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Abstract

Objectives: Prediction of prostate cancer pathological stage is an essential
step in a patient’s pathway. It determines the treatment that will be applied
further. In current practice, urologists use the pathological stage predictions
provided in Partin tables to support their decisions. However, Partin tables
are based on logistic regression (LR) and built from US data. Our objective
is to investigate a range of both predictive methods and of predictive vari-
ables for pathological stage prediction and assess them with respect to their
predictive power based on UK data.

Methods and Material: The latest version of Partin tables was applied to a
large scale British dataset in order to measure their performances by mean
of concordance index. The data was collected by the British Association of
Urological Surgeons (BAUS) and gathered records from over 1700 patients
treated with prostatectomy in 57 centers across UK. The original methodol-
ogy was replicated using the BAUS dataset and evaluated using concordance
index. In addition, a selection of classifiers, including, among others, LR,
artificial neural networks and Bayesian networks (BN) was applied to the
same data and compared with each other using an ROC analysis. Subsets
of the data were created in order to observe how classifiers perform with the
inclusion of extra variables. Finally a local dataset prepared by the Aberdeen
Royal Infirmary was used to study the effect on predictive performance of
using different variables.

Preprint submitted to Artificial Intelligence in Medicine March 26, 2012



Results: Partin tables have low predictive power when applied on UK data
for comparison on patients with organ confined and extra prostatic extension
conditions, patients at the two most frequently observed pathological stages.
The use of replicate lookup tables built from British data shows an improve-
ment in the classification, but the overall predictive power remains low.
Comparing a range of classifiers shows that BNs generally outperform other
methods. Using the four variables from Partin tables, Naive Bayes is the best
classifier for the prediction of each class label. When two additional variables
are added, the results of LR, artificial neural networks and BN methods are
overall improved. BNs show higher AUC than the other methods when the
number of variables raises.

Conclusion: The predictive power of Partin tables can be described as low to
moderate on UK data. This means that following the predictions generated
by Partin tables, many patients would received an inappropriate treatment,
generally associated with a deterioration of their quality of life. In addi-
tion to demographic differences between UK and the original US population,
the methodology and in particular LR present limitations. BN represents a
promising alternative to LR from which prostate cancer staging can benefit.
Heuristic search for structure learning and the inclusion of more variables are
elements that further improve BN models quality.

Keywords: Classification, Bayesian networks, Logistic regression, Prostate
cancer staging, Partin tables

1. Introduction

Cancer is a widely spread disease responsible for many deaths all over
the world. In 2008, the World Health Organization estimated the number of
new cancer cases in the world to be over 7.5 million [1]. Among all types of
cancer, prostate cancer is the most frequent in men. In 2008, around 900 000
new cases of prostate cancer were diagnosed, and approximately 260 000 men
died from it over the same period [1]. In Britain, the same source shows that
37 000 men were affected with new occurrence of prostate cancer, accounting
for nearly a quarter of all male cancer diagnosed annually. It is also the
second commonest cause of cancer death in men in the UK after lung cancer
1].

This paper considers the use of different machine learning techniques in



order to improve the prediction of pathological stage in prostate cancer. A
UK-wide dataset collected by the British Association of Urological Surgeons
(BAUS) is used in order to build and assess predictive models. Results are
compared with each other, but also against those of tools and methods cur-
rently in use clinically. Machine learning gathers a wide range of methods,
particularly for classification purposes. Performance studies of such meth-
ods on different applications is an essential step towards the optimization of
predictive tools. In [2], classifiers are compared with each other with respect
to their performance on predicting different outcomes related to pancreatic
cancer, including cancer staging. Similarly, in [3], classifiers were applied on
breast cancer patient data to improve survivability prediction. In [2], models
built using bayesian techniques and logistic regression presented the best pre-
diction for the different outcomes while decision trees performed best in [3].
This highlights the importance of comparing methods on different domain as
the most adapted technique can vary across them.

Partin tables [4] are the most commonly used tool for prostate cancer
staging. They were originally created using Logistic Regression (LR) [5]
on a database gathering records of patients that were treated with radical
prostatectomy in a single US institution [4]. Since then, the tables have been
updated using different up-to-date datasets [6-8|. The revision takes into
account changes in population demographics, advances in health technology
and improved health care systems, but the tables are still based on the same
fundamental LR-based methodology.

Partin tables are a well-established and most widely used pathological
staging tool in the urological community worldwide. However, concerns
have been raised regarding their validity on non-US populations [9-19]. In
some instances, Partin tables were considered to be unsuitable for the tar-
get population because of limitations with respect to their predictive power
9, 11, 16-19]. The appropriateness of the methodology behind Partin ta-
bles, especially in regard to the choice of predictive variables and classifier,
was not addressed in those studies. In addition, it is widely recognized that
prostate cancer staging is associated with a high level of uncertainty. All
these considerations are compelling clinicians to explore alternative means
of generating predictive tools, especially those which apply machine-learning
techniques which have the potential of improving the quality and accuracy
of predictive performance [20].

In this paper, we assess the Partin tables on a British population. Repli-
cate lookup tables, based on British data are built and analyzed following the
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original approach given in [8]. Additionally, we propose and compare alter-
native classification techniques, including Bayesian Networks (BN), which by
simplifying the probability distribution, are recognized as a reference method
to reason under uncertainty [21]. In addition, we consider more variables to
include in the model. The paper is divided as follows. Section 2 presents
important details related to the understanding of prostate cancer and its
treatments. Section 3 describes the methodology of the study. It presents
the different objectives and the data, provides technical background knowl-
edge on classification and describes the experiments. Results are presented
in section 4 and discussed in section 5. Finally, we describe our conclusions
and introduce ideas for further work in section 6.

2. Medical Background

Cancer is a disease where malignant cells are developed and alter the
function of their hosting organs or tissues. Typically, malignant cells repro-
duce and group together to form a tumor. Untreated tumors grow and affect
surrounding healthy cells, leading to a spread of the cancer. Metastasis hap-
pens when the cancer reaches surrounding organs or tissues. The presence
of cancer results in the deterioration of some body functions and can lead to
death when vital organs are touched.

Whilst in the past prostate cancer was a disease which predominantly
affected older men well into their seventies, the advent of Prostate Specific
Antigen (PSA) testing over the past three decades has caused a shift in the
age of presentation, such that men in their early fifties are increasingly being
diagnosed. In addition, PSA testing has also resulted in a stage migration
from late, symptomatic stages to early, asymptomatic stages of the disease.
Men with raised PSA would then undergo prostate biopsies which will con-
firm the diagnosis and provide a grade of the disease expressed by means of
the Gleason sum score (GS), with the grade of the cancer reflecting its aggres-
siveness. Once the diagnosis is confirmed, a digital rectal examination (DRE)
is performed to assess the local clinical stage (CS). The stage is a means of
indicating the spread of the disease, expressed by the TNM staging system
22], whereby the T stage refers to the local extent of spread. The treat-
ment options available for localised prostate cancer include surgery, external
beam radiotherapy, brachytherapy, active monitoring and minimally invasive
localised therapy such as cryotherapy [23]. Surgery by way of radical prosta-
tectomy, where the prostate is surgically removed completely, is one of the



leading options. Although most of the curative treatment options result in
similar cure rates, surgery has the major advantage of removing the prostate
completely as well as providing the actual pathological stage and grade of
the disease, which in turn influence prognosis. The pathological stage is the
most accurate determination of the actual stage of the disease (as opposed
to clinical stage which is an estimate), being determined by pathological ex-
amination of the entire prostate specimen. However, the major drawback
of surgery is its associated adverse effects, such as intra-operative compli-
cations (e.g. bleeding), prolonged hospital stay, urinary incontinence and
erectile dysfunction. The pathological stage of prostate cancer significantly
influences the prognosis; the presence of extra-prostatic extension reduces
the chance of cure and increases the risk of adverse effects. Consequently,
surgery may not be appropriate for every man with prostate cancer, and
those with more advanced disease should be offered other options instead.
Such decision-making crucially relies on the prediction of the likely patholog-
ical stage. It is for this purpose that predictive staging tools were created.
Partin tables [4] are the most commonly used tool for prostate cancer stag-
ing. The tables are a means of predicting the likely pathological stage of
the cancer using the pre-treatment variables of PSA, GS and CS, with the
result being expressed as probabilities. Based on a patients PSA, GS and
CS, probabilities are provided for each of four discrete pathological stage
outcomes: organ confined (OC), extra-prostatic extension (EPE), seminal
vesicle involvement (SVI) and lymph node involvement (LNTI). The predicted
probabilities of pathological outcomes are displayed by means of look-up ta-
bles organised according to the three pre-treatment variables, which are in
turn divided into sub-groups.

3. Methodology
3.1. Objectives

This work introduces three main objectives that present interests for both
medicine and machine learning communities.

First, we aim to critically assess the methodology which was used to con-
struct Partin tables. This involves externally validating the version currently
being used by practitioners, that is, studying how well it performs on a pop-
ulation that presents different characteristics. Here, the tool is evaluated
on a large British cohort and results are compared to those of its internal



validation given in [8], where the original data was also used for testing. Us-
ing the British data and the approach described in [8], we build new lookup
tables and assess the methodology itself. The results are compared against
the previous validation studies [9-19] and provide additional understanding
on Partin tables performances.

Second, we propose alternative classifying techniques to build lookup ta-
bles for prostate cancer staging. We run many classifiers, including LR, on
our data and study the performances of the models produced by each. We
compare the different methods with respects to their predictive power and
propose alternatives to LR.

Finally, we investigate the impact of new variables being introduced into
the model. Two different datasets are used for this purpose each using dis-
tinct set of predicting variables. Among them, variables that were originally
excluded when Partin tables were built are considered. In [4], patient’s age
was tested against other combination of variables and did not show statisti-
cally significant improvement to the LR-based model. A range of classifiers
is considered and applied to different subsets of data in order to observe the
impact that inclusion of elements can have.

3.2. Data

BAUS gathered clinical and pathological data on over 7500 patients that
were received with prostate cancer and underwent radical prostatectomy in
one of the 57 different centers of the study between 1999 and 2008. This
accounts for approximately 20% of the total number of prostatectomies that
were performed in the whole of UK over this period [24]. The BAUS dataset
can be considered as large and representative of the British population and
consequently, well suited for the assessment of Partin tables for a use in the

UK.

Variable Name Categories
PSA 0-2.5, 2.6-4.0, 4.1-6.0, 6.1-10.0, >10.0
GS 5-6, 3+4, 4+3, >8
CS Tle, T2a, T2b/c
PS OC, EPE, SVI, LNI

From the original BAUS dataset, two subsets were created to meet the
different objectives. To construct the first one, we only kept the records
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Figure 1: Distribution of the class variable pathological stage in the three datasets

where PSA, GS, C'S and PS were set in order to match Partin tables vari-
able settings. We call this dataset BAUS-4. Each variable in BAUS-4 was
discretized following Partin method as described in Table 1. The final size
of BAUS-4 was 1701 records, following the removal of cases where data was
missing for any of the four variables and where input data was erroneous. The
distribution of PS in the prepared data was compared with its distribution
in the original BAUS dataset. No important differences were noticed and we
assumed that the data remained unbiased after the preparation process.

The original BAUS dataset was used to create a second subset called
BAUS-6. In BAUS-6, the two variables age and ASA are added to BAUS-4.
ASA is a score which describes the severity of a patient’s symptoms on a
scale ranging from 1 to 5. No patient was received with an ASA of 4 or 5
and only three categories were kept for this variable. Age was discretized
in five categories that were chosen as to ensure a balanced distribution be-
tween them, as described in Table 2. BAUS-6 contains 1535 records after
preparation.

Variable Name Categories
PSA 0-2.5, 2.6-4.0, 4.1-6.0, 6.1-10.0, >10.0
GS 5-6, 3+4, 443, >8
CS Tle, T2a, T2b/c
Age <55, 55-59, 60-64, 65-69, >70
ASA 1,2,3
PS OC, EPE, SVI, LNI

A further dataset, ARI-10, was prepared from data collected at the Ab-
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erdeen Royal Infirmary, UK. This data contains different variables and allows
the exploration of variables that were not collected in the original BAUS
dataset. Table 3 presents the variables that were selected for our study. In
addition of the Partin variables, ARI-10 includes information on patients’
age, pre-operative erection, prostate size following transrectal ultrasound
(TRUS size) and stage prediction following Magnetic Resonance Imaging
(MRI stage). Two variables are also included that relate to the patient’s
wellbeing. They both result from the International Prostate Symptom Score
(IPSS) which is composed of seven questions related to the effect of the
symptoms on the patients and an additional question which reflects his over-
all quality of life. We respectively call these variables PSS symptoms and
IPSS QoL. Being based on patients from a single institution, the size of ARI-
10 is much smaller and contains 85 records. Such small size implies that the
variance of classifiers built from this data is likely to be important [25] and
results should be considered as preliminary.

Variable Name Categories
PSA 0-2.5, 2.6-4.0, 4.1-6.0, 6.1-10.0, >10.0
GS 5-6, 3+4, 443, >8
CS Tlc, T2a, T2b/c
Age <55, 55-59, 60-64, 65-69, >70

Pre-op erection  Full function, Partial, Absent, Unknown
IPSS Symptoms Mild, Moderate, Severe, Unknown

IPSS QoL 0,1, 2,3, 4,5, 6, Unknown

TRUS size 0-30, 31-60, >61, Unknown

MRI stage T0/T1, T2, T3a, None
PS OC, EPE, SVI, LNI

One important characteristic of both BAUS and ARI data relies in the
distribution of the class variable being very skewed towards milder patholog-
ical stages. By consequence, the number of SVI and LNI cases is low in each
dataset as illustrated in Figure 1.

In order to fairly compare LR to other methods, the selection of these
techniques represents an important step of the study. A first set of runs was
performed in order to select the best classifiers from the Weka platform [26].
In this section, we present the methods that showed the best initial per-
formances and that were applied to the different datasets for the complete
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study. In order to ensure the comparison covers a wide area of the machine
learning landscape, we considered methods from the following machine learn-
ing families: decision tree learning, lazy learning, regression, Support Vector
Machine, Artificial Neural Networks and Bayesian Networks. Most of these
classifiers have already been applied to cancer applications in the past as
summarized in [20].

Id3 [27] is a method to build a decision tree based on entropy. Entropy
measures the uncertainty associated with a variable with respect to the data.
In Id3, a decision variable is added to the tree if it presents the minimum
entropy value among all remaining variables in the dataset. Variables with
smallest entropy are the closest to the tree root as they have a bigger impact
on classification.

In k-nearest neighbours (k-NN) [28], a new instance is classified according
to the class value of its k most similar neighbours. A majority vote is used
to infer a classification outcome from the k retrieved values. The distance
between the test instance and the training instances can be computed in sev-
eral ways. The most popular method for numerical attributes uses Euclidean
distance. This has also been adapted to handle nominal variables, the dis-
tance between two instances corresponding to the number of attributes they
have in common.

Logistic regression (LR) [5] associates a weight to each of the predictors
(for binary variables) or to each of the predictor states (for multinomial vari-
ables). Weighted predictor observations are summed and fitted to a logistic
curve to produce a probability for the response variable. As previously men-
tioned, LR is the technique which was used to generate the Partin tables and
represents therefore an important element of comparison.

In Support Vector Machine (SVM), instances are represented as vectors
and projected onto a n-dimension graph where n is the number of features in
the dataset. Building such a classifier requires finding the optimal hyperplane
that splits instances in clusters according to their class values. For the present
study, the Sequential Minimal Optimization algorithm (SMO) [29] was used
to train the SVM.

Artificial Neural Networks (ANN) consist of two or more layers of arti-
ficial neurons which receive information signals via their respective inputs.
The value of the input information is weighted and processed by a neuron ac-
cording to the value of its activation threshold. Using many layers of linked
neurons, complex decision process can be modeled. Different approaches
have been developed to learn the neuron weights or to set the activation
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functions. From the wide range of available ANNs, and in order to cover
more than one approach, Multilayer Perceptron (MLP) [30] and Radial Ba-
sis Function (RBF) [31] were selected for the study. MLP was applied for
prostate cancer staging in previous studies and presented better performances
than LR [32-34]. However, it has also been proven that MLP does not al-
ways outperform LR [35-37]. RBF was compared against LR in [35] but no
significant difference was observed between the methods.

Bayesian Network (BN) [38] is a type of probabilistic graphical model
(PGM). A BN is composed of a directed acyclic graph (DAG) and of a set
of parameters that factorizes the joint probability distribution P of a set of
variables X; according to their respective parents Pa(X;) as shown in (1).

P=P(X),Xa, ., X)) = ﬁP(XZ-]Pa,(XZ-)) (1)

In addition to BN’s ability to handle data of any dimension, this property
makes it a particularly suitable solution to deal with uncertainty in datasets
where the number of features is large. However, the number of BN struc-
tures that can be built from a same dataset of size n grows as O(n!2%) [39].
Evolutionary computation has been used to cope with the large size of the
search space. Using a Genetic Algorithm (GA) and based on the CH met-
ric described by Cooper and Herskovits [40], the K2GA search and score
algorithm has proved successful for BN structure learning [41, 42].
Restrictions can also be applied on BNs and results on simplified models.
In a Naive Bayes (NB) [43], a class variable is set prior to build the model.
The BN which is created afterwards defines the class variable as a parent
of all other variables. In a NB, no edges are allowed between the predictor
variables. The concept of NB has been extended as to consider that relations
may exist between the predictors. Such BN is called a Tree Augmented Naive
Bayes (TAN) [44] and is built using a greedy search and the CH metric.

3.3. Ezperimental design

The main objective of the study is to evaluate the performance of the
different classifiers. Area under the ROC curve (AUC) is a standard method
to assess a model’s predictive power [45]. AUC takes into consideration both
sensitivity and specificity and represents an objective way to cope with data
which is unbalanced between classes. An AUC value close to 1 describes a
model with a good predictive power, while a value close to 0.5 shows that
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the model is no better than a random decision. An AUC of zero describes a
model that classifies all instances with a wrong label.

On the other hand, many medical studies have assessed Partin tables by
computing their concordance index (c-index) [46], as an alternative to AUC.
C-index reflects how good a model is at accurately distinguishing between
two randomly selected patients with different outcomes. Algorithm 1 outlines
how the concordance index C’Ici’cj between two distinct classes ¢; and ¢; is
computed for a given model M. Let s, and s, respectively denote the class
label of subject p and ¢. s, and s, belongs to the ordered set C' of n class
labels such as ¢; < ¢ < ... < ¢,. Let S; denotes the set of subjects p with
class label ¢; such as S; = {p: s, = ¢;} and m; = |S;].

P(s, = ¢;) represents the probability of subject p to be classified as ¢;
while P(s, > ¢;) denotes the probability of subject p to be classified with a
class label better than ¢;. Similarly, P(s, < ¢;) denotes the probability of
subject p to be classified with a class label worse than ¢;.

Algorithm 1 Concordance Index C'I., ., between classes ¢; and c¢;

Initialize correct = 0
for each pair (s,,s4) € 5; X S;, (i < j) do

from model M, compute P(s, < s,) = S.p_1 P(s, = cx) * P(s, > cx)
and P(s, < s,) = S.n) P(sy = cx) * P(s, > cx)
if P(s, <s,) > P(s, <s,) then
correct ++
end if
end for

return Cl. ., = correct /[ m;*m;

In order to validate the Partin tables and their methodology, the approach
that was used to build them [8] was carefully studied and replicated. As a
result, multinomial LR was applied to the data using bootstrap resampling
with 1000 replications. The variables were discretized in the same way as in
Partin tables and as given in Table 1. C-indices for each pathological stage
against OC were computed as to ensure the results can be compared with
previous external validations and with original findings.

For the rest of the study, 10-fold stratified cross validation was performed
1000 times for each classifier on the three datasets and AUC was calculated.
The number of folds and the choice for stratification was decided following
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[47] to ensure the measure of accuracy reflects objectively the model’s true
abilities with respect to its variance and bias when data varies.

To assess Id3, k-NN, LR, MLP, RBF and the SVM classifiers, we used
the Weka suite [26], while BN-based models were built and analyzed using
implementations for BN learning developed at the Robert Gordon University
[48]. To ensure the performance measures were consistent across the two
tools, the random seeds for stratification and cross validation was set to the
same value. We compared several BNs using both platforms and retrieved
similar AUC values.

An initial 10-fold cross validation analysis was run for each of the Weka
classifier in order to ensure that comparisons are fair. The parameter settings
were hand optimized until no further improvement with respect to the AUC
could be found. We regards these settings as optimum and kept them for
the study. The final settings are presented in Table 4. K2GA, the algorithm
used to search for an optimum BN was tuned with the settings presented in
Table 5. K2GA and the greedy search for TAN were run on the complete
datasets, providing an optimum structure for each. The parameters were
calculated afterwards for each testing fold. We call the BN learned from
K2GA, CHBN, as it is based on the CH metric. For BAUS-4, CHBN was
found exhaustively because it was possible to test all possible structures, due
to the small number of variables in the data.

12



Classifier

Settings

k = 3 (BAUS-4); k — 4 (BAUS-6)

k-NN Search = linear based on Euclidean distance
ID3 None
maxIts = -1
LR ridge = 10~%
Hidden layers = 4 (number of classes)
Learning rate = 0.3
MLP Momentum = 0.2
Training time = 100 epochs
maxIts = -1
minStdDev = 0.1
RBF numClusters = 2
ridge = 10°®
Filter type = Normalize training data
SVM Complexity parameter = 1
Kernel type = Puk (@ =1; X =1)
GA parameter Value
Number of runs 20
Population size 100
Selection type Rank selection
Crossover type Cycle crossover
Crossover rate 0.9
Mutation rate 0.1
4. Results

4.1. External validation of Partin tables

Similarly to the internal validation of the Partin tables, c-index was calcu-
lated for the three non-OC pathological stage vs. OC. Results are presented
in Table 6 and illustrate how good the different LR models are at distinguish-
ing between patients with each combination of stages. Such values can be
understood relative to the scale given in [49]. The scale defines three levels
of predictive power for a model according to its c-index. A model has low,
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moderate or high prognostic accuracy if its c-index is respectively between
0.5 and 0.7; between 0.7 and 0.9; or greater than 0.9.

Partin tables Partin tables Multinomial

with US Data with BAUS LR with
[8] Data BAUS Data
EPE vs. OC 0.696 0.602 0.610
SVI vs. OC 0.830 0.709 0.713
LNI vs. OC 0.894 0.819 0.873

Referring to Table 6, any model built following Partin approach is found
to have a low predictive power when distinguishing between OC and EPE
cases, regardless of the dataset used for validation. Internal validation num-
bers given in [8], show that the Partin tables predictive power is moderate
for SVI vs. OC and LNI vs. OC cases. When applied to British data, we
notice a drop in terms of c-index for every combination of outcome. Building
a new model using the same methodology improves slightly the c-index but
both Partin tables and new LR model can be described with a low predictive
power for EPE vs. OC and a moderate predictive power for SVI vs. OC and
LNI vs. OC cases.

4.2. Use of alternative classifiers

Using the BAUS-4 dataset, we evaluated a range of classifiers. Table
7 describes the AUC of the different classifiers for each pathological stage.
Each of these values illustrates how good the model is at correctly classifying
a new patient in the given category. Overall, the use of different methods
gives rise to the variety of AUCs that are calculated.
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Classifier AUC (OC) AUC (EPE) AUC (SVI) AUC (LNI)

NB 0.662 (0.002) 0.604 (0.003) 0.702 (0.004) 0.827 (0.012)

Id3 0.632
SVM 0.525

0.005
0.003

0.012
0.009

0.468
0.491

0.018
0.001

0.574 (0.008)  0.661
0.492 (0.004)  0.585

TAN  0.654 (0.003) 0.588 (0.005) 0.701 (0.007) 0.794 (0.015)
CHBN  0.630 (0.003) 0.578 (0.006) 0.693 (0.005) 0.809 (0.014)
LR 0.660 (0.002)  0.601 (0.004) 0.694 (0.004) 0.717 (0.036)
MLP  0.645 (0.006) 0.587 (0.008) 0.693 (0.012) 0.792 (0.031)
RBF  0.649 (0.006) 0.591 (0.009) 0.686 (0.012) 0.767 (0.046)
k-NN  0.632 (0.005)  0.569 (0.008) 0.666 (0.012) 0.700 (0.014)
(0.005) (0.012) (0.018)

(0.003) (0.009) (0.001)

The model built using NB offers the best AUC in any pathological stage.
Bonferroni correction was applied to ensure a fair comparison between meth-
ods and the difference between NB and the other classifiers is found to be
statistically significant (p-value<0.005).

Among models based on BN, CHBN and TAN do not offer any advantage
over the simpler NB. It is interesting to note that, despite its performance,
the naive structure is not found by the exhaustive search used in CHBN nor
by the greedy search for TAN. Figure 2 illustrates the structures that were
learned by the GA and by the TAN search algorithm. These are based on the
CH metric and reflect relationships within the data. The structure showing
the highest CH score does model relationships between PS, G\S and C'S but
considers PS A as conditionally independent from the other variables. In the
TAN, in addition to the naive structure, PSA is considered as conditionally
dependent on CS. The latter model outperforms CHBN to a statistically
significant extent for the prediction of OC, EPE and SVI cases. CH scores
for the different BN structures on each dataset is summarized in Table 8.
Learning algorithms considers a structure to be a good model of the data if
its associated CH value is close to zero.

Dataset NB TAN CHBN

BAUS-4 -6721.430 -6746.929 -6720.597
BAUS-6 -9507.130 -9544.971 -9464.534
ARI-10 -1066.562 -1066.360 -1002.504
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(a) K2GA

Figure 2: BN Structures learned from BAUS-4 dataset

4.8. Addition of new variables

The BAUS-6 dataset introduces two extra variables that were not in
BAUS-4. The same classifiers were run and AUC values are described in
Table 9. With the probability distribution becoming harder to model, no
classifier shows the best AUC on all four values of PS, as was the case on
BAUS-4. Despite this difference, all best models are built using different BN

(b) TAN

techniques.
Classifier AUC (OC) AUC (EPE) AUC (SVI) AUC (LNI)
NB 0.679 (0.002) 0.620 (0.004) 0.713 (0.005)  0.740 (0.007)
TAN 0.668 (0.004) 0.600 (0.006) 0.735 (0.008) 0.627 (0.008)
CHBN 0.675 (0.002) 0.622 (0.003) 0.724 (0.004) 0.773 (0.006)

LR 0.675 (0.003)  0.615 (0.005)  0.699 (0.006) 0.731 (0.015)
MLP 0.650 (0.009)  0.597 (0.011)  0.694 (0.017)  0.746 (0.040)
RBF 0.656 (0.009)  0.599 (0.011) 0.692 (0.015) 0.648 (0.079)
k-NN 0.627 (0.007)  0.560 (0.009)  0.665 (0.012) 0.522 (0.049)

1d3 0.580 (0.009)  0.517 (0.009)  0.543 (0.014) 0.483 (0.001)
SVM 0.516 (0.004)  0.496 (0.006) 0.538 (0.010)  0.493 (0.001)

With respect to the assessment of LR for prostate cancer staging, both NB
and CHBN significantly outperform LR for the prediction of all pathological
stages, except for OC classification where LR yields an AUC not significantly
different to that of CHBN.
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The BN structures learned using K2GA and TAN search are presented in
Figure 3. K2GA retrieves the naive structure that exists between CS, GS,
PSA and the class variable PS. In addition, relationships are discovered be-
tween PSA and age; and age and ASA. These two conditional dependencies
are also found by the TAN.

(a) K2GA

Figure 3: BN Structures learned from BAUS-6 dataset

Along with Tables 9 and 7, Figure 4 illustrates the impact of adding
features to the set of variables originally used in Partin tables. Performances
of each classifier can be compared across the two datasets. LR-based models
are significantly improved by addition of the age and AS A variables in all four
categories. BN techniques and RBF present better AUC on BAUS-6 than on
BAUS-4 for OC, EPE and SVI predictions, while MLP reaches a statistical
significant level of difference for OC and EPE predictions. The k-NN and
Id3 methods suffer from the addition of variables. As a consequence, their
AUC values decrease for all of the PS categories but one, as LNI prediction
is improved for Id3. LNI prediction is, over all classifiers, altered negatively
by the inclusion of age and ASA in the study, except if combined with the
use of LR or Id3.

17



BAU!

08

AUC OC)
AUC (EPE)

NB TANK2GABN LR MLP RBF K-NN Id3 SMO NB TANK2GABN LR MLP RBF K-NN d3 SMO

AUC (SVI)
AUC (LN

NB TANK2GABN LR MLP RBF K-NN Id3 SMO NB TANK2GABN LR MLP RBF K-NN 1d3 SMO

Figure 4: Difference in AUCs between BAUS-4 and BAUS-6

The ARI-10 dataset, prepared from a smaller number of records, but with
more variables is used to explore the behavior of the classifiers and possible
relationships among variables. AUC results are shown in Table 10 for our
selection of classifiers. The range of AUC values is larger than previously
observed with other datasets. The standard deviation is also larger for all
methods. These two observations is likely to be linked with the small size of
the dataset and the larger number of variables.
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Classifier AUC (OC) AUC (EPE) AUC (SVI) AUC (LNI)

NB 0.523 (0.036)  0.410 (0.051)  0.528 (0.030)  0.008 (0.007)
TAN 0.592 (0.032)  0.639 (0.046) 0.488 (0.029)  0.011 (0.010)
CHBN  0.668 (0.026) 0.591 (0.045)  0.567 (0.029)  0.019 (0.008)

LR 0.534 (0.048)  0.342 (0.059)  0.582 (0.081)  0.380 (0.237)
MLP 0.500 (0.055)  0.379 (0.067) 0.668 (0.075) 0.670 (0.232)
RBF 0.490 (0.071)  0.487 (0.067)  0.475 (0.116)  0.546 (0.294)
k-NN 0.604 (0.041)  0.592 (0.047)  0.400 (0.067)  0.329 (0.172)

1d3 0.462 (0.048)  0.457 (0.034)  0.478 (0.026)  0.500 (0.000)
SVM 0.500 (0.000)  0.500 (0.000)  0.500 (0.000)  0.500 (0.000)

Similarly to their performances on the BAUS datasets, highest AUCs in
three of the four pathological stages are obtained from BN techniques. The
best model for prediction of OC and EPE are respectively built using CHBN
and TAN. However, their AUC is much lower for EPE and close to zero for
LNT prediction where MLP performs best.

The CHBN and TAN structures presented in Figure 5 both show similar
patterns. For example, edges are modeled between the variable TRUS size
and PSA, MRI stage and IPSS symptoms. IPSS symptoms also appears as
an important node, with relationships with C'S, TRUS size and IPSS QoL.
We note that K2GA found that MRI stage is the only variable conditionally
dependent on PS. Finally, the pre-operative erection variable is isolated from
other variables.

Over all datasets, and among a pool of various classifiers, techniques using
BN offers the best AUC for PS prediction in 10 comparisons out of 12. Only
MLP outperforms other methods in two domains. This is observed when
MLP is applied on ARI-10 dataset and AUCs for SVI and LNI are measured.
k-NN, Id3 and SVM are generally clearly behind the other techniques in terms
of AUC.

5. Discussion

5.1. FExternal validation of Partin tables

As shown in Table 6, original Partin tables achieve lower c-indices when
applied to the BAUS data. This implies that when used on a UK population,
Partin tables have a lower predictive power than on the native data from
which they were derived. With a c-index below 0.70 for OC vs. EPE, Partin
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Figure 5: BN Structures learned from ARI-10 dataset

tables can be considered as having poor predictive power for patients falling in
these two categories. We recall that patients with OC and EPE pathological
stages are the most frequent cases in the BAUS dataset, as they count for
nearly 95% of the entire cohort. In addition, the decision making for radical
prostatectomy is strongly guided by the probabilities of a patient to have OC
or EPE conditions. Correct distinction between these two classes represents
thus the most important feature of the Partin tables. Furthermore, the
applicability and usefulness of predictive tools with a c-index lower than
0.70 has been questioned, although there is a lack of an accepted reference
threshold beyond which the use of a predictive model becomes unacceptable
50].

The AUC analysis also supports this assertion and is in keeping with the
trend seen in other validation studies [9-19]. In these studies, the AUC for
OC varies between 0.604 [17] and 0.817 [12].

There are several possible explanations for the reduced performance of
Partin tables when applied to a non-US population. Firstly, the original c-
indices for Partin tables were derived from internal validation, indicating that
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the same data was used to both generate and assess the tables. The result-
ing model should thus be very well suited for the population from which it
was derived but not for different populations. Secondly, the updated Partin
tables [8] were generated using a cohort of patients from a single institution.
The tables reflect therefore the local population’s demographics, genetic and
ethnic mix, disease trends, environmental and social factors and health care
system, and therefore may not perform as well on populations with differ-
ent characteristics. The BAUS cohort presents some fundamental differences
likely to affect the models predictive power. These differences may be due to
significant discrepancies in health care system policies between the US and
the UK. For instance, PSA screening is routinely practised in the US, while
it is not the case in the UK, and clearly UK patients undergoing prostatec-
tomy are presenting with a higher PSA, GS or clinical stage. Lymph node
dissection is also a domain that differs between UK and US policies. While
in the US, it is systematically performed on patients undergoing prostatec-
tomy, in the UK, it is reserved for patients presenting high PSA and high
GS. The lower rate of dissection in the UK may account for the differences
in c-indices and AUC for LNI in the different models, as this pathological
stage is only observed following dissection. Finally, the poor performance
may also be due to the categorization of the pre-operative variables. As has
already been shown, the disease characteristics and trends differ between the
two populations and as such the original Partin sub-grouping of variables
may not be entirely appropriate for the BAUS cohort.

Despite the overall low predictive power that can be associated with all
models built following Partin approach, UK derived lookup tables show a
better c-index. This observation supports our assertion that when applied
locally, lookup tables generated from a UK population may have higher pre-
dictive power than those generated from a population with inherently differ-
ent characteristics.

5.2. Importance of the methodology

To build and assess a predictive model, three main elements need to be
taken into consideration. The choice of the clagsifier is important but it can
only lead to good prediction if the input variables have been chosen carefully.
The quality of the data is also a key factor in the process of building a model.

Nine methods were applied to the different datasets. The AUCs of the
resulting models vary significantly. For example the AUCs for OC predic-
tion on BAUS-4 range between 0.525, using SVM, and 0.662, using NB.
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This results from the inherent characteristics and approaches of the different
methods, along with the type of data being used. BN techniques have an
overall higher predictive power than other methods. However, when mea-
sured on BAUS-4 and despite being statistically significant, the difference
in mean between NB and LR, the two best performing techniques, is small
(0.002). When applied on a dataset containing a larger number of variables,
such as BAUS-6, the difference between the two same techniques becomes
more marked (0.004). Similarly on ARI-10, LR is clearly outperformed in
mean by the best BN model, CHBN (0.134). The dimension of the dataset
impacts on the classifier’s abilities to produce high quality models. When
only four variables are involved, it is expected to see small differences in per-
formances between the methods as the joint probability distribution is easier
to model for low-dimensional data. When new variables are included in the
study, some classifiers can lead to complex models. For example, the Eu-
clidean distance, on which the k-NN algorithm is based, loses discriminating
power when applied on high dimensional data. This characteristic of k-NN is
illustrated when the variables age and ASA are included in the BAUS data
by a drop in terms of AUC for all class labels. The tree algorithm Id3 also
has difficulties in correctly classifying P.S on BAUS-6. Explanation can be
found by studying the final tree learned from data. With 6 variables, the
tree is composed of 382 leaves, against 54 when BAUS-4 is used for training.
This represents too many covariate patterns for Id3 to model using data of
such size. On the other hand SVM techniques are known for their good per-
formances on high dimensions. We suggest that the poor predictive power
presented by SVM on the BAUS datasets can be explained by the number
of variables being too few for this method.

As already mentioned, LR appears as a competitive solution for prostate
cancer staging. However, it does not outperform any of the selected alter-
native methods on any domain. A potential drawback of LR resides in the
hypothesis which states that all predictors are independent with each other.
This property is also considered in a NB. Although this statement can be
justified on BAUS-4 according to the performances of both LR and NB; it
does not seem justified on BAUS-6 and ARI-10. On these two datasets,
AUCs from TAN and CHBN are overall higher than those from NB and LR.
Besides, the associated BN structures reveal relationships between some of
the predictor variables. Independence between predictors can be assumed
on datasets with a few variables. However, with addition of extra features,
interactions are likely to appear that are beneficial for the model’s quality.
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The current version of Partin tables, based on LR may not suffer from the
previously discussed assumption, but experiments have shown that LR is not
the best method for PS classification. In addition, the performance gap with
other approaches such as BN appears to increase with the dimension of the
data to model.

When the first version of Partin tables was created [4], Chi-square tests
were performed along with LR. The aim was to discover the combination of
variables that best correlates with PS. Results led to the conclusion that
PSA, GS and CS should be used together, and age of patients removed from
the study. In the present study, experiments were run on two subsets of the
BAUS dataset. The AUCs of the models built from BAUS-6, including the
two new variables ASA and age, were higher than the ones obtained from
BAUS-4 with the same methods. Among these methods, LR produced a
better model when including age in the study, contradicting Partin’s original
assumption.

The quality of the data represents a key factor in the construction of a
predictive model. BAUS dataset is the result of a large scale data collection,
involving 57 different centers. Such data is extremely hard to gather as it
involves collaboration between institutions, standardization of the data and
ethical issues. As a consequence, some records had to be removed due to
inconsistencies. Although the size of the datasets finally used was highly re-
duced, it remains large with respectively over 1700 and 1500 patient records
for BAUS-4 and BAUS-6. The difficulties encountered in the data prepara-
tion process is to be taken into consideration as it reflects a current challenge
of medical data mining [51]. Local data represents a good opportunity to
explore ideas but can also suffer from too few records. Such difficulties were
observed on ARI-10 and caution should be taken when analyzing resulting
numbers. Another challenge resides in the skewed distribution of pathologi-
cal stages in both BAUS and ARI datasets. Representing around 1% of all
records, LNI condition is the most challenging stage to predict, and is illus-
trated by standard deviations higher than for other stages for most methods.
These results should also be treated carefully as they are likely to vary with
the data.

5.8. Performances and characteristics of Bayesian Networks

AUC measures show that the classifiers based on BN are better adapted to
prostate cancer staging than other methods from our selection. On BAUS-4,
NB outperforms TAN and CHBN. In other terms, setting the BN structure
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to one of its simplest form was beneficial over the use of heuristic search
for optimum networks. One could argue on the efficiency of the heuristic
employed in CHBN and TAN, but the metric on which the search is based
describes how well a structure reflects the data. The CH score assesses a
BN in a general way, thus without focusing on a particular variable. Scores
of the different BNs presented in Table 8 show that CH values are always
higher for CHBN than for TAN and NB as the search strategy aims at max-
imizing it. However, CH scores and AUCs for PS are not affected in the
same manner. A low CH score does not ensure that the corresponding AUC
for PS will be high. The development of NB and TAN was originally moti-
vated by this limitation on BN. These two restricted BNs are biased toward
a specific purpose, such as classification of a predefined variable. Their per-
formance on BAUS-4 comfort their efficiency on small dimensional datasets
over unrestricted networks.

However, as seen with NB, this is an efficient solution when the number
of variables to model is low, but shows limitation in other contexts. On
BAUS-6, the performances between NB and CHBN are close for OC predic-
tion and NB is outperformed by CHBN for EPE and SVI classification. In
a similar manner, experimental results on ARI-10 shows that NB has the
worst performances of the three BN methods for AUCs on OC and EPE.
In addition, CHBN presents with a AUC for OC of 0.668 against 0.604 for
the second best performing technique, k-NN. This important difference re-
flects the ability of the GA to find a good solution from a large space of
possible structures. Heuristic search appears like the right approach when
more features are included. Search and score algorithms benefit from using
datasets with a large number of variables. The larger search space associated
offers more possible dependencies between variables that are likely to further
improve the model’s predictive power.

The structures found by K2GA represent the most relevant relationships
associated with the data. On BAUS-4, the PS A variable is isolated from the
rest of the features and it results in a model with a lower predictive power
than the ones obtained from NB and TAN when setting PSA as dependent
on PS. This reflects the importance of PSA and is consistent with medical
understanding [4]. From the experimental results on BAUS-6 using K2GA
and TAN, PSA is also considered as conditionally dependent of PS. PSA
and ASA appear to be correlated with age, a medically meaningful finding.
In addition, the NB structure on BAUS-4 is retrieved when K2GA is run
on BAUS-6. C'S, GS and PSA are indeed linked with P9, illustrating that
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these variables are the most significant for PS. On ARI-10, only MRI stage
and GS are contained in the Markov blanket of the class variable PS. In
this latter model, only MRI stage and G'S are needed to infer a patient’s
pathological stage. The presence of MRI stage in PS’ Markov blanket while
CS is not is consistent with the fact that MRI is a more accurate means of
evaluating PS than DRE [52]. Other relationships were found to be relevant
with medical expectations, such as the dependency between TRUS size and
age and PSA [53], but others such as the relationship between MRI stage
and TRUS size raised questions regarding their medical meaning [54]. This
may be due to the small size of the ARI dataset implying that these results
should only be considered as exploratory.

6. Conclusion and further work

In this paper, we have assessed one of the major tools used clinically
for prostate cancer staging. The predictive power of Partin tables is much
lower when it is applied on a British population than it was when originally
measured on US data. In addition, a replicate Partin study shows that new
lookup tables also exhibit a low to moderate predictive power. A range of
alternative classifiers were selected and three datasets prepared in order to
assess different aspects of the methodology, including the inclusion of new
variables. Using the same variables as Partin, NB outperforms other tech-
niques for the prediction of any pathological stage. With the addition of new
variables, the difference in terms of predictive power between BN methods
and the others becomes more marked. The choice for LR as the most adopted
classifier to build Partin tables is not justified by our experiments. In addi-
tion, the inclusion of extra variables improves the quality of the prediction
for most of the techniques. Overall, BNs exhibit the best predictive power.
Their ability to deal efficiently with high dimensional data combined with
the use of heuristic search make them ideal classifiers for prostate cancer
staging. In addition, they provide comprehensible models where relation-
ships between variables can be revealed that enhance disease understanding.
Efforts should be made in improving data collection and a maximum number
of features should be included in the study to benefit fully from BN abilities.

This paper has shown that BNs are suitable for the modelling of prostate
cancer staging. In future work, BN should be applied to other medical prob-
lems as seen for ovarian [55] and breast [56] cancers in order to study their
generalizability. Data properties also play an important part in the perfor-
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mance of a classifier and the behavior of BN will be observed in greater details
when the size and the dimensionality of the data vary. The high proportion
of missing and inconsistent records in the data also indicates that techniques
to handle these problems need to be incorporated to our methods. Despite
the relatively good performances of CHBN and TAN, the metric upon which
the heuristic is based, did not reflect very accurately the predictive power of
the BN. Alternative metrics have been developed and it will be interesting
to assess how each of them affects the quality of the models with respect
to both structure discovered and classification. Finally, we believe BNs can
be used efficiently to produce clinical tools for prostate cancer staging and
help with current medical challenges. Efforts will be made to develop such
instruments in the future.
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