using G and 

GM adsorbents. Shaker speed: 150rpm;temperature: 25oC;adsorbent 

dosage: 3 g/L (G), 4 g/L (GM); pH: 6.5 (GM), 7.98 (G).  

 

 

3.10 Thermodynamic parameters 

Thermodynamic parameters for the sorption of emulsified oil on graphene 

magnetite nano-platelets were determined at the optimum experimental conditions 

as deduced from the previous results. The ∆Hꞌ value was determined from the slope 

of the linear plot of lnKeq versus T-1 (Figure 17).  
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Figure 17: Thermodynamic study for emulsified oil adsorption on graphene 

magnetite 

 

The values of n, Kad, ∆Gꞌ and QT were estimated by regression analysis for the 

adsorption of oil on graphene magnetite at various temperatures are presented in 

Table 4. Table 5 displays the thermodynamic parameters as calculated using 

equations 4-8. The positive sign of enthalpy change of adsorption supports the 

conclusion of endothermic nature of the considered adsorption process using 

graphene magnetite. Typically for the physisorption processes, the range of the 

values for free energy (ΔG') is between −20.0 and zero kJ/mol whereas for the 

chemisorption processes the range of ΔG' is between −80.0 and −400 kJ/mol [35]. 

Because the values of (ΔG') for this study are within -20 to zero kJ/mol, it means 

the process is physisorption. The apparent change in Gibbs energy (ΔG') increases 

with the increase in the temperature, which means low feasibility of adsorption at 

higher temperatures. The negative sign of Gibbs free energy indicate the 
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spontaneous nature of the sorption process. The positive value of ∆H′ obtained 

indicates that the adsorption of oil onto graphene is endothermic in nature. 

Furthermore, the apparent change in entropy being positive means an increase in 

the randomness of the solid/solution boundary of the adsorption process [21, 36]. 

 

3.11 Packed-column operation 

Prediction of breakthrough curve or concentration-time profile for effluent is 

necessary for the successful adsorption column design. In general, sorption 

mechanisms involves adsorption kinetics at surface or pores of adsorbent,  

resistances to film diffusion as well as intra-particle diffusion including both surface 

& pore diffusion and axial dispersions in liquid flow direction. The prediction of 

breakthrough curve or adsorption column design requires numerical rigorous 

approaches, in general. However, several mathematical models for concentration-

time profile or breakthrough curve prediction have been reported in literature. The 

most common ones are 1) Thomas model, 2)Yan et al. model, 3) Clark model, and 

4) Bohartand Adams model as presented in Eqs.13-16, respectively [37, 38]. The 

linearized forms of these models as shown in Figure 18 represented the experimental 

breakthrough data of this work using GM adsorbent.  

 

ln [
Co

Ce
− 1] =

qTMKTH

Q
− CoKTHt      (13) 

ln [
Ce

Co−Ce
] = 𝑎 ln[V] − aln [𝑏]      (14) 

ln [(
Co

Ce
)

n−1

− 1] = ln[A] − rt      (15) 

ln [
Co

Ce
− 1] =

NoZKBA

U
− CoKBAt      (16) 
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where t, Co, Ce, n are breakthrough time (min), influent oil concentration (mg/L), 

effluent oil concentration at time t (mg/L) and Freundlich isotherm parameter. KTH, 

KBA are rate constants for Thomas, and Bohar & Adams, respectively. a and b are 

Yan model parameters while A and r (1/min) represent model parameters for Clark 

equation.  
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   (C)     (D) 

 

 

Figure 18: Linearized form of the break-through curve for emulsified oil adsorption 

on GM. Packed amount of adsorbent: 0.7 g;influent flow rate: 0.4 

ml/min,;temperature: 25oC; pH: 6.5;salinity: 1000 ppm;influent oil 

concentration: 200 ppm. (A) Thomas, (B) Yan et al., (C) Bohart & Adams, 

(D) Clark. 

 

The regression coefficients of these linearized models along with the respective R2 

value have been calculated and are summarized in Table 6. As of R2 value displayed 

in Table 6, it can be said that the adsorption of oil on GM in fixed bed column is 
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perfectly represented by Thomas model. Thomas model is most widely used model 

for column performance evaluation. The applicability of Thomas model to the fixed 

bed adsorption process suggests that the diffusion (internal and external) is not the 

limiting step in the process [39]. Table 7 shows that the effects of flow rates and 

column bed height on the kTh and qo as determined from Thomas adsorption model. 

It is apparent that an increase in column bed height decreases the kTh and increases 

the qo value. Furthermore, the values of kTh increases and qo decreases at higher 

flow rates. Thus, lower flowrates and higher bed heights would significantly 

increase the oil adsorption onto GM. 

Effect of bed depth 

The effect of bed depth on the column profile or breakthrough curve is shown in 

Figure 19. It is seen that increasing the bed height from 1.5 (0.45 g of packing) to 2 

cm (0.6 g of packing) resulted in longer breakthrough time and service time of the 

column. The concentration-volume or concentration time profile follows Thomas 

model in the initial stages, however as the value of Ce/Co goes above 0.6, the 

deviations increase which may be due to the buildup and interactions of oil adsorbed 

on the surface of the GM and the oil present in the produced water sample. 
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Figure 19: Effect of colummn depth on column performance. Amount of GM 

adsorbent: 0.6 g 2 cm bed depth and 0.45 g for 1.5 cm bed depth;Influent 

flow rate: 0.4 ml/min;temperature: 25oC; pH: 6.5;salinity = 1000 

ppm;influent oil concentration: 200 ppm. 

Effect of flow rate 

The effect of influent flow rate, while keeping bed height constant, on the 

breakthrough curve is shown in Figure 20. It is seen that increasing the flow rate 

from 0.4 mL/min to 0.8 mL/min resulted in a shorter breakthrough time and service 

time of the column. This effect can be attributed to less contact time between the 

adsorbent and the adsorbate resulting in less adsorption of oil molecules on GM. 

Again, the concentration-volume or concentration time profile follows Thomas 

model in the initial stages, however, as the value of Ce/Co goes beyond0.6, the 
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deviations increases which could be due to the buildup and interactions of oil 

adsorbed on the surface of the GM and the oil present in the produced water sample. 

The clear shift in the shape of the curve with almost the same removal efficiencies 

when Ce/Co (for flow rates of 0.4 and 0.8 mL/min) exceeded a value of 0.7 can be 

attributed to the fact that at same adsorbent loading, higher flow rate (0.8 mL/min) 

generates lower breakthrough curves and removal at corresponding eluted volumes. 

However, as the column starts saturating with oil, the oil adsorbed interacts with the 

oil in the produced water sample and helps in retaining of oil from produced water 

on to the GM surface, thus increasing the effective adsorption of oil on GM 

comparable to adsorption profile at 0.4 mL/min.  

 

 

Figure 20: Effect of flow rate on column performance. Amount of adsorbent: 0.45 

g of GM (bed depth of 1.5 cm);temperature: 25oC; pH: 6.5;salinity: 1000 

ppm;influent oil concentration: 200 ppm. 
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3.12 Graphene Regeneration Study 

Sorbent regeneration was considered using batch-bench scale tests. In this case, 

40mL of emulsified oil (produced water sample, as described before) were 

transferred into Erlenmeyer flasks, optimum dosage of G and GM was then added 

in separate flasks and the conditions were fixed at optimum as previously 

determined. The removal efficiency was determined as discussed before. 

Afterwards, the system was filtered G and GM were dried and then mixed with n-

Hexane to re-cover the oil adsorbed on these adsorbents. These regenerated 

adsorbents were used again in the similar fashion for further adsorption test. Two 

cycles of oil adsorption-desorption on G and GM, respectively, were carried out to 

evaluate the percentage efficiency of regeneration cycle. The percent removal 

efficiency showed a slight decrease over the two adsorption-regeneration cycles;-

4.10% (80.0 % to 75.9%) in the first cycle and - 3.50% (75.0 % to 71.5 %) in the 

second cycle, respectively, in case of G adsorbent. In case of GM, the decrease in 

percent removal efficiency over the two cycles was relatively lower, i.e. - 2.10 % 

and - 2.5% for first and second cycle, respectively.  These results suggest that G and 

GM can be effectively regenerated and re-used without any significant compromise 

in their adsorption potentials.  

Regeneration tests were also considered in the packed-bed operation. In this case, 

the column was packed with GM adsorbent (0.6 g, bed depth: 2 cm, flow rate: 0.4 

mL/min) and the column efficiency was determined as discussed previously. After 

column saturation (Ce/C0 = 1), the column was regenerated by backwash using n-

Hexane at a flow rate of 0.2 mL/min to ensure enough contact time for oil to be 

transferred from GM surface to n-Hexane. After regeneration, the column was 

washed with water to ensure pH as that of the initial value. Adsorption-regeneration 
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cycles were performed twice in order to verify the efficiency of the process. The 

adsorption-desorption column study resulted in almost the same concentration-

eluted volume (time) curves for all cases with maximum decrease in removal 

effectiveness of about 3.5 % at respective eluted volume calculations. Thus, this 

study supports the potential use of GM as adsorbent to be used in batch as well as 

packed-column operations. The only drawback of GM is its high tendency to pack. 

After elution of 1L of solution, the packing of GM was observed to be increased 

with effective volume decrease up to 0.2 mL, from the start of first experiment. 

Thus, intermittent air blows to ensure that GM does not pack enough to hinder the 

flow rate seems necessary.  

 

3.13 Real Produced Water 

Real produced water samples obtained from ADNOC Company were subjected to 

batch studies at the optimum parameters to study the adsorption results for G and 

GM. The initial oil concentration in produced water samples, percent removal 

efficiency of emulsified oil using G and GM adsorbents were determined to be 268 

mg/L, 90.0% and 72.2 %, respectively. This supports the validity of work conditions 

considered in this work, the high efficiency of the G and GM for emulsified oil 

removal from produced water. 

4. Conclusions  

Batch and packed-column adsorption studies for emulsified oil adsorption from 

produced water were carried out using graphene and graphene magnetite. The 

optimum parameters were identified for the batch-bench scale adsorption tests and 

these were utilized in packed-column studies. The percentage removal efficiency of 
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emulsified oil at the optimum parameters exceeded 80 percent for graphene and 75 

percent for graphene magnetite. The removal efficiency was identified to be 

enhanced by the increase in the salinity and the decrease in the initial emulsified oil 

concentrations. Oil adsorption by both adsorbents showed to fit Freundlich’s 

isotherm and follow pseudo second order kinetics. The maximum adsorption 

capacities of graphene and graphene magnetite were found to be100 mg/g and 85 

mg/g, respectively. In packed-column operation, Thomas model was identified to 

best fit the experimental data with qo and KTH to be 183.4 mg/g and 0.015 

ml/mg.min, respectively. Two consecutive adsorption-regeneration cycles showed 

the possibility of these adsorbents to be used and regenerated successfully without 

major change in their efficiency in batch as well as in packed-column operation. In 

addition, graphene nanoplatelets and graphene magnetite were capable of treating a 

real sample of industrial produced water and showed 90.0 % and 72.2 % oil removal 

efficiency in batch studies, respectively.  
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Table 1: Adsorption parameters of three different isotherm models for emulsified 

oil removal from synthetic produced water using G and GM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adsorption 

Isotherm 

Model 

Parameters 

 G GM 

Langmuir Isotherm 

b (L/mg) 0.0190 (±0.001) 0.0256 (±0.0013) 

qm (mg/g) 130 (±3.9) 62.5 (±2.1) 

R2 0.988 0.981 

Freundlich Isotherm 

kf (mg(1-1/n)L1/n/g), 5.290 (±0.158) 2.849 (±0.086) 

N 0.60 (±0.017) 0.64 (±0.018) 

R2 0.993 0.997 

Temkin Isotherm 

B (J/mole) 23.00 (±0.68) 12.14 (±0.34) 

KT (L/mg) 0.28 (±0.084) 0.066 (±0.019) 

R2 0.962 0.97 
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Table 2: Oil adsorption capacities of different adsorbents [18] 

 

 

Adsorbent Used Type of Oil Adsorbed 
Adsorption Capacity 

mg/g 

Carbon nanotubes 

sponges 
Oil spills 92.300 

Magnetic expanded 

graphite 
Crude oil 35.720 

Acetylated rice straw Machine oil 24.000 

Hydrophobic silica 

aerogels 
Liquid oil 15.100 

Modified oil palm leaves Crude oil 1.200 

Barley straw Canola oil 0.613 

 Standard mineral oil 0.583 

Egg shells Crude oil 0.109 

Organo-clay Emulsified oil 0.067 

Modified bentonite Emulsified oil 0.049 

Graphene Emulsified oil 0.100 

Graphene magnetite Emulsified oil 0.085 
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Table 3: Adsorption parameters of pesudo-first order and pesudo-second order 

kinetic models for removal of emulsified oil from synthetic produced water 

using G and GM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sr. 

No. 

Experimental 
Pseudo-first-order kinetic 

model 

Pseudo-second-order kinetic 

model 

qexp 

(mg/g) 

KI 

(1/min) 

qcalc 

(mg/g) 
R2 

KII 

(g/mg.min) 

qcalc 

(mg/g) 
R2 

G 45.4 (±1.4) 
0.106 

(±0.032) 

13.8 

(±0.42) 
0.89 

0.020 

(±0.001) 

45.9 

(±1.38) 
0.999 

GM 29.1 (±0.87) 
0.037 

(±0.001) 

296 

(±7.98) 
0.73 

0.009 

(±0.001) 

30.3 

(±0.91) 
0.999 
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Table 4: Values of n, Kad, QT and ∆Gꞌ estimated for the adsorption of oil on 

graphene magnetite at different temperatures.  

 

Temperature 

(K) 

Sips Freundlich 
∆Gꞌ 

(kJ/mol) Kad QT(mg/g) N 
Kf = 

QT/Kad 
n Kf* 

298 ± 0.5 
0.0246 

(±0.0007) 
83.6 (±2.5) 

0.62 
(±0.020) 

3401 
(±20.49) 

0.64 
(±0.018) 

3917 
(±117.5) 

-9.2 
(±0.2) 

303 ± 0.5 
0.0240 

(±0.0007) 
57.9 (±1.7) 

0.59 
(±0.019) 

2415 
(±17.78) 

0.59 
(±0.017) 

2376 
(±71.31) 

-9.4 
(±0.3) 

313 ± 0.5 
0.0160 

(±0.0005) 
65.4 (±2.0) 

0.66 
(±0.020) 

4082 
(±101.9) 

0.65 
(±0.019) 

3820 
(±115.9) 

-10.8 
(±0.3) 

323 ± 0.5 
0.0108 

(±0.0003) 
85.5 (±2.6) 

0.74 
(±0.020) 

7913 
(±135.5) 

0.74 
(±0.024) 

7639 
(±152.8) 

-12.2 
(±0.4) 

 

 

*Values of Kf are calculted based on the concentration of adsorbate in mol/L . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACCEPTED M
ANUSCRIP

T



52 

 

 

 

 

 

 

 

 

 

 

Table 5: Themodynamic parameters (adsorption of emulsied oil on graphene 

magnetite) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∆G′ 
∆H′ ∆S′ 

298.1 K 303.1 K 313.1 K 323.1 K 

kJ/mol kJ/mol kJ/mol.K 

-9.2 (±0.2) -9.4 (±0.3) 
-10.8 

(±0.3) 

-12.2 

(±0.4) 
27.6 (±0.8) 

0.123 

(±0.004) 
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Table 6: Adsorption parameters of five different column models for emulsified oil 

removal from synthetic produced water using GM (column studies) 

 

 

Adsorption Isotherm Model Parameters R2 

Thomas 

KTH ml/mg.min 
1.5*10-2  

(±4.0*10-4) 
0.995 

qo mg/g 
183.4 

(±5.5) 

Yan et al. 

Ky ml/mg.min 
3.08 

(±0.092) 
0.591 

qo mg/g 
134.9 

(±4.0) 

Clark 

A - 
17.4 

(±0.52) 
0.975 

R 1/min 
2.0*10-3 

(±6.0*10-5) 

Bohart & Adams 

Kab L/mg.min 
5.0*10-6  

(±1.5*10-7 
0.949 

No mg/L 
1.7*105  

(±5.1*103) 

Yoon &  Nelson 

Τ min 
1.6*103  

(±4.1*101) 
0.995 

Kyn 1/min 
3.0*10-3  

(±9.0*10-5) 
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Table 7: The variation in Thomas isotherm model parameters at different flowrates 

and bed height.  

 

Flowrate Bed Height KTH qo 
R2 

ml/min cm ml/mg.min mg/g 

0.4 2 
1.5*10-2  

(±4.0*10-4) 

183.4 

(±5.5) 
0.995 

0.4 1.5 
2.0*10-2  

(±3.7*10-4) 

173.6 

(±4.6) 
0.983 

0.8 1.5 
3.0*10-2  

(±4.1*10-4) 

139.8 

(±3.8) 
0.983 
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