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Elżbieta Szeląg-Wasielewska 8, Piotr Domek 8, Natalia Jakubowska-Krepska 8 ID ,
Kinga Kwasizur 9 ID , Beata Messyasz 9, Aleksandra Pełechata 9, Mariusz Pełechaty 9,
Mikolaj Kokocinski 9, Ana García-Murcia 10, Monserrat Real 10, Elvira Romans 10,
Jordi Noguero-Ribes 10, David Parreño Duque 10, Elísabeth Fernández-Morán 10 ID ,
Nusret Karakaya 11, Kerstin Häggqvist 12, Nilsun Demir 13 ID , Meryem Beklioğlu 14, Nur Filiz 14,
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Rodan Geriš 46, Markéta Fránková 47, Mehmet Ali Turan Koçer 48, Mehmet Tahir Alp 49,
Spela Remec-Rekar 50, Tina Elersek 51, Theodoros Triantis 52 ID , Sevasti-Kiriaki Zervou 52 ID ,
Anastasia Hiskia 52, Sigrid Haande 53, Birger Skjelbred 53, Beata Madrecka 54, Hana Nemova 55,
Iveta Drastichova 55, Lucia Chomova 55, Christine Edwards 56, Tuğba Ongun Sevindik 57,
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Abstract: Insight into how environmental change determines the production and distribution of
cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on
hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g.,
anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine
the relationship between individual toxin variants and environmental factors, such as nutrients,
temperature and light. In summer 2015, we collected samples across Europe to investigate the effect
of nutrient and temperature gradients on the variability of toxin production at a continental scale.
Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins
produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized
linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased
with water stability. Increases in TDI were explained through a significant increase in toxin variants
such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR.
While global warming continues, the direct and indirect effects of increased lake temperatures will
drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection
of a few highly toxic species or strains.

Keywords: microcystin; anatoxin; cylindrospermopsin; temperature; direct effects; indirect effects;
spatial distribution; European Multi Lake Survey

http://www.mdpi.com/2072-6651/10/4/156?type=check_update&version=1
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Key Contribution: This manuscript describes the outcomes of the European Multi Lake Survey
(EMLS) in which the effects of temperature and nutrients on the variability of production of multiple
classes of cyanobacterial toxins were assessed. At this continental scale, temperature through
direct and indirect effects, was found to be the main driver of cyanobacterial toxin distribution
and toxin quota.

1. Introduction

As a consequence of human population growth, along with associated agricultural, urban and
industrial activities, harmful algal blooms worldwide are on the increase [1]. Eutrophication, one
major outcome of anthropogenic activities in the catchments of aquatic ecosystems, is consistently
recognized as the main driver of cyanobacterial blooms [2,3]. In addition, damage to ecosystems and
loss of natural resources (e.g., in Lake Taihu, China [4] and references within [5]) are also attributed to
on-going climatic change [6]. A synergistic interaction between increased nutrients and climate-related
changes is predicted [7] based on experimental [8] and field studies [9], potentially further exacerbating
the occurrence of cyanobacterial blooms.

The long history of cyanobacterial adaptation to a wide range of environmental conditions
including extremes [10] supports their successful occurrence in a variety of lake ecosystems. These
adaptations come in the form of functional traits such as phosphorus storage, buoyancy regulation,
nitrogen fixation and the formation of akinetes (resting spores). Extensive research has linked the
prevalence of species with specific functional traits to certain sets of environmental conditions [11,12].
For example, Microcystis aeruginosa can rapidly float up in the illuminated near surface layers under
conditions of enhanced water column stability [13], and through buoyancy regulation gain access to
both nutrients at deeper layers and light at the surface [14].

Toxin production, by the production of hepatotoxins (e.g., microcystins (MCs) and nodularin
(NOD)), cytotoxins (cylindrospermopsins (CYN)) and neurotoxins (e.g., anatoxins (ATX)), is another
common trait of a large number of cyanobacterial species. Although numerous studies have elucidated
the chemical properties, biosynthesis and genetics of the most well-known toxins [15–17], still
little is known why toxins are produced and what determines their presence in field populations.
There is evidence that production of these secondary metabolites might provide a competitive
advantage for example through providing resistance against grazing [18–20] or a physiological
benefit e.g., in enhancing nutrient uptake or offering protection against oxidative stress (references
within [21]). The abundance of toxins during blooms depends on the presence of toxic strains within
the cyanobacterial population [22]. Different species have been shown to produce specific toxins or
even variants [23–25]. However, in toxic strains, the environmental factors controlling expression
of the toxin synthetase genes are still a contentious issue [26]. Lack of consistency in experimental
findings, along with a lack of standardization in surveying and sampling design in field studies, so far
has hindered a coherent understanding of how environmental stressors are linked to cyanobacterial
toxin production and toxin quota (toxin concentration per cell or unit algal biomass).

Various studies have shown contradictory responses of toxin producing taxa to similar
environmental parameters. For example, experiments with MC-producing Planktothrix agardhii showed
that high nitrogen concentrations (one factor in the study to vary among others like phosphorus,
temperature, pH, light) were correlated to high MC production in batch cultures [27]. However, in
experiments with Microcystis aeruginosa, N-limited chemostat experiments triggered an increase in
MC content, with smaller and faster growing cells being mostly promoted as a response to favourable
growing conditions [28]. Similarly, an experiment with ATX producers showed that temperature
dependent optimal growth conditions did not necessarily result in higher toxin concentration [29]. In
this study, while Aphanizomenon cultures proliferated at 30 ◦C, Dolichospermum (formerly Anabaena)
cultures suffered at this high temperature [29]. Nevertheless, ATX production was reduced by both
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tested species [29]. A subsequent study on ATX or MC producing strains of Dolichospermum indicated
strain-specific responses to temperature and light limited conditions [30]. Consequently, there is no
easy way to deduce from environmental conditions which toxins will come to dominate in a bloom,
nor whether toxin concentrations will be high.

Microcystins (MCs), as the largest, best described and most diverse group of cyanobacterial
toxins [26], have been the focus of management and mitigation guidelines. For drinking water, the
World Health Organisation (WHO) has set a provisional guideline value-maintained at the same level
in the EU Drinking Water Directive-of 1 µg/L for MC-LR, a value that is accepted in most countries.
In recreational waters, however, there is less consistency, even for MC-LR, and national authorities
use a variety of risk assessment schemes and criteria to inform management decisions/practice [31].
MC-LR is the best studied MC variant [32,33], yet other variants such as MC-YR [34], -LW and -LF [35]
can also be highly toxic and may contribute significantly to the total MCs in a lake. MC-RR, although
reported to be ten times less toxic than MC-LR after intraperitoneal injection in mice (LD50), is one
of the most frequently reported toxin in the lakes along with MC-LR and MC-YR [36] and may be
more harmful to aquatic biota than MC-LR [37]. Good toxicity data are lacking for the vast majority of
MC variants (presently more than 250 [23]). Good toxicological data on other toxins such as CYN and
ATX are necessary to include a full spectrum of cyanotoxins in human and ecosystem risk assessment
(reviewed in [36,38]).

Although a fair number of toxin surveys at the national level have been carried out [39], studies
have rarely investigated the spatial distribution of different classes of cyanotoxins at larger geographical
scales, encompassing lakes of widely different characteristics and environmental diversity. According
to studies [40,41], the climate in Europe is already shifting north (e.g., central European countries will
experience longer hot summers, similar to presently in Mediterranean countries) and, as such, a study
on cyanotoxins over a large latitudinal gradient may offer insights into their future distribution. In
the European Multi Lake Survey (EMLS), lakes across the continent were sampled once in a snapshot
approach, for physical, chemical and biological parameters, during the summer of 2015. Standardized
and commonly practiced field protocols along with centralized laboratory analyses for all parameters
other than microscopy were undertaken for all samples, avoiding inconsistencies between data in
this large dataset. In addition, we addressed our research questions minimizing confounding effects
of seasonality, by sampling all lakes during the locally two warmest weeks of summer based on at
least 10-year air temperature records. In this study, we investigated how the distribution of toxin
concentration and toxin quota were defined by environmental parameters. We hypothesize that, in an
unusually warm summer—like 2015—was in parts of Europe [42]—temperature, either through direct
(surface temperature, epilimnetic temperature) or indirect (water stability expressed as maximum
buoyancy frequency) effects, strongly influences the distribution of toxin concentrations and toxin
quota. Additionally, we hypothesize that, under high temperature stress, the stringent selection of
specific well-adapted strains of cyanobacteria reduces toxin diversity, potentially promoting dominance
by a few highly toxic variants.

2. Results

2.1. Toxin Distribution on a Continental Scale

In the subset of the 137 EMLS lakes used in our analysis, all seven toxins analysed were detected
in samples from only three lakes, which shows that it is possible but rare to have such a diverse number
of toxins present in one lake at one moment in time. The presence of four, five or six toxins was found
in 34, 26 and 25 lakes, respectively. Finally, 18 lakes had two toxins and 13 lakes only one toxin.

MC variants were found in 93% of the 137 EMLS lakes (Table 1). MC-YR was the most common of
the five MCs (in 82% of the subset). Although the variant MC-dmRR was the rarest variant encountered,
it had the highest concentrations compared to any other toxin variant (14.89 µg/L in Polish Lake
Syczyńskie). The MC variants MC-LW, MC-LF and MC-LY, and the toxin nodularin (NOD) were
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also analysed, but they were not included in the analysis as they were too scarce (see materials and
methods). The MC-LF was present in two Spanish reservoirs (Abegondo and As Forcadas), while
MC-LW and MC-LY were not found in any of the EMLS lakes. Nodularin was found only in two
Spanish reservoirs (As Forcadas and Valdecanas) in concentrations close to the limit of quantification
(0.007 µg/L).

Table 1. Summary of toxin variants (Total microcystin: MC-Tot, microcystin YR: MC-YR,
microcystin dmLR: MC-dmLR, microcystin LR: MC-LR, microcystin RR: MC-RR, anatoxin: ATX,
cylindrospermopsin: CYN, microcystin dmRR: MC-dmRR) ordered by decreasing number of presence
in the investigated 137 EMLS lakes.

Toxin Variant Present
(n Lakes)

Concentration
Range
(µg/L)

Limit of
Quantification 1

(µg/L)
Mean Stdv

MC-Tot 127 0–17.18 1.20 2.70
MC-YR 113 0–4.92 0.0050 0.14 0.56

MC-dmLR 108 0–3.16 0.0054 0.15 0.50
MC-LR 93 0–3.97 0.0086 0.20 0.55
MC-RR 67 0–3.31 0.0358 0.20 0.50

ATX 54 0–1.33 0.0004 0.03 0.12
CYN 53 0–2.01 0.0004 0.05 0.20

MC-dmRR 52 0–14.89 0.0489 0.52 1.83
1 limit of quantification (LOQ) of the LC-MS/MS method measured for an average filtered volume = 250 mL.

CYN was detected in 39% of the 137 EMLS lakes (Table 1). One German Lake (Grosser
Dabelowsee), three Polish Lakes (Bnińskie, Lusowskie and Probarskie), and two Turkish lakes
(Caycoren and Mollakoy) (Figure 1a) had solely CYN, in relatively low concentrations (<0.05 µg/L,
supplemental material). ATX was found in 39% of the EMLS lakes (Table 1), out of which only one
Polish Lake (Dziekanowskie) (Figure 1a) produced the specific toxin exclusively, albeit at very low
concentrations 0.002 µg/L.

Figure 1. Cont.
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Figure 1. Percentages of (a) toxin concentrations (µg/L) and (b) toxin quota (µg toxin/µg chlorophyll-a)
of each toxin, of the 137 EMLS lakes used in the analyses. Blue shades correspond to the five microcystin
variants (MC-YR; MC-dmLR; MC-LR; MC-RR; MC-dmRR), yellow to cylindrospermospin (CYN) and
red to anatoxin (ATX). The radius of the pie charts corresponds to (a) the total toxin concentrations and
(b) to the total toxin quota.

2.2. Multivariate Multiple Regression Analysis

The ordination analysis showed a clear delineation among toxin variants in the EMLS lakes
(Figure 2). Lakes with MC-dmLR and MC-dmRR were clustered on the negative-value side of the
canonical axis 1, with MC-dmLR occupying the positive-value side of axis 2 and MC-dmRR the
negative side of the second axis. Lakes with MC-LR and MC-RR were grouped on the positive-value
side of axis 1, and on the positive- and negative-value side of axis 2, respectively. MC-YR demonstrated
the highest positive correlation with the canonical axis 2 (r = 0.24). ATX correlated significantly with
the negative-value side of axis 2 while CYN correlated negatively with the canonical axis 1. The
permutation test confirmed the significance of the canonical analysis (p = 0.001 for axis 1, p = 0.03 for
axis 2).
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Figure 2. RDA biplot of the toxin quota (toxin µg/chlorophyll-a µg; Hellinger transformed due
to many zeros) of the five microcystin variants (MC-YR; MC-dmLR; MC-LR; MC-RR; MC-dmRR),
cylindrospermopsin (CYN) and anatoxin (ATX). The vectors represent the environmental variables:
epilimnetic temperature (T_Epi), surface temperature (T_Surf) and the log transformed Secchi depth
(Secchi) and maximum buoyancy frequency (BuoyFreq). Length and direction of vectors indicate the
strength and direction of the relationship.

The redundancy analysis for toxin concentration and toxin quota data yielded the same results
(Table 2). Both the distribution of toxin concentrations and toxin quota were defined by epilimnetic
temperature (T_Epi), surface temperature (T_Surf), buoyancy frequency (BuoyFreq) and Secchi depth
(Secchi). Therefore, in Figure 2, we present only the biplot for the toxin quota, since the plot for the
toxin concentration was almost identical. Marginal tests showed that T_Epi, T_Surf, BuoyFreq and
Secchi were all significant in determining the toxin variant ordination (Table 2). T_Epi correlated
closely with the negative-value side of the axis 1 (r = −0.62). T_Surf and BuoyFreq had a stronger
correlation with the axis 2 (r = −0.55 and r = −0.54). The positive-value side of the second axis
correlated strongly with Secchi (r = 0.73). Variance partitioning showed that T_Epi explained 7.3%,
T_Surf 2.5% and BuoyFreq 1% of the variance (Figure S1a), while the Venn diagram on T_Epi, T_Surf
and Secchi demonstrated 11%, 7% and 1% of variance explained, respectively (Figure S1b).

Table 2. Redundancy analysis showing results of marginal tests for toxin concentrations followed
by toxin quota (both Hellinger transformed) based on F-model and 9999 permutations. Epilimnetic
temperature (T_Epi), surface temperature (T_Surf), maximum buoyancy frequency (BuoyFreq) and
Secchi depth (Secchi) were the predictors that were selected (stepwise elimination) for the constrained
analysis. The Adjusted R2 (AdjR2) estimates the relative quality of the two models. Statistically
significant effects are shown in bold.

RDA AdjR2 Predictor Variance F p

Toxin
Concentrations

0.14

T_Epi 0.05 13.22 0.001
T_Surf 0.02 4.93 0.002

BuoyFreq 0.01 3.17 0.01
Secchi 0.01 2.87 0.01

Toxin
Quota 0.14

T_Epi 0.05 13.22 0.001
T_Surf 0.02 4.93 0.003

BuoyFreq 0.01 3.17 0.02
Secchi 0.01 2.87 0.02



Toxins 2018, 10, 156 11 of 24

2.3. Toxin Diversity Index and Environmental Parameters

The environmental parameters, maximum depth (DMax), latitude (Latitude), epilimnetic
temperature (T_Epi), maximum buoyancy frequency (BuoyFreq) and Secchi depth (Secchi), were
selected (stepwise selection) as the best explanatory variables in the final model for both the TDI
and Richness. The negative binomial generalized linear model showed a significant positive effect of
latitude, and a significant negative effect of maximum buoyancy frequency in defining the TDI on a
continental scale (Table 3). In the case of Richness, the model showed again a significant positive effect
of latitude and a significant negative effect of maximum buoyancy frequency. Additionally, epilimnetic
temperature (T_Epi) had also a significant positive effect, while Secchi depth had a significant negative
effect in determining Richness. Both of these factors, however, explained less variance than latitude
and buoyancy frequency (X2, Table 3).

Table 3. Summary of the Generalized Linear Model for the Toxin Diversity Index (TDI) and Toxin
Richness of toxin quota. Stepwise elimination selected for final model with predictors maximum depth
(DMax), latitude (Latitude), epilimnetic temperature (T_Epi), maximum buoyancy frequency (BuoyFreq)
and Secchi depth (Secchi). Statistical significant variables are shown in bold.

Index GLM, Family = Negative
Binomial Predictor X2 p

TDIquota

−1.93 + 0.003 DMax + 0.03
Latitude ** + 0.03 T_Epi
−24.2 BuoyFreq * − 0.06
Secchi

Latitude 1.21 0.004
BuoyFreq 0.75 0.02

DMax 0.08 0.8
T_Epi 0.24 0.2
Secchi 0.30 0.15

Richnessquota

−0.16 + 0.002 DMax + 0.02
Latitude ** + 0.04 T_Epi *
−26.3 BuoyFreq ***− 0.09
Secchi **

Latitude 1.49 0.006
BuoyFreq 2.14 0.001

DMax 0.41 0.15
T_Epi 1.13 0.02
Secchi 1.40 0.007

Each toxin quota was tested separately against the TDI to reveal responses in individual toxins to
changes in overall toxin diversity (Table 4). The negative binomial generalized linear model showed
that the variants MC-YR and MC-dmLR increased significantly (p < 0.05) with increases in TDI. The
response of CYN and ATX to increases in the TDI were positive and highly significant (p < 0.01).
Positive trends in total microcystin, MC-RR and MC-dmRR were also determined but without any
statistical significance (p > 0.05). MC-LR was the only toxin variant that showed a negative trend
(red arrow) to increases in toxin diversity, although lacking statistical significance. Similarly, all toxin
quota were tested against Toxin Richness. In this case, all toxin quota increased significantly with
toxin richness apart from MC-dmLR and MC-LR that, although showing a positive trend, were not
significant (Table 4).



Toxins 2018, 10, 156 12 of 24

Table 4. Statistical results of the negative binomial generalized linear model, showing the response of
the toxin quota (MC-YR, MC-dmLR, MC-LR, MC-RR, MC-dmRR, ATX and CYN over chlorophyll-a)
to increases in Toxin Diversity Index (TDI) and Toxin Richness. Black upward arrows correspond
to increases of the toxin variant to increases in the TDI and Toxin Richness, red downward arrows
correspond to decreases of the toxin variant when TDI increases. Statistically significant effects are
shown in bold (p < 0.05).

Toxin Quota
Response

When TDI
↑

X2 p
Response When

Richness
↑

X2 p

MC-YR ↑ 0.10 0.02 ↑ 0.10 0.01
MC-dmLR ↑ 0.10 0.02 ↑ 0.06 0.06

MC-LR ↓ 0.09 0.54 ↑ 0.3 0.2
MC-RR ↑ 0.44 0.06 ↑ ** 0.90 0.003

ATX ↑ *** 0.15 0.0002 ↑ *** 0.19 <0.0001
CYN ↑ ** 0.38 0.007 ↑ *** 0.56 0.0009

MC-dmRR ↑ 0.2 0.85 ↑ 0.41 0.02

highly significant results are marked with “**” for p < 0.01 and “***” for p < 0.001.

3. Discussion

Our study shows that MCs were, by far, the most abundant cyanotoxins across the European
lakes in our dataset, being detected at greater frequency than either CYN or ATX (Table 1). However,
it is important to note that we analysed only the intracellular toxin content on filter samples, which
might have resulted in an underestimation of CYN or ATX concentrations, as they can be largely
extracellular [36]. We found that among the microcystins, MC-LR was only the third most abundant
microcystin variant, after MC-YR and MC-dmLR (Table 1). MC-dmRR was the least common toxin
in the EMLS lakes, but showed the highest concentrations (up to 14 µg/L). Furthermore, CYN was
detected less frequently, but, in several cases, it was the only toxin detected that could indicate that
CYN producers might have a potential to exclude the producers of other toxin variants (Figure 1).
CYN can be present over extended period in aquatic systems, since it can be produced by a succession
of different bloom species. For example, in Lake Albano (Italy), a succession in CYN production
by Cylindrospermopsis raciborskii to Aphanizomenon ovalisporum lead to the toxin being present in the
system from early summer until early autumn [43]. ATX also occurred as a single toxin, i.e., not
in complex mixtures with other cyanotoxins, albeit at lower concentrations (Figure 1). A concrete
example is the ongoing substitution of P. rubescens (mainly a MC-dmRR producer) by Tychonema
bourrellyi (ATX-producer) in Lake Garda (Italy). Over the last decade, a shift in dominance between
these two species caused an increase in ATX at the expense of MC-dmRR [44]. However, and perhaps
more typically, there are studies that highlight ATX dominance during short periods of time only, most
likely because MC producing taxa take over after a short period of dominance by ATX producers [45].
These results indicate that risk assessment should be broader and address other toxin variants than
just the well-known MC-LR variant. A similar conclusion has been reached by other studies, with
relevance for human risk assessment but equally for ecosystem functioning [37].

In the cyanobacterial literature, it is entirely customary to discuss data on presence of toxins in
direct relation to the cyanobacterial taxa that produce them. However, here, we only present data
on toxins, no information on the taxonomic composition of the phytoplankton communities of the
EMLS lakes is given. Why is this the case? To begin with, this goes back to one of the key principles
underlying the EMLS, one of complete data integration. As explained in the methods’ nutrients, HPLC
pigments or toxins come from one instrument, operated by one person. Samples for microscopy were
taken, but each participating laboratory counted these locally, using different quality microscopes
and varying levels of taxonomic expertise. Given a recent discussion [46] on problems with the
trustworthiness, even at the genus level, of a long-term phytoplankton dataset in which all samples
were counted by a small team of experts, supervised by the same person over the years, we could
not trustfully use microscopic counts from so many different labs in our study. Moreover, in recent
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studies, there is a strong tendency to focus on key functional traits as the focal point of phytoplankton
ecology (e.g., [47]). Cyanobacterial key traits, rather than taxonomic relatedness are also the basis for
successful management of cyanobacterial blooms [48]. For the purpose of this study, we examined
toxins as functional traits and aimed to study how much we can understand about the spatial drivers
of toxin abundance by just focusing on the traits themselves. This trait-centred view may be further
supported by the fact that all countries base their assessment of the risks of toxic cyanobacteria for
the consumption of drinking water or food directly on toxin concentrations and not on taxonomic
information [31]. A further EMLS paper is in preparation where we compare traits-pigments from
HPLC and size related traits from flowcytometry-with phylogenetic information (16s rRNA) and
functional genes (toxin synthetases) to better understand the occurrence of cyanobacteria at the
continental scale.

Functional trait diversity of cyanobacteria explains the coexistence or succession of the different
cyanobacteria species under diverse environmental conditions or lake settings [11]. However,
species-specific toxin production is rarely attributed to environmental factors with certainty. Clusters
of genes encoding different cyanotoxin classes can be selectively present in different cyanobacteria
species and strains, but mutations can also turn a toxic genotype into non-toxic, under conditions that
are not exhaustively studied [49]. Phylogenetic analysis on the evolutionary age of the MC/NOD
synthesis pathways implied that all cyanobacteria are potential MC producers [50]. Reported data
from Lake Great Prespa (Greece–Macedonia) showed that, although certain isolated cyanobacteria
species produced more specific MC variants, they all had the potential to produce all the analyzed
MC variants, just in smaller quantities. Toxin concentrations are the result of (i) species abundances;
(ii) the abundance of potentially toxigenic genotypes; (iii) the type of toxins that can be produced by
those strains; (iv) the cellular quota of the toxins; and, finally, (v) how all these levels are controlled
by environmental settings. In short, the product of toxigenic cyanobacterial biomass x cellular quota
determines the toxin concentration in the lake. In terms of environmental drivers, there are those
that control cyanobacterial growth and losses (growth – losses = biomass), and most of these are well
studied, in particular phytoplankton resources like phosphorus, nitrogen and light [51]. Moreover,
cyanobacterial growth is strongly temperature dependent [52]. Population losses are driven by factors
like lysis, grazing and parasitism [53]. Many of the factors that determine biomass have also been
found to have an effect on toxin quota (e.g., [28,54,55]).

Indeed, in line with the overlap in environmental control of biomass and quota from the literature,
the distribution of toxin concentrations and quota in EMLS were explained by the same set of
environmental predictors. Previous field studies showed elevated MC concentrations in lakes with
both low or high cell abundances [56]. MC concentration per unit biomass can vary considerably from
one bloom to another, or even within the same bloom. On the other hand, stable toxin quota have
also been observed [16]. Toxin quota can vary greatly within a toxin producing species, e.g., ranging
from 0–5 µg/mg of dry cyanobacteria biomass [57]. From a management point of view, understanding
what drives low toxin quota during high cyanobacterial biomass or high toxin quota during low
cyanobacterial biomass versus simply looking at the overall toxin concentrations would be helpful
to better understand variation in toxin concentrations and the risks they pose for use of the water
systems [58]. Even in oligotrophic lakes that typically have low cell densities, the cyanobacterial
biomass may accumulate at surface and form scums at leeward shores [59], potentially leading to
highly localized toxin concentrations, especially when cells possess considerable toxin quota. In
contrast, the influence of environmental factors on strain composition is hardly understood.

The ordination model showed that temperature effects were mostly responsible for the distribution
of the different toxins at a continental scale (Table 2). Interestingly, a significant grouping of lakes
with MC-LR and MC-RR on the one hand, and lakes with MC-dmLR and MC-dmRR on the other
hand was found (Figure 2). According to these results, lakes with high MC-LR contents would
be more likely to have the MC-RR variant as well, while lakes with MC-dmLR are likely to also
produce MC-dmRR (Figure 2). Epilimnetic temperature accounted for the delineation of lakes with
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MC-LR and MC-RR, while lakes with MC-dmLR and MC-dmRR were positively associated with
increased buoyancy frequency (Figure 2). This division in lake and toxin groupings indicates that lakes
characterized by frequent wind mixing (low buoyancy frequency) and elevated temperature support
producers of MC-RR and MC-LR [60]. An example of this type of lake and conditions is Lake Taihu
(China), dominated by Microcystis [4]. Conversely, in deeper and more stable stratified waters, the
co-dominance of MC-dmRR and MC-dmLR may be attributed to buoyant species that can accurately
regulate their position in the water column providing them a stable position in the metalimnion, like
in particular Planktothrix rubescens (e.g., [61,62]). See below for more in-depth discussion.

Our results did not indicate that either total phosphorus or total nitrogen concentrations had a
significant impact on the distribution of toxin concentrations or toxin quota (Table 2). As discussed
earlier, studies have shown that increased nutrients are linked to increased growth rates and toxin
production (references within [26] and results of [8]). However, there is also contradictory evidence
that, for example, nitrogen availability promoted cell growth, but it did not directly influence toxin
production [63]. Hence, there is no consistent evidence supporting a causative relationship between
nutrient supported growth and toxin production. In our analyses at the continental scale, nutrients in
sharp contrast to temperature effects did not emerge as control factors. We could argue that nutrients
would potentially play a role in the occurrence of the individual toxin variants through supporting high
cyanobacterial biomasses or toxin quota, but, according to the results from our study, nutrients would
not be the predictor that would select among the different toxin variants, or affect toxin diversity.

Toxin diversity and richness showed a significant increase with latitude, which means that
northern areas exhibited a higher toxin diversity (Figure 3, Table 4). In a parallel study based on the
same lake dataset, Mantzouki et al. (in preparation) showed that, during summer 2015, a significantly
higher algal-and specifically cyanobacterial-biomass was found in the Boreal climatic zone, compared
to lakes in Continental and Mediterranean climate. The higher cyanobacterial biomass was potentially
explained by the heat wave that occurred mainly in northern European regions (NOAA online
data). The majority of the Boreal EMLS lakes (75%) were sampled during a two week-period where
temperature anomalies exceeded the local long-term average summer temperature by +5 ◦C, compared
to a much smaller temperature anomaly in the Mediterranean lakes (+1.8 ◦C). Cyanobacteria growth
rate steeply increases with water temperature until about 25 ◦C, and plateaus at about 28 ◦C, while
temperature can be detrimental when it exceeds 33 ◦C [64]. In 90% of the Boreal and Continental
lakes, with the +5 ◦C temperature difference, epilimnetic temperatures approached, but did not exceed
25 ◦C, giving a higher potential to northern European strains to reach their optimum growth rate.
Contrastingly, the Southern European strains were already on the plateau of their growth curves
and a 2 ◦C warming did not add any growth potential. Although a +5 ◦C versus a +2 ◦C difference
may explain why cyanobacteria in the northern Europe, may have caught up with those in the south,
it would not explain why cyanobacterial biomass in the north would actually be higher. Clearly,
there are differences in temperature responses, both between and within cyanobacterial species [65].
The rather extreme +5 ◦C temperature anomaly could have altered community composition and/or
have favoured cyanobacterial genotypes with an exceptional set of thermal reaction norms [65]. The
extremely warm summer of 2015 in the north is likely to have selected genotypes, which are at
the extreme upper-warm-end of the “set of reaction norms” that have evolved locally. This could
potentially explain why cyanobacteria in the Boreal lakes developed higher biomass.
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Figure 3. Map of the Toxin Diversity Index (TDI) of the 137 EMLS lakes, calculated using the Shannon
equation. TDI is categorized in four classes with higher colour density (red) representing higher toxin
diversity and lower colour density (white) lower toxin diversity. The radius of the markers corresponds
to the total toxin concentration in µg/L.

High buoyancy frequency, as a proxy for water stability, had a significantly negative effect on
the TDI and richness of the EMLS lakes (Table 3). In strongly stratified lakes, in particular those with
an oligo-mesotrophic state, highly selective conditions arise with a strict spatial separation of light
at the surface and nutrients at depth. This leads to the selection of metalimnetic species with a very
specific set of functional traits, like well-controlled buoyancy regulation and elevated phycoerythrin
content [62]. Under such conditions where a single cyanobacterium monopolizes the resources, we
may expect that the low cyanobacterial diversity leads to a low toxin diversity (Table 3). On the other
hand, in lakes with less stringent environmental conditions, like the more shallow and eutrophic lakes
in the EMLS dataset, the scope for co-existence of several less specialised cyanobacterial species is
enhanced, hence a more diverse toxin community might be established.

In the EMLS dataset, high MC concentrations did not exclude production of the other two toxin
classes (neurotoxins, cytotoxins), but rather increased the probability of CYN and ATX occurrence
together with MCs, resulting in an increase in the TDI (Table 4). A diverse representation of toxin
variants can increase the relative toxic potential of a lake ecosystem [66]. As the different toxin
classes have different modes of action and target different organs, separate toxicity assessments are
required [34], but ultimately these separate assessments need to be combined to evaluate the overall
toxicity risks. The relative toxic potential of the cyanotoxin mixture is calculated as the sum of the
relative abundance of each toxin variant multiplied by a defined Toxicity Equivalent Factor based on
LD50 values, for each toxin class separately (e.g., neurotoxins vs. hepatotoxins), as proposed in [34].
As the presence of different toxin classes increases significantly with toxin diversity (Table 4), the
differentiated toxic potential would have ramifications for understanding the overall risks of blooms
in a lake with an elevated TDI. A higher toxin diversity would potentially lead to higher stability in
overall toxicity within a bloom, since, if one toxin declines, another may increase, leading to persistence
in overall toxicity [26]. To make things worse, it may not be sufficient to look at the sum of toxins
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present (additive effects), since synergistic effects of cyanotoxin mixtures pose a potential risk to
humans, animals and aquatic ecosystems [67–69].

To conclude, we demonstrated that temperature effects were largely responsible for the
distribution of the different cyanotoxins on a continental scale. Additionally, we showed that
temperature related mechanisms lead to the selective development of well-adapted strains of
cyanobacteria that would reduce toxin diversity, potentially promoting dominance by a few highly
toxic strains. Further, high buoyancy frequency, as a proxy for water stability, had a significantly
negative effect on the TDI and toxin richness. Overall, our study provided the - perhaps surprising
- result that at this large-scale temperature rather than classic drivers of toxic blooms like nutrients,
determines the distribution of toxins.

4. Materials and Methods

4.1. Sampling Survey

The European Multi Lake Survey (EMLS) was organized by 26 European countries during summer
2015, with each participating group using their own financial means to conduct their sampling. Since
the EMLS was a voluntary effort, individual countries contributed samples from lakes that they
routinely sampled, and these were typically lakes with a history of eutrophication. A total of 369 lakes
were sampled using standardized protocols for sampling, processing and preserving. Sampling took
place during the two warmest weeks of the summer, which was specific for each region. Data collectors
identified the correct sampling period using long-term air temperature data spanning at least 10 years.
The sampling location was either the historically sampled location, or the centre of the lake if the
lake was not routinely sampled. A temperature profile, with a minimum required resolution of 0.5 m
sampling intervals, served to define the sampling depth. An integrated water column sample, which
will henceforth be referred to as epilimnetic sample, was taken from 0.5 m below the surface until the
bottom of the thermocline. This was defined as the point where there was a ≥1 ◦C temperature change
per meter lake depth. If the lake was shallow, then the entire water column was sampled until 0.5 m
above the lake bottom.

All data collectors constructed a simple device using a stoppered hose of the correct length in
order to acquire the epilimnetic sample. The hosepipe was lowered with the bottom end open in the
water, at a depth of just under the end bottom of the thermocline. When the hosepipe was vertical
and the water level was visible at the surface layer of the hosepipe, then the stopper was inserted
to create vacuum pressure. The bottom end of the hosepipe was pulled to the surface to collect the
epilimnetic sample in a bucket. The diameter of the hosepipe was appropriate to sample the required
water volume (about 5–10 L for hypertrophic and eutrophic, 15–30 L for mesotrophic and oligotrophic
lakes) for the analyses, in an acceptable number of runs. The first three sampling runs served the
purpose of rinsing the hosepipe, the sampling bucket and the plastic rod. The subsequent runs were the
water sample taken for analysis. The water sample in the bucket was mixed adequately before being
divided into different bottles for further processing prior to analysis. For pigment and toxin analyses,
a volume of 50–250 mL for hypertrophic and eutrophic lakes, and 500–1000 mL for mesotrophic to
oligotrophic lakes, was filtered through 47 mm Glass fibre filters (GF/C or GF/F or similar) using a
filtration device. The filters were stored in −20 ◦C and in the dark until shipping. For analyses of total
nutrients, unfiltered water subsamples of 50 mL were stored in −20 ◦C until shipping. All samples
were shipped frozen using dry ice in Styrofoam boxes.

All participating countries took part in a one-week training school to discuss and practice all field
procedures. All samples were shipped to and stored at the University of Wageningen (Netherlands)
until further analysis. Each of the nutrients, pigments and toxins analyses were done in one dedicated
laboratory, by one operator on one machine, to minimize analytical errors and maximize integration
of the datasets. Specifically, the nutrients, MCs and NOD analyses were done at the University of
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Wageningen; the pigment analysis at the University of Amsterdam; and the CYN and ATX analysis at
the German Environment Agency.

4.2. Cyanotoxin Analysis

In the laboratory, frozen filters were transferred to 8 mL glass tubes and placed for two
hours in a freeze-drier (Alpha 1-2 LD, Martin Christ Gefriertrocknungsanlagen GmbH, Osterode
am Harz, Germany). The freeze-dried filters then used for the Liquid Chromatography with
tandem Mass Spectrometry detection (LC-MS/MS) analysis of microcystins (MCs), nodularin (NOD),
cylindrospermopsin (CYN) and anatoxin (ATX) as they are described below.

4.2.1. Microcystins (MCs) and Nodularin (NOD) Analysis

For the extraction of MCs and NOD, 2.5 mL of 75% hot methanol−25% ultrapure water (v/v) was
added to the freeze-dried filters, which were then sealed with a screw cap and placed for half an hour
at 60 ◦C. Subsequently, the extract was transferred to a clean 8 mL glass tube. This extraction procedure
was performed three times for each filter. The supernatants of the repeated extraction procedure
were combined to a final volume of 7.5 mL and then dried in a Speedvac (Thermo Scientific Savant
SPD121P, Asheville, NC, USA). After that, the extracts were reconstituted in 900 µL 100% MeOH.
The reconstituted samples were transferred into 2 mL Eppendorf vials with a 0.22 µm cellulose-acetate
filter and centrifuged for 5 min at 16,000× g (VWR Galaxy 16DH, Boxmeer, Netherlands). Filtrates
were transferred to amber glass vials for the analysis.

The LC-MS/MS analysis was performed on an Agilent 1200 LC and an Agilent 6410A QQQ
(Waldbronn, Germany). The extracts were separated using a 5 µm Agilent Eclipse XDB-C18 (4.6 mm,
150 mm column, Agilent Technologies, Waldbronn, Germany) at 40 ◦C. The mobile phase consisted
of Millipore water (v/v, eluent A) and acetonitrile (v/v, eluent B) both containing 0.1% formic acid
at a flow rate of 0.5 mL/min with the following gradient program: 0–2 min 30% B, 6–12 min 90%
B, with a linear increase of B between 2 and 6 min and a 5 min post run at 30% B (as described
in [35]). The injection volume was 10 µL. Identification of the eight MC variants (MC-dmRR, MC-RR,
MC-YR, MC-dmLR, MC-LR, MC-LY, MC-LW and MC-LF) and nodularin (NOD) was performed in
the positive Multiple Reaction Monitoring (MRM) with the following transitions: MC-dmRR 512.8
m/z [M + H]+ to 135.1 quantifier, MC-RR 519.8 m/z [M + H]+ to 135.1 quantifier, MC-YR 523.3 m/z
[M + H]+ to 135.1 quantifier, MC-dmLR 491.3 m/z [M + H]+ to 847.6 quantifier, MC-LR 498.3 m/z
[M + H]+ to 135.1 quantifier, MC-LY 868.4 m/z [M + H]+ to 163.0 quantifier, MC-LW 891.5 m/z [M
+ H]+ to 163.0 quantifier, MC-LF 852.5 m/z [M + H]+ to 163.0 quantifier and NOD 825.5 m/z [M +
H]+ to 135.1 quantifier [35]. Mass spectrometric parameters are given in [70]. Each MC variant was
quantified against a calibration curve. The calibration curves were made using certified calibration
standards obtained from DHI LAB Products (Hørsholm, Denmark). The limit of detection (LOD) for a
250 mL sample was: 0.0489 µg/L for MC-dmRR, 0.0358 µg/L for MC-RR, 0.0050 µg/L for MC-YR,
0.0054 µg/L for MC-dmLR, 0.0086 µg/L for MC-LR, 0.0817 µg/L for MC-LY, 0.0531 µg/L for MC-LW,
0.0206 µg/L for MC-LF and 0.0048 µg/L for NOD. The limit of quantification (LOQ) for a 250 mL
sample was: 0.0489 µg/L for MC-dmRR, 0.0358 µg/L for MC-RR, 0.0050 µg/L for MC-YR, 0.0054
µg/L for MC-dmLR, 0.0086 µg/L for MC-LR, 0.0817 µg/L for MC-LY, 0.0531 µg/L for MC-LW, 0.0206
µg/L for MC-LF and 0.0048 µg/L for NOD.

4.2.2. Cylindrospermopsin (CYN) and Anatoxin (ATX) Analysis

For the extraction of CYN and ATX, 1.5 mL of 0.1% formic acid (FA) was added to the freeze-dried
filters, sonicated for 10 min, shaken for 1 hour and then centrifuged. This extraction procedure
was repeated two more times and the combined supernatants were dried in a Speedvac (Eppendorf,
Germany). Prior to analysis the dried extracts were re-dissolved in 1 mL 0.1% FA and filtered (0.2 µm,
PVDF, Whatman, Maidstone, UK).
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LC-MS/MS analysis was carried out on an Agilent 2900 series HPLC system (Agilent Technologies,
Waldbronn, Germany) coupled to a API 5500 QTrap mass spectrometer (AB Sciex, Framingham, MA,
USA) equipped with a turbo-ion spray interface. The extracts were separated using a 5 mm Atlantis
C18 (2.1 mm, 150 mm column, Waters, Eschborn, Germany) at 30 ◦C. The mobile phase consisted
of water (v/v, eluent A) and methanol (v/v, eluent A) both containing 0.1% formic acid, and was
delivered as a linear gradient from 1% to 25% B within 5 min at a flow rate of 0.25 mL/min. The
injection volume was 10 µL. Identification of CYN and ATX was performed in the positive MRM
mode with the following transitions: CYN m/z 416.1 [M + H]+ to 194 (quantifier) and 416.1/176,
and ATX m/z 166.1 [M + H]+ to 149, 166.1/131, 166.1/91, 166.1/43 (quantifier). Mass spectrometric
parameters are given in [71]. Certified reference standards were purchased from National Research
Council (Ottawa, ON, Canada). The limit of detection (LOD) for both ATX and CYN was 0.0001 µg/L
and the limit of quantification (LOQ) was 0.0004 µg/L for a 250 mL sample.

4.3. Nutrient Analysis

Sample bottles were acid washed overnight in 1M HCl and rinsed with demineralized water before
usage. Nutrients were measured using a Skalar SAN+ segmented flow analyser (Skalar Analytical BV,
Breda, NL) with UV/persulfate digestion integrated in the system. Total phosphorus and nitrogen
were measured in unfiltered subsamples, following Dutch standards protocols [72,73]. The limit of
detection (LOD) was 0.02 and 0.2 mg/L for total phosphorus and total nitrogen respectively.

4.4. Pigment Analysis

The analysis of pigments was modified from the method described by [74]. All filters were freeze
dried. Filters (45 mm GF/C and GF/F) were cut in half, placed in separate Eppendorf tubes, and
kept on ice until the end of the procedure. We added 600 µL of 90% acetone to each tube along
with a small amount of 0.5 mm beads. To release the pigments from the phytoplankton cells, filters
were placed on a bead-beater for one minute. Next, they were placed in an ultrasonic bath for ten
minutes to increase the extraction yields. This procedure was repeated twice to ensure a complete
extraction of the total pigment content from the filters. To achieve binding of the pigments during the
High-Performance Liquid Chromatography (HPLC) analysis, 300 µL of a Tributyl Ammonium Acetate
(1.5%) and Ammonium Acetate (7.7%) mix were added to each tube. Lastly, samples were centrifuged
at 15.000 rpm and 4 ◦C for ten minutes. 35 µL of the supernatant from both Eppendorf tubes of a
filter, were transferred into a HPLC glass vials. Pigments were separated on a Thermo Scientific ODS
Hypersil column (250 mm × 3 mm, particle size 5 µm) in a Shimadzu HPLC (Shimadzu corporation,
Kyoto, Japan) and using a KONTRON SPD-M2OA diode array detector (Shimadzu corporation, Kyoto,
Japan). The different pigments were identified based on their retention time and absorption spectrum
and quantified by means of pigment standards.

4.5. Response Variables and Environmental Parameters

Our focal response variables were the toxin variants MC-dmRR, MC-RR, MC-YR, MC-dmLR,
MC-LR, CYN and ATX. We also calculated the toxin quota as the ratio of each toxin variant
concentration (µg/L) and the chlorophyll-a concentration (µg/L). The latter was used as a proxy
for the total phytoplankton biomass.

We used the environmental parameters latitude (Latitude), longitude (Longitude), Secchi depth
(Secchi), sampling depth (DSampl), maximum depth (DMax), total phosphorus (TP), total nitrogen
(TN), surface temperature (T_Surf), epilimnetic temperature (T_Epi), maximum buoyancy frequency
(BuoyFreq) and light climate (Zeu/Zmix).

Latitude, longitude, secchi depth, sampling depth and temperature profiles were measured
directly in the field at all sites. We interpolated all the temperature profiles at a 0.5 m resolution to
standardize the data, as most of the profiles were obtained at a higher resolution than the required
minimum interval of 0.5 m. From the interpolated profiles, we calculated the epilimnetic temperature



Toxins 2018, 10, 156 19 of 24

as the average temperature from surface until the bottom of the thermocline. The surface temperature
value corresponded to the surface temperature.

We calculated maximum buoyancy frequency (BuoyFreq) as a metric of stratification strength [75].
In the rLakeAnalyzer package [76] in R 3.3.3. statistical software (R Core Team, Vienna, Austria),
temperature profiles were used to estimate profiles of buoyancy frequency (N2). N2 is defined as the
Brunt–Väisälä equation: N2 = −(g/$0) × (δ$(z)/δ(z)), where g is the gravitational acceleration, $0 is
the density at each depth, and δ$(Z)/δz is the density gradient. The rlakeAnalyzer uses temperature
profiles (in our case of 0.5 m resolution) to determine the density gradients, applying thermodynamic
equations specific to freshwater systems [77]. The maximum value of buoyancy frequency generated
from the profile was used as an indication of depth where stratification was the strongest.

The ratio (Zeu/Zmix) of euphotic depth (Zeu) to the mixing depth (Zmix) describes the light climate
that phytoplankton experience while circulating underwater [78]. We calculated Zeu as Zeu = 2 × ZSD

(Secchi depth). As Zmix in shallow lakes, we used the sampling depth when N2 was 0, or the top of the
metalimnetic depth when stratification was present. In deep lakes, we used the top of the metalimnetic
depth. This was calculated as the depth where the steepest density gradient was found [76].

We used a total of 137 out of the 369 sampled lakes in order to test our hypotheses. Selection of
a smaller subset was justified since, in some samples, several environmental variables were missing
either due to shipping issues or due to deviations from preservation protocols that could affect the
integrity of the dataset. Additionally, in order to build the ordination approaches described further
down, lakes that had zero concentrations in all toxin variants needed to be excluded to build a
meaningful similarity matrix of toxins. Hence, it was necessary to sacrifice a big number of lakes to
build a concise dataset where all parameters could be used to select the right model and test the toxin
distribution in the EMLS. Samples that were below the limit of detection (LOD), i.e., a toxin signal
was detected qualitatively, but it was too weak to quantify, and was assigned a very small value of
half the limit of quantification (LOQ), enabling their inclusion in the analysis. The toxins MC-LF and
NOD—which were found only in two lakes—and MC-LY and MC-LW—which were absent from all
lakes—were removed from the analysis following the approach of [79] for the most rare species in a
dataset. Any statistical results included in this paper correspond to the subset of the 137 EMLS lakes.
Supplementary Material provides a table with information on the total number of lakes where toxin
variants were (a) not present (no toxin signal); (b) present; and (c) missing, for the 369 EMLS lakes
(Table S1). All response variables and environmental parameters, along with the Toxin Diversity Index
(TDI) and toxin Richness of the 137-lake subset are provided in the Supplementary Material (Table S2).

4.6. Statistical Analysis

The geographical distribution of the toxin variants (Figure 1a) and their toxin quota (Figure 1b)
were mapped with QGIS 2.18 Las Palmas (QGIS Development Team, Girona, Spain). We use pie charts
to show the percentage of each toxin variant in each sampled lake.

To investigate the relationship between the toxin concentration/quota, distribution and the
environmental parameters, we used canonical redundancy analysis of principal coordinates (RDA)
with permutation test (9999 permutations). Analysis of variation inflation factor (VIF) allowed us to
use all sampled environmental variables (as mentioned in Section 4.5) to test the relationship between
toxin concentrations/quota and environmental variables. Most of the environmental parameters were
standardized using log10 transformation (except for surface and epilimnetic temperature). The toxin
concentration and toxin quota matrices were standardized by Hellinger transformation [80]. A stepwise
elimination of environmental predictors was applied to find the set of parameters that could best
explain the ordination of the toxin concentrations/quota. The selected environmental parameters
were: surface temperature (T_Surf), epilimnetic temperature (T_Epi), maximum buoyancy frequency
(BuoyFreq) and Secchi depth (Secchi). Significance of the ordination was provided performing
ANOVA analysis.
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We used the Shannon–Wiener index to calculate a Toxin Diversity Index (TDI) based on the EMLS
toxin quota of 137 lakes. The number of toxins (“Richness”) per lake was also calculated based on
the same data. A negative binomial generalized linear model was used to determine the effect of
significant environmental parameters on defining the TDI. The same model was used to determine the
relation of each toxin variant to TDI.

For all the above analyses, we selected the most significant environmental parameters using
stepwise selection, based on the Akaike Information Criterion. All statistical analyses were performed
in R 3.3.3 [81] using mainly the vegan [82] and MASS [83] packages.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/10/4/156/s1,
Table S1: Number of lakes where toxin variants (a) were not present (no toxin signal), (b) present, (c) missing
values in the entire EMLS dataset (n = 369 lakes), Table S2: Basic information on the study lakes; their physical
data, analysed nutrients, pigments, toxins, and calculated indices.
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17. Kokociński, M.; Cameán, A.M.; Carmeli, S.; Guzmán-Guillén, R.; Jos, Á.; Mankiewicz-Boczek, J.; Metcalf, J.S.;
Moreno, I.M.; Prieto, A.I.; et al. Cylindrospermopsin and Congeners. In Handbook of Cyanobacterial Monitoring
and Cyanotoxin Analysis; Meriluoto, L.S.J., Codd, G.A., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017.

18. Nogueira, I.C.; Saker, M.L.; Pflugmacher, S.; Wiegand, C.; Vasconcelos, V.M. Toxicity of the cyanobacterium
Cylindrospermopsis raciborskii to Daphnia magna. Environ. Toxicol. 2004, 19, 453–459. [CrossRef] [PubMed]

19. Gilbert, J.J. Effect of food availability on the response of planktonic rotifers to a toxic strain of the
cyanobacterium Anabaena flos-aquae. Limnol. Oceanogr. 1996, 41, 1565–1572. [CrossRef]

20. DeMott, W.R.; Zhang, Q.X.; Carmichael, W.W. Effects of toxic cyanobacteria and purified toxins on the
survival and feeding of a copepod and three species of Daphnia. Limnol. Oceanogr. 1991, 36, 1346–1357.
[CrossRef]

21. Holland, A.; Kinnear, S. Interpreting the possible ecological role(s) of cyanotoxins: Compounds for
competitive advantage and/or physiological aide? Mar. Drugs 2013, 11, 2239–2258. [CrossRef] [PubMed]

22. Capelli, C.; Ballot, A.; Cerasino, L.; Papini, A.; Salmaso, N. Biogeography of bloom-forming microcystin
producing and non-toxigenic populations of Dolichospermum lemmermannii (Cyanobacteria). Harmful Algae
2017, 67, 1–12. [CrossRef] [PubMed]

23. Meriluoto, J.L.; Spoof, L.; Codd, G. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; Wiley:
Hoboken, NJ, USA, 2017.

24. Bortoli, S.; Oliveira-Silva, D.; Krüger, T.; Dörr, F.A.; Copelicolo, P.; Volmer, D.A.; Pinto, E. Growth and
microcystin production of a Brazilian Microcystis aeruginosa strain (LTPNA 02) under different nutrient
conditions. Revista Brasileira de Farmacognosia 2014, 24, 389–398. [CrossRef]

25. Cerasino, L.; Capelli, C.; Salmaso, N. A comparative study of the metabolic profiles of common nuisance
cyanobacteria in southern perialpine lakes. Adv. Oceanogr. Limnol. 2017, 8. [CrossRef]

26. Neilan, B.A.; Pearson, L.A.; Muenchhoff, J.; Moffitt, M.C.; Dittmann, E. Environmental conditions that
influence toxin biosynthesis in cyanobacteria. Environ. Microbiol. 2013, 15, 1239–1253. [CrossRef] [PubMed]

27. Sivonen, K. Effects of light, temperature, nitrate, orthophosphate and bacteria on growth of hepatotoxin
production by Oscillatoria agardhii strains. Appl. Environ. Microbiol. 1990, 56, 2658–2666. [PubMed]

28. Long, B.M.; Jones, G.J.; Orr, P.T. Cellular microcystin content in N-Limited Microcystis aeruginosa can be
predicted from growth rate. Appl. Environ. Microbiol. 2001, 67, 278–283. [CrossRef] [PubMed]

29. Rapala, J.; Sivonen, K.; Luukkainen, R.; Niemelä, S.I. Anatoxin-a concentration in Anabaena and
Aphanizomenon under different environmental conditions and comparison of growth by toxic and non-toxic
Anabaena-strains: A laboratory study. J. Appl. Phycol. 1993, 5, 581–591. [CrossRef]

30. Rapala, J.; Sivonen, K. Assessment of environmental conditions that favor hepatotoxic and neurotoxic
Anabaena spp. strains cultured under light limitation and different temperatures. Microb. Ecol. 2008, 36,
181–192. [CrossRef]

31. Ibelings, B.W.; Backerb, L.C.W.; Kardinaa, E.A.; Chorus, I. Current approaches to cyanotoxin risk assessment
and risk management around the globe. Harmful Algae 2014, 40, 63–74. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.watres.2011.12.016
http://www.ncbi.nlm.nih.gov/pubmed/22217430
http://dx.doi.org/10.1007/s10452-015-9526-3
http://dx.doi.org/10.2307/2260107
http://dx.doi.org/10.1002/tox.20050
http://www.ncbi.nlm.nih.gov/pubmed/15352261
http://dx.doi.org/10.4319/lo.1996.41.7.1565
http://dx.doi.org/10.4319/lo.1991.36.7.1346
http://dx.doi.org/10.3390/md11072239
http://www.ncbi.nlm.nih.gov/pubmed/23807545
http://dx.doi.org/10.1016/j.hal.2017.05.004
http://www.ncbi.nlm.nih.gov/pubmed/28755712
http://dx.doi.org/10.1016/j.bjp.2014.07.019
http://dx.doi.org/10.4081/aiol.2017.6381
http://dx.doi.org/10.1111/j.1462-2920.2012.02729.x
http://www.ncbi.nlm.nih.gov/pubmed/22429476
http://www.ncbi.nlm.nih.gov/pubmed/2125814
http://dx.doi.org/10.1128/AEM.67.1.278-283.2001
http://www.ncbi.nlm.nih.gov/pubmed/11133456
http://dx.doi.org/10.1007/BF02184637
http://dx.doi.org/10.1007/s002489900105
http://dx.doi.org/10.1016/j.hal.2014.10.002
http://www.ncbi.nlm.nih.gov/pubmed/26435706


Toxins 2018, 10, 156 22 of 24

32. Falconer, I.R.; Choice, A.; Hosja, W. Toxicity of edible mussels (Mytilus edulis) growing naturally in an
estuary during a water bloom of the blue-green alga Nodularia spumigena. Environmental Toxicology and
Water Quality. Environ. Toxicol. 1992, 7, 119–123.

33. Fawell, J. Toxins from Blue-Green Algae: Toxicological Assessment of Microcystin-LR; W.R. Centre: Medmenham,
UK, 1993; pp. 1–259.

34. Wolf, H.U.; Frank, C. Toxicity assessment of cyanobacterial toxin mixtures. Environ. Toxicol. 2002, 17, 395–399.
[CrossRef] [PubMed]

35. Faassen, E.J.; Lurling, M. Occurrence of the microcystins MC-LW and MC-LF in Dutch surface waters and
their contribution to total microcystin toxicity. Mar. Drugs 2013, 11, 2643–2654. [CrossRef] [PubMed]

36. Chorus, I.; Bartram, J. Toxic Cyanobacteria in Water—A Guide to Their Public Health Consequences, Monitoring
and Management; Spon Press: London, UK, 1999.

37. Ibelings, B.; Havens, K. Cyanobacterial toxins: A qualitative meta-analysis of concentrations, dosage and
effects in freshwater, estuarine and marine biota. Adv. Exp. Med. Biol. 2008, 619, 675–732. [PubMed]

38. Loftin, K.A.; Graham, J.L.; Hilborn, E.; Lehmann, S.; Meyer, M.T.; Dietze, J.E.; Griffith, C. Cyanotoxins in
inland lakes of the United States: Occurrence and potential recreational health risks in the EPA National
Lakes Assessment 2007. Harmful Algae 2016, 56, 77–90. [CrossRef] [PubMed]

39. Chorus, I. Current Approaches to Cyanotoxin Risk Assessment, Risk Management and Regulations in
Different Countries; Chorus, I., Ed.; Federal Environmental Agency (Umweltbundesamt): Dessau-Roßlau,
Germany, 2005.

40. Beniston, M.; Stephenson, D.B.; Christensen, O.B.; Ferro, C.A.T.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.;
Jylhä, K.; Koffi, B.; et al. Future extreme events in European climate: An exploration of regional climate
model projections. Clim. Chang. 2007, 81, 71–95. [CrossRef]

41. Vautard, R.; Gobiet, A.; Sobolowski, S.; Kjellström, E.; Stegehuis, A.; Watkiss, P.; Mendlik, T.; Landgren, O.;
Nikulin, G.; Teichmann, C.; et al. The European climate under a 2 ◦C global warming. Environ. Res. Lett.
2014, 9, 034006. [CrossRef]

42. Hoy, A.; Hänsel, S.; Skalak, P.; Ustrnul, Z.; Bochnicek, O. The extreme European summer of 2015 in a secular
perspective. Int. J. Climatol. 2016, 37, 1–34.

43. Messineo, V.; Melchiorre, S.; Di Corcia, A.; Gallo, P.; Bruno, M. Seasonal succession of Cylindrospermopsis
raciborskii and Aphanizomenon ovalisporum blooms with cylindrospermopsin occurrence in the volcanic
Lake Albano, Central Italy. Environ. Toxicol. 2010, 25, 18–27. [PubMed]

44. Salmaso, N.; Cerasino, L.; Boscaini, A.; Capelli, C. Planktic Tychonema (Cyanobacteria) in the large lakes
south of the Alps: Phylogenetic assessment and toxigenic potential. FEMS Microbiol. Ecol. 2016, 92, fiw155.
[CrossRef] [PubMed]

45. Pawlik-Skowrońska, B.; Kalinowska, R.; Skowroński, T. Cyanotoxin diversity and food web bioaccumulation
in a reservoir with decreasing phosphorus concentrations and perennial cyanobacterial blooms.
Harmful Algae 2013, 28, 118–125. [CrossRef]

46. Straile, D.; Jochimsen, M.C.; Kümmerlin, R. The use of long-term monitoring data for studies of planktonic
diversity: A cautionary tale from Swiss lakes. Freshw. Biol. 2013, 58, 1292–1301. [CrossRef]

47. Litchman, E.; Klausmeier, C.A. Trait-Based Community Ecology of Phytoplankton. Ann. Rev. Ecol.
Evolut. Syst. 2008, 39, 615–639. [CrossRef]

48. Loftin, K.A.; Dietze, J.E.; Meyer, M.T.; Graham, J.L.; Maksimowicz, M.M.; Toyne, K.D. Total
Cylindrospermopsins, Microcystins/Nodularins, and Saxitoxins Data for the 2007 United States Envrionmnetal
Protection Agency National Lake Assessment; Kansas Water Science Center, U.S. Geological Survey: Lawrence,
KS, USA, 2016.

49. Kurmayer, R.; Sivonen, K.; Salmaso, N. Introduction. In Molecular Tools for the Detection and Quantification of
Toxigenic Cyanobacteria; Kurmayer, R., Sivonen, K., Wilmotte, A., Salmaso, N., Eds.; John Wiley & Sons Ltd.:
Hoboken, NJ, USA, 2017.

50. Rantala, A.; Fewer, D.P.; Hisbergues, M.; Rouhiainen, L.; Vaitomaa, J.; Börner, T.; Sivonen, K. Phylogenetic
evidence for the early evolution of microcystin synthesis. PNAS 2003, 101, 568–573. [CrossRef] [PubMed]

51. Paerl, H.W.; Otten, T.G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol.
2013, 65, 995–1010. [CrossRef] [PubMed]

52. Paerl, H.W.; Huisman, J. Blooms like it hot. Climate 2008, 320, 57–58.

http://dx.doi.org/10.1002/tox.10066
http://www.ncbi.nlm.nih.gov/pubmed/12203962
http://dx.doi.org/10.3390/md11072643
http://www.ncbi.nlm.nih.gov/pubmed/23880934
http://www.ncbi.nlm.nih.gov/pubmed/18461789
http://dx.doi.org/10.1016/j.hal.2016.04.001
http://www.ncbi.nlm.nih.gov/pubmed/28073498
http://dx.doi.org/10.1007/s10584-006-9226-z
http://dx.doi.org/10.1088/1748-9326/9/3/034006
http://www.ncbi.nlm.nih.gov/pubmed/19161233
http://dx.doi.org/10.1093/femsec/fiw155
http://www.ncbi.nlm.nih.gov/pubmed/27402712
http://dx.doi.org/10.1016/j.hal.2013.06.002
http://dx.doi.org/10.1111/fwb.12118
http://dx.doi.org/10.1146/annurev.ecolsys.39.110707.173549
http://dx.doi.org/10.1073/pnas.0304489101
http://www.ncbi.nlm.nih.gov/pubmed/14701903
http://dx.doi.org/10.1007/s00248-012-0159-y
http://www.ncbi.nlm.nih.gov/pubmed/23314096


Toxins 2018, 10, 156 23 of 24

53. Visser, P.M.; Ibelings, B.W.; Mur, L.R.; Walsby, A.E. The ecophysiology of the harmful cyanobacterium
Microcystis. In Harmful Cyanobacteria; Springer: Dordrecht, The Netherlands, 2005.

54. Jang, M.H.; Jung, J.M.; Takamura, N. Changes in microcystin production in cyanobacteria exposed to
zooplankton at different population densities and infochemical concentrations. Limnol. Oceanogr. 2007, 52,
1454–1466. [CrossRef]

55. Wiedner, C.; Visser, P.M.; Fastner, J.; Metcalf, J.S.; Codd, G.A.; Mur, L.R. Effects of Light on the Microcystin
Content of Microcystis Strain PCC 7806. Appl. Environ. Microbiol. 2003, 69, 1475–1481. [CrossRef] [PubMed]

56. Wood, S.A.; Maier, M.Y.; Puddick, J.; Pochon, X.; Zaiko, A.; Dietrich, D.R.; Hamilton, D.P. Trophic state and
geographic gradients influence planktonic cyanobacterial diversity and distribution in New Zealand lakes.
FEMS Microbiol. Ecol. 2016, 93, fiw234. [CrossRef] [PubMed]

57. Sivonen, K.; Jones, G. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and
Management; Chorus, I., Bertram, J., Eds.; E & FN Spon: London, UK, 1999; pp. 41–111.

58. Horst, G.P.; Sarnelle, O.; White, J.D.; Hamilton, S.K.; Kaul, R.B.; Bressie, J.D. Nitrogen availability increases the
toxin quota of a harmful cyanobacterium, Microcystis aeruginosa. Water Res. 2014, 54, 188–198. [CrossRef]
[PubMed]

59. Nimptsch, J.; Woelfl, S.; Osorio, S.; Valenzuela, J.; Moreira, C.; Ramos, V.; Castelo-Branco, R.; Leão, P.N.;
Vasconcelos, V. First record of toxins associated with cyanobacterial blooms in oligotrophic North Patagonian
lakes of Chile- a genomic approach. Int. Rev. Hydrobiol. 2016, 101, 57–68. [CrossRef]

60. Mischke, U. Cyanobacteria associations in shallow polytrophic lakes: Influence of environmental factors.
Acta Oecol. 2003, 24, S11–S23. [CrossRef]

61. Anneville, O.; Souissi, S.; Ibanez, F.; Ginot, V.; Druant, J.C.; Angeli, N. Temporal mapping of
phytoplankton assemblages in Lake Geneva: Annual and interannual changes in their patterns of succession.
Limnol. Oceanogr. 2002, 47, 1355–1366. [CrossRef]

62. Anneville, O.; Souissi, S.; Gammeter, S.; Straile, D. Seasonal and inter-annual scales of variability in
phytoplankton assemblages: Comparison of phytoplankton dynamics in three peri-alpine lakes over a
period of 28 years. Freshw. Biol. 2004, 49, 98–115. [CrossRef]

63. Sevilla, E.; Martin-Luna, B.; Vela, L.; Bes, M.T.; Peleato, M.L.; Fillat, M.F. Microcystin-LR synthesis as response
to nitrogen: Transcriptional analysis of the mcyD gene in Microcystis aeruginosa PCC7806. Ecotoxicology
2010, 19, 1167–1173. [CrossRef] [PubMed]

64. Paerl, H.W. Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life
2014, 4, 988–1012. [CrossRef] [PubMed]

65. Thomas, M.K.; Litchman, E. Effects of temperature and nitrogen availability on the growth of invasive and
native cyanobacteria. Hydrobiologia 2016, 763, 357–369. [CrossRef]

66. Cerasino, L.; Salmaso, N. Diversity and distribution of cyanobacterial toxins in the Italian subalpine lacustrine
district. Oceanol. Hydrobiol. Stud. 2012, 41, 54–63. [CrossRef]

67. Pires, L.M.; Sarpe, D.; Brehm, M.; Ibelings, B.W. Potential synergistic effects of microcystins and bacterial
lipopolysaccharides on life history traits of Daphnia galeata raised on low and high food levels. Aquat. Toxicol.
2011, 104, 230–242. [CrossRef] [PubMed]

68. Freitas, E.C.; Pinheiro, C.; Rocha, O.; Loureiro, S. Can mixtures of cyanotoxins represent a risk to the
zooplankton? The case study of Daphnia magna Straus exposed to hepatotoxic and neurotoxic cyanobacterial
extracts. Harmful Algae 2014, 31, 143–152. [CrossRef] [PubMed]

69. Rzymski, P.; Poniedzialek, B. In search of environmental role of cylindrospermopsin: A review on global
distribution and ecology of its producers. Water Res. 2014, 66, 320–337. [CrossRef] [PubMed]

70. Lürling, M.; Faassen, E.J. Dog Poisonings associated with Microcystis aeruginosa Bloom in the Netherlands.
Toxins 2013, 5, 556–567. [CrossRef] [PubMed]

71. Fastner, J.; Beulker, C.; Geiser, B.; Hoffmann, A.; Kröger, R.; Teske, K.; Hoppe, J.; Mundhenk, L.; Neurath, H.;
Sagebiel, D.; et al. Fatal Neurotoxicosis in Dogs Associated with Tychoplanktic, Anatoxin-a Producing
Tychonema sp. in Mesotrophic Lake Tegel, Berlin. Toxins 2018, 10, 60. [CrossRef] [PubMed]

72. Netherlands Normalization Institute (NEN). Water: Photometric Determination of the Content of Dissolved
Orthophosphate and the Total Content of Phosphorous Compounds by Continuous Flow Analysis; NEN 6663;
The Netherlands Normalization Institute: Delft, The Netherlands, 1986. (In Dutch)

http://dx.doi.org/10.4319/lo.2007.52.4.1454
http://dx.doi.org/10.1128/AEM.69.3.1475-1481.2003
http://www.ncbi.nlm.nih.gov/pubmed/12620831
http://dx.doi.org/10.1093/femsec/fiw234
http://www.ncbi.nlm.nih.gov/pubmed/27856621
http://dx.doi.org/10.1016/j.watres.2014.01.063
http://www.ncbi.nlm.nih.gov/pubmed/24568788
http://dx.doi.org/10.1002/iroh.201401780
http://dx.doi.org/10.1016/S1146-609X(03)00003-1
http://dx.doi.org/10.4319/lo.2002.47.5.1355
http://dx.doi.org/10.1046/j.1365-2426.2003.01167.x
http://dx.doi.org/10.1007/s10646-010-0500-5
http://www.ncbi.nlm.nih.gov/pubmed/20532619
http://dx.doi.org/10.3390/life4040988
http://www.ncbi.nlm.nih.gov/pubmed/25517134
http://dx.doi.org/10.1007/s10750-015-2390-2
http://dx.doi.org/10.2478/s13545-012-0028-9
http://dx.doi.org/10.1016/j.aquatox.2011.05.001
http://www.ncbi.nlm.nih.gov/pubmed/21635866
http://dx.doi.org/10.1016/j.hal.2013.11.004
http://www.ncbi.nlm.nih.gov/pubmed/28040103
http://dx.doi.org/10.1016/j.watres.2014.08.029
http://www.ncbi.nlm.nih.gov/pubmed/25222334
http://dx.doi.org/10.3390/toxins5030556
http://www.ncbi.nlm.nih.gov/pubmed/23493170
http://dx.doi.org/10.3390/toxins10020060
http://www.ncbi.nlm.nih.gov/pubmed/29385106


Toxins 2018, 10, 156 24 of 24

73. Netherlands Normalization Institute (NEN). Water: Photometric Determination of the Content of Ammonium
Nitrogen and the Sum of the Contents of Ammoniacal and Organically Bound Nitrogen According to Kjeldahl by
Continuous Flow Analysis; NEN-6646; Netherlands Normalization Institute: Delft, The Netherlands, 1990.

74. Van der Staay, G.W.M.; Brouwer, A.; Baard, R.L.; van Mourik, F. Separation of photosystems I and II from the
oxychlorobacterium (prochlorophyte) Prochlorothrix hollandica and association of Chlb binding antennae
with PS II. Biochim. Biophys. Acta 1992, 1102, 220–228. [CrossRef]

75. Leach, T.H.; Beisner, B.E.; Carey, C.C.; Pernica, P.; Rose, K.C.; Huot, Y.; Brentrup, J.A.; Domaizon, I.;
Grossart, H.-P.; Ibelings, B.W.; et al. Patterns and drivers of deep chlorophyll maxima structure in 100 lakes:
The relative importance of light and thermal stratification. Limnol. Oceanogr. 2017, 63, 628–646. [CrossRef]

76. Winslow, L.A.; Read, J.S.; Woolway, R.I.; Brentrup, J.A.; Leach, T.H.; Zwart, J.A. rLakeAnalyzer: Lake Physics
Tools. Zenodo. Available online: https://zenodo.org/record/1003169#.Ws82F9NubEY (accessed on 6
October 2017).

77. Chen, C.T.A.; Millero, F.J. Thermodynamic properties for natural waters covering only the limnological
range. Limnol. Oceanogr. 1986, 31, 657–662. [CrossRef]

78. Scheffer, M.; Rinaldi, S.; Gragnani, A.; Mur, L.R.; van Nes, E.H. On the Dominance of Filamentous
Cyanobacteria in Shallow, Turbid Lakes. Ecology 1997, 78, 272–282. [CrossRef]

79. Legendre, P.; Legendre, L. Numerical Ecology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2012.
80. Legendre, P.; Gallagher, E.D. Ecologically meaningful transformations for ordination of species data.

Oecologia 2001, 129, 271–280. [CrossRef] [PubMed]
81. R Development Core Team R. A Language and Environment for Statistical Computing; R Foundation for

Statistical Computing: Vienna, Austria, 2009.
82. Oksanen, J.; Kindt, R.; Legendre, P.; O’Hara, B.; Henry, M.; Stevens, H. The vegan package.

Community Ecol. Package 2007, 10, 631–637.
83. Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S-Plus, 4th ed.; Springer: New York, NY, USA, 2002.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0005-2728(92)90103-9
http://dx.doi.org/10.1002/lno.10656
https://zenodo.org/record/1003169#.Ws82F9NubEY
http://dx.doi.org/10.4319/lo.1986.31.3.0657
http://dx.doi.org/10.1890/0012-9658(1997)078[0272:OTDOFC]2.0.CO;2
http://dx.doi.org/10.1007/s004420100716
http://www.ncbi.nlm.nih.gov/pubmed/28547606
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	coversheetJournalArticles
	MANTZOUKI 2018 Temperature effects explain (VOR)
	Introduction 
	Results 
	Toxin Distribution on a Continental Scale 
	Multivariate Multiple Regression Analysis 
	Toxin Diversity Index and Environmental Parameters 

	Discussion 
	Materials and Methods 
	Sampling Survey 
	Cyanotoxin Analysis 
	Microcystins (MCs) and Nodularin (NOD) Analysis 
	Cylindrospermopsin (CYN) and Anatoxin (ATX) Analysis 

	Nutrient Analysis 
	Pigment Analysis 
	Response Variables and Environmental Parameters 
	Statistical Analysis 

	References


	OA: GOLD
	OA Logo: 
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