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Abstract

Case-Based Reasoning (CBR) learns new knowl-
edge from data and so can cope with changing en-
vironments. CBR is very different from model-
based systems since it can learn incrementally as
new data is available, storing new cases in its case-
base. This means that it can benefit from readily
available new data, but also case-base maintenance
(CBM) is essential to manage the cases, deleting
and compacting the case-base. In the 50th anniver-
sary of CNN (considered the first CBM algorithm),
new CBM methods are proposed to deal with the
new requirements of Big Data scenarios. In this pa-
per, we present an accessible historic perspective of
CBM and we classify and analyse the most recent
approaches to deal with these requirements.

1 Introduction

Case-based reasoning (CBR) solves new problems by retriev-
ing similar, previously solved problems (cases) and reusing
their solutions. The case-base is an essential component of
any CBR system, storing a set of cases to be retrieved [Craw,
2017]. In the era of Big Data, automated maintenance of
case-bases plays a critical role to guarantee the correctness
and efficacy of Case-Based Reasoning (CBR) systems. Ac-
cording to [Goel and Diaz-Agudo, 2017], case acquisition
from raw data is one of the eight challenges in CBR research.
The design of novel algorithms has recently received wide
attention from the community, bridging the gap between cur-
rent AI techniques and the requirements of Big Data: volume
and velocity of data, variety of data sources and value of the
solution. Large-scale case-bases are necessary to keep the
competence of the CBR engine and Case-base Maintenance
(CBM) algorithms focus on revising the knowledge: delet-
ing out-of-date cases, indexing and compacting the existing
information [Leake and Schack, 2015].

Many CBM algorithms have been present in CBR systems
during the last three decades. The classical approach assumes
that CBM is an offline process, dealing with a finite, limited
number of stored cases where the user actively queries the
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system with a new case to be solved [Salamó and Golobardes,
2001; Smiti and Elouedi, 2014]. Today, unprecedented flows
of data demand answers continuously in a dynamic context,
such as home monitoring alert systems [Lupiani et al., 2017],
industrial robot supervision [Chebel-Morello et al., 2015] or
the semantic analysis of the Wikipedia corpus [Mathew and
Chakraborti, 2017]. To address such problems, a number of
promising CBM algorithms have been proposed.

The contributions of this survey paper are: (1) A brief but
exhaustive map of CBM algorithms: structuring the knowl-
edge and linking past and present approaches (§2); and (2)
putting 10 recent CBM algorithms in perspective: catego-
rizing their contribution according to methodology, computa-
tional approach and comparing results through examples (§3).

2 General Perspective

This section presents a general survey of CBM. We first in-
troduce a unified notation to ease a comparative analysis. A
graphical review of CBM algorithms is shown in Fig.1, de-
picting the temporal evolution and dependencies using an arc
diagram. Finally, we discuss major principles followed by
CBM researchers and their interaction with Machine Learn-
ing techniques. We select historic algorithms to illustrate this.

2.1 Notation

Cases are the atomic unit of reasoning, describing a spe-
cific problem and its solution. Traditionally, the problem
is a vector of attributes and the solution is a quantitative or
qualitative value. In formal notation, the problem and so-
lution spaces are expressed as Π = A1 × . . . × An and
Ω = {ω | ∃π ∈ Π : ω solves π} respectively. A case
is the pair c = (π, ω) and a set of cases forms the case-
base C ∈ P(A1 × . . . × An × Ω). CBR is an analogy-
based model and the notions of similarity and distance are
essential to compute the mechanisms of reasoning. Function
Sim : C × C → [0, 1] expresses the similarity between two
cases, often calculated as the inverse of the distance function
between the cases’ problems: δ : Π×Π → R+.

2.2 Nearest Neighbour Model

Case-base maintenance is understood by many researchers as
a problem of reducing the number of cases and proposing al-
gorithms to identify redundant and noisy cases. Noise reduc-
tion methods seek to increase classification accuracy while



Figure 1: 50 Years CBM map: Arc diagram of selected CBM methods and principles (1968-2018)1 .

redundancy reduction’s goal is to improve retrieval efficiency
[Cummins and Bridge, 2011].

In the early decades, efforts focus on the study of near-
est neighbour (NN) and instance-based learning methods
adopted from Machine Learning [Salamó and Golobardes,
2001]. Some CBM examples of noise reduction are Con-
densed NN (CNN) considered the first algorithm for CBM
[Hart, 1968], Reduced NN (RNN), Edited NN (ENN) or Se-
lective NN (SNN) that essentially look for subsets of cases
ensuring they can classify correctly former cases using dif-
ferent heuristics. These are known as the NN-family. The
main drawback is the minimal set is not guaranteed and they
are sensitive to noisy cases. To solve these problems, other
algorithms were proposed, incrementing the computational
complexity by iteratively run NN approaches, like All-KNN
or Repeated ENN (RENN) [Tomek, 1976]. We choose RENN
(Algorithm 1), to illustrate the essential mechanisms adopted
by NN-family approaches following a decremental process.
Function correctClassifyNN(c, C, δ, 3) is true when the 3
nearest neighbours of c in C, using distance function δ, have
the same solution as c.

Algorithm 1 RENN: Repeated ENN (Tomek 1976)
Input original case-base C
Output maintained case-base C′

C′ ← C

repeat

% body loop is ENN algorithm (Wilson 1972)

for all c ∈ C′ do

if NOT correctClassifyNN(c,C, δ, 3) then

C′ ← C′ − {c}% c noisy case deleted: decrement

end if

end for

until C′ no changes
return C′

2.3 Competence Models

Unlike the Machine Learning perspective, understanding
CBM as an instance selection problem, other authors high-
light the purpose of each single case in the CBR cycle. In
particular, Smyth-Keane-McKenna’s Competence Model had
a deep impact on the field, stating the properties to deter-
mine which cases to include, according to their capacity to

1Many of the uncited works are referenced in [Craw et al., 2007].

solve problems in the context of a CBR system [Smyth and
Keane, 1995; Smyth and McKenna, 2001]. This competence
is determined by two basic properties: coverage and reacha-
bility. Eq.(1)-(3) formalise the original concepts in terms of
NN, called Coverage Set (CS), Reachability Set (RS) and
Related Set:

CS(c, C) = {c′ ∈ C | c′ ∈ NN(c, C) ∧ c solves c′}, (1)

RS(c, C) = {c′ ∈ C | c ∈ NN(c′, C) ∧ c′ solves c}, (2)

RelatedSet(c, C) = CS(c, C) ∪RS(c, C) (3)

where solves indicates that c and c′ have the same solu-
tion. In other words, given a case c, the coverage of c
are those cases in the case-base that c is able to solve cor-
rectly. The model also introduces the following property be-
tween two cases c and c′: SharedCoverage(c, c′) ⇐⇒
RelatedSet(c, C) ∩ RelatedSet(c′, C) 6= ∅. Finally, these
properties are used to define the following competence-based
cluster criteria: a G ⊆ C is a CompetenceGroup(G) ⇐⇒
∀c, c′ ∈ G, ∃SharedCoverage(c, c′) ∧ ∀ck ∈ C−G, ∄c ∈
G : SharedCoverage(ck, c).

In Figure2.A, we introduce a guiding example of a case-
base and the basic elements of the competence model. Note
that edges represent the solves concept, although edges
are not stored in the case-base. The example illustrates
two (nested) Competence Groups obtained from CS and
RS computation. Some algorithms are directly based on
the Coverage-Reachability properties like COV, RFD or RC
[Smyth and McKenna, 2001; Smiti and Elouedi, 2014]. Many
other algorithms are inspired by the competence model. CTE
[Craw et al., 2007] is a redundancy reduction algorithm, as
are CRR, ICF and RC. We also highlight CBE [Delany and
Cunningham, 2004], a noise reduction algorithm that ex-
tends the original model, introducing the concept of liability
(LiabilitySet(c, C) = {c′ ∈ C | misclassify(c′, c)}). All
these algorithms are known as the Competence-based fam-
ily. We choose RC (Algorithm 2) an incremental CBM pro-
cess to illustrate the structure of the Competence-based fam-
ily. RC algorithm uses the Relative Coverage (RC) measure
RC(c, C) = 1/|RS(c, C)|. OrderIncreasingRC(C) sorts
the cases of C according to relative coverage. The complexity
of such types of algorithms are, in common implementations,
O(|C|2), depending on the sorting algorithm and the compu-
tation of the competence property.



Algorithm 2 RC: Relative Coverage (Smyth-McKenna 2001)

Input original case-base C
Output maintained case-base C′

L← OrderIncreasingRC(C)
C′ ← ∅
for c ∈ L do

if c not solved in C′ then

C′ ← C′ ∪ {c} % c competent case added: increment

end if

end for

return C′

3 Advances in CBM methods

In this section, 10 methods published in the last 5 years are
surveyed. We present graphical examples to illustrate and
compare essential ideas. The CBM approaches are grouped
as: (1) methods for improving the competence model (vol-
ume), (2) redefinition of the case in the case-base (variety),
(3) the management of time in CBM (velocity), and (4) best
solutions in complex problems (value). Finally, a map of key
characteristics is summarised in Table 1 (criteria described in
[Chebel-Morello et al., 2015; Lupiani et al., 2014a]).

3.1 Improving competence

Competence-based approaches imply a high computational
cost and the management of massive data (volume) is a chal-
lenging problem. Some authors propose variations of the
model or a complete redefinition to face the problem.

Competence Measure (CM)
[Chebel-Morello et al., 2015] propose a competence-based
CBM algorithm in two steps. The first step (offline) calcu-
lates the coverage (Eq.(1)), the reachability (Eq.(2)), and in-
troduces a novel competence measure (CM ) for each case:

CM(c, C) = |CS(c, C)|/|RS(c, C)|. (4)

Instead of using traditional RC, this new measure tries
to maximize the coverage and minimize the reachability.
Fig.2.B shows how CM(c) is calculated from CS(c)={x,y}
and RS(c)={z} continuing the example of Fig.2.A.

After CS, RS and CM are calculated, the algorithm catego-
rizes each case according to such values in auxiliary, support,
spanning and pivotal case labels. For instance, a case is piv-
otal when CS=RS=CM=1. Finally a deleting process is per-
formed, trying to keep mainly pivotal cases in the case-base.
The second step (online) is designed when the CBR system
is running and a new case is considered to be stored. Given
a new candidate, this auto-increment algorithm computes the
reachability of its problem and solution and analyses the aver-
age coverage of the case-base to decide whether the new case
is stored or not.

Partitioning approaches
The CBM delete policy aims to find the worst cases to re-
move, chosen from the whole case-base. Unlike the general
approach, partition focuses on deconstructing the case-base
into subsets, treating each as an independent case-base. In
[Smiti and Elouedi, 2014; 2017], the authors propose a cata-
logue of CBM partition algorithms sharing a basic structure:
(1) a clustering algorithm is run, obtaining case-base sub-
sets; (2) the topology of each cluster is analysed, labelling
its cases; and (3) a deleting criterion is used according to the
labels.

WCOID-GM algorithm is a good example of the combina-
tion of well-known Machine Learning techniques [Smiti and
Elouedi, 2014]. This algorithm essentially learns the weights
of the case attributes using a sample correlation technique.
After that, a DBSCAN-based clustering method is used to
obtain case-base subsets, and univariate outlier detection uses
Inter-Quartile Range methods. Finally, the central and outlier
cases of each cluster are maintained and the rest are deleted.

SCBM algorithm [Smiti and Elouedi, 2017] is an evo-
lution of WCOID-GM, including a competence model. In
SCBM, a fuzzy-based DBSCAN method is used to cluster
the case-base. The competence of each cluster is analysed
attending to the three different types of cases: noisy cases
NC = {c ∈ Clusterk : |Cov(c)| = 0}, similar cases
SC = {c ∈ Clusterk : |Cov(c)| = N} (N constant
in Clusterk), and isolated cases IC = {c ∈ Clusterk :
|Cov(c)| = 1}. Following the guiding example, Figure2.C
shows the partition for Clusteri and its IC, SC and NC.
After the type of cases are identified, SCBM removes all
cases in NC and all in SC except one, while keeping all cases
from IC.

Closure-Competence Model
According to [Lu et al., 2014], the CompetenceGroup method
for evaluating competence clusters (see §2.3) is inadequate
and deficient. In short, the authors criticise these methods
because each group may be composed of some disjoint parti-
tions and the complete splitting is not guaranteed.

An extended competence model is proposed in [Lu et al.,
2014] to solve this issue, introducing 2 new concepts. First,
for a givenG ⊆ C, the Competence Closure property restricts
the CompetenceGroup as follows:

CompetenceClosure(G) ⇐⇒ ∀c, c′ ∈ G, (5)

∃ SharedCoveragePath(c, c′) ∧ (6)

∀ck ∈ C −G, ∄c ∈ G : SharedCoverage(ck, c) (7)

We denote by SharedCoveragePath(c, c′) a set of
SharedCoverage(ci, cj) (see §2.3) connecting c and c′.

Features CM WCOID-DG SCBM Pref-CBM FP-CA FFD NEFCS/SSR T-CBM CBNI MOE-CBM

Approach CaseEdit Partition Partition Ftr.Edit CaseEdit Ftr.Edit CaseEdit CaseEdit CaseEdit CaseEdit

Direction Dec. Dec. Dec. Inc. Inc. Dec. Inc. Inc/Dec Inc. Inc.

Sensitivity ? No No ? Yes No No Yes/No Yes Yes

Retained ? Cluster+Out. Border Cluster ? Random Border Both N/A N/A

Determin. Yes No No Yes Yes No Yes Both No No

Table 1: Comparative summary of recent CBM algorithms. Approach: Case/Feature Editing, Partition; Direction of CBM pro-
cess: Incremental, Decremental; Sensitivity to case order; Cases Retained: Cluster,Border,Outlier,Random; and Deterministic.



Second, the Related Closure extends the RelatedSet (Eq.(3)),
where RelatedClosure(c) = {RelatedSet(ci) : c ∈
RelatedSet(ci)}.

Based on these new definitions, two competence measures
are proposed: (1) a density measure to weight the Related
Sets of a given Related Closure; and (2) a competence-based
empirical weight to provide a reference to the degree of case
distribution in a competence area (cluster).

Fig.2.D depicts an example of cases fulfilling the Compe-
tence Closure property and RelatedClosure(c) = {b, d, e}.
Unlike the Competence Groups (Fig.2.A), the Competence
Closure property defines disjoint sets.

3.2 Re-Structuring competence case-bases

Most CBM algorithms assume a uniform case structure (e.g.
vector of problem and solution) and focus on reducing the
case-base size by case deletion. However, due to the need to
integrate different data sources (variety), the following meth-
ods redefine this structure.

Figure 2: Comparative examples of competence CBM methods.

Flexible Feature Deletion (FFD)

In some domains, such as multimedia or social network
databases, cases are large and can be represented by differ-
ent levels of detail. A change in the CBM perspective is
suggested in [Leake and Schack, 2015], considering main-
tenance at the single case level by removing part of a case;
i.e. the deletion of case features causes less competence loss
than removing the whole case.

The flexible feature deletion (FFD) approach can be used
for both parts of the case (problem and solution). The core
of feature deletion maintenance is, therefore, linked to case
indexing in the CBR community and attribute selection in
the Machine Learning field. On the one hand, case-indexing
techniques traditionally study how problem attributes are dis-
played to increase retrieval accuracy. Unlike case indexing,
feature deletion in maintenance aims to compress the case
base. On the other hand, in Machine Learning attribute selec-
tion means an orthogonal deletion from the database, which

is dimension reduction. FFD is a wider problem, including
the removal of attributes of specific cases. Leake and Schack
classify CBM’s main strategies as case removal (traditional
CBM), orthogonal feature deletion and local-feature removal.

A variety of FFD implementations are also presented in
[Leake and Schack, 2015]. In particular, the authors experi-
ment with removing the most common vs. most rare attribute
for all cases, as well as algorithms which remove attributes
randomly, for the entire case-base or some cases. Fig.2.E
shows how FFD deletes features of 4-attribute cases (graph-
ically as ⊕, one sector per feature) in the problem space. In
the orthogonal deletion example the same two features are
deleted in all cases while in the local feature deletion differ-
ent features are removed. We believe this approach is suitable
for high dimensional datasets when dimensionality reduction
techniques (e.g. SVM, PCA, etc.) are not recommended.

Compositional Adaptation (FP-CA)

One key step in CBR, neglected in some CBM approaches,
is the adaptation step. Essentially adaptation means that the
solutions retrieved from a case-base have to be executed to
be a valid solution of the new query case. [Mathew and
Chakraborti, 2017] propose Compositional Adaptation (CA),
a model in CBM to represent the dependency between cases
to be part of a solution. In practice, this means representing
the case-base using an AND-graph, where nodes are cases
and edges indicate the solving capacities of single or com-
bined cases.

They propose the FP-CA algorithm, a refinement of RC
(Algorithm 2), changing the RC competence measure to the
Retention Score (RSc). This new measure depends on two
sets: (1) Cov(c) the set of all cases in C that can be solved
using c (stand-alone or in a composed solution); and (2) the
Supp(c, cj), the set of cases needed to solve cj when c is
used as part of the solution. A high RSc of c means c solves
many cases with a high RSc that, at the same time, they are
supported by other cases with low Retention Score. From the
computational point of view, the cost of the Retention Score is
arguable. The case-base is a directed graph that can contain
loops and therefore the Retention Score is computed for all
case in an undetermined number of iterations. Formally, for
iteration k + 1 the Retention Score (RSc) can be defined as:

RSck+1(c) =
∑

ci∈Cov(c)

RSck(ci)

1 +
∑

cj∈Supp(c,ci)
RSck(cj)).

(8)
Following the guiding example, Fig.2.F shows how RSc(c)
is calculated using Cov(c) = {x, y}, Supp(c, y) = {b} and
Supp(c, x) = {d, e}. Unlike previous models (Fig.2.A-E),
the case-base is an AND-graph; i.e. edges are explicitly rep-
resented in the case-base.

An empirical evaluation is carried out in [Mathew and
Chakraborti, 2017], using a synthetic graph generator of case-
bases, where each node c is a case and AND-edges are the
NN(c, k) (k=1...4) to compare RC and FP-CA. The authors
illustrate the utility of the evaluation with a practical applica-
tion for ordering the complexity of Wikipedia articles based
on their semantics. In this example, each wiki page is a case
c = (π, ω), where π is its title and ω is the meaning using the



terms of the first sentence in the article. Therefore, cases with
high Retention Score are considered basic articles, while low
Retention Score articles present complex concepts.

In our opinion, this model is particularly interesting when
a-priori knowledge about solving capacities can be gathered
or the topology of the case-base and similarities can be rep-
resented in a graph. Some examples of their applications are
semantic models and social network databases.

Preference Model (Pref-CBM)

A CBM method for a novel and sophisticated version of
CBR, called Pref-CBR, is presented in [Abdel-Aziz and
Hüllermeier, 2015]. This model redefines the relation be-
tween a problem and its solution in a case. Instead of just
having the pair (π, ω) relating a solution ω with problem π,
Pref-CBR also introduces the concept of preference, decom-
posing of the case into smaller chunks of knowledge. A pref-
erence ωi ≻π ωj means that ωi solution is preferred to ωj for
solving π, and Pπ is the set of all preferences for π. In prac-
tice, this model is implemented from a statistical perspective,
considering π a random variable from a probabilistic distri-
bution, where the parameters are estimated using Maximum
Likelihood.

In [Abdel-Aziz and Hüllermeier, 2015], the CBM algo-
rithm is a method to check whether or not a query case
c = (π, ω, Pπ) should be stored in the case-base. The al-
gorithm: (1) searches in the problem space for similar cases
(KNN(c, C)) obtaining retrieved cases (cr = (πr , ωr, Pr));
(2) for each retrieved case its solution is analysed in two steps
(a) calculating the similarity between solutions using a dis-
tance function (δω : Ω × Ω → R+) and (b) measuring how
redundant are Pπ and Pr for solving π. Finally, the query
case is stored if the solution is close and the preferences are
not redundant.

Fig.2.G shows an example of checking the storage of c in
the case base when KNN(c, C) = {r}. Note that, unlike the
rest of the examples (Fig.2.A-F), the analysis is done in the
solution space (⊡ represents a solution). The preference re-
lations (99K) between solutions are, like in FP-CA (Fig.2.F),
explicilty modeled in the case-base.

The effectiveness of PrefCBM is illustrated in an experi-
ment for solving the NP-hard Traveling Salesman Problem,
evaluating the case-base size and the improvement on re-
trieval. This experiment considers random deleting and dif-
ferent configurations of PrefCBM.

In our opinion, one notable contribution is the double use
of the extended solution space Ω2. First, a distance function
in the solution space is used to estimate the solution quality
and, second, preferences are used as a type of heuristic.

3.3 Time in CBM

One major challenge in CBM is to provide a fast response
to massive data flows (velocity of data processing) gathered
from monitoring systems (e.g. monitoring systems). We re-
view different perspectives about how the evolution of CBR
systems over time affects CBM.

Temporal maintenance (T-CBM)

In [Lupiani et al., 2014b] we propose an extension tothe clas-
sic case structure, where a problem is a sequence of hetero-

geneous events, that is, c = (< e1, e2, . . . , en >,ω) where
ei is an event occurring at time i. For such temporal cases,
new distance measures are needed to manage time. In partic-
ular, we propose the use of time-point algebra and temporal
editing distance, based on dynamic programming.

The maintenance of temporal cases requires the review of
CBM algorithms. We propose to extend historic CBM al-
gorithms (see §2) proposing T-CNN, T-RENN, T-DROP1-3,
T-ICF and competence-based methods (T-COV, T-RC). For
example, T-RENN is an extension of RENN (see Algorithm
1) where the distance function δ (traditionally Euclidean dis-
tance) is the temporal version of the edit distance. Similarly,
the RC algorithm is extended, changing the sorting function
OrderIncreasingRC using the temporal distance.

Other proposals in the CBR literature consider time series
and sequences as part of the case. However, as far as we
know, this is the first proposal for CBM of temporal cases.

The implemented version of T-CBM is successfully tested
to maintain a temporal case-base of a CBR module to detect
risk scenarios in a commercial home-monitoring system for
elderly people living alone [Lupiani et al., 2017]. Each prob-
lem case is the sequence of movements of a person at home
during 8, 16, or 24 hours of monitoring.

Note that, in essence, the temporal extension of CBM
methods keeps the structure of the original algorithm intact.
We consider this fact is an advantage, since the characteris-
tics and behaviour of the new extensions are equivalent to the
original algorithms (e.g. CNN, DROP, RC) and, therefore,
the new extensions can be considered mature and tested due
to the wealth of studies available in the literature [Craw et al.,
2007]. For example, Fig.2.A can illustrate both RC and its
temporal extension, keeping the RS and CS sets.

Concept-drift-tolerant maintenance (Drift-CBM)

Real-world data and the goals of dynamic intelligent systems
can change over time in unforeseen ways, creating the so-
called concept-drift problem. Therefore, it is necessary for
such systems to avoid the loss of accuracy as time passes. The
Machine Learning area is very active in facing this problem,
but few efforts are available in the CBM literature.

The CBM method presented in [Lu et al., 2016] helps CBR
systems in changing environments. Drift-CBM consists of
two steps: (1) Enhancement: checks whether a new incom-
ing case should be considered a noisy case or not if there
is concept-drift (proposing NEFCS algorithm); (2) Preserva-
tion: if a storage limit exists, redundant cases are removed
(proposing SRR algorithm).

Firstly, the Enhancement step focuses on a competence-
based drift detection according to the closure competence
model already surveyed (see §3.1). The approach uses the
density of related sets and the competence-based empirical
weight (see Eq.(1)-(3)). Fig.2.D shows an example of calcu-
lating the closure components (i.e. related sets, related clo-
sure and competence closure).

Lu et al. present NEFCS, an algorithm to prevent a novel
case from being removed as noise once a competence area of
the drift-concept is detected. This algorithm removes noisy
cases considering the competence definition of LiabilitySet
[Delany and Cunningham, 2004] (described in §2).



Secondly, the Preservation step removes redundant cases,
proposing SRR algorithm. This algorithm combines different
characteristics of historic CBM. In particular, SSR has a simi-
lar schema as CNN and follows a similar approach to IBL-DS
but keeping the case-base competence (see Fig.1).

Drift-CBM and T-CBM deal with different aspects of time.
While T-CBM represents the event sequences within the case,
Drift-CBM supervise if the system changes over time. Drift-
CBM and T-CBM algorithms are also different. Drift-CBM
firstly removes noisy cases (NEFCS) and then redundant
cases are deleted (SRR). In T-CBM, depending on the se-
lected algorithm, both steps can be done at once.

3.4 Facing Computational Complexity

The complexity of CBM depends on a number of factors. Ac-
cording to [Smyth and McKenna, 2001], CBR systems typ-
ically operate in poorly understood, weak-theory domains.
Therefore, the quality of CBM algorithms is subject to com-
plex heuristics and, if the optimal solution exists, the search
of it implies a high computational cost (value solution).

CBM algorithms cannot guarantee the global optimum but,
in general, they effectively compute a reasonable result. Un-
like CBR, which is based on lazy/online learning, Genetic Al-
gorithms (GAs) focus on an eager data-driven strategy. GAs
are good strategies to approach solutions to hard problems
when there is not an analytical solution and the knowledge
available is weak. GAs do not guarantee a global optimum
but often converge to fitness values, considered a better ap-
proach than local optima. In recent literature we find some
CBM proposals using this approach.

Case-Base Near Insertion (CBNI)

The GA-based CBR method presented in [Yamamoto et al.,
2015] (CBNI) is a good example of an efficient approach to
solve a specific problem, in this case the Traveling Salesman
Problem (TSP). The case problem is a weighted graph (rep-
resenting a TSP) and the solution is a complete tour. Given
a query case, former cases with similar TSPs are retrieved
and a GA is run to adapt the solutions retrieved to solve the
query case. The fitness function to minimise is a complete
tour length of the solution.

Maintenance is therefore an essential aspect in [Yamamoto
et al., 2015]. In particular, three principles drive the CBM
of CBNI: (1) a priori number of cases is fixed to guarantee
the time of response; (2) the case-base must contain the best
(shortest) solutions; and (3) the diversity of the case-base is
necessary to avoid local optima.

A new solution must be added considering its fitness func-
tion but also comparing close solutions in a similar way
as similarity functions in the solution space suggested by
[Abdel-Aziz and Hüllermeier, 2015]. In fact, both [Abdel-
Aziz and Hüllermeier, 2015] and [Yamamoto et al., 2015]

benchmark their CBM approaches with TSP (O(n!)).

Multi-Objective Evolutionary CBM (MOE-CBM)

The effectiveness of CBM algorithms depends on the propor-
tions of noisy and redundant cases within the case-base. In
[Lupiani et al., 2016], we consider general CBM as a multi-
objective optimization problem establishing three simultane-
ous objectives: (1) minimise the number of redundant cases;

(2) minimise the distance to non-redundant cases; and (3)
maximise the accuracy of the CBR system.

MOE-CBM is a multi-objective evolutionary CBM algo-
rithm addressing these objectives.This algorithm is indeed an
adaptation of a well-known multi-objective GA (NSGA-II).
MOE-CBM explores the problem space where each problem
is a potential case-base. This search is supported by the defi-
nition of noise and redundancy indicators to drive the fitness
function to optimise the goals. Note that case-base size and
accuracy are conflicting goals with noise and redundancy re-
moval [Craw et al., 2007].

Formally speaking, no optimal solution is guaranteed
within a finite time but, in practice, the algorithm ap-
proaches acceptable solutions reducing the case-base size
while maintaining the accuracy. Experiments shows MOE-
CBM is the most consistent algorithm for varying condi-
tions (noise/redundancy) of the case-base. These good results
come at a cost to runtime, limiting its use to offline processes.

There are essential differences between MOE-CBM and
CBNI. Firstly, from a methodological point of view, MOE-
CBM follows a GA-based CBM approach while CBNI is a
tailored CBM in a GA-based CBR. Secondly, unlike CBNI,
MOE-CBM is a general purpose CBM. Finally, CBNI follows
a redundant maintenance strategy while MOE-CBM searches
for a balanced solution between redundancy and noise.

In our opinion, the key contributions of such approaches
are the efforts to define what the best solution means and to
find it with a reasonable computational cost.

4 Conclusion

In this work we have presented a map of CBM methods on
the 50th anniversary of the first published algorithm (CNN
[Hart, 1968]) and we have analysed the most recent 10 CBM
algorithms. These algorithms are surveyed considering the
new requirements of the massive data scenario.

We can observe that the competence-model of [Smyth and
McKenna, 2001] still has a deep impact on current research.
New CBM methods deal with the computation of the compe-
tence of the case-base when huge amount of data are avail-
able. We also analyse some promising models that redefine
the granularity of the case-base, exploring the maintenance
from different perspectives (preferences, parts of a case). We
believe such methods will be suitable for high dimensional
dataset from social media scenarios.

More theoretical approaches focus on searching for the op-
timal solution to provide the most valuable answer following
a evolutionary approach. The dimension of time is also play-
ing a key role. Some new CBM methods focus on temporal
representation and dynamic systems to manage changes over
time. In our opinion, these methods are helpful in modern
monitoring systems.

Current CMB methods are correctly evaluated, but limited
to comparisons with classic CBM algorithms. Future work
should converge to a uniform evaluation methodology, and
this consensus might be useful in the community to fairly as-
sess most recent results.
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[Abdel-Aziz and Hüllermeier, 2015] Amira Abdel-Aziz and
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