

AUTHOR(S):

TITLE:

YEAR:

Publisher citation:

OpenAIR citation:

Publisher copyright statement:

OpenAIR takedown statement:

 This publication is made
freely available under
________ open access.

This is the ___________________ version of proceedings originally published by _____________________________
and presented at __
(ISBN __________________; eISBN __________________; ISSN __________).

This publication is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

Evaluating Degrees of Tenant Isolation in
Multitenancy Patterns: A Case Study of

Cloud-hosted Version Control System (VCS)

Laud Charles Ochei, Andrei Petrovski

School of Computing Science and Digital Media
Robert Gordon University

Aberdeen, United Kingdom
Emails: {l.c.ochei,a.petrovski}@rgu.ac.uk

Julian M. Bass

School of Computing, Science and Engineering
University of Salford

Manchester, United Kingdom
Email: J.Bass@salford.ac.uk

Abstract—One of the key concerns of implementing multite-
nancy (i.e., serving multiple tenants with a single instance of an
application) on the cloud is how to enable the required degree
of isolation between tenants, so that the required performance
of one tenant does not affect other tenants. There is little re-
search which provides empirical evidence on the required degree
of isolation between tenants under different cloud deployment
conditions. This paper applies COMITRE (COmponent-based
approach to Multitenancy Isolation Through request RE-routing)
to empirically evaluate the degree of isolation between tenants
enabled by multitenancy patterns for cloud-hosted Version Con-
trol System (VCS). We implemented three multitenancy patterns
(i.e., shared component, tenant-isolated component, and dedicated
component) by developing a multitenant component using the
FileSystem SCM plugin integrated within Hudson. The study
revealed that dedicated component provides the highest degree
of isolation between tenants (compared to shared component
and tenant-isolated component) in terms of error% (i.e., the
percentage of errors with unacceptably slow response times) and
throughput. System load of tenants showed no variability, and
hence did not influence the degree of tenant isolation for all the
three multitenancy patterns. We also provide some recommenda-
tions to guide an architect in implementing multitenancy isolation
on similar VCS tools like Subversion and CVS.

Keywords—Multitenancy, Degree of Isolation, Tenant, GSD-
tools, Cloud Deployment Pattern.

I. INTRODUCTION
One of the key challenges of implementing multitenancy

is how to enable tenant isolation (hereafter referred to as
multitenancy isolation) between tenants sharing components of
an application, for example, cloud-hosted application [1][2].
As software tools are increasingly being deployed on the
cloud for software development, there is need to properly
isolate tenant’s code files and processes so that the required
performance, stored volume, and access privileges of one
tenant does not affect other tenants.

There are varying degrees of isolation between tenants
when sharing application components. For example, special
configurations of individual tenants, and laws and corporate
regulations may imposed a higher degree of isolation between
tenants sharing a particular component. The challenge for a
cloud deployment architect would be how to select the right
multitenancy patterns(or combinations of patterns) to resolve

the trade-offs between the required performance, systems re-
sources and access privileges at different levels of a cloud-
hosted application.

Motivated by this problem, this paper applies COMITRE
(Component-based approach to Multitenancy Isolation through
Request Re-routing (COMITRE) [3] to empirically evaluate
the degree of isolation between tenants enabled by multite-
nancy patterns under different cloud deployment conditions.
Fehling et al [1], captured the degree of isolation between
tenants in three multitenancy patterns, and also proposed that
the degree of isolation between tenants is the main difference
between these patterns. However, these patterns have never
been evaluated to measure the actual degree of tenant isolation
for applications within the domain of cloud-hosted VC systems
such as Subversion, CVS, and Perforce. Version control is
a key software development practice used to support teams
involved in Global Software development [4][3] [5].

The research question this paper addresses is: “How can
we evaluate the degree of isolation between tenants en-
abled by multitenancy patterns for cloud-hosted Version
Control System”. By evaluating the degrees of multitenancy
isolation, we mean comparing the effect of performance (e.g.,
response times) and resource utilization (e.g., CPU) on tenants
deployed based on different multitenancy patterns when one
of the tenants experiences high workload. Three multitenancy
patterns (i.e., shared component, tenant-isolated component
and dedicated component) were implemented by exposing
the functionality of each pattern as a plugin integrated with
Hudson deployed on a private cloud (i.e., Ubuntu Enterprise
Cloud-UEC). Thereafter, we evaluated the degree of isolation
for each pattern both at the process isolation and data isolation
levels, as it affects tenants interaction with Version control
system.

The main contributions of this paper are:
1. Applying COMITRE to implement multitenancy isolation
for cloud-hosted version control system.
2. Evaluating empirically the degree of isolation between
tenants enabled by multitenancy patterns under different cloud
deployment conditions.
3. Presenting recommendations and best practice guidelines to
guide a cloud deployment architect when implementing mul-
titenancy isolation on a cloud-hosted Version Control system.

The rest of the paper is organized as follows - section
two gives an overview of the basic concepts related to de-
ployment patterns for Cloud-hosted GSD tools, with particular
reference to multitenancy patterns, and tenant isolation. In
section three, we discuss the research methodology including
GSD tool selection and the development of an approach for
implementing multitenancy isolation. Section four presents the
evaluation which covers the case study, experimental setup and
procedure. In section five, we present the results of the study
and then discuss the implications of the results in section six.
The recommendations and limitations of the study are detailed
in section seven and eight respectively. Section nine concludes
the paper with future work.

II. MULTITENANCY PATTERNS FOR CLOUD-HOSTED GSD
TOOLS.

A. Cloud-hosted GSD Tool and Software Processes.
Definition 1: Global Software Development. Global Software
Development means the splitting of the development of the
same software product or service among globally distributed
sites [6].
Definition 2: Cloud-hosted GSD tools. “Cloud-hosted GSD
tools” are collaboration tools used to support GSD processes in
a cloud environment [5]. We adopt the: (i) NIST Definition of
Cloud Computing to define properties of cloud-hosted GSD
tools; and (ii) ISO/IEC 12207 as a classification frame for
defining the scope of a GSD tool. Three examples of widely
used Global software development processes are: continuous
integration, version control and issue/error tracking [4] [5]. In
the next section, we will discuss about version control which
is the focus of this paper.

B. Relevance of Version Control Process in Global Software
Development
Definition 3: Version Control. Version control is the process
of tracking incremental versions of files and, in some cases,
directories over time, so that specific versions can be recalled
later [7]. In Global software development, version control
systems are being relied upon as a communication medium
for developers in a software development team. For example,
viewing past revisions and changesets is a valuable tool to see
how your project has evolved and for reviewing teammates
code.

There are two main categories of version control systems:
centralized (e.g., Subversion) and distributed (Git and Mer-
cury). This paper focuses on the centralized version control
system, which works in a client and server relationship. That
is, the repository is located in one place and provides access
to many clients. It can be likened to a scenario where an FTP
client connects to an FTP server. All changes and commits by
users are sent and received from the central repository.

C. Cloud Deployment Patterns for Multitenancy Isolation
Definition 4: Cloud deployment patterns. “Cloud deploy-
ment patterns” are architectural patterns which embodies de-
cisions as to how elements of the cloud application will
be assigned to the cloud environment where the application
is executed [5]. The notion of Cloud deployment pattern is
similar to the concept of (architectural) deployment patterns
[8], cloud computing patterns [1]. Architectural and design
patterns have long been used to provide known solutions to
a number of common problems facing a distributed system
[9, 8].

Definition 5: Multitenancy isolation. We define “Multi-
tenancy isolation” as a way of ensuring that the required
performance, stored data volume and access privileges of one
tenant does not affect other tenants accessing the compo-
nent/functionality of a shared application component.
Definition 6: Application Component. We present an in-
formal definition of an “Application Component” as an en-
capsulation of a functionality that is shared between multiple
tenants. An application component could be a communication
component (e.g., message queue), data handling component
(e.g., databases, tables), processing component (e.g., load
balancer), or a user interface component (e.g., AJAX).

D. Evaluating Degree of Multitenancy Isolation
Multitenancy isolation can be captured in three main cloud

patterns: shared component (i.e., tenants share the same re-
source instance, and are unaware of other tenants), tenant-
isolated component (tenants share the same resource and their
isolation is guaranteed) and dedicated component (i.e., tenants
do not share resource, though each tenant is associated with
one instance (or certain number of instances) of the resource)
[1].

The three main aspects of tenant isolation are: performance,
stored data volume and access privileges [1]. For example,
in performance isolation, other tenants should not be affected
by the workload created by other tenants. Any of the three
multitenancy patterns can be used to achieve varying degrees
of isolation between tenants. The dedicated component gives
the highest degree of isolation but at a high running cost and
high resource consumption. The shared component gives the
lowest degree of isolation but allows for better resource sharing
leading to better resource utilization.

The lack of performance guarantee (i.e., performance iso-
lation) is one of the major challenges facing users of cloud-
hosted applications [10]. Guo et al [11] evaluated different
isolation capabilities related to authentication, information
protection, faults, administration etc. A closely related work
to ours is that of Walraven et al [12] where they implemented
a middleware framework for enforcing performance isolation.
He used a multitenant implementation of a hotel booking
application deployed on top of a cluster for illustration. Krebs
et al [13] implemented a multitenancy performance benchmark
for web application based on the TCP-W benchmark. Other
works related to multitenancy isolation can be found in [2]
[14] [15]

Krebs et al [16] acknowledged that performance related
issues are often caused by a minority of tenants with high
workloads. The focus of this paper is providing empirical
evidence of the effect of performance and resource utilization
on other tenants due to high workload created by one of the
tenants. We implemented multitenancy component using the
FileSystem SCM plugin integrated into Hudson in a real cloud
environment. The implementation represents a typical cloud
deployment of a version control process based on multitenancy
patterns.

III. METHODOLOGY
A. Selecting the GSD Tools and Software Processes

There are several software processes that have been found
to have the most impact on Global Software Development.
Examples of three key processes are: continuous integration,
source/version control and issue/bug tracking [5, 17]. We
conducted an empirical study in a previous study to select three

open-source GSD tools to represent these software processes:
Hudson [18], Subversion [7] and Bugzilla [19]. The empirical
study was conducted to find out: (1) the type of GSD tools
used in large-scale distributed enterprise software development
projects; and (2) what tasks/software processes they utilize the
GSD tools for. See Ochei et al [5] and Bass [17] for details.
This paper focuses on applying our approach (i.e., COMITRE)
to implement multitenancy in a version control system.

B. Applying COMITRE to Implement Multitenant Isolation
We applied COMITRE to evaluate multitenancy Isolation

in a Version Control system. Fig. 1 shows the structure
of COMITRE. It captures the essential properties required
for the successful implementation of multitenancy isolation
while leaving large degrees of freedom to cloud deployment
architects depending on the required degree of isolation be-
tween tenants. The actual implementation of the COMITRE
is anchored on shifting the task of routing a request from the
server to a separate component (e.g., Java class or plugin) at
the application level of the cloud-hosted GSD tool. The full
explanation of COMITRE plus the step-by-step procedure and
the algorithm that implements it can be seen in Ochei et al
[3].

Figure 1. COMITRE Architecture

C. Validating the Implementation of Multitenancy Isolation
We validate our approach (i.e., COMITRE) for implement-

ing multitenancy isolation both in theory and in practice. We
first validated each multitenancy pattern in theory as follows:
(i) carefully analyzed the class diagrams and description of the
implementation of the three multitenancy pattern as presented
by Fehling et al [1] and other related sources [20] [21]; (ii)
systematically cross-checked our implementation against that
proposed by other researchers; and (iii) Examined that our
implementation is compliant with how clients (i.e., tenants)
access a multitenant component.

We also demonstrate the practicality of our approach by
applying it to implement the three multitenancy patterns on
FileSystem SCM plugin integrated within Hudson., a widely
used open-source GSD tool for continuous integration. Experts
and researchers in the field of cloud deployment patterns
and Global Software Development have confirmed that the
implementation of multitenancy isolation together with the
output represents the behaviour of tenants interacting with a
shared functionality/component of a cloud-hosted application.

IV. EVALUATION
In the following, we present the experimental setup and

the case study we have used in this study. This paper uses

the File System SCM plugin to illustrate the version control
process because we want to simulate the process on a local
development machine. Specifically, we want to point the build
configuration to the locally checked out code and modified files
on a shared repository residing on a private cloud. Filesystem
SCM plugin can be used to simulate the file system as a source
control management (SCM) system by detecting changes such
as the file system’s last modified date [22]. This plugin can
be integrated into several GSD tools: continuous integration
systems (e.g., Hudson), version control systems (e.g., perforce,
Git) and error/issue tracking system (e.g., JIRA). Another
plugin that can be used within Hudson for this experiment is
SVNKit, a Java software library for working with Subversion.

In our experiments, we integrated this plugin into Hudson
because we are assuming a scenario where a code file is
checked into a shared repository for Hudson to build. We
implemented multitenancy isolation by modifying this plugin
within Hudson. This involved introducing a Java class into
the plugin that accepts a file path and the type of file(s) that
should be included when checking out from the repository into
Hudson workspace. During execution, the plugin is loaded into
a separate class loader to avoid conflict with Hudson’s core
functionality.

A. Experimental Setup and Procedure
1) Experimental Setup: The experimental setup consist of

a private cloud setup using Ubuntu Enterprise Cloud (UEC),
an open-source private cloud software that comes with Eu-
calyptus. The private cloud consist of six physical machines-
one headnode and five sub-nodes based on the typical minimal
Eucalyptus configuration [23].

2) Experimental Design: A set of four tenants (T1, T2,
T3, and T4) are configured into three groups to access an
application component deployed using three different types of
multitenancy patterns (i.e., shared component, tenant-isolated
component, and dedicated component). Each pattern is re-
garded as a group in this experiment. We also created two
different scenarios for all the tenants (see section IV D for
details of the two scenarios). In addition, we also created a
treatment for configuring T1 (see section IV D for details of
the treatment). For each group, one of the four tenants (i.e., T1)
is configured to experience a demanding deployment condition
(e.g., large instant loads) while accessing the application com-
ponent. Performance metrics (e.g., response times) and systems
resource consumption (e.g., CPU) of each tenant are measured
before the treatment (Pre Test) and after the treatment was
introduced.

Based on this information, we adopt the Repeated Mea-
sures Design and Two-way Repeated Measures (within-
between) ANOVA for the experimental design and statistical
analysis respectively, as previously used by Ochei et al [3]. The
aim of the experiment is to evaluate the degrees of isolation of
multitenancy patterns for cloud-hosted Version Control system.
The hypothesis we are testing is that the performance and
system’s resource utilization experienced by tenants accessing
an application component deployed using each multitenancy
pattern changes significantly from the pre-test to the post test.

3) Experimental Procedure: In our experiments, we imple-
mented multitenancy isolation, by modifying the Filesystem
SCM plugin integrated within Hudson for handling tenant’s
request to its shared component. A summary of the experi-
mental procedure we adopted can be seen in Ochei et al [3].

A typical version control process during Global Software
Development involves a combination of continuous integration
(i.e., building a code file), checkouts (i.e., file download),
checkins (i.e., file upload), and updating and synchronizing
files with the latest version from the repository. A detailed
experimental procedure considered in this paper translates into
the following steps:
1. The first step is to put a new file to the repository for the
first time. To achieve this, we used the HTTP request sampler
in JMeter to send request to Hudson to trigger a build. Within
Hudson, we used the ”Execute Shell” feature to execute a shell
script. This shell script simply selects the initial contents of a
MySQL database (i.e., used here to represent a shared data
handling component) and then outputs it into two separate
files (referred to as file1 and file2). The first file (i.e., file1)
represents the local working copy and the second file (i.e.,
file2) represent the main copy.
2. The second step is to check out the copy of the new file
to the local machine. To implement this in JMeter, we used
the FTP request sampler and then selected the get (RETR)
to download the file from the repository. In effect, this action
downloads file1 from the repository into a local machine and
saves it as file3.
3.The third step involves making changes to the file by
inserting records into the Mysql database and then outputting
the latest content to the local working copy. To simulate this we
used a BeanShell Sampler in JMeter to invoke a custom Java
class. This Java class is specifically written to insert records
into Mysql database and then updates file3 with the latest
content of the database.
4.The last step is to checkin file3 back into the repository with
a timestamp message (”Row added at 2015-01-01-00.00.01”).
To implement this in JMeter, we again used the FTP request
sampler and then selected the put (STOR) to upload the file
to the repository and appends the content to file2.

To measure the effect of tenant isolation, we introduce a
tenant that experiences a demanding deployment condition. We
configured tenant 1 to simulate a large instant load by:
(i) increasing the number of requests using the thread count and
loop count; (ii) increasing the size of the requests by attaching
a large file to it; (iii) increasing the speed at which the request
are sent by reducing the ramp-up period by one-tenth so that all
the requests are sent ten times faster; and (iv) creating a heavy
load burst by adding the Synchronous Timer to the Samplers
in order to add delays between requests such that a certain
number of request are fired at the same time. This treatment
type is similar to unpredictable (i.e., sudden increase) workload
[1] and aggressive load [12].

Each tenant request is treated as a transaction composed of
the three types of request: HTTP request, FTP request, and File
I/O operation. JMeter Transaction controller was introduced to
take the aggregate measurement of all the requests involved
in the end-to-end action sequence of the scenario. The setup
values for experiment are as follows: (1) No of threads =
2; (2) Thread Loop count = 5; (3) Loop controller count =
4 for tenant 1, and 2 for all other tenants for each type of
request sent (i.e., HTTP request, Beanshell, and FTP request
samplers); (4) Ramp-up period of 6 seconds for tenant 1 and 60
seconds for all other tenants; and (5) Total number of expected
requests = 480. With this setup, it means tenant 1 sends two
times the number of requests of the other tenants, and also 10
times faster to simulate an aggressive load. We performed 10

iterations for each run and used the values reported by JMeter
as a measure for response times, throughput and error%. The
error% is computed as the percentage of the total number of
request (i.e., in the end-to-end sequence of version control
process) whose response time is unacceptably slow and above
which the request is considered a failure. Statistically, this
translates to response time greater than the upper bound of
the 95% confidence interval of the average response time
of all requests. For system activity, we reported the average
CPU, memory, disk I/O and system load usage at one-second
interval.

B. Case Studies of Multitenancy Isolation
We present two case studies to evaluate the effect of

multitenancy isolation at both data level and process level
during an automated version control process. Fig. 2 captures
the architecture of multitenancy Isolation at the data level. For
multitenancy isolation at the process isolation, the component
that is being shared is a lock object [3]. The two case studies
are explained as follows:
Case Study 1 - Data Isolation during Version Control: To
achieve this, we configured the data handling component in
a way that isolates the data of different tenants (see Fig.
2). In our experiments, this case study maps to Scenario 1-
Variation in request arrival rate. It represents a case where
there is variation in the frequency with which code changes
are committed to the source code to trigger a build process. To
simulate this behaviour in JMeter, we simply add the Gaussian
Random Timer to the Samplers.
Case Study 2 - Process Isolation during Version Control: To
achieve this, we introduce the concept of database isolation
level which is used to control the degree of locking that occurs
when inserting data into a database [24]. In our experiments,
this case study maps to Scenario 2-Lock duration. It repre-
sents a case where a tenant that first accesses an application
component locks (or blocks) it from other tenants until the
transaction commits. To simulate this behaviour, we used the
JMeter Beanshell sampler to invoke a custom Java class that
runs a query that sets the database transaction isolation level
to SERIALIZABLE (i.e., the highest isolation level).

Figure 2. Multitenancy Data Isolation Architecture

V. RESULTS
We first performed the two-way (within-between) ANOVA

to determine if the groups had significantly different changes
from Pre-test to Post-test. Thereafter, we carried out planned
comparisons involving the following:

Figure 3. Changes in response time for each pattern relative to other
patterns-1

Figure 4. Changes in error% for each pattern relative to other patterns-1

Figure 5. Changes in throughput for each pattern relative to other patterns-1

(i) a one-way ANOVA followed by Scheffe post hoc tests to de-
termine which groups showed statistically significant changes
relative to the other groups. The Dependent variable used in
the one-way ANOVA test was determined by subtracting the
Pre-test from Post-test values.
(ii) a paired sample test to determine if the subjects within any
particular group changed significantly from pre-test to post-
test measured at 95% confidence interval. This would give an
indication as to whether or not the workload created by one
tenant has affected the performance and resource utilization of
other tenants. We used the “Select Cases” feature in SPSS
to select the three tenants (i.e., the T2,T3,T4 that did not
experience large instant loads) for each pattern and for each
deployment scenario giving a total of 6 cases for each metrics

Figure 6. Changes in CPU for each pattern relative to other patterns-1

Figure 7. Changes in memory for each pattern relative to other patterns-1

Figure 8. Changes in disk I/O for each pattern relative to other patterns-1

Figure 9. Changes in system load for each pattern relative to other patterns-1

that was measured.
To answer the questions outlined above, we analyzed the

plots of estimated marginal means of change shown in Fig.
3 to Fig. 9 in combination with ANOVA (plus post hoc test)
and paired sample test results from SPSS output. The quasi-
independent variable is nominally scaled in SPSS, and so
we changed the interpolation line to a bar chart to give a
meaningful interpretation of the result. Table 1 summarizes
the effect of Tenant 1 (i.e., the tenant that experiences high
load) on the other three tenants (T2, T2, T4). The key used
in constructing the table is as follows: YES - represents a
significant change between the metrics from pre-test to post
-test. NO - represents some level of change which cannot be
regarded as significant; no significant influence on the tenants.
The symbol “-” implies that the standard error of the difference
is zero and hence no correlation and t test statistics can be
produced. This means that the difference between the pre-
test and post test values values are nearly constant with no
chance of variability. Due to space limitations, we show only
the Estimated Marginal Means of Change of the measured
parameters for scenario 1.
(1) Response times: The Post hoc test revealed that none of
the patterns showed significant change relative to the other
patterns. However, Table 1 (i.e., the paired sample t test)
showed that the response times of tenants changed significantly
from pre-test to post test for all the patterns, except tenant-
isolated under scenario 2. As tenant-isolated component is in
the middle most times the results are either close to shared
component or dedicated component. As expected, the plot of
the estimated marginal means of change shows that response
times for shared component and tenant-isolated component
changed significantly the most for tenants exposed to the
deployment conditions of both scenarios.
(2) Error%: The patterns did not show significantly different
changes from pre to post test. The post hoc test showed that
that the groups did not change significantly in comparison to
the other groups. The paired t-test also showed that tenants did
not also change significantly from pre test to post test under
all the scenarios.
(3) Throughput: The statistical analysis showed that the pat-
terns had significantly different changes from Pre to Post for
tenants exposed to only the deployment conditions of scenario
1. None of the patterns showed a significant change relative to
the other patterns for scenario 2 (i.e., effect of lock duration).
Further analysis using the Post hoc test showed that there was
no significant difference between the Shared component and
the dedicated component. However, the paired sample t-test
revealed that the throughput of tenants changed significantly
from pre-test to post test for all the patterns in both scenarios.
(4) CPU and Memory usage: The statistical analysis of CPU
showed that the patterns had significantly different changes
from Pre to Post for both scenarios. The paired sample t-test
also showed that the CPU of tenants changed significantly from
pre-test to post test for all the patterns.

For memory, none of the patterns showed a significant
change relative to each other. The paired sample t-test revealed
that the memory of tenants changed significantly from pre-test
to post test only for shared component.
(5) Disk I/O: The statistical analysis of disk IO showed that
the patterns had significantly different changes from Pre to
Post. Further analysis using the Post hoc test showed that the
change the shared component showed was not significant in

comparison to the change the dedicated component showed.
The paired sample t-test revealed that the disk I/O of tenants
changed significantly from pre-test to post test for all the
patterns under all the scenarios.
(6) System Load: Table 1 showed that system load (measured
as one-minute load average reported by SAR-ldavg) did not
show any variability in the values from pre-test to post-test.
This is similar to the result obtained in Ochei et al [3] where
the authors evaluated the degrees of multitenancy isolation for
cloud-hosted continuous integration using Hudson.

VI. DISCUSSION
(1) Response times: The results show that while none

of the patterns changed significantly in comparison to the
other patterns, the tenants within all the groups (i.e., the
patterns) changed significantly from pre-test to post-test when
one of the tenants is exposed to large instant workloads during
version control. From Fig. 3, one would recommend dedicated
component for carrying out version control process since it is
the least influenced among the three patterns. That is, we do
not recommend using shared component and tenant-isolated
component to improve response time.
(2) Error%: Based on Fig. 4, the error% of tenants accessing
the shared patterns changed the least among the three other
patterns for both scenarios. One would therefore recommend
the shared component when there is low bandwidth or slow
network connection. The most expensive part of a typical
version control system is retrieving data (e.g., FTP downloads)
from a shared repository [7]. The response times of key
individual components of the end-to-end action sequence of
the version control process such as FTP upload and FTP
download may have contributed to the extremely slow response
times for tenant-isolated and dedicated component. It may
be challenging to know what can be regarded as a very
slow or extremely slow response times. Bauer and Adams
[2] recommends that the maximum acceptable service latency
(i.e., response time) should be 10-20 times greater than the
50th percentile for users of a cloud-hosted application. To
further avoid high response times which could lead to other
forms of errors, users of subversion, a widely used version
control system, are advised to access the shared repository
using accounts setup using svnserve or Apache HTTP server
with the right ownership and file permissions [7].
(3) Throughput: The plot of the estimated marginal means of
change from Fig. 5 showed a negative change. This means that
the throughput of other tenants actually decreased in response
to an increase in response times when one of the tenants is
exposed to large instant loads. We therefore would recommend
dedicated component for tenants accessing a shared application
component since the estimated marginal means of change
remained unchanged in both scenarios in comparison to the
other patterns.
(4) CPU and Memory usage: Fig. 6 and Fig. 7 shows that
the magnitude of change in CPU consumption for scenario 1
was not consistent, although it was slightly more for shared
component than the other patterns. For scenario 2, response
times increased steadily across the three patterns with the
dedicated component being the most influenced. The dedicated
component is therefore not recommended as the multitenancy
pattern of choice for applications involved in a process that
may lock/block other tenants from accessing a shared ap-
plication component. For memory, the magnitude of change

TABLE I. PAIRED SAMPLES TEST ANALYSIS OF TENANT ISOLATION

Pattern Response times Error% Throughput CPU Memory Disk I/O System Load
Scenario 1

Shared YES NO YES YES YES YES YES
Tenant-isolated YES NO YES YES NO YES -
Dedicated YES NO YES YES NO YES -

Scenario 2
Shared YES NO YES YES YES YES -
Tenant-isolated NO NO YES YES YES YES YES
Dedicated YES NO YES YES YES YES -

for the shared component was clearly more than the other
three patterns. Therefore we would not recommend the shared
component when using a memory intensive applications or
there is a need for a better memory utilization.
(5) Disk I/O: The change in disk I/O consumption for tenant-
isolated component and dedicated component was nearly the
same for tenants accessing the shared application component
deployed under scenario 1. Therefore there would be no much
difference if either of them is used. The change in disk I/O
consumption for shared component and dedicated component
was also nearly the same for tenants accessing a shared
application component deployed under scenario 2. Although,
there was no significant difference between the shared and ded-
icated component we would still recommended the dedicated
component since each tenant would have exclusive access to
the shared application component, thereby reducing contention
and high disk I/O consumption rate.
(6) System Load: From Table 1, it can be seen that system
load showed no chance of variability, especially for dedicated
component. This means that system load did not influence
any of the patterns when tenants were exposed to all the
deployment conditions considered in this study. This implies
that with a reasonably high-speed network connection, there
should be no problem with system load when a version control
system is used to send data across a shared repository residing
in a company’s LAN or VPN.

VII. RECOMMENDATIONS
Based on the experience we have gathered while working

with cloud-hosted GSD tools and consulting with experts on
a number of software projects, we present in the following
various options within a version control system that could be
explored to implement multitenancy isolation at the file based
level. In addition we also present factors that could influence
the degree of isolation between tenants.

Most version control systems (e.g., Subversion) recognizes
the existence of a system-wide configuration area. This gives
system administrators the ability to establish defaults for all
users on a given machine. The first time the svn command-
line client is executed, it creates a per-user configuration area.
On Unix-like systems, this area appears as a directory named
.subversion in the user’s home directory. This feature can be
used to implement a low - medium degree of isolation between
tenants based on, for example, shared component or tenant-
isolated component.

In subversion, unversioned files resulting from program
compilation can be excluded using Subversion global-ignores
(i.e., a whitespace-delimited list of names of files and direc-
tories not displayed unless they are versioned). Examples of
default values are: *.o *.lo *.la *.al .libs *.so *.so.[0-9]* *.a .
A Similar feature named ‘Enable Filtering” in the File System

SCM plugin can be used to either include or exclude certain
files (in the form of wildcard) while uploading or downloading
to the repository. This feature can be used to implement a very
high degree of isolation using the dedicated component.

The following factors could influence the degree of multi-
tenancy isolation and care should be taken to avoid them when
implementing multitenancy in a version control system:
(1) It is less safe when a version control system is used with
a repository storage through a shared filesystem. For example,
in Subversion it is safe as a single server-process running as
one user.
(2) Most version control systems (e.g, subversion and Git) store
additional copies of data on the local machine, which can be
an issue for large projects or files or if developers work on
multiple branches simultaneously. There are features within
most version control systems that can help to save disk space.
For example, the “Discard old builds” feature could be used to
limit the number of builds allowed to be remain in the system.
The “Clear Workspace” feature on the File System SCM plugin
can be used to delete all existing files/sub-folders in workspace
before checking-out.

VIII. LIMITATIONS OF THE STUDY
The study used (an open-source) FileSystem SCM plugin

to trigger the version control process. This means that the focus
is not on a particular version control tool but on the software
development process (i.e., version control). The number of
requests sent to the application component was within the
limit of the private cloud used (i.e., Ubuntu Enterprise Cloud).
Therefore, the results of this study applies to private clouds
and should not be generalized to large public clouds.

In this study, multitenancy isolation was implemented on
the application level of the cloud stack by capturing the tenant-
id associated with requests and re-routing them to different
components configured for each tenant. This approach is very
useful in a resource constrained environment where duplicating
the deployment of the VM instance for each tenant is costly, for
instance in terms of time, bandwidth and resource consumption
(i.e., using a large number or size of VM instance).

This study assumes that a small number of users sends
multiple request across the network; it would be interesting to
replicate this study in a large private cloud infrastructure (using
other version control tools like Subversion) to investigate the
effect of a large number of users. The most common challenge
while conducting experiments was that of insufficient memory
and file or directory permission issues (e.g., when setting FTP
request configurations). This problem becomes more acute
when moving the VM image instance (whose file permission
had been set on a local machine) to the cloud infrastructure.
Therefore it is necessary to get repository ownership and
permissions right before conducting the experiments.

IX. CONCLUSION AND FUTURE WORK
In this paper, we have applied COMITRE (Component-

based approach to Multitenancy Isolation through Request Re-
routing), to contribute to literature on multitenancy isolation
for cloud-hosted Version Control Systems by showing how to
evaluate the degree of isolation between tenants enabled by
multitenancy patterns.

We implemented three multitenancy patterns (i.e., shared
component, tenant-isolated component and dedicated compo-
nent) by modifying the FileSystem SCM Plugin (integrated
within Hudson) and deploying it as a Virtual Machine (VM)
instance to the Ubuntu Enterprise Cloud (UEC) private cloud.
The study revealed that dedicated component provides the
highest degree of isolation between tenants (compared to
shared component and tenant-isolated component) especially
with respect to error% (i.e., the percentage of errors with unac-
ceptably slow response times) and throughput. Response times,
CPU and memory consumption had the most negative impact
on tenant isolation when exposed to demanding deployment
conditions (e.g, large instant loads) for all the multitenancy
patterns. System load did not influence tenants accessing
components deployed based on all of the multitenancy patterns.
The study recommends that during version control, the shared
application component should reside in a repository on a cloud
infrastructure with a high-speed connection and a reasonably
large CPU and memory size.

We also plan to apply COMITRE to a case study involving
an error/issue tracking system (e.g., Bugzilla) in a robust
cloud infrastructure. Thereafter, we will carryout a cross-case
analysis involving a comparison of the commonalities and
differences in the processes found in several case studies.
This will result in a pattern selection framework for deploying
cloud-hosted GSD tools.

ACKNOWLEDGMENT
This research was supported by the Tertiary Education Trust
Fund, Nigeria, and Robert Gordon University, UK.

REFERENCES
[1] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and

P. Arbitter, Cloud Computing Patterns. Springer, 2014.
[2] E. Bauer and R. Adams, Reliability and availability of

cloud computing. John Wiley & Sons, 2012.
[3] L. Ochei, A. Petrovski, and J. Bass, “Evaluating degrees

of multitenancy isolation: A case study of cloud-hosted
gsd tools,” 2015 IEEE International Conference on Cloud
and Autonomic Computing (ICCAC).

[4] J. Portillo-Rodriguez, A. Vizcaino, C. Ebert, and M. Pi-
attini, “Tools to support global software development
processes: a survey,” in Global Software Engineering
(ICGSE), 2010 5th IEEE International Conference on.
IEEE, 2010, pp. 13–22.

[5] L. Ochei, A. Petrovski, and J. Bass, “Taxonomy of de-
ployment patterns for cloud-hosted applications: A case
study of gsd tools,” 2015, seventh International Con-
ference on Cloud Computing, Grids, and Virtualization
(CLOUD COMPUTING 2015).

[6] F. Lanubile, “Collaboration in distributed software devel-
opment,” in Software Engineering. Springer, 2009, pp.
174–193.

[7] B. Collins-Sussman, B. Fitzpatrick, and M. Pilato, Ver-
sion control with subversion (For Subversion 1.7: Com-
piled from r4561). O’Reilly, 2011.

[8] L. Bass, P. Clements, and R. Kazman, Software Architec-
ture in Practice, 3/E. Pearson Education India, 2013.

[9] J. Vlissides, R. Helm, R. Johnson, and E. Gamma,
“Design patterns: Elements of reusable object-oriented
software,” Reading: Addison-Wesley, vol. 49, p. 120,
1995.

[10] bitcurrent. Bitcurrent cloud computing survey
2011. [Online: accessed in October 2014 from
http://www.bitcurrent.com/download-file/?fid=2476].

[11] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao,
“A framework for native multi-tenancy application devel-
opment and management,” in E-Commerce Technology
and the 4th IEEE International Conference on Enter-
prise Computing, E-Commerce, and E-Services, 2007.
CEC/EEE 2007. The 9th IEEE International Conference
on E-Commerce Technology. IEEE, 2007, pp. 551–558.

[12] S. Walraven, T. Monheim, E. Truyen, and W. Joosen,
“Towards performance isolation in multi-tenant saas ap-
plications,” in Proceedings of the 7th Workshop on Mid-
dleware for Next Generation Internet Computing. ACM,
2012, p. 6.

[13] R. Krebs, A. Wert, and S. Kounev, “Multi-tenancy per-
formance benchmark for web application platforms,” in
Web Engineering. Springer, 2013, pp. 424–438.

[14] F. Chong and G. Carraro. Architecture strategies
for catching the long tail. technical report,
microsoft. [Online: accessed in February
2015 from https://msdn.microsoft.com/en-
us/library/aa479069.aspx].

[15] IEEE. Cloud profiles working group (cpwg).
[Online: accessed in February 2015 from
http://standards.ieee.org/develop/wg/CPWG-
2301...WG.html].

[16] R. Krebs, C. Momm, and S. Kounev, “Architectural
concerns in multi-tenant saas applications.” CLOSER,
vol. 12, pp. 426–431, 2012.

[17] J. Bass, “How product owner teams scale agile methods
to large distributed enterprises,” Empirical Software En-
gineering, pp. 1–33, 2014.

[18] M. Moser and T. O’Brien. The hud-
son book. Oracle, Inc., USA. [Online].
Available: http://www.eclipse.org/hudson/the-hudson-
book/book-hudson.pdf

[19] Bugzilla.org. The bugzilla guide. [Online: accessed in
October 2014 from http://www.bugzilla.org/docs/].

[20] MSDN. Multi-tenant data architecture. Mi-
crosoft Corporation. [Online]. Available:
https://msdn.microsoft.com/en-gb/library/hh534480.aspx

[21] O. D. Concepts. Introduction to the
multitenancy architecture. [Online]. Available:
docs.oracle.com/database/121/CNCPT/cdbovrvw.htm

[22] Hudson. Files found trigger. [Online: accessed
in October 2014 from http://wiki.hudson-
ci.org//display/HUDSON/Files+Found+Trigger].

[23] D. Johnson, M. Kiran, R. Murthy, R. Suseen-
dran, and G. Yogesh. Eucalyptus beginner’s guide -
uec edition. [Online: accessed in April, 2015 from
http://www.csscorp.com/eucauecbook].

[24] Oracle. Oracle database concepts 10g release
1 (10.1). Oracle Corporation. [Online]. Available:
http://docs.oracle.com/cd/B1203701/server.101/.../toc.htm

	coversheetConferences
	OCHEI 2015 Information Society
	Ochei 2015 IEEE i-Society Covernote
	Evaluating degrees of tenant isolation in multitenancy

	OA: GREEN
	OA Logo:
	AUTHORS: OCHEI, L.C., PETROVSKI, A. and BASS, J.M.
	TITLE: Evaluating degrees of tenant isolation in multitenancy patterns: a case study of cloud-hosted version control system (VCS).
	YEAR: 2015
	Publisher citation: OCHEI, L.C., PETROVSKI, A. and BASS, J.M. 2015. Evaluating degrees of tenant isolation in multitenancy patterns: a case study of cloud-hosted version control system (VCS). In Proceedings of the 2015 international conference on information society (i-Society), 9-11 November 2015, London, UK. Piscataway, NJ: IEEE [online], pages 59-66. Available from: http://dx.doi.org/10.1109/i-Society.2015.7366859
	OpenAIR citation: OCHEI, L.C., PETROVSKI, A. and BASS, J.M. 2015. Evaluating degrees of tenant isolation in multitenancy patterns: a case study of cloud-hosted version control system (VCS). In Proceedings of the 2015 international conference on information society (i-Society), 9-11 November 2015, London, UK. Piscataway, NJ: IEEE, pages 59-66. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk
	Version: AUTHOR ACCEPTED
	Publisher: IEEE
	Conference: 2015 international conference on information society (i-Society), 9-11 November 2015, London, UK.
	ISBN: 9781908320483
	eISBN:
	ISSN:
	Set statement: ©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
	License: BY-NC-ND 4.0
	License URL: https://creativecommons.org/licenses/by-nc-nd/4.0
	CC Logo:
		2016-05-26T14:34:05+0100
	OpenAIR at RGU

