
MCDERMOTT, C.D., PETROVSKI, A.V. and MAJDANI, F. 2018. Towards situational awareness of botnet activity in the
Internet of Things. In Proceedings of the 2018 International conference on cyber situational awareness, data

analytics and assessment (Cyber SA 2018): cyber situation awareness as a tool for analysis and insight, 11-12 June
2018, Glasgow, UK. Piscataway: IEEE [online], article number 8551408. Available from:

https://doi.org/10.1109/CyberSA.2018.8551408

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

This document was downloaded from
https://openair.rgu.ac.uk

Towards situational awareness of botnet activity
in the Internet of Things.

MCDERMOTT, C.D., PETROVSKI, A.V. and MAJDANI, F.

2018

https://doi.org/10.1109/CyberSA.2018.8551408

Towards Situational Awareness of Botnet Activity
in the Internet of Things

Christopher D. McDermott, Andrei V. Petrovski, Farzan Majdani

School of Computing Science and Digital Media
Robert Gordon University

Aberdeen, United Kingdom
Emails: {c.d.mcdermott, a.petrovski, f.majdani-shabestari}@rgu.ac.uk

Abstract—An IoT botnet detection model is designed to detect
anomalous attack traffic utilised by the mirai botnet malware.
The model uses a novel application of Deep Bidirectional Long
Short Term Memory based Recurrent Neural Network (BLSTM-
RNN), in conjunction with Word Embedding, to convert string
data found in captured packets, into a format usable by the
BLSTM-RNN. In doing so, this paper presents a solution to the
problem of detecting and making consumers situationally aware
when their IoT devices are infected, and forms part of a botnet.
The proposed model addresses the issue of detection, and returns
high accuracy and low loss metrics for four attack vectors used by
the mirai botnet malware, with only one attack vector shown to
be difficult to detect and predict. A labelled dataset was generated
and used for all experiments, to test and validate the accuracy
and data loss in the detection model. This dataset is available
upon request.

Index Terms—Situational Awareness, Long Short Term Mem-
ory Networks, Deep Learning, IoT, Botnet, Mirai, DDoS, Word
Embedding.

I. INTRODUCTION

The Internet of Things (IoT) has quickly transitioned from
a promising future paradigm to a pervasive everyday reality.
Billions of smart devices are now being connected to the
Internet creating an extensive network of connected ’things’,
capable of sensing the surrounding environment and inter-
acting with other devices, to aid real-time monitoring and
decision making [1]. The potential benefits of the IoT are
clearly evident, however despite the promise of new business
models, increased efficiency, and the enrichment of everyday
life, concerns still remain regarding security and privacy. Many
of these concerns arise as a result of device manufacturers
excluding security and privacy mechanisms from their prod-
ucts, following market pressure to produce cheap plug and
play connected products [2]. The result has been a rapid
proliferation of insecure connected devices across the internet,
and the danger of another paradigm shift to an Internet of
Insecure Things [3].

One of the biggest threats derived from the rise in IoT
devices, is that of botnets. The huge number of connected
devices, coupled with their inherent security issues, has pro-
vided the perfect tool to carry out powerful distributed denial
of service (DDoS) attacks [3]. These attacks often target
consumer level products, which commonly lack a screen or

user interface, making it difficult to identify signs of infection
or detect attacks which occur or emanate from within the
home network. To evaluate this problem a sandboxed botnet
environment was built as described in Section III, and a
simple series of experiments performed. An IoT IP camera
was infected and became part of a botnet. The camera was
instructed to perform various DDoS Attacks, during which
live video feeds were recorded, to ascertain if any signs of
infection could be detected. The recorded feed for each DDoS
attack was presented to a small test group, along with video
feeds of uninfected IP cameras, and the participants were asked
to identify any unusual activity within the video feeds. In
all experiments the participants were not able to identify the
video feeds recorded on infected cameras, or when an attack
was taking place. Without any clear signs of infection, these
experiments demonstrate that it is very difficult for consumers
to know when their devices are part of a botnet, performing
large scale DDoS attacks.

Motivated by this problem, and to improve situational
awareness of such attacks, this paper presents a solution to
the detection of botnet activity within consumer IoT devices
and networks. Computational intelligence techniques have
been tested for their effectiveness in identifying anomalies in
network traffic. We implemented our approach by using the
experimental botnet framework, infecting an IoT IP Camera,
and using the camera to perform a series of DDoS attacks
against a victim device. A labelled dataset was created and
used to test a detection model based on a Deep Bidirectional
Long Short Term Memory based Recurrent Neural Network
(BLSTM-RNN), in conjunction with Word Embedding, to
convert string data into a format usable by the BLSTM-RNN.
Thus, the main contributions of this paper are:

1) A labelled dataset encompassing botnet activity and
DDoS attacks;

2) A detection algorithm which utilises a word embedding
methodology to extract intelligence from textual features,
and parse the data into a format useable by a BLSTM-
RNN;

3) A detection model to detect and predict infected IoT
device traffic.

The rest of the paper is organized as follows: Section II in-
troduces related work and the issue of situational awareness of
botnet activity within the IoT. Section III details our approach
to IoT botnet detection using a combination of BLSTM-RNN
in conjuction with Word Embedding methodology. It also
describes the experimental set-up used to generate the botnet
dataset. Section IV presents the experiments undertaken and
provides discussion on the results gained. Section V draws
final conclusions and speculates possible future work.

II. BACKGROUND

For our related works, we shall consider the topics of botnets
in the IoT, botnet detection methods, and situational awareness
of botnet activity by non-expert users (NEU). Although botnet
activity and detection has been well researched, the existing
literature generally focuses on traditional network botnets,
rather than specifically focusing on botnets that target the IoT.
Conference papers and peer reviewed articles presented below
therefore either directly target IoT botnets, or could easily be
applied to this research area.

A. Botnets in the Internet of Things

Some of the most extensive and destructive cyber-attacks
deployed on the Internet have been Distributed Denial of
Service (DDoS) attacks. According to Akamai, a global leader
in web security, some of the largest DDoS attacks ever
recorded occurred in the second half of 2016, fuelled in full or
part by the Internet of Things [4]. During this time, attacks of
over 100Gbps were up by 140%, with three attacks reaching
over 300 Gbps. The severity of the attacks continued in 2017,
evidenced in Versign’s annual DDoS Trends report which
reported that 88% of recorded DDoS attacks in quarter 4 of
2017 also now employed a multi-vector attack strategy [5].

In [6] the authors present several IoT botnets, which exploit
basic security vulnerabilities, and show how these types of
botnets are becoming increasingly more sophisticated in their
effectiveness and ability to obfuscate their activity. They
present MalwareMustDie as an example which uses iptables
rules to protect its infected devices, whilst Hajime utilises fully
distributed communications and makes use of the BitTorrent
protocol for peer discovery. BrickerBot was also presented
which leverages SSH default credentials to perform a perma-
nent denial-of-service (PDoS) attack.

In [7] [8] one of the most prominent examples of a DDoS
attack emanating from the IoT in recent times, is presented.
Mirai is a piece of malware that attempts to find and infect IoT
devices to establish and propagate a network of robots (botnet)
consisting of the infected IoT devices (bots). An attacker
(botmaster) then uses a command and control (C&C) server
to remotely control the bots, forcing them to participate in
DDoS attacks against targets on the Internet. On September 20
2016 the Mirai botnet was used to perform an unprecedented
620 Gbps DDoS attack on security journalist Brian Krebs
website krebsonsecurity.com [9]. Shortly after it was also
responsible for a series of additional DDoS attacks peaking
at over 1.2 Tbps against French hosting company OVH and

DNS provider DYN, who estimated that up to 100 000 infected
IoT devices (bots) were involved in the attack. The severity
of the DYN attack was sufficient to cause major disruption on
the Internet, and render several high profile websites such as
GitHub, Twitter, Reddit, Netflix, inaccessible.

To foster greater situational awareness of how botnets target
insecure IoT devices, we conducted a detailed analysis of the
Mirai botnet, which will be presented below. Fig. 1 shows
the process of infection and propagation method employed by
Mirai. The Mirai infrastructure consists of a command and
control (C&C) server, a Scan/Loader server and infected IoT
devices known as bots.

Fig. 1. Mirai Botnet Infection Methodology

Infection and propagation occurs by exploiting weak default
security credentials found on many IoT devices running busy-
box, an embedded version of Linux. An attacker (botmaster)
starts the process by connecting to the Scan/Loader server
(step 1) and initiating ./loader to execute the scanner.c module,
and scan the Internet for vulnerable IoT devices with Telnet
services and ports 23 or 2323 open (step 2). Upon detecting
a vulnerable device, the malware attempts to brute force a
successful login using a list of 62 known default usernames
and passwords. If successful, login credentials and device
information are sent back to the C&C server, and will be
used later by the Scan/Loader server to login and deliver
the malware to the vulnerable device (step 3). An infect
command is sent from the C&C server to the Scan/Loader
server containing all necessary information such as login
details, IP address, hardware architecture. Mirai supports mul-
tiple hardware architectures, including arm, mips, sparc and
powerpc (step 4).

The Scan/Loader server uses this information to login
and instruct the vulnerable device to tftp or wget to the
Scan/Loader server, download and execute the corresponding
payload binary. Once executed, the first infected IoT device
becomes part of the Mirai botnet and can communicate with
the C&C server. The malware binary is removed and runs
only in memory, to avoid detection (step 5). The botmaster
can now issue attack commands, specifying parameters such
as attack duration and target (step 6). The malware includes
10 DDoS attack types, including UDP flood (udp), Recursive
DNS (dns), SYN packet flood (syn), ACK packet flood (ack),
GRE flood (gre ip), which can be used to attack a target on
the Internet (step 7). The first bot now attempts to repeat

the infection process and propagate the botnet by scanning
the Internet for additional vulnerable IoT devices with Telnet
services and ports 23 or 2323 open (step 8). New vulnerable
IoT device information is returned to the C&C server (step
9). A new infect command is issued to the Scan/Loader server
(step 10). The appropriate hardware binary is loaded onto the
newly discover vulnerable IoT device (step 11). The relevant
attack command is issued from the C&C server (step 12).
The attack is executed by the newly infected second bot, in
conjunction with the first bot (step 13). Scanning for additional
vulnerable IoT devices is repeated to further expand the botnet.
(step 14).

B. Botnet Detection Methods

As previously stated much of the existing literature on bot-
net detection generally focuses on traditional network botnets,
rather than IoT botnets. An increasingly popular approach
has been the use of Machine Learning Algorithms (MLA)
for network traffic analysis and classification. The assumption
being that botnets create distinguishable traffic patterns, that
can be used to accurately detect botnet activity [10].

In many cases traffic analysis was performed at the network
level, analysing flows of traffic conversations, rather than at the
individual packet level. In doing so, the authors in [11] used
a Support Vector Machine, C4.5 decision tree and Random
forest classifier to classify malicious and non-malicious in
a NetFlow dataset, and harness true positive detection rates
above 70%.

In [12] a decision tree using the Reduced Error Pruning
Algorithm (REPTree) was used and again demonstrated good
performance with true positive detection rates above 90%. It
should be noted however, that the use of IP addresses as a
prominent feature could result in an unbalanced dataset, and
effect detection results.

In [13] the authors consider smaller packet correlation
as a way of improving detection accuracy, by extracting
additional features, namely packet ratio, initial packet length,
and bot response time, and modelling the behaviour of net-
work flows. Flows were classified using Boosted decision
tree (AdaBoostM1+J48), Naive Bayesian (NB), and Support
Vector Machine (SVM) algorithms, and the detection system
tested against three separate datasets. The authors suggest the
advantage of the proposed system is its lightweight nature,
however this was not substantiated through comparison with
alternative detection methods.

In [10] the authors compare eight MLAs for classifying bot-
net traffic, and also compare two scenarios for traffic analysis.
In the first scenario flows are monitored in their entirety from
start to end, whereas in the second scenario, traffic flows are
only observed for a specific time interval and maximum num-
ber of packets. They successfully demonstrated that detection
rates could be maintained whilst reducing sample sizes to only
10 packets and 60 seconds of monitored flow traffic. In [14]
they extend their work and propose three methods of traffic
analysis for botnet detection, utilising a Random Forest clas-
sifier on 40 different bot samples, classifying TCP, UDP and

DNS communications separately. Classification accuracy for
all protocols was above 90%, although balanced classification
required a time of window length of 3600 seconds and 1000
packets, which could result in a lower detection rate for attacks
with smaller sample metrics.

In [15] the authors propose IoTSec, which utilises a Soft-
ware Defined Networking (SDN) approach to enforcing secu-
rity policies for IoT devices. Whilst the proposal of a crowd-
sourced repository of learned attack signatures, could be useful
in detecting botnet actvity, it relies on NEUs providing this
information, which would prove challenging.

The main drawback for many of these approaches is that
they analyse traffic flows rather than individual packets, which
results in only representative samples of the total traffic, being
considered. In addition with regard to the problem highlighted
in Section I, it is unlikely that consumer routers would have
the ability to capture traffic flows using protocols such as
NetFlow or sFlow, therefore many of the approaches may not
be transferable to IoT botnet detection.

C. Situational Awareness of IoT botnet activity by Non-Expert
Users

Situational awareness (SA) is often defined as the perception
of environmental elements, comprehension of their meaning in
context, and the projection of likely future events [16]. Applied
in a cyber context it relates to the compilation, processing and
fusing of network data to understand a network environment
and accurately predict and respond to potential threats that
might occur.

In [17] the authors suggest cyber SA is often recognised
as important, but the ability to systematically evaluate and
work on it is often limited. They propose a taxonomy to
aid decision makers in structuring and reasoning about cyber
security awareness in their context. Three essential elements
are presented as necessary to achieve cyber situational aware-
ness. Data gathering, from firewalls, anti-virus or vulnerability
scanners; Analysis, through anomaly detection, parsing logs, or
metrics; and Visualisation, consisting of statistical, historical
and real-time presentation of data.

In [18] the author presents the need for greater online
awareness and protection for NEUs. The author suggests a
lack of technical knowledge and ability to explore network
communication, results in little or no awareness of security
issues. In response to this a security visualisation framework
is proposed to support NEUs to engage with network traffic
analysis in order to better support their perception and com-
prehension of cyber security concerns.

Despite research in this area it is clear from our preliminary
research and information presented in Section II-A, that it
is still difficult for NEUs to be situationally aware of their
network environment and accurately detect and respond to
threats posed by IoT botnets.

III. METHODOLOGY

To promote reproducibility of this paper, a detailed descrip-
tion of botnet environment and detection algorithm imple-
mentation is presented. A secure sandboxed environment was

created as shown in Fig. 2. This consisted of a command and
control C&C server, a Scan/Loader server and an additional
utilities server to handle DNS queries and reporting. A soft
tap (Tap0) SPAN port was created to mirror all relevant traffic
to a packet sniffing device, to capture for later analysis. Two
Sricam AP009 IP Cameras running busybox utilities were used
as bots to attack a target Raspberry Pi.

The Mirai source code was downloaded from GitHub. To
ensure a true representation of a Mirai infection and attack,
amendments to the source code were kept to a minimum
however, some configuration changes were required to comply
with ethical and legal regulations.

Fig. 2. Mirai Botnet Experimental Setup

1) C&C Server Configuration: Essential packages were
installed using apt-get install unzip gcc golang electric-fence
screen y

Domains were created for report.McDPhD.org and
cnc.McDPhD.org, and added to table.c and main.go.

MySQL was installed using apt-get install mysql-server
mysql-client y and a user created using INSERT INTO users
VALUES (NULL, ’miraiuser’, ’miraipassword’, 0, 0, 0, 0, -1,
1, 30, ”); Once configured main.go was edited to include the
MySQL credentials.

Cross compilers for the required binary architectures
(e.g. arm, mips) were installed and appropriate export
paths added to /etc/profile using export PATH= $PATH:
/etc/xcompile/mips/bin. To allow information regarding C&C
connections, compiler issues and flood status to be sent the
C&C server ./build.sh debug telnet was run. The required
binary files for each architecture were created and stored in
the release directory using ./build.sh release

2) Scan Loader Server Configuration: Apache was in-
stalled using apt-get install apache2 y and binary architecture
files created earlier, were moved to the loader/bins directory.
The Scan/Loader IP address was added to main.c and full
permission granted using chmod777*. The loader file was
compiled and added to the loader directory using ./build.sh

To reduce the number of IP ranges available for scanning
and ensure the range used in our environment was allowed,

excluded IP ranges were amended in scanner.c to reflect our
topology.

The Scan/Loader IP address was added to scanListen.go
and port 48101 specified as the default port to listen for brute
force results. Within the tools directory the scanListen file
was compiled using go build scanListen.go and moved to the
loader directory.

The Sricam AP009 IP camera used in the lab setup did
not include wget, therefore tftp was installed using apt-
get install tftpd tftp. A tftp configuration was created using
touch /etc/xinetd.d/tftp and /tftpboot specified as the directory
where the architecture binary files will be copied to for later
delivering the payload.

3) DNS Server Configuration: The Mirai malware requires
access to a DNS server to discover the C&C servers IP
address. Bind9 software was installed and used to create two
required domains report.McDPhD.org and cnc.McDPhD.org
in named.conf.local. These will be used by the bots to report
IoT device information and communicate with the C&C server.

Our model focuses on analysing textual data within packets,
overlooked by other detection methods, to detect infected IoT
devices, and raise situational awareness of these types of
threats. As a modular system design, our model is made up
of two core modules:

A. Data Parser Module

The dataset used in our experiments was generated from
the experimental set-up described in Section III. It consists of
Mirai botnet traffic such as Scan, Infect, Control and Attack
traffic as described in Section II-A and normal IoT IP Cam-
era traffic generated in our experimental set-up. The dataset
included features No., Time, Source, Destination, Protocol,
Length, and overall payload information in the Info feature.
Some features such as No. and Time did not provide much
scope for data analysis so were removed.

Majority of the captured information resided in the Info
feature, as shown in Table I therefore a model was required
which could read and understand the text presented in this
feature. As discussed in Section III-B an Artificial Neural Net-
work(ANN) and more complex versions of Recurrent Neural
Networks(RNN) such as Long Short Term Memory (LSTM)
only work with numerical values. However [19] demonstrated
that a Deep Bidirectional Long Short Term Memory based
RNN (BLSTM-RNN) can be used which provides promising
results for text recognition. This potential was further demon-
strated in [20] where a BLSTM-RNN was used in conjunction
with Word Embedding, in such a way phrases and vocabulary
were mapped to vectors or real numbers, and proved to be an
effective method for modelling and predicting sequential text.

Motivated by this potential, this paper presents a BLSTM-
RNN algorithm and model which is applied to botnet detection
in the IoT. Since the information provided in the Info feature of
the dataset follows a sequence, we implemented our approach
by first converting each letter into a tokenized and integer
encoded format.

A dictionary of all tokenized words and their index within
the Info feature was created and text replaced with its cor-
responding index number. In order to understand each attack
type, it was important to maintain the sequence order of the
indices, therefore an array of the indices was created. Since
attacks are often closely coupled to the protocol used and the
length of the captured packet, the Protocol and Length features
also required to be included in the array. Word Embedding was
again used to convert and create a dictionary of all tokenized
protocols and their index. These were then added, along with
the Length feature, which was already an integer, to the array.
Labels identifying each type of captured packets were mapped
from string to integer (’norm’: 0,’mirai’:1,’udp’: 2, ’dns’:3,
’ack’:4,’normal’:5), and also injected into the array.

Algorithm 1 IoTBot Detection and Prediction

1: dataProcessing (dataset)
2: unitToDrop← 25%
3: Parse data to predefined format
4: Define token dictionary
5: repeat
6: /*Parse data to format*/
7: for i← 1, rows do
8: Convert text to number using Word Embedding
9: Add converted tokenised words into dictionary

10: Pad data arrays with 0s
11: Convert
12: Inject other tokenised hyper-parameters into array
13: end for
14: until Data is converted to flat 2d dataset
15: Split Training and Test based on UnitToDrop
16: repeat
17: Reshape Training Dataset
18: for i← 1, rows do
19: Reshape Training dataset to 3 Dimension
20: Reshape Test dataset to 3 Dimension
21: end for
22: until Training and Test datasets are reshaped
23: Return trainingDataset, testDatasetData

To simplify this process, we used the Keras library with
a wrapper API around Theano and Tensorflow. The Keras
one hot function was used to convert strings into indices, form
a 2-dimension list and create a dictionary at the same time.
Finally, since deep neural networks require arrays to be of
equal length, we needed to find the maximum length of a
sentence within the Info feature and pad all the arrays with
zeros to be equal to the maximum length of 25.

After processing the dataset it was split into training and test
datasets and reshaped into 3 dimensions, the format required
for LSTM layer (see Algorithm 1.)

B. Machine Learning Module

Attack detections in IoT systems is notably different from
the existing mechanisms because of the special service require-
ments, such as low latency, resource limitations, distributed

nature, mobility, to mention a few [7]. This means that
conventional network attack detection has limited application
in addressing IoT security problems. At the same time, it is
known that a considerable number of zero-day attacks are
continuously emerging because of the addition of various
IoT protocols. Most of these attacks are small variants of
previously known cyber-attacks that present a difficulty in
their detection even for advanced computational intelligence
mechanisms such as traditional machine learning systems.

On the other hand, the success of deep learning (DL)
in various big data fields has attracted a noticeable interest
in cybersecurity fields. The application of DL has become
practical because of the advances in computer architecture
(e.g. NVIDIA DGX platforms) and in development of new
neural network libraries (such as Theano and Tensorflow for
instance); also, the availability of large and diverse training
datasets made a contribution to the effectiveness of deep
learning algorithms. The use of DL for attack detection in IoT
systems could be a resilient mechanism to small mutations
or novel attacks because of its high-level feature extraction
capability. The self-taught and compression capabilities of
deep learning architectures are key mechanisms for hidden
pattern discovery from the training data so that attacks are
discriminated from benign traffic [21]. This is very important
in the context of IoT security because such systems face a
plethora of security problems, including jamming, spoofing,
replaying and eavesdropping, but also prone to issues related
to resource constraints e.g. out-of-memory accesses, unsafe
programming languages, etc. [22].

This research is aimed at adopting a deep learning approach
to cybersecurity to enable the detection of botnet attacks.
Other machine learning and evolutionary computing tech-
niques have been successfully applied in mitigating against
botnet attacks. One example is the use of swarm intelligence
for destroying any rigid master-slave relationship between
bots and for autonomizing the bot operating roles [23]. We
will focus on deep learning, however, due to a number of
advantages provided by this approach, including the absence
of manual feature engineering, unsupervised pre-training, and
compression capabilities, which makes the application of deep
learning feasible even in resource-constrained networks.

One implication of observing the network traffic over a long
period is the necessity to successfully deal with large data
sequences. Recurrent neural networks (RNN) in general, and
one of its variants the Long Short Term Memory (LSTM)
network have been proven effective in recognizing the different
sequences of states that change over time [24].

An LSTM network has a recurrent architecture and is able to
bridge long time lags between relevant input and target output.
This type of structure is theoretically well suited and has been
proven a powerful model for tagging tasks with applications
in natural language processing, machine translation, Image
recognition, and the like [20]. The main contribution of this
paper is the application of LSTM networks for implementing
deep learning in network traffic analysis aimed at detecting
botnet attacks.

IV. RESULTS AND DISCUSSION

To evaluate our detection model we required a dataset which
contained a mixture of IoT botnet communication, multiple at-
tack vectors and normal IoT device traffic. There are currently
no public datasets that fulfilled all three criteria, therefore an
experimental set-up was implemented as described in Section
III. The mirai botnet malware contains ten available attack
vectors, which infected IoT devices can utilise to engage
in DDoS attacks against targets. For the purpose of our
experiments, four attack vectors were chosen, including User
Datagram Protocol (UDP) flood, Synchronize (SYN) flood,
Acknowledgement (ACK) flood, and Domain Name System
(DNS) Flood attacks. Command and control messages between
the C&C server and the infected IoT IP camera (bot) were also
captured, as was normal traffic generated by the camera.

To capture packets and generate the necessary dataset the
tcpdump command tcpdump W 5 C 500 w datacapture was
issued, where -W stipulates to split the capture into a maxi-
mum of five files and -C stipulates that the maximum capture
file size should be 500MB.

The necessary data was captured in a series of five separate
captures, which would later be concatenated into a single
dataset. The first capture (normal.pcap) consisted of normal
IoT device traffic, for a duration of 1 hour and included normal
device communication on the network, and also two remote
connections to the camera to view the video feed, each of
which lasted 5 minutes.

The initial scanning process and device infection was cap-
tured in the second capture (mirai.pcap) which also included
the infected camera scanning on ports 23 and 2323 for new
devices to infect. The third capture (udp.pcap) consisted of a
single (udp) flood attack, whereby the C&C server issued the
attack command, and the infected IoT device flooded its target
with bursts of (udp) packets for a total period of 60 seconds.
This procedure was repeated for the fourth (dns.pcap) and
fifth (ack.pcap) captures, capturing bursts of (dns) and (ack)
packets respectively.

After capturing all five attack scenarios using the .pcap
format, the capture files were converted to .csv files. In order
to train and validate our detection model, ground-truth labels
norm, mirai, udp, dns, ack were assigned to the captured data,
ready to be ingested into the detection model. The total number
of samples captured by each attack type can be seen in Table
II. The cleaned column represents the total number of samples
once packets with missing data have been removed.

For Experiment 1 each attack type was split between train
and validate, presented and trained over a total of 30 iterations.
The resulting accuracy and loss metrics for each attack were
measured, and the process repeated through ten times. The
mean value for each metric is presented in Table III. As can
be seen from the results the model returned high accuracy
and prediction for mirai, udp, and dns attack types. However,
returned less favourable results for ack attacks, despite this
attack having the hightest number of samples. This was
possibly due to the nature and complexity of information

in the info feature, as seen in Table I, where the sequence
number in each ack packet changed. By contrast, although
the mirai captured packets appear to be equally complex, the
information in the info feature, remained largely the same,
possibly aiding better detection.

Since multi-vector DDoS attacks were highlighted as being
a growing issue in Section II-A, Experiment 2 consisted of
norm, mirai, udp, dns, and ack captures being concatenated
to form a multi-vector attack scenario. Results on row 1 of
Table IV show the impact of the ack attack on the overall
detection accuracy and prediction metrics. To validate this
observation, Experiment 3 consisted of norm, mirai, udp, and
dns captures being concatenated to form a multi-vector attack
scenario, minus the ack attack. Results on row 2 of Table IV
show that once the ack attack is removed, overall detection
accuracy and prediction of the model are very good. A final
validation of this observation was conducted in Experiment 4
which consisted of two ack attacks performed during the same
time frame, increasing the total sample size of ack attacks, in
order to observe the variation in accuracy and prediction.

As can be seen on row 3 of Table IV an increase in sample
size, significantly improves the overall validation accuracy to
94% and validation loss to 0.03%, meaning the model was
able to better predict attack traffic.

The variance in accuracy and prediction possibly indicated
that the model required a larger sample size for the ack attack
type, for it to be effective in detecting and predicting these
types of attacks. Fig. 4 and Fig. 3 show the results of multi-
vector attack with two iterations of ack attacks.

V. CONCLUSIONS AND FUTURE WORK

This paper presents the implementation of a detection model
based on a Deep Bidirectional Long Short Term Memory
Recurrent Neural Network (BLSTM-RNN), in conjunction
with Word Embedding, to convert string data into a format
usable by the BLSTM-RNN. In doing so, a public IoT botnet
dataset was also created and used to test and validate the
designed detection model.

The aim of this paper, was to present an application of deep
learning to IoT security, and address the problem stated in
Section I, whereby increasingly consumer level IoT devices
are being infected and leveraged to perform large scale DDoS
attacks against targets on the Internet. This problem is fur-
ther compounded due to the lack of technical knowledge or
situational awareness of inherent vulnerabilities, by owners of
consumer IoT devices, meaning it is practically impossible for
them to detect and be aware when their device is infected and
part of a botnet. The proposed model addresses the issue of
detection which returns high accuracy and low loss metrics for
four attack vectors used by the mirai botnet malware. Results
for mirai, udp, and dns were very encouraging with 99%, 98%,
97% validation accuracy and 0.13% 0.24%, 0.23% validation
loss metrics respectively. The ack attack vector metrics were
shown to be less favourable, but the paper showed that a larger
sample size could significantly improve accuracy.

TABLE I. Sample Captured Packets

Packet Time Source Destination Protocol Size Info
Normal 0.000226 192.168.252.40 192.168.252.60 TCP 66 81 - 50451 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0

MSS=1460 SACK PERM=1 WS=2
Mirai 0.268276 192.168.252.40 106.65.144.6 TCP 64 62002 - 23 [SYN] Seq=0 Win=57378 Len=0 [ETHERNET

FRAME CHECK SEQUENCE INCORRECT]
UDP 0.268276 192.168.252.40 192.168.252.50 UDP 554 55741 - 65170 Len=512
ACK 1.991338 192.168.252.40 106.65.144.6 TCP 566 21658 - 24366 [ACK] Seq=1 Ack=1 Win=29597 Len=512
DNS 4.513663 192.168.252.40 192.168.252.22 DNS 90 Standard query 0x0c9 A nnt1heibflkk.report.McDPhD.org

TABLE II. Dataset Samples by Captured Attack type

Attack Normal Mirai Total Cleaned
Mirai 0 299338 2551 301889 301802
UDP 4690 293762 1288 299740 299740
ACK 33722 294280 3186 331188 331097
DNS 4353 294205 2204 300762 300694

TABLE III. Accuracy of Detection by single Attack type

Train Validate Mean Acc Mean Loss
Mirai 196171 105631 99.154744 0.1362400
UDP 194831 104909 98.005605 0.2439042
ACK 215213 115884 88.852511 1.6414504
DNS 195451 105243 97.819378 0.2333340

TABLE IV. Accuracy of Detection by Multi-vector Attack types

Train Validate Mean Acc Mean Loss
Multi-vector (with ACK) 228998 123307 85.241678 1.5425814
Multi-vector (without ACK) 204674 204674 95.209029 0.2228190
Multi-vector (with two ACK) 253321 253321 93.899201 0.0384694

Fig. 3. Model Loss

In the future, we plan to create a second more extensive
dataset, that will span a longer time frame, and include
multiple iterations of each attack vector. In addition, we plan
to continue this research and develop the presented detection
model, into a full detection engine, capable of ingesting
live data feeds, and performing anomaly detection for future
mutations of IoT botnets. The second part of the presented
problem in Section I, will also be further investigated to
explore ways of communicating to the owner, when their

Fig. 4. Model Accuracy

consumer level IoT device is infected, and part of a botnet.
By helping consumers become more situationally aware when
their devices are infected, we hope to raise awareness of the
inherent vulnerabilities, and aid them to make better choices
in the future, with regard to procurement, and operation of
such devices.

The generated mirai botnet dataset has been made public
and is available upon request.

	coversheet_template
	MCDERMOTT 2018 Towards situational awareness (AAM)

