

AUTHOR(S):

TITLE:

YEAR:

Publisher citation:

OpenAIR citation:

Publisher copyright statement:

OpenAIR takedown statement:

 This publication is made
freely available under
________ open access.

This is the ___________________ version of proceedings originally published by _____________________________
and presented at __
(ISBN __________________; eISBN __________________; ISSN __________).

This publication is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

Neural Induction of a Lexicon for Fast and
Interpretable Stance Classification

Jérémie Clos and Nirmalie Wiratunga

Robert Gordon University
Garthdee Road

Aberdeen, United Kingdom
initial.lastname@rgu.ac.uk

Abstract. Large-scale social media classification faces the following two chal-
lenges: algorithms can be hard to adapt to Web-scale data, and the predictions
that they provide are difficult for humans to understand. Those two challenges
are solved at the cost of some accuracy by lexicon-based classifiers, which offer
a white-box approach to text mining by using a trivially interpretable additive
model. However current techniques for lexicon-based classification limit them-
selves to using hand-crafted lexicons, which suffer from human bias and are
difficult to extend, or automatically generated lexicons, which are induced using
point-estimates of some predefined probabilistic measure. In this work we propose
a new approach to learn robust lexicons, using the backpropagation algorithm to
ensure generalization power without sacrificing model readability. We evaluate
our approach on a stance detection task, on two different datasets, and find that
our lexicon outperforms standard lexicon approaches.

1 Introduction

Text classification is one of the main tasks in natural language processing, with applica-
tions ranging from web search to opinion mining. For instance, being able to perform
this task on large amounts of social media data enables businesses to know in real time
how the public perceives them, talks about them, which has repercussions in key areas
such as predictions of the stock market prices for a given company.

Large-scale social media classification faces the challenges of scaling algorithms
and producing predictions that can be explained and interpreted. Those two challenges
are solved at the cost of some accuracy by lexicon-based classifiers, which offer a
white-box approach to text mining by using a trivially interpretable additive model,
where the probability of an instance I belonging to a class C is nothing more than a
weighted sum of the probabilities of each term in I belonging to C. However, current
techniques used to create those lexicons fall short in many ways compared to more
traditional black-box machine learning models. That difference in performance is easily
explained by the fact that, unlike lexicon-based classifiers, those models are trained in a
black-box way, with no regard to their interpretability. This paper attempts to conciliate
lexicon-based classification and traditional text classification by designing a simple and
efficient training procedure that can generate domain-specific lexicons with a high degree
of interpretability and a high classification performance.

2 Jérémie Clos and Nirmalie Wiratunga

We first formalize the concept of lexicons and explore the state of the art in the
domain of lexicon-based classification. We then detail our contribution, formalizing
lexicon-based classification as a form of computational graph. We then detail our eval-
uation protocol on a stance detection task and on two different datasets. We perform
an evaluation against standard lexicons and baselines found in the literature and report
that our approach significantly outperforms standard techniques for generating lexicons.
Finally, we analyze and discuss our results, before concluding on the next steps of our
work.

2 Related works

The literature on text classification is rich in approaches of varying degree of complexity,
but there has been scarce research done on approaches which are both interpretable [11]
and accurate.

2.1 Lexicon-based classification

Lexicons are early tools adopted by the computational linguistics community to auto-
matically classify text. They can take many forms, the most common of which being
either a simple list of terms associated to a certain class of interest, or a T × C matrix
where each pair (t, c) where t ∈ T is one of the T terms and c ∈ C is one of the C
classes is mapped to a strength of association score s = l(t, c). Several lexicons also
contain additional contextual information in order to help their users build more complex
models, but they all share the same core architecture, which we formalize as follows:

Definition 1. A lexicon Lex is a tuple Lex = ⟨L, A, D⟩ where:

L : T × C 7→ IR
A : IRn 7→ IR
D : IRn 7→ IR

In this definition, L is a mapping function that assigns an unbounded value to each
pair (t, c) where term t ∈ T and class c ∈ C, A is an aggregation function that aggregates
the accumulated scores into one value, and D is a decision function that selects one of
these aggregated values.

Concretely, the mapping determines an evidence value for each term using a look-up
list, propagates it to the aggregation function which aggregates the set of evidence
values from the terms contained within one instance into multiple stacks of evidence
(one for each class). Finally, the decision function evaluates each stack of evidence to
select the one that is the most likely. Algorithm 1 shows a general form of lexicon-based
classification using this formal definition. Using this formal definition we can reformulate
previous lexicons using the same format.

Simple lists of terms fit under this definition by having the decision function be
ArgMax, the aggregation function be a simple sum, and the mapping function be the
indicator function where L(t) = 1 if t is in the Lexicon and 0 otherwise.

Traditional matrix-shaped lexicons fit under this definition by having the decision
function be ArgMax, the aggregation function be a simple sum, and the mapping

Neural Induction of a Lexicon for Fast and Interpretable Stance Classification 3

function be a simple look-up in the Lexicon which defaults to 0 if the term is not in the
Lexicon.

Other, non lexicon-based approaches can also be described under the same formal
framework, such as Naive Bayes classification where the mapping function maps terms
to conditional probabilities of that term being present given that class, the aggregation
function is a multiplication (or alternatively addition of logarithmic probabilities) where
all values are multiplied together and to a prior, and the decision function is an ArgMax
function applied to log-ratios of those aggregated class probabilities.

Data: Instance I

Input:
Lexicon function Lc

Aggregation function ⊕
Decision function D

Result: A class label c
CA ← 0;
CB ← 0;
for Term t in I do

CA ← CA ⊕ LA(t);
CB ← CB ⊕ LB(t);

end
return D(CA, CB);

Algorithm 1: Lexicon-based classification algorithm on a binary problem

2.2 Traditional hand-crafted lexicons

The first lexicons were not obtained using computational means but rather hand-crafted
by domain experts. This is due to the computational cost of building a lexicon and the
fact that it is only recently that we have had access to the computational resources to
parse the amount of data necessary to the generation of useful lexicons. Traditional
lexicons were usually either a hand-crafted list of words with a numerical or categorical
value associated to each class or a simple list of words that are known to be associated to
a class (with no quantification of that association). This comprises sentiment lexicons as
well as more complex linguistic patterns such as emotion lexicons, argument lexicons,
etc.

Two different aggregation/decision mechanisms appear in the literature using these
lexicons. In the case of non-quantified lexicons, a counting of the number of lexicon
terms appearing in the text produces an appropriate aggregated value. The class which
has the most terms appearing in the text is then chosen as part of the decision function.
In the case of quantified lexicons, a sum of the weights of the lexicon terms appearing in
the text produces an aggregated weight. The class which has the highest weight is then
chosen as part of the decision function.

The strength of these approaches is twofold: firstly in how well they generalize,
because they were consciously created by subject domain experts, and secondly in their
human-interpretability, because they were formed by human users assigning scores to

4 Jérémie Clos and Nirmalie Wiratunga

each term. To this day, hand-crafted lexicons such as the LIWC lexicon [10] are still sold
for commercial computational linguistics applications. Conversely their weakness are
that they tend to be small, due to the human labor involved in generating them, and less
effective than other methods, due to their focus on human interpretability.

2.3 Lexicon induction techniques

In order to attend to the issues inherent to hand-crafted lexicons, research in computa-
tional linguistics evolved towards computing lexicon scores from external data sources,
rather than being generated by a set of experts with domain knowledge. In this section
we will review learning techniques of existing approaches as well as the challenges that
they face. Research in lexicon induction outlines multiple families of techniques that can
be used in order to produce a computational lexicon. Those techniques are either built
on an extensive lexical resource such as an ontology, or on an estimation of strength of
association between each term and a class.

Graph propagation based lexicons (GPBL). GPBL learning techniques use a few
human-provided seed words for which the class is known, and leverage some external
relationship (typically synonyms, antonyms and hypernyms) in a semantic graph such
as WordNet [7] to propagate class values along that graph [3]. For example, if the term
“agreement” was deemed fully associated to a class, its synonym “accord” would be
associated to the same class while its antonym “disagreement” would be associated to its
opposite class. Because this family of techniques is extremely foreign to the one we are
proposing, we do not evaluate against it and only refer to it for the sake of exhaustiveness.

Conditional probability-based lexicons (CPBL). CPBL learning techniques are the
baseline against which we evaluate our lexicon induction algorithm. They operate
by computing the conditional probability of observing each lexicon entry under each
class [1]. The value for each pair (t, c) where term t ∈ T and class c ∈ C is computed as
indicated in equation 1. The main flaw of this technique is that it overestimates strength
of association based on coincidences, which means that it would be easy to build a
completely correct dataset to trick the algorithm in learning a lexicon full of spurious
association scores.

Lex(t, c) = p(t|c)∑|C|
i=0 p(t|ci)

(1)

Mutual information based lexicons Mutual information-based lexicon learning tech-
niques attempt to fix the issues of previous approaches by estimating the pointwise
mutual information (PMI) between a term and a class [12] using the formula described
in equation 2. Mutual information being inherently more robust to coincidences because
of its denominator, is chosen as a strength of association measure. Some works [2]
have shown that NPMI, a normalized version of the standard PMI metric described in
equation 3, slightly improves classification performance. While this approach is sensible
to create a general purpose lexicon, it suffers some flaws in the following cases: (1)
if none of the terms used in the child post has an argumentative value or is present

Neural Induction of a Lexicon for Fast and Interpretable Stance Classification 5

within the lexicon, no classification is possible, and (2) some terms might end up with
an undeserved score because they accidentally appear more frequently within comments
of one class. For example if non-argumentative terms such as "Monday" accidentally
co-occur too often within one class, they will be misconstrued as being indicative of that
class.

PMI(x; y) = log(p(x; y))
p(x)p(y) (2)

NPMI(x; y) =
log(p(x;y))

p(x)p(y)

− log [p(x, y)] (3)

Hybrid lexicons Recent work [9] has attempted to hybridize handcrafted and automati-
cally generated lexicons, based on the assumption that the coverage of the former would
help the specialization of the latter as a fallback option, and that a hybrid lexicon would
thus be able to deal with domain-specific and general knowledge. Hybrid lexicons tend
to improve classification accuracy as shown in [9] but have the drawback of requiring a
handcrafted lexicon and are thus beyond the scope of this work as of now.

3 Building a neural lexicon

Traditional ways of learning a lexicon from a corpus of data either use point estimates of
some statistical values, such as pointwise mutual information, or semantic values directly
derived from human expertise. However, we can observe in figure 1 that a standard
lexicon can be expressed in the form of a computational graph, where the lexicon is
described as a composition of functions as seen in equation 4. That graphical form gives
us the possibility of using gradient-based learning techniques such as backpropagation
in order to learn both the lexicon and the strength of association scores.

Class(i) = ArgMaxc

(∑
t∈i

[sc(t)]
)

(4)

Traditional lexicons are thus considered as a specific network topology that do
not have sigmoid activation functions but instead a simple aggregation layer with one
aggregation unit per class and a output layer of one single unit that transforms the
aggregated evidence into the relevant format. The details of the network topology and
the training protocol are explained in the following sections.

3.1 The Lexicon network topology

The lexicon follows a specific network topology where each vocabulary input is mapped
to one unit, which is linked to as many hidden units as there are classes, which are then
aggregated by the following layer into a sum of evidence towards that class. Finally, the
last layer uses this sum of evidence to produce a decision which is the output of the
classifier. In this section we review each layer of the neural lexicon and their precise
function.

6 Jérémie Clos and Nirmalie Wiratunga

Fig. 1. Lexicon computational graph

The first layer: vocabulary input The first layer is the input layer, which maps a term
to its matching unit. The input signal coming to this layer is some measure of frequency
of occurrences of each term in the text that is being classified. We can apply a scaling
function such as scaledFrequency = log(1 + frequency) in order to smooth out
the differences between long and short comments, or just take the raw frequency and
communicate it to the next layer.

The lexicon layer The lexicon layer is a function that maps a lexicon entry (linked
to terms) to their respective scores, which, because of the additive nature of the next
layer, are a numerical amount representing the evidence brought towards a class by the
presence of a term. The output of that layer is the score of the term concerned multiplied
by the input of the previous layer,.

The aggregation layer The aggregation layer adds up evidence towards a class from a
list of units in the previous layer. The most common function in lexicon-based classifica-
tion is the simple arithmetic sum, which is then fed into the output layer.

The decision layer The decision layer is a function that, given a set of numbers repre-
senting the amounts of evidence for each class, produces a classification. A common
function used in both lexicon classifiers and Bayesian classifiers is the simple ArgMax
function, which selects the class that maximizes a numerical amount. However, because
it is impossible to differentiate the ArgMax function, a proxy function is used during
the training phase of the algorithm.

Neural Induction of a Lexicon for Fast and Interpretable Stance Classification 7

3.2 Lexicon network training

In this section we detail the process of training the lexicon network.

Cost function and regularization The backpropagation algorithm relies on a process
called reverse-mode differentiation in order to train the network in a computationally
efficient way, by updating the weight of local units based on the error partial derivative
with respect to those units. This process requires that the network be differentiable in
order to compute the error properly. We use a proxy decision function during the training
process because the original ArgMax function is not differentiable.

Because the only thing the ArgMax relies on is the proportion of evidence in favor
of one class versus another, we can use the cross-entropy error function E:

E(C, Ĉ) = −
∑|C|

i=1

(
Ci × log(Ĉi) + (1 − Ci) × log(1 − Ĉi)

)
(5)

Here, the optimal class distribution is
[
Ĉ1, Ĉ2, ..., Ĉn

]
and the predicted class dis-

tribution is [C1, C2, ..., Cn] where each prediction is normalized from the aggregated
evidence using the Softmax function Ci = exp ai∑|a|

j=0
exp aj

where ai is the aggregated

weight for a class i. However, optimizing over a direct function of the error with a
large amount of free parameters (numbers of classes × number of lexicon entries) will
lead to overfitting on the training data and poor performance on the test data, which
emphasizes the need to regularize our training process. We selected L2 regularization,
which is a minimization of the L2norm of the parameters, because it is differentiable
and minimizes weights without pushing them completely to 0 (unlike L1 regularization).
This property is desirable for learning a lexicon because pushing a weight to 0 would
just remove many terms observed only in the training data and thus increase overfitting.
The resulting cost function J is shown in equation 6.

J(C, Ĉ) = E(C, Ĉ) + λ ∗
√∑m

j=0 w2
j (6)

Here λ corresponds to a regularization parameter, which modulates the importance
that we are putting on obtaining a generalizable lexicon against having a low error in
the training set and is selected empirically, wi corresponds to the weight of unit i in the
lexicon layer.

Optimization The backpropagation algorithm trains the network by propagating the
error gradient backwards through the computational graph and applying a local update
rule based on its value. Using the chain rule, the partial derivative of the error with
respect to each lexicon input can be decomposed in a set of simpler partial derivatives.
Equations 7 shows the update rule for a lexicon weight w from the error J .

wi = wi − γ × ∂J
∂wi

(7)

8 Jérémie Clos and Nirmalie Wiratunga

Here J corresponds to the cost (equation 6) of the current iteration over the dataset
and γ represents the learning rate, a parameter that we manually set to a very small value.
Since our datasets are small, we train our network using the Conjugate Gradient Descent
algorithm [6], updating the weights of the network after each iteration over the dataset.
It is however important to note that since the goal of the network is only to generate
a lexicon, the update rule is only applied to the weight of the edges coming from the
lexical layer and all others are held constant.

4 Evaluation

We evaluate our approach on an argument stance classification task, which is a type of text
classification specializing on argumentative discourse. Argument stance classification
is the classification of textual content coming from an agent, e. g., user comments
extracted from a discussion forum, into multiple classes representing the stance of those
comments with respect to the comments they are responding to. We study argument
stance classification on a binary scale, where neutral responses are removed and only
rebutting/disagreeing or supporting/agreeing statements are conserved. Using figure 2 as
an example, we can see a debate on the social discussion website Reddit1 where user 1
(in green) is in complete agreement with the parent comment, while user 2 (in red) is
in complete agreement with user 1 while being in complete disagreement with the core
topic of the discussion. This difference differentiates stance classification from sentiment
analysis and makes it a harder problem.

Fig. 2. Local stance classification in context: a debate on Reddit

4.1 Datasets

We performed our experiments on two social media datasets. The first one is the Internet
Argument Corpus [13] (further referred to as IAC). It is a subset of a publicly available

1 http://www.reddit.com

Neural Induction of a Lexicon for Fast and Interpretable Stance Classification 9

dataset collected on a discussion forum and manually labeled. The second one is the
Reddit Noisy-Labeled Corpus (further referred to as RNLC). It was created by collecting
data from a discussion forum and automatically labeling it using distant supervision
learning [4, 8]. Statistics on the corpora can be found in table 1 and show that the two
datasets are similar with the exception that the RNLC was collected on comments which
were on average twice as long as the IAC. This has an important impact on lexicon-based
methods because of the risk of inserting more noise into the system.

The Internet Argument Corpus (IAC). The IAC [13] is a corpus of forum comments
manually labeled by 5 annotators that contain (among other things) degree of
agreement/disagreement with their immediate parent comment. A subset of this
dataset was used for our experiment, by selecting the comments that ensured disjoint
class membership (meaning filtering out comments with an average score close to
0). For instance, a comment such as "For the same reasons that I do not agree with
the first conclusion of your statement, I feel that your second conclusion is correct"
would technically belong to both classes as the user both supports and attacks the
previous comment and it would thus be filtered out.

The Reddit Noisy-Labeled Corpus (RNLC). The RNLC is a newly formed corpus
of comments extracted from the Reddit2 website and automatically labeled with a
binary class using evidence contained in the comment. A list of explicit expressions
such as "I [positive adverb] agree" and "I [positive adverb] disagree" (and varia-
tions) were used to detect strong evidence of a user comment belonging to a class.
In the case of the presence of conflicting evidence, i. e., expressions acting as strong
evidence towards both classes, the comments were not considered. Otherwise, com-
ments were automatically assigned to their respective class and the corresponding
sentences were deleted from the comments in order to avoid an advantage due to
class bias. The data is labeled using a noisy labeling approach inspired from distant
supervision learning [8] whereby highly discriminative expressions such as "I agree"
and "you are wrong" are used as cues to class labels agreement and disagreement.
A minimum comment length was also added as a requirement in order to remove
uninformative data points. The complete dataset, spanning posts from a year of
crawling, was then randomly subsampled for computational efficiency.

Dataset IAC RNLC

Number of comments 8000 100000
Average terms/sentence 39.8 33.7
Average sentences/comment 3.1 12.2

Instances of agreement 4000 50000
Instances of disagreement 4000 50000

Table 1. Descriptive statistics on IAC and RNLC

2 http://www.reddit.com

10 Jérémie Clos and Nirmalie Wiratunga

4.2 Baselines

We contextualize our approach by comparing it to Naive Bayes (NAIVEBAYES), a strong
baseline in text classification that allows the user to manually inspect the parameters of
its model in the form of word probabilities, thus allowing predictions to be interpreted
and corrected. We will also compare our approach to two existing approaches for lexicon
induction from text data: the Conditional Probability-Based Lexicon (CPBLEX) which
models each term score as the conditional probability of observing that term in that
particular class, and both the Pointwise Mutual Information Lexicon (PMILEX) which
models each term score as the pointwise mutual information between that term and
that particular class and its variation using normalized pointwise mutual information
NPMILEX. Both lexicons then use the classification rule described in equation 8, which
classifies a user comment x on the basis of maximizing the sum of associations between
each of its terms t and each class c. Lexicon size is always kept to 400 to avoid overfitting
after removal of stopwords3 and non-alphanumerical characters.

ClassLabel(x) = ArgMaxc

[∑
t∈x

TermScore(t, c)
]

(8)

CPBLEX baseline We compute this lexicon using the conditional probability of observ-
ing each term in each class, as referred in equation 1.

PMILEX baseline We compute this lexicon using normalized pointwise mutual informa-
tion (NPMI, referred in equation 3) as a way to measure strength of association between
terms and their class.

5 Results and discussion

We present the results of our experiment in table 2 and 3. Two approaches are tested:
LEXICNET1 uses a raw term frequencies as input, while LEXICNET2 uses a logarith-
mically scaled frequency. A 10 fold cross-validation was done, the accuracy results
were averaged over the 10 folds and a 2-tailed paired T test was performed on the folds
to compute statistical significance in the difference between, with a 95% confidence
threshold (i. e., a p-value < 0.05). In the following tables, the best lexicon approach is
highlighted in bold, while the best approach overall is marked.

We can observe that the Log(tf) scaling yields a higher accuracy (+0.704%), which
can be explained by the difference in comment length that we can see in table 1. A
logarithmic scaling of the input scores make sure that there is no large difference
between two user comments based only on their length and as such would have a
higher impact where there is great variation in comment length. It is evident from the
results that LEXICNET2 performs significantly better than standard lexicons approaches
(CPBLEX and PMILEX) as well as simple but traditional machine learning approaches
(NAIVEBAYES), which can be explained by the lack of a typical training phase in the
latter approaches. Having an optimization phase on the set of training examples allows

3 using the stopword list from http://www.ranks.nl/stopwords

http://www.ranks.nl/stopwords

Neural Induction of a Lexicon for Fast and Interpretable Stance Classification 11

Method Accuracy

Baseline lexicons
CPBLEX 0.604
PMILEX 0.647
NPMILEX 0.679

Baseline ML NAIVEBAYES 0.655

Approaches
LEXICNET1 0.695
LEXICNET2 0.701

Table 2. Results on IAC

Method Accuracy

Baseline lexicons
CPBLEX 0.538
PMILEX 0.577
NPMILEX 0.609

Baseline ML NAIVEBAYES 0.590

Approaches
LEXICNET1 0.595
LEXICNET2 0.627

Table 3. Results on RNLC

our approach to outperform mere point estimates, while keeping the attractive simplicity
of their additive model. Statistical significance (p < 0.05) was achieved on the two tailed
paired T test between LEXICNET2 and the rest of the lexicon-based approaches, thus
showing that our approach is a significant improvement over traditional techniques for
lexicon induction from text.

Finally, a significant gap between the accuracy obtained in the IAC and the RNLC
datasets can be observed, due to the noisy nature of the latter leading potentially to
wrongly labeled data from the start. Further study will see the use of these larger
amounts of unreliable data as a source of background information to enrich an existing
manually labeled dataset, but it is beyond the scope of this work.

6 Conclusion and future work

In this work we showed the viability of modeling classification lexicons as generic
computational graphs in order to compute the lexical scores in an efficient manner. There
has been research done on finding faster alternatives to the more complex models [5]
while maximizing performance but none so far focusing on human interpretability of the
models that are produced.

Our future works will thus focus on two different aspects that were not presently
developed.

Firstly, the first layer of the graph described in this work can be seen as analogous to
a one dimensional convolution on text. It then stands to reason that we should be able
to learn that layer as well instead of providing an existing list of terms, thus producing

12 Jérémie Clos and Nirmalie Wiratunga

an end-to-end neural algorithm for lexicon induction. Learning it from the data would
allow us to generalize the lexicon from unigrams to n-grams.

Secondly, our current solution, while competitive with simple learners that are
used for their efficiency and interpretability, is not competitive with the more complex
algorithms such as deep neural networks or kernel methods. The main reason for this
is that we force a fixed structure on the learning of our model so that each word class
association can be inspected and changed a posteriori if necessary. However, there are
ways to work around that while keeping this simplicity using more complex inference
schemes and taking into account for example sequences of terms rather than unordered
bag of words, taking inspiration from techniques such as backpropagation-through-
time [14] to detect special terms such as valence modifiers or valence shifters.

References
1. Bandhakavi, A., Wiratunga, N., Deepak, P., Massie, S.: Generating a word-emotion lexicon

from# emotional tweets. In: Proc of the Third Joint Conference on Lexical and Computational
Semantics (* SEM 2014). pp. 12–21 (2014)

2. Clos, J., Wiratunga, N., Massie, S., Cabanac, G.: Shallow techniques for argument mining. In:
ECA’15: Proceedings of the 1st European Conference on Argumentation: Argumentation and
Reasoned Action. vol. 63, p. 2 (2016)

3. Esuli, A., Sebastiani, F.: Sentiwordnet: A publicly available lexical resource for opinion
mining. In: Proceedings of LREC. vol. 6, pp. 417–422. Citeseer (2006)

4. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision.
CS224N Project Report, Stanford 1(12) (2009)

5. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification.
arXiv preprint arXiv:1607.01759 (2016)

6. Luenberger, D.G.: Introduction to linear and nonlinear programming, vol. 28. Addison-Wesley
Reading, MA (1973)

7. Miller, G.A.: Wordnet: a lexical database for english. Communications of the ACM 38(11),
39–41 (1995)

8. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without
labeled data. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural Language Processing of the AFNLP:
Volume 2-Volume 2. pp. 1003–1011. Association for Computational Linguistics (2009)

9. Muhammad, A., Wiratunga, N., Lothian, R.: A hybrid sentiment lexicon for social media min-
ing. In: Tools with Artificial Intelligence (ICTAI), 2014 IEEE 26th International Conference
on. pp. 461–468. IEEE (2014)

10. Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic inquiry and word count: Liwc 2001.
Mahway: Lawrence Erlbaum Associates 71, 2001 (2001)

11. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: Explaining the predictions
of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. pp. 1135–1144. ACM (2016)

12. Turney, P.D.: Thumbs up or thumbs down?: semantic orientation applied to unsupervised
classification of reviews. In: Proceedings of the 40th annual meeting on association for
computational linguistics. pp. 417–424. Association for Computational Linguistics (2002)

13. Walker, M.A., Tree, J.E.F., Anand, P., Abbott, R., King, J.: A corpus for research on delibera-
tion and debate. In: LREC. pp. 812–817 (2012)

14. Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE 78(10), 1550–1560 (1990)

	coversheetConferences
	2017_LDK2017.pdf

	OA: GREEN
	OA Logo:
	AUTHORS: CLOS, J. and WIRATUNGA, N.
	TITLE: Neural induction of a lexicon for fast and interpretable stance classification.
	YEAR: 2017
	Publisher citation: CLOS, J. and WIRATUNGA, N. 2017. Neural induction of a lexicon for fast and interpretable stance classification. Lecture notes in computer science, 10318, Proceedings of the 1st international conference on language, data and knowledge (LDK 2017), 19-20 June 2017, Galway, Ireland. Cham: Springer [online], pages 181-193. Available from: https://dx.doi.org/10.1007/978-3-319-59888-8_16
	OpenAIR citation: CLOS, J. and WIRATUNGA, N. 2017. Neural induction of a lexicon for fast and interpretable stance classification. Lecture notes in computer science, 10318, Proceedings of the 1st international conference on language, data and knowledge (LDK 2017), 19-20 June 2017, Galway, Ireland. Cham: Springer, pages 181-193. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk
	Version: AUTHOR ACCEPTED
	Publisher: SPRINGER
	Conference: 1st international conference on language, data and knowledge (LDK 2017), 19-20 June 2017, Galway, Ireland
	ISBN: 9783319598871
	eISBN: 9783319598888
	ISSN: 0302-9743
	Set statement: This a post-peer-review, pre-copyedit version of an article published in Lecture Notes in Artificial Intelligence. The final authenticated version is available online at: https://doi.org/10.1007/978-3-319-59888-8_16.
	License: BY-NC 4.0
	License URL: https://creativecommons.org/licenses/by-nc/4.0
	CC Logo:
		2018-06-04T16:19:34+0100
	OpenAIR at RGU

