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Abstract 

Air plasma sprayed (APS) coatings provide an ability to deposit a range of novel fuel 

cell materials at competitive costs. This work develops three separate types of composite 

anodes (Mo-Mo2C/Al2O3, Mo-Mo2C/ZrO2, Mo-Mo2C/TiO2) using a combination of APS 

process parameters on Hastelloy
®

X for application in intermediate temperature proton 

conducting solid oxide fuel cells. Commercially available carbide of molybdenum powder 

catalyst (Mo-Mo2C) and three metal oxides (Al2O3, ZrO2, TiO2) were used to prepare three 

separate composite feedstock powders to fabricate three different anodes. Each of the 

modified composition anode feedstock powders included a stoichiometric weight ratio of 

0.8:0.2. The coatings were characterized by scanning electron microscopy, energy dispersive 

spectroscopy, X-ray diffraction, nanoindentation and conductivity. We report herein that three 

optimized anode layers of thicknesses between 200 to 300 µm and porosity as high as 20% 

for Mo-Mo2C/Al2O3 (250 µm thick) and Mo-Mo2C/TiO2 (300 µm thick) and 17% for Mo-

Mo2C/ZrO2 (220 µm thick), controllable by a selection of the APS process parameters with 

no addition of sacrificial pore-forming material. The nanohardness results indicate the upper 
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layers of the coatings have higher values than the subsurface layers in coatings with some 

effect of the deposition on the substrate. Mo-Mo2C/ZrO2 shows high electrical conductivity.    

 

Keywords: air plasma spray (APS), molybdenum carbide, anode, SOFC. 
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1. Introduction 

The development of low-cost fuel cell materials with high durability and lower 

operating temperatures is the key technical challenge facing solid oxide fuel cell (SOFC) 

technology in auxiliary power units (e.g. transportation). The future of SOFC technology 

depends upon the development of new materials (electrode, electrolyte, interconnects) which 

can be used to manufacture SOFC’s in a cost effective manner. Development of SOFC 

materials present a number of technological challenges. Low mechanical strength, slow start-

up time (i.e. in minutes), and serious anode deterioration represent some of these 

technological challenges. The high operating temperatures (600-1000 
o
C) place additional 

durability requirements on SOFCs materials [1-4]. The development of low-cost materials 

with high durability at lower operating temperatures is the key technical challenge facing 

SOFC technology. Reducing the operating temperature to intermediate range can lower the 

cost but also reduce the reaction rate [3]. Some of the recent articles [4-8] summarize most of 

the known SOFC materials (electrodes, electrolytes, interconnects) and their manufacturing 

alternatives, relevant to modern requirements. However, the scope of this work is to present a 

development of air plasma sprayed (APS) new anode materials for SOFC systems. Figure 1 

summarizes SOFC components and arrangement. In SOFC, the fuel is fed to the anode 

(negative electrode) and air (oxidant) is fed to the cathode (positive electrode). 

Electrochemical oxidation and reduction reactions take place at the electrodes to produce 
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electric current. In the traditional SOFC, oxygen (from air) is reduced by a porous cathode 

producing oxide ions (-ve) which migrate through a solid electrolyte to the porous anode and 

react with the fuel (e.g. n-dodecane, dry He, H2 or CH4) forming H2O and/or CO2. The 

electrolyte may conduct either oxygen (SOFC) or hydrogen ions (PC-SOFC). In a PC-SOFC, 

the reaction product (water vapor) is evolved at the cathode side instead of at the anode (fuel 

side) as is the case for oxygen ion-conducting SOFC. 

Traditional wet ceramic techniques based on tape casting, screen printing, and co-

sintering of layers are the state-of-the-art processing methods for the fabrication of SOFC 

single cells, and therefore widely adopted and intensively investigated [2, 5]. However, these 

techniques face several problems [5-6], which include: (a) use of multiple separate 

instruments, (b) increased capital cost due to high temperature firing, thermal expansion 

mismatch strain and cracking during high-temperature firing steps, and (c) inter-reaction 

between adjacent cell layers at high-temperature firing steps and d) limitation of high-

temperature sintering of anode and metallic interconnect materials. Heo et al. [9-10] recently 

developed a new efficient type of fuel cell that runs directly on hydrocarbons. They developed 

a proton-conducting solid oxide fuel cell (PC-SOFC) with strong anodes made from a casted 

pellets of composite Mo2C-ZrO2/C materials. The developed cell showed efficient oxidation 

of hydrocarbons (in the presence of water) including methane, ethane, propane and butane at 

temperatures between 100 to 300 °C. This operating temperature was much lower than 

currently used (600 to 1000 ºC). Moreover, the Mo2C-ZrO2/C fuel cell was cleaner, emitting 

nothing apart from carbon dioxide. It performed best with the heavier molecules of butane 

gas, which is easiest to store for transport purposes. The operation of the fuel cell at 300 °C 

can reduce the start-up time as well as prevent carbon deposition on the anode surface.  

The Mo2C can be used in anodes for hydrocarbon oxidation, because it shows high 

tolerance towards sulfidation as well as carbon deposition. However, the power densities 
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obtained by Heo et al. [9-10] were substantially lower (in 10’s of mW/cm
2
) than those 

reported for other SOFCs (in 100’s of mW/cm
2
 [5-6]). This was attributed to large thickness 

(~1000 µm) of the electrolyte (i.e. Sn0.9In0.1P2O7) produced by the casting method. This work 

concluded a need to manufacture thinner electrolyte films casted on Platinum/C cathode. In a 

related investigation by Brungs et al. [11], the effect of the support on the stability of the 

Mo2C catalyst (prepared by temperature programmed reaction, TPRe method) was 

investigated using ethane. It was demonstrated that at elevated pressure, the choice of the 

support for the Mo2C dry reforming catalyst is crucial to catalyst stability, and the order of 

catalyst stability was found to be in this order (Mo2C-Al2O3 > Mo2C-ZrO2 > Mo2C-SiO2 > 

Mo2C-TiO2). Mo2C also is an excellent dehydrogenation catalyst [12] with activity 

comparable to that of Pt [13].  Considering these key factors, composite powder materials 

(Mo2C-ZrO2) can potentially be used for an improved anode performance in direct 

hydrocarbon SOFCs.  

Efforts have also been made to increase anode thickness (around 1000-2000 µm) to 

support the electrolyte layer and providing the mechanical strength to the cell, particularly for 

auxiliary power units. However, the increased thickness of anode leads to a reduction of gas 

permeability. It also results in a slow flux of fuel to the anode/electrolyte interface and of the 

produced H2O away from this interface. As a consequence, there is an excessive change in 

fuel composition, i.e., H2:H2O ratio, resulting in an equivalent increase of the oxygen 

potential and therefore a decrease in the voltage of the cell for a given current density.  

In the case of a thin anode, the fuel and also the produced H2O can be easily 

transported. Pore structure and permeability factor are very important for the efficient 

operation of the anode and the whole of SOFC. For that reason, the characterization of the 

microstructure and its parameters, e.g. total porosity, open porosity, and pore size distribution 

can be used as control parameters for the development of anode material. Existing 
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methodology of casting anodes for SOFC technology is inadequate for manufacturing thinner 

anodes for improved efficiency. This work therefore targets thermal spray technique (e.g. air 

plasma spray, APS) to fabricate SOFC anode layer using composite powder materials (Mo-

Mo2C/Al2O3, Mo-Mo2C/ZrO2, Mo-Mo2C/TiO2).  

 

2. Materials and Methods 

2.1 Material Selection and Properties 

The Hastelloy®X material was chosen as a disc substrate (interconnect in SOFC). The 

disc substrates (20 mm diameter and 4.76 mm thick) were supplied by Haynes International 

Limited, Manchester, UK. This material is a nickel-chromium-iron-molybdenum alloy that 

possesses an exceptional combination of oxidation resistance, fabricability and high-

temperature strength. The material elemental composition (wt.%) included Cr: 21.73, Fe: 

19.34, Mo: 8.44, C: Co: 1.20, Mn: 0.67, W: 0.54, Si: 0.34, Cu: 0.17, Al: 0.09, 0.075, P: 

0.012, Ti: 0.01, B: 0.002, S: 0.002, Ni: balance. It has also been found to be exceptionally 

resistant to stress-corrosion cracking in petrochemical applications. An ideal interconnect 

serves to keep oxidant and fuel gases separate from one another. It should also have high 

electronic conductivity, excellent impermeability, and chemical stability under both oxidizing 

and reducing conditions.  

The molybdenum (Mo, a transition metal) has a high melting point, high thermal 

conductivity, high electrical conductivity, low thermal expansion coefficient, and good high 

temperature creep properties. As a metallic matrix with carbide, the Mo with Mo2C (i.e. Mo-

Mo2C) feedstock powder material (Fig. 2a) was an agglomerated and sintered spheroidal 

powder designed for coating application using atmospheric plasma spray (APS). This powder 

material (Metco 64) was supplied by Sulzer Metco, Germany. It produces coatings that are 

harder and more resistant to abrasion while maintaining many of the useful properties of pure 
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molybdenum coatings, such as high scuff resistance, low frictional characteristics and high 

toughness. The powder material elemental composition included 97.3% Mo, 2.1% C, 0.1% O 

and 1% others, whereas, the nominal particle size distribution was -90+38 µm. The Mo-Mo2C 

powder melting point was 2620 °C.  

The white alumina (Al2O3) feedstock powder material was available in a wide variety 

of shapes (fused and crushed) and sizes with angular and blocky morphology. Alumina is a 

hard, wear resistant material that is chemically inert and stable at high temperatures. In 

addition, the high purity grades exhibit excellent electrical insulation (dielectric 

characteristics) and thermal conductivity.  The addition of Al2O3 can improve electrical 

properties by grain boundary modification [14]. This powder material (METCO-105SFP) was 

supplied by Sulzer Metco, Germany. The powder material elemental composition included 

Al2O3 (99.5 wt.%), Fe2O3 (0.03 wt.%), Na2O (0.15 wt.%), SiO2 (0.01 wt.%) and CaO (0.01 

wt.%), whereas, the normal particle size distribution was -31+3.9 µm. The Al2O3 powder 

melting point was 2054 °C.    

The Zirconia (ZrO2) feedstock powder material was available in a wide variety of 

shapes and sizes (fused and crushed). Zirconia is stable in oxidizing and mildly reducing 

atmospheres. It reacts with carbon, nitrogen and hydrogen at temperatures above 2200 °C. It 

is inert to acids and bases at room temperature with the exception of HF and does not react 

with the refectory metals up to 1400 °C. This powder material (40453) was supplied by Alfa 

Aesar, UK which consists of Zirconium(IV) oxide, calcia stabilized, 99.4% (metals basis 

excluding Hf). Stabilized zirconia is used in oxygen sensors and fuel cell membranes because 

it has the ability to allow oxygen ions to move freely through the crystal structure at high 

temperatures. For calcia stablized zirconia, the electrical (ionic) conductivity can be 0.0237 

S.cm
-1

 (800 °C), 0.1109 S.cm
-1

 (1000 °C),  0.3212 S.cm
-1

 (1200 °C), and makes it one of the 

most useful electro-ceramics [15]. The powder material elemental composition included 96% 
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ZrO2 and 4% CaO, whereas, the normal particle size distribution was -100+325 µm. The 

ZrO2 powder melting point was 2700 °C. 

The dark grey to black titanium oxide (TiO2) feedstock powder material was available 

in a wide variety of shapes (fused, crushed, agglomerated and sintered) and sizes with 

angular, blocky or spheroidal morphology. Titanium oxides are used for a wide variety of 

applications that include wear resistant coatings and electrically conductive coatings. This 

agglomerated/sintered and spheroidal powder material (METCO-6231A) was supplied by 

Sulzer Metco, Germany. The addition of TiO2 can improve electrical properties by grain 

boundary modification. This powder can be designed to produce coatings with low electrical 

resistivities and potentially superior tribological properties. The powder material elemental 

composition included TiO2 (balance wt.%), Al2O3 (<0.1 wt.%), Fe2O3 (<0.1 wt.%), SiO2 

(<0.1 wt.%) and all others (<0.5 wt.%), whereas, the normal particle size distribution was -

105+32 µm. The TiO2 powder melting point was 1843 °C. 

 

2.2 Air Plasma Spraying of SOFC Anode Coatings  

The carbide of molybdenum powder catalyst (Mo-Mo2C) and three metal oxides (e.g., 

Al2O3, ZrO2, TiO2, all beneficial for catalyst stability) were used to prepare three composite 

feedstock powders (Mo-Mo2C/Al2O3, Mo-Mo2C/ZrO2, Mo-Mo2C/TiO2) to fabricate three 

different anodes. Each of the modified composition anode feedstock powders included a 

stoichiometric weight ratio of 0.8:0.2. The substrate (Hastelloy®X) was grit blasted using 100 

µm to 250 µm size quartz particles. Coating process parameters which have greater influence 

on coating thickness, coating hardness, porosity level of coating withstanding capability were 

identified (e.g. from various published literatures [e.g. 5, 8] and know-how). Various 

experiments were conducted to determine working range of above factors. Various 

controllable parameters namely angle, current, hydrogen flow, spray distance and feed rate 
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were indentified and air plasma spraying was carried out by varying the parameters as 

prescribed by the design matrix (mainly varying the spray distance such as 75 mm, 100 mm 

and 200 mm and feed rate such as 35 g.min
-1

, 70 g.min
-1

 and 100 g.min
-1

) and coatings were 

produced over Hastelloy®X substrate.  

Plasma spray deposition was carried out at an industrial facility (Monitor Coating 

Limited, UK), using an APS system (Metco 3MB gun and the nozzle used is a 3M7A-GP, 

Metco). As shown in Fig. 2b,c, the disc specimens were mounted on assembly in circular 

holes which were cut on steel plate and then mounted on jaw chuck in coating chamber. The 

powders were directly sprayed on to the grit blasted substrate and bond coat was not used. 

Different combinations of APS process parameters were used to carry out the trial runs. To 

fix the limits of the considered factors, a key criteria that the anode layer must have high 

porosity were adopted. The difference in melting temperatures of main feed-stock powder 

Mo-Mo2C (2620 °C) and metal oxides [Al2O3 (2054 °C), ZrO2 (2700 °C), TiO2 (1843 °C)] 

presents a challenge for plasma spray deposition of these three materials. However, an 

optimised process parameters chosen for each anode layers (Mo-Mo2C/Al2O3, Mo-

Mo2C/ZrO2, Mo-Mo2C/TiO2) are (current: 500 A, voltage: 60-70 V, Argon gas: 42.08 lpm, 

H2 gas flow: 34.2 lpm, carrier gas (Ar): 19.4 lpm, spray distance: 100 mm, powder feed rate: 

70 g.min
-1

, spray angle: 60°), as listed in Table 1.   

 

2.3 Microstructural Characterisation  

The surface characterisation of materials included scanning electron microscope 

(SEM) imaging using Karl Zeiss EVO LS10 and JEOL JSM 6010 LA, whereas, the elemental 

X-ray analysis (EDS) was done using Karl Zeiss EVO LS10 electron microscope. The X-ray 

diffraction (XRD) analysis using Rigaku MiniFlex 600 was used to reveal the crystalline 

phase composition of the coatings. Part of coating microstructure was investigated via 
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fracturing the coating flakes (by bending in a direction perpendicular to the coating surface) 

to reveal coating porosity and splat morphology. The total porosity of coating surface (on 

image acquired through SEM) was evaluated as the average of five area-normalized regions 

each from image analysis Infinity Analyze software (release 6.3, Lumenera Corporation). This 

software was used to measure pore size and number, providing the porous area distribution 

for each composition, and the pore area ratio (or fraction), defined as the sum of all pore areas 

divided by the total sample area analysed (e.g. Fig. 3). This was carried out using simple 

thresholding (at 65%) in the image analysis software. The threshold level was chosen 

manually so that the pore selection is not impaired or overestimated, and in this way it was 

possible to know the morphology of the pores. In addition, the porosity was also measured for 

one of the specimens using ImageJ program (release 1.49, public domain open source 

software), and the results were further compared. There can be other automated (e.g. 

programmable) techniques to measure pore fractions, threshold selection and sensitivity 

analysis which can be part of future development, implementation and investigation.  

 

2.4 Nanoindentation Testing 

The evaluation of hardness (H) and elastic modulus (Es) of the coating cross-sections 

with substrate requires careful assessment of the test parameters. Nanoindentation hardness 

and elastic modulus measurements of the Hastelloy®X substrate were performed using a 

calibrated NanoTest
TM

 system (Micromaterials Limited, UK) with a standard Berkovich tip. 

The measurements were taken in load control of 30 mN. The indentation procedures were 

programmed as three segments of trapezoidal shape. The first segment increased the load to a 

maximum value with a loading rate of 10 mN/s, followed by a 30-second holding segment at 

the maximum load. The third segment retrieved the indenter tip from the sample with an 

unloading rate of 10 mN/s.  
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As shown in Fig. 4a, twenty five measurements were performed on each coating 

polished cross-sections, which were distributed in five lines of 5 measurement points each, at 

a certain distance from the interface, from the coating surface [e.g. 16-17]. In preparation for 

the nanoindentation tests, specimens cross-section surface were ground and polished using 

diamond paste to avoid any effect of polishing which was expected to be broadly similar for 

all specimens [16-17]. Similarly, 10 measurements were performed on each substrate cross 

section near the interface (e.g. Fig. 4b), which were distributed in two lines of 5 measurement 

points each, at a certain distance from the interface. Indentations were spaced 22 µm, to avoid 

any interaction between the sinking-in, piling-up, surface and subsurface lateral cracks of 

neighboring indentations. The P-h profiles (e.g. Fig. 4c) were analysed using standard 

methods with the area function for the Berkovich indenter whereas the modulus and hardness 

were analysed according to Oliver and Pharr method [18]. Post-test residual impressions were 

mapped using an SEM. Nanoindentation tests were done in a temperature controlled 

instrument chamber at 300 K. 

 

3. Results  

3.1 Anode Coating Porosity, Microstructure and Composition 

In a representative example of image analysis using Infinity Analyze software (Fig. 3, 

shown here for APS coated Mo-Mo2C/ZrO2 anode surface) for surface connected porosity 

measurement, the porous area is defined as the sum of all pore areas divided by the total 

sample area analysed (measured poriosity of about 17%, Fig. 3). In addition, the porosity was 

also measured for this specimen using ImageJ program (measured poriosity of about 19%), 

and the results were comparable. It can be seen that in scanning electron micrographs (Fig. 5) 

the presence of high surface connected porosity was observed on the coating surface (i.e. top 

view). We report herein that the anode layers of volumetric porosity as high as 19±1% for 
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Mo-Mo2C/Al2O3 (thickness: 250 µm) and Mo-Mo2C/TiO2 (thickness: 300 µm) and around 

16±1% for Mo-Mo2C/ZrO2 (thickness: 220 µm), all controllable by a selection of the APS 

process parameters with no addition of a sacrificial pore-forming material.  

In scanning electron micrographs (Fig. 6) the coating cross-sections (fractured) 

appears to indicate presence of high porosity for Mo-Mo2C/Al2O3 and Mo-Mo2C/TiO2. An 

elemental analysis (as shown in Fig. 7) was performed in order to determine the distribution 

of the elements in different region of the anode coatings as shown in Fig. 8. The X-ray 

diffraction (XRD) analysis shown in Fig. 9 was used to reveal the crystalline phase 

composition of the coatings. 

 

3.2 Nanoindentation Testing 

Following the Oliver and Pharr method, the results of the nanoindentation testing are 

presented in Fig. 10. The hardness and elastic modulus values quoted are the averaged 

measurements which were performed on the coating surface, and on the lines distributed 

along the cross section in the coating and the lines along the cross section in the substrate [16-

17]. The hardness results (Fig. 10a) indicate the upper layers of the coatings have higher 

values than the subsurface layers in coatings with some effect of the deposition on the 

substrate. The measurements of reduced elastic modulus (Fig. 10b) indicate that overall the 

values were very similar for each coatings with significantly high standard deviation in 

coating zones and low standard deviation in substrate zones.  

 

4. Discussion 

4.1 Coating Microstructure 

The quality of an anode layer depends strongly on its microstructure. A high open 

porosity (surface connected) in combination with a good material distribution of Mo-Mo2C 
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and metal oxides (a) Al2O3, (b) ZrO2 and (c) TiO2 are demanded. The developed air plasma 

sprayed Mo-Mo2C/Al2O3, Mo-Mo2C/ZrO2 and Mo-Mo2C/TiO2 anode layers microstructures 

are shown in SEM micrographs. In micrographs (Fig. 5) mainly the presence of high surface 

connected porosity was observed. The other features include voids, unmolten particle, 

nonbonded intersplat areas, and cracks in splats (a distinct feature highlighted in Fig. 5c). It 

can also be observed that the surface connected porosity sizes were high (over 10 µm).  

The total porosity of the anode layer coatings arises from voids created by partial 

melting of the agglomerate particles as well as the presence of interlamellar and intralamellar 

cracks. Porosity is further introduced upon subsequent reduction of the deposited powders as 

well as from the addition of sacrificial pore-forming materials to the feedstock [19]. We 

report herein that anode layers of about 200 µm to 300 µm thicknesses and volumetric 

porosity as high as 20% is controllable by a selection of the APS process parameters with no 

addition of a sacrificial pore-forming material.  

The reduced thickness (about 300 µm through thermal spraying as opposed to high 

thickness due to casting) and high surface connected porosity of anode layer can potentially 

lead to an increment of gas permeability through a system of pores and it can also results in a 

high flux of fuel to the anode/electrolyte interface and of the produced H2O away from this 

interface. However, further characterisation of the combined microstructure (including 

electrolyte and cathode) and its parameters, e.g. total porosity, open porosity, pore size 

distribution, as well as gas permeability can be used as control parameters for the 

development of highly permeable anode material. Despite the potential benefits that thermal 

spray processing can offer in SOFC technology, significant challenges still remain in the 

development of thermal spray processing (e.g. some un-molten powder particles, Fig. 5) in 

comparison to the SOFC wet ceramic production. Generally speaking, coatings deposited by 

APS have a porosity ranging from 5 vol.% to 15 vol.%, which is much less than the desired 
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porosity level of approximately 30 to 40 vol.% (achievable through wet ceramic production 

routes, e.g. tape casting, screen printing, and co-sintering) required for high-gas diffusivity 

within SOFC anodes [5]. Also, for other combination of anode materials, through literature it 

is also known that additional porosity is produced during NiO reduction to Ni, which 

generally elevates the porosity by approximately 20 vol.%, depending on the NiO content in 

the anode precursor [5].  

As shown in Fig. 6 (fractured coating cross-section surfaces), the splat thickness and 

features within appears to be different for Mo-Mo2C/Al2O3 compared to Mo-Mo2C/ZrO2 and 

Mo-Mo2C/TiO2 anode layers coatings. The splats for Mo-Mo2C/Al2O3 anode layers coatings 

appear more lamellar but less cohesive (layer gaps between splats), whereas, for Mo-

Mo2C/ZrO2 and Mo-Mo2C/TiO2 anode layers coatings, the splat lamellar features were not 

clear and were more cohesive. The difference in splat and associated features between Mo-

Mo2C/Al2O3 and Mo-Mo2C/ZrO2 or Mo-Mo2C/TiO2 anode layers coatings may be due to 

different powder sizes (nominal particle size distribution for Al2O3: -31+3.9 µm, ZrO2: -

100+325 µm, TiO2: -105+32 µm), especially when all depositions were carried out at the 

same APS process parameters. As was seen in Fig. 5c, the constraining of splats (though very 

few) may have led to the formation of submicroscopic vertical cracks of splats and their 

coalescence resulted in typical brittle failure for Mo-Mo2C/TiO2 anode layer coating. Such 

vertical cracks of splats were not observed for Mo-Mo2C/Al2O3 and Mo-Mo2C/ZrO2 anode 

layers coatings. The Mo-Mo2C/TiO2 anode layer coatings (Figs. 6(I)c) appear to have fewer 

gaps or voids between splats, indicating relatively higher bond strength. Layering as shown in 

Figs. 6(II) may be a result of the density difference of the two feedstocks or differences in the 

trajectory of particle flow in the plasma. It is also possible that the formation of distinct 

separate layers may occur due to powder clogging (e.g. due to different geometry of the 

powders). The well-mixed areas may be a result of a localized disturbance affecting the 
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deposition of either feedstock, such as an underlying surface feature leading to localised 

surface roughness [20]. 

 

4.2 Coating Morphology 

An elemental analysis (Fig. 7) was performed on the air plasma sprayed Mo-

Mo2C/Al2O3, Mo-Mo2C/ZrO2 and Mo-Mo2C/TiO2 anode materials in order to determine the 

distribution (Fig. 8) of the elements in different region of the coatings. It confirms the 

presence of various expected elements in each anode layer coatings, mainly dominated by 

molybdenum in Mo2C/Al2O3, Mo-Mo2C/ZrO2, and combination of molybdenum and titanium 

in Mo-Mo2C/TiO2 anode layers. The Fig. 7 summarize element and atomic weight percentage 

for each anode types.      

In the XRD of air plasma sprayed Mo-Mo2C/Al2O3 anode layer coatings (Fig. 9a), 

separate peaks are identified for Mo and C; it is clear that there was solid state reaction 

between Mo-Mo2C and Al2O3. The formation of secondary phase Al2Mo3C (known to be 

superconductor [21]) due to interaction between Mo-Mo2C and Al2O3 is observed. As shown 

in Fig. 6 (column II, polished cross-section of SEM micrographs), overall, it can be seen that 

each anode coating forms distinct alternating layers of the two materials (identifiable largely 

by lighter grey molybdenum and also darker grey other lamellar structures, different but 

indicative metal-oxide component for each feedstock used) in each anode coatings. In 

polished cross-section of Mo-Mo2C/Al2O3 anode layer, it can be seen that apart from distinct 

alternating layers of the two materials, interconnected pore density (largely due to fused and 

crushed Al2O3, with original particle size distribution of -31+3.9 µm) are of smaller sizes and 

evenly spread.  

In the case for Mo-Mo2C/ZrO2 anode layer coatings (Fig. 9b), separate peaks are 

identified for Mo but not for C; it is clear that there is not any solid state reaction between 
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Mo-Mo2C and ZrO2 (suggesting no incorporation of Zr into the crystalline lattice of Mo2C 

[19]). In polished cross-section of Mo-Mo2C/ZrO2 anode layer, it can be seen that apart from 

distinct alternating layers of the two materials, interconnected pore density (largely due to 

fused and crushed ZrO2, with original particle size distribution of -100+325 µm) is relatively 

higher (and of large sizes and evenly spread) compared to other two anode layers.   

In the case for Mo-Mo2C/TiO2 anode layer coatings (Fig. 9c), separate peaks are 

identified for Mo and MoC; it is clear that there is not any solid state reaction between Mo-

Mo2C and TiO2. In polished cross-section of Mo-Mo2C/TiO2 anode layer, it can be seen that 

apart from distinct alternating layers of the two materials, interconnected pore density (largely 

due to agglomerated/sintered and spheroidal TiO2, with original particle size distribution of -

105+32 µm) are of smaller sizes and evenly spread.   

In all these cross-sectional morphologies, the molybdenum appears to be much more 

melted forming thicker splats, and porosity is made up of regions between the lamellae and 

connected networks of globular pores. Pores in each of the deposited coatings consist of voids 

(large voids clearly seen in Fig. 6(II)b) and small two-dimensional voids such as the 

interlamellar non-bonded interfaces and microcracks in individual lamellae. These pores are 

therefore interconnected through microcracks in individual splats in the anode, which can 

permit the passage of gas through the anode. However, these inhomogeneous layer might 

affect the anode performance by modifying ohmic and activation losses, and, further 

investigations are needed.   

 

4.3 Nanohardness and Elastic Modulus 

The nanohardness results (Fig. 10a) indicate the upper layers of the coatings have 

higher average values than the subsurface layers in coatings with some effect of the APS high 

temperature deposition on the substrate (higher bound at the interface). However, the little 
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difference in the average hardness can be attributed to the considerably lower degree of phase 

transformation in APS Mo-Mo2C/ZrO2 or Mo-Mo2C/TiO2 deposition (Fig. 9). This could 

also lead to potential differences between the measured elastic values. However, other factors 

such as intersplat bonding (cohesive strength), residual stress and porosity also contributed to 

the differences in the elastic modulus of three anode layer coatings. The measurements of 

reduced elastic modulus (Fig. 10b) indicate that overall the values were very similar for each 

coatings with significantly high standard deviation in coating zones and low standard 

deviation in substrate zones. However, the measured reduced elastic modulus does not 

suggest that the top layers of three coating had a higher elastic modulus than their subsurface 

layers. High standard deviations in through thickness nanoindentation measurements 

(hardness, reduced elastic modulus) also suggest a significant effect of the complex anode 

coating morphology [16-17].  

The elastic modulus results of the substrate, near the coating-substrate interface, 

suggest that the spraying conditions using APS had a slight change in the average modulus 

values, but falls within the standard deviation range between coating materials. Also, the 

higher magnification images of the Hastelloy®X substrate near the interface indicated 

negligible differences in the microstructure. The hardness did not show significant differences 

between the near-interface hardness of the Hastelloy®X substrate between the coating 

materials, indicating that microstructural transformation was not significant, which will be 

consistent with the observed microstructure. Hence, it is difficult to relate this little change in 

modulus and no change in nanohardness of near-interface modulus of Hastelloy®X on 

possible microstructural transformations in Hastelloy®X during APS coating deposition. It 

has been indicated that elastic modulus measurement can be influenced by residual stress, 

which can be attributed to the differences in the real and measured indentation contact areas 
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[16-17]. Hence, as the hardness is calculated based on the area of contact and modulus slope 

of the unloading curve, they do not follow similar trends in the near interface substrate region. 

 

4.4 Molybdenum Carbide Based SOFC Anode Properties  

The anode is probably the most delicate functional layer of an SOFC with regard to 

the requirements it has to fulfil. On the one hand its electrical conductivity has to be as high 

as possible to minimize electric losses and supply electrons [22]. In this investigation 

commercially available carbide of molybdenum powder catalyst (Mo-Mo2C) and three metal 

oxides (e.g. Al2O3, ZrO2, TiO2, all beneficial for catalyst stability) were used to prepare three 

composite feedstock powders (Mo-Mo2C/Al2O3, Mo-Mo2C/ZrO2, Mo-Mo2C/TiO2) to 

fabricate three different SOFC anodes. The anode electrical conductivity tests which were 

carried for temperature between room temperature to 800 °C (or 1073 K) using a 

VersaSTAT3-400 (Ametek) electrochemical impedance spectra (EIS). There are no literature 

to compare the conductivity results for such material compositions, but it can be seen in Fig. 

11 that the conductivity of anode first increases and then decreases with the increase in 

temperature. All the three specimens show similar trends, among all specimen Mo-

Mo2C/ZrO2 shows high value of conductivity overall and at about 800 °C. Between 220 °C to 

360 °C sharp increase in conductivity has been observed for all three specimens, after that the 

conductivity decreased as temperature increased, which indicates the metallic nature of 

substrates. There may be some agglomeration of particles due to sintering but it is not the 

only reason for decrease in conductivity as particles are relatively connected to each other. 

Since the experimental data on Mo conductivity is not available, there can be percolating 

network of Mo, which is responsible for conductivity; simultaneously there could be 

contribution of Al2O3, TiO2 and ZrO2 towards increase in conductivity.  
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Further it is reported that Mo-Mo2C and metal oxides (Al2O3, ZrO2 and TiO2) would 

interact with each other and transfer of electron from Mo-Mo2C to vacant oxygen site in 

Al2O3, ZrO2 and TiO2 would take place leading to strong metal support interaction (SMSI) 

[23]. Perhaps SMSI effect leads to decrease in Mo-Mo2C coarsening with the increase in 

temperature and thus conductivity remains largely unchanged for all three anodes with the 

increase in temperature. It is also known that Mo metal forms a low melting and high volatile 

oxide which rapidly consumes the metal when exposed to air at temperatures above 1063 K, a 

condition which can be better by alloying [24] (i.e. through Mo-Mo2C system) in the current 

SOFC application with various metal oxides (e.g. Al2O3, ZrO2 and TiO2), however, further 

investigations are needed.    

 

4.5 Future Prospects 

To improve SOFC anode porosity, further development can focus on the usage of 

alternative powders (fine or nanostructured), the application of pore formers (carbon or 

starch), and further optimization of the spray parameters. While cost and performance of 

SOFCs remain major barriers to their widespread use, thermal spray processing has the 

potential to drastically reduce these barriers by rapidly increasing production rates and 

reducing capital equipment, materials, and SOFC system cost. It has also the potential to 

increase performance by the use of graded composition and microstructures, and by rapidly 

solidifying fine microstructures with good adhesion to the substrate and no microstructure 

coarsening due to sintering [5]. It is anticipated that microstructures of fine or nanostrctured 

powders in particular will be of considerable interest for use in SOFCs due to their potential 

to increase the surface area of active sites on which the electrode reactions take place, thereby 

improving reaction kinetics.  
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The capability of plasma processing to fabricate fine powders can be an area of 

interest. A feature of such fine powder is the high fraction of atoms that reside at grain 

boundaries and grain surfaces, largely enhancing the chemical activity. An extended reaction 

surface area with an optimized porous microstructure is expected to enhance the electrode 

performance [5]. This technique has recently been employed as an alternative processing 

route for SOFC fabrication, including component deposition and powder production. Some 

researcher [25] have demonstrated the feasibility of synthesizing nanopowders (e.g. Zn: 15 

nm, Fe-Ti: 32 nm, Ni-Al: 16.4 nm, WO3: 16.1 nm, CeO2: 18.6 nm, SiC: 28 nm, MoO3: 14 

nm, Ni-B: 12.8 nm, CaO: 14.8 nm mean sizes, etc.) directly from liquid precursors. These 

examples demonstrate the feasibility and effectiveness of the principles of the invention in 

producing nanosize powders from micron-sized precursors, and which can be implemented to 

prepare various other composite feedstock for potential application in SOFC electrode 

(anode: porous layer, electrolyte: dense layer, cathode: porous layer) deposition using beyond 

conventional thermal spray techniques (such as suspension HVOF [26] and suspension 

plasma spraying [22]). Moreover, the introduction of carbon or other pore formers to the 

feedstock powder can induce a significant increment of the porosity after the pore formers are 

burnt out (e.g. by annealing in air) [27]. 

 

5. Conclusions 

The development of stoichiometric carbon free molybdenum carbide based anode 

layer with Al2O3, ZrO2 and TiO2 metal oxides, prepared by air plasma technique, has been 

demonstrated. Thermal spraying process can enable the control of porosity in SOFCs which 

can be used to control gas permeability in anode layer. It is concluded that the three optimized 

anode layers of thicknesses between 200 to 300 µm and porosity as high as 20% for Mo-

Mo2C/Al2O3 (250 µm thick) and Mo-Mo2C/TiO2 (300 µm thick) and around 17% for Mo-
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Mo2C/ZrO2 (220 µm thick), all controllable by a selection of the APS process parameters 

with no addition of sacrificial pore-forming material. The nanohardness results indicate the 

upper layers of the coatings have higher values than the subsurface layers in coatings with 

some effect of the deposition on the substrate. The total porosity can be further increased 

through the addition of sacrificial pore-forming materials such as graphitic carbon or potato 

starch and also through inclusion of a pore former in aqueous suspension (using suspension 

thermal spray techniques), in addition to the porosity introduced in the current work. Overall 

each anode coating forms distinct alternating layers of the two materials. In Mo-Mo2C/Al2O3 

and Mo-Mo2C/TiO2 anode layers, the interconnected pore density are of smaller sizes, 

whereas, in Mo-Mo2C/ZrO2 anode layer, the interconnected pore density is relatively higher 

(and of large sizes) compared to other two anode layers. Therefore, the process parameters 

developed through this work paves a way for further development of other composite layers. 

The microstructures and basic electrochemical properties of the anode coatings (e.g. Mo-

Mo2C/ZrO2 shows high value of electrical conductivity overall and at about 800 °C) were 

analysed which showed features consistent with the desired properties. 
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Table caption  

Table 1. APS thermal spray process parameters 

 

Figure captions 

Fig. 1. SOFC component assembly.  

Fig. 2. (a) Agglomerated and sintered Mo-Mo2C powder showing high porosity and surface 

area, (b) disc specimens holder in circular holes which were cut on steel plate and then 

mounted on jaw chuck, and (c) SOFC anode thermal spraying manufacturing in industrial 

coating chamber: discs after assembly in circular holes which are cut on steel plate. 

Fig. 3. Representative example for porosity measurement: (a) SEM image of Mo-Mo2C/ZrO2 

anode layer showing surface connected porosities, (b) selected porous zone, and (c) measured 

porosity of about 17% (defined as the sum of all pore areas divided by the total sample area 

analysed). 

Fig. 4. Berkovich nanoindentation tests: (a) Through thickness measurement scheme, (b) 

indent line shown here for specimen Mo-Mo2C/ZrO2 (white inclusions shown below the 

interface are some debris), and (c) force-displacement profiles.  

Fig. 5. SEM images of APS coated anode layer surfaces showing surface connected porosities 

and unmolten powder particles: (a) Mo-Mo2C/Al2O3, (b) Mo-Mo2C/ZrO2 and (c) Mo-

Mo2C/TiO2. 

Fig. 6. SEM images of APS coated anode layer cross-section surfaces: (a) Mo-Mo2C/Al2O3, 

(b) Mo-Mo2C/ZrO2 and (c) Mo-Mo2C/TiO2  

Fig. 7. EDX of APS coated anode layers: (a) Mo-Mo2C/Al2O3, (b) Mo-Mo2C/ZrO2 and (c) 

Mo-Mo2C/TiO2. 

Fig. 8. EDX (elemental distribution or mapping) of APS coated anode materials: (a) Mo-

Mo2C/Al2O3, (b) Mo-Mo2C/ZrO2 and (c) Mo-Mo2C/TiO2.  
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Fig. 9. XRD of APS coated anode layers (coating surface): (a) Mo-Mo2C/Al2O3, (b) Mo-

Mo2C/ZrO2 and (c) Mo-Mo2C/TiO2. 

Fig. 10. Nanoindentation results (hardness and elastic modulus) of APS coated anode layer 

specimens (Mo-Mo2C/Al2O3, Mo-Mo2C/ZrO2 and Mo-Mo2C/TiO2) on Hastelloy
®

X 

substrates. 

Fig. 11. Electrical conductivity variation with temperature: APS coated anode layer on 

Hastelloy
®

X substrate [Mo-Mo2C/Al2O3, Mo-Mo2C/ZrO2 and Mo-Mo2C/TiO2]. 
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Table 1. APS thermal spray process parameters 

 
 

Process parameter Anode coating 

Materials  Mo-Mo2C:Al2O3::0.8:0.2 

Mo-Mo2C:ZrO2::0.8:0.2 

Mo-Mo2C:TiO2::0.8:0.2 

Current 500 A 

Voltage  60-70 V 

Primary gas (Argon) 100 psi (0.68 MPa); 42.08 lpm 

Secondary gas (Hydrogen)  50 psi (0.34 MPa); 34.2 lpm 

Carrier gas (Argon) 100 psi (0.68 MPa); 19.4 lpm  

Standoff distance 100 mm 

Feed rate  70 g/mim  

Spray angle 60° 

Coating thickness 200 to 300 µm 

APS gun Metco 3MB gun  

APS nozzle Metco 3M7A-GP (small bore)  
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Fig. 1. SOFC component assembly. 
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Fig. 2. (a) Agglomerated and sintered Mo-Mo2C powder showing high porosity and surface 

area, (b) disc specimens holder in circular holes which were cut on steel plate and then 

mounted on jaw chuck, and (c) SOFC anode thermal spraying manufacturing in industrial 

coating chamber: discs after assembly in circular holes which are cut on steel plate. 
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Fig. 3. Representative example for porosity measurement: (a) SEM image of Mo-Mo2C/ZrO2 

anode layer showing surface connected porosities, (b) selected porous zone, and (c) measured 

porosity of about 17% (defined as the sum of all pore areas divided by the total sample area 

analysed). 
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Fig. 4. Berkovich nanoindentation tests: (a) Through thickness measurement scheme, (b) 

indent line shown here for specimen Mo-Mo2C/ZrO2 (white inclusions shown below the 

interface are some debris), and (c) force-displacement profiles.  
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(I) High magnification (II) Low magnification 

  
  

  
  

  
 

Fig. 5. SEM images of APS coated anode layer surfaces showing surface connected porosities 

and unmolten powder particles: (a) Mo-Mo2C/Al2O3, (b) Mo-Mo2C/ZrO2 and (c) Mo-

Mo2C/TiO2. 
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Fig. 6. SEM images of APS coated anode layer cross-section surfaces: (a) Mo-Mo2C/Al2O3, 

(b) Mo-Mo2C/ZrO2 and (c) Mo-Mo2C/TiO2. 
 

 

 

Substrate   

Anode layer   

Anode layer   

Substrate   

Substrate   

Anode layer   



 

33 

 

 

 

 

 

 

Fig. 7. EDX of APS coated anode layers: (a) Mo-Mo2C/Al2O3, (b) Mo-Mo2C/ZrO2 and (c) 

Mo-Mo2C/TiO2. 
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(a) Mo-Mo2C/Al2O3 (b) Mo-Mo2C/ZrO2 (c) Mo-Mo2C/TiO2 

   

   

 
  

   

 

Fig. 8. EDX (elemental distribution or mapping) of APS coated anode materials: (a) Mo-

Mo2C/Al2O3, (b) Mo-Mo2C/ZrO2 and (c) Mo-Mo2C/TiO2.  
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Fig. 9. XRD of APS coated anode layers (coating surface): (a) Mo-Mo2C/Al2O3, (b) Mo-

Mo2C/ZrO2 and (c) Mo-Mo2C/TiO2.  
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Fig. 10. Nanoindentation results (hardness and elastic modulus) of APS coated anode layer 

specimens (Mo-Mo2C/Al2O3, Mo-Mo2C/ZrO2 and Mo-Mo2C/TiO2) on Hastelloy
®

X 

substrates. 
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Fig. 11. Electrical conductivity variation with temperature: APS coated anode layer on 

Hastelloy
®

X substrate [Mo-Mo2C/Al2O3, Mo-Mo2C/ZrO2 and Mo-Mo2C/TiO2]. 
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