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Cyber-physical systems operate in our real world, constantly interacting with the environment and collab-
orating with other systems. The increasing number of devices will make it infeasible to control each one
individually. It will also be infeasible to prepare each of them for every imaginable rapidly unfolding situ-
ation. Therefore, we must increase the autonomy of future Cyber-physical Systems. Making these systems
self-aware allows them to reason about their own capabilities and their immediate environment. In this ar-
ticle, we extend the idea of the self-awareness of individual systems toward networked self-awareness. This
gives systems the ability to reason about how they are being affected by the actions and interactions of oth-
ers within their perceived environment, as well as in the extended environment that is beyond their direct
perception. We propose that different levels of networked self-awareness can develop over time in systems as
they do in humans. Furthermore, we propose that this could have the same benefits for networks of systems
that it has had for communities of humans, increasing performance and adaptability.
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1 INTRODUCING MODELS OF COMPUTATIONAL SELF-AWARENESS

Cyber-physical Systems (CPS) are computational systems specifically designed to interact with
their physical environment. The physical environment, however, is subject to unpredictable
changes and is also affected by actions and interactions that are beyond the control of the CPS
[73, 136]. With the rising number of devices and systems, and the concomitant rise of data, central
control will not be feasible [104]. Furthermore, when dealing with rapidly unfolding situations,
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a system might not be able to wait for a response from a central controller. Therefore, to ensure
that CPS operate continuously, it will be necessary to make them highly autonomous. Introducing
computational self-awareness to CPS was proposed as on approach to make them more efficient,
resilient, and flexible, and to cope with unforeseen situations [38].

Awareness of self and of others has been widely studied in mammals. It is the ability to identify
oneself as an individual within an environment full of peers: equally valuable, equally thoughtful
individuals, who may or may not share one’s own motivations [28, 44, 94]. Computational self-
awareness is the ability of a system to learn about and model its own resources, capabilities, goals,
and interactions. Such models can range from being very simplistic, where the system simply
keeps track of the current state of different aspects of itself, (e.g., battery level), to complex, multi-
dimensional models of itself in its environment, where the system tracks and interrelates feedback
of multiple types, from multiple sources [131]. These models could be formal ones (e.g., causal or
logical models) or integrate statistical or probabilistic approaches (e.g., Hidden Markov models).
The type of model used, depends on the system, its abilities, and the resources it has available.
Importantly, systems are expected to exhibit the ability to reason about these models and exploit
them to improve their performance. For computing systems, such an ability would increase their
usability by enabling them to cope with situations for which they have not been explicitly designed
[70, 75, 86, 99]. CPS deployed in the real world interact with their environment and other systems
within. Therefore, we propose that introducing an “awareness that, while others may think differ-
ently and reach other conclusions, they are still thinking in some way that is as valid as our own” to
cyber-physical systems will increase their potential for collaborative effort, further enhancing their
ability to adapt to new situations for which none of them had individually been prepared. We argue
that such an extension in self-awareness for CPS will allow more autonomous and meaningful in-
teraction with the world and with other systems within it, enabling unanticipated collaborations.
We call this new type of computational self-awareness Networked Self-awareness.

In humans, self-awareness is not the end of a process. It is one step along the path toward a sense
of the self-awareness of others [132]. This process takes place over years in the natural develop-
ment of children, and can be seen as they begin to understand that the world contains sentient be-
ings, distinct from oneself and from other non-sentient artefacts [96]. This developmental process
is discussed in more detail in the next section. An understanding that other sentients are of equal
value to ourselves is a natural step in cognitive development that is not always achieved [118].
The resultant impression of uniqueness contributes to the development of delusions of ability, as
described in the Dunning-Kruger Effect [71]. This lack of empathy is contributory to narcissistic
insensitivity of the feelings (and even the existence) of others [27]. Taken to the extreme, it is one
of the key symptoms of psychopathy [16]. Creating CPS, and artificial intelligences (Als) in gen-
eral, that are inherently incapable of this logical fallacy should help mitigate the human concerns
that machines might rise and overthrow us all, whether maliciously or for our own good.

The current concept of computational self-awareness is heavily based on the work of Neisser
[89]. Neisser proposes five levels of self-awareness in humans that, rather than built atop each
other, are developed in parallel from earliest infancy. Lewis et al. [76] and Kounev et al. [70] apply
these five levels of self-awareness to computational systems. However, current work toward self-
awareness in psychology investigates the importance of interactions within a social system [45,
72]. To perform the social interactions that would facilitate the development of self-awareness,
each system would benefit from awareness that each other system is also self-aware. In this work
we follow and retrace Neisser’s, Lewis’ and Kounev’s steps from a psychological, philosophical and
anthropological point of view to identify blind spots that require further investigation. From here,
we fill the gaps and propose networked self-awareness as an approach for self-aware computing
systems to also become sensitive to the existence of others [37].
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To date, self-aware computing is being applied in a variety of application areas. For multi-agent
systems, several frameworks and architectures that explicitly incorporate self-awareness have
been proposed [29, 30, 51, 114]. Self-awareness was also the subject of numerous papers addressing
systems- on-chip [32, 65, 113] and multi-core systems [3, 53, 59, 100]. Here, self-awareness is often
used as a means to autonomously balance resources, deal with constraints, or schedule tasks. In
computing networks, self-awareness is used for two main purposes: to maintain and even increase
the quality-of-service and as a means of defense against attacks on the network [1, 46-48, 122]. In
pervasive and ubiquitous computing, self-awareness is used to enable individual devices to coor-
dinate with others to achieve common goals [39, 40, 56, 102]. Recently, networked self-awareness
has become important to the competitiveness of self-driving cars as their individual sensory data,
usually used to develop models about their immediate environment at runtime, is combined into
a detailed map of high traffic areas, as in Tesla’s “Fleet Learning Network” [10, 105, 106, 135].

However, when systems are deployed in an environment with other, initially unknown,
systems—which may or may not have different behaviours and (self-aware) capabilities—each of
them will inevitably encounter situations they were not specifically designed to handle. Never-
theless, we expect and desire the system to act upon this newly encountered situation to the best
of its abilities. When applying known skills in a known way cannot solve a problem, we propose
a novel concept enabling the systems to decompose and reorganise their existing skills in new
ways. Iterating through this process is intended to enable the development of new answers to new
questions based on prior knowledge.

The remainder of this article is structured as follows. In Section 2, we outline the developmen-
tal process of humans and how we explore and discover our environment and establish inter-
actions until we eventually coordinate in teams. In Section 3, we introduce levels of networked
self-awareness, enabling future CPS to learn about their environment and how it is affected by
other systems within. In Section 4, we propose a novel concept allowing a system to decompose
and re-organise its own skills to deal with changes and situations brought about by other systems
in the environment. Afterward, we discuss the most important challenges to be tackled to achieve
both, networked self-awareness and the required reorganisation of skills in Section 5. We conclude
our article in Section 6 with a discussion and a roadmap, pointing out the most important research
fields leading toward networked self-aware Cyber-physical Systems.

2 DISCOVERING THE WORLD

As the tools of self-awareness develop; as perceptions lead to theories that are tested, proven
and disproven in ways that lead to new theories in a rapid and iterative cycle, the human moves
naturally from superstition toward logical thinking, and their mental map of the world around
them and their place in it changes accordingly. The infant in utero knows nothing but being. Upon
birth, the infant experiences fluctuations of cold and hunger. It is only natural to assume that the
infant would build a theory of a causal relationship between itself and these sensations in the
world: “If T just kick my leg like this and shake my head, and make that screaming sound, then
warmth presses against my face, sensation floods into my mouth, and the hunger goes away.”
This must be an early form of superstition. If I do this and that, then forces beyond my control
show mercy and deliver me from hunger. These beliefs eventually succumb as the baby’s model of
the universe becomes more detailed and accurate through repeated testing. The world has other
agents, playing different roles. They can take away hunger or cold. The agent that takes away cold
if you pull it over your shoulder and snuggle down into it is not the same agent who takes away
cold by picking you up and carrying you across what you will someday call “the room.” Perhaps
there are multiple agents who pick you up and carry you around. All of them can take away cold
and loneliness, and all of them can hug you and press themselves against your face, but only one of
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them presses your face in the way that takes away hunger. Thus, the categorization of these entities
becomes increasingly complex, going from “Me as the World” to “Me and the World” to “Me and
the World with others” to “Me and the World with Mommy and Other Agents” and on to “Me and
the World with Mommy, and Daddy, and Dog, and other agents in it.” And then the classification
changes again, because, while Mommy and Daddy are different. Dog is vastly more different than
either of them and a chair even more so. And we only learn later that a chair is inanimate and
“responds” differently. We see this in children who attribute volition to the inanimate objects in
their lives, until they learn not to [96]. One example is the child who blames an obstacle for tripping
them, rather than recognizing that the obstacle has neither motivation nor motive force.

So, the child models interactions with all of these new agents and entities, and her understand-
ing of the world changes as her models are tested again and again over time. This revisiting of
previously established models implies the existence and application of a complex memory sys-
tem of the sort that would allow revision and testing of some memories, separate from and even
against all others [96]. While the structures associated with this process have been recognized
in humans [54], it is important for the non-biologist to remember that the fundamental neuro-
plasticity of the human brain has—so far—suggested that direct mapping between brain functions
(memory, thought, etc.) and specific anatomical structures is significantly more reliable in com-
puterized systems [101, 111, 121]. We have only a very primitive map of how our brain actually
relates to our thoughts, one that has allowed us only to begin the explorations and iterations that
will enable us someday to build a complete and useful atlas. In this way, we are fundamentally
different from our digital distant cousins. As a result, our models of our own reasoning, and our
models of theirs will continue to differ, at least until we learn to quantify the depth, breadth, and
width of human thought.

2.1 Time after Time

We propose an order of development based on logic rather than observation. Until one perceives
that states change over time, one cannot set a goal of influencing or shaping those changes. Let us
consider the BRAINS model of human interaction [20] as an illustration of how this might work.
The BRAINS model offers a simple way to think of the three fundamentally different speeds at
which humans interact with their environment: reflex, reaction, and reflection. Our bodies react
reflexively to some environmental change. This all happens in the nervous system, without any
conscious or unconscious thought in any part of our brain. For example, a controlled strike to the
patellar nerve causes the coordinated relaxation of the femoral biceps and flexion of the femoral
quadriceps, making your leg straighten and allowing your doctor to test your reflexes. The same
unconscious coordinated reflex can be achieved when a baby’s knees are tickled. Her leg straight-
ens without any thought in any part of the brain. When a baby learns to play with her feet, these
reflexive movements combine in more complex patterns, which are triggered in reaction to specific
combinations of stimuli. She is learning to recognise and react to complex patterns. She learns to
kick in the air and, eventually, to stand and take her first steps. Now the baby is taking conscious
control of her reactions, and the straitening movement is reflected upon and deliberately refined
as the baby learns to catch her balance and walk. Shortly thereafter, the complex coordination of
the muscles involved in walking moves from being under conscious control (requiring deliberate
reflection), to being unconscious. The trigger for starting and stopping is deliberate, but the actual
coordination has moved into muscle memory, and happens in the hindbrain or cerebellum. This
is what allows the child to walk or run without having to concentrate on it. Now that running
needs no longer be deliberate, the child can devote her conscious efforts to other goals as she runs.
For example, she might add another type of leg-straightening to her routine, and learn to kick a
football. With iterative refinement, the deliberate control becomes better and this improvement

ACM Transactions on Cyber-Physical Systems, Vol. 4, No. 4, Article 39. Publication date: June 2020.



| Think Therefore You Are 39:5

1
2
% 10 pan0rd

(a) A simple feedback loop.

(b) A learning feedback
loop, in which one’s an-
ticipated cycle of action
and reaction (inner loop)
is compared to the ac-
tion/reaction cycle that ac-

tually takes place (hatched (c) A network of learning feedback loops, in which the stim-
loop). The understanding uli detected by each, and their reactions to those stimuli, all
that there is a difference is becomes input for the others. Each cell in the network inter-
what makes learning possi- acts with each other cell, and with the greater environment
ble. beyond its individual perception.

Fig. 1. Feedback Loops: Reaction to stimuli can be modelled as a cycle made up of three parts. One or
more stimuli are received, the information elicits an internal or external reaction, and the changed system
continues to function, ready to react to further stimuli. Figures 1(a) and 1(b) are recreated from Brown [18],
Chapter 9. Figure 1(c) from Brown [19].

allows further refinement and so on, in a cycle we call practice. If others are practising at the same
time, place, and at a similar or greater level of development, then the child in question can learn
to deliberately coordinate her reactions to the actions of others. At first it will be easier to kick a
moving ball if she is the only one moving it, but in time, she and her team mates will learn to pass
the ball back and forth, anticipating each other’s movements in a shared feedback loop. First we
perceive change in our immediate environment. Then we react to it. Some of our reactions result in
responsive changes to our environment. Once we perceive enough of these effects of our reactions
on our environments, iterating and refining the interaction, we learn to deliberately, reflectively
modify our reactions to control those effects. The same applies in a team who learn from each
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other. Through iterative feedback loops, we go from reflex, through reaction, to reflection, and
learn to instigate intentional changes to our environment, in either participation or competition
with the other creatures in it.

Before we can work with a team, our perception of the world around us has to grow and refine
through a natural evolutionary process. Figure 2 illustrates this evolution. The system starts (a) by
considering itself as the entire world and everything in it. Soon, it realises that there is more than
just itself in the world (b), and that the rest of the world is made up of more than just one entity (c).
The fourth step (d) is the beginning of distinguishing between individuals. This can be subdivided
into multiple levels of distinction. First, distinguishing living, thinking, and acting objects from
inanimate objects. Second, distinguish different types of living creatures (e.g., dog, cat, human)
and different types of inanimate objects (e.g., table, chair, toy car I can push). Third, we distinguish
different individuals within a type of objects with different granularity (e.g., mum and dad and our
dog from the neighbours dog). Finally, we realise that certain, seemingly living/thinking/acting
objects are not like humans or dogs (e.g., smart home devices such as Google home or Amazon’s
Echo that speak to us, or cars and drones that seem to move on their own). Now that we are actively
evaluating others, it becomes possible to understand that some of them are evaluating us. We then
begin to evaluate their ability to evaluate and compare it to our own. Here, between (d) and (e),
some people stop. They remain certain that their ability to think is equal to, or greater than, the
thinking ability of all other things. This self-centered delusion is ubiquitous among both children
and adults. We are unable to judge our own ignorance of topics about which we are ignorant. This
was described by Dunning and Kruger [71], and it has become a common referent in the discussion
of social media and recommender systems. It is easier and more comfortable to consider a model
of the world in which one’s own first-hand experiences and judgements can be allowed to trump
the opinions of others who claim to have observed, studied, and measured things beyond our
knowledge.

Of course, this requires that we stay in a self-centred world in which the others around us cannot
be considered our equals. Those who move forward into awareness that others are also aware and
independent from ourselves (e) now live in a world that is much bigger and that contains immea-
surably more skills and information than any single individual could possibly acquire in a single
lifetime. The result is that our knowledge (red line) expands beyond our immediate perceived envi-
ronment and the range of potential interactions (dashed red line) (f). We consider this knowledge
as extended environment while we consider our immediate environment, within the range of po-
tential interactions, as perceived environment. Having knowledge of this extended environment
and the potential it may offer, allows the self to move into new interactions and learn new things
that it will consider to be valuable additions to first-hand knowledge and direct experience.

In Piaget’s terms the difference here is between learning that comes from within one’s thoughts
(Psychogenesis) and learning acquired from outside (Sociogensis). The computational equivalents
of these concepts will be discussed in Section 3. For now, let us begin with a simple statement of
logic using set-theory to bring some perspective to the value of being able to access information
that is generated outside of our own thoughts.

Let us assume U, is the set of all perceptible data in the universe at time . It is safe to assume
that this is greater than what we are able to perceive with own senses 7;.

If others exist whose limited senses can perceive information O;, which lies beyond the range
or scope of our abilities, then we can say

|7, N O;| # 0.

Simply speaking, this means one system might be able to perceive information that another system
cannot perceive. Range of perception would increase if the systems are themselves in a different

ACM Transactions on Cyber-Physical Systems, Vol. 4, No. 4, Article 39. Publication date: June 2020.



| Think Therefore You Are 39:7

(f)

Fig. 2. Developing awareness of the world and of others, from the viewpoint of the self (in green). (a) the
self is the entire universe (b) the self realises there is something else, (c) the self becomes aware of others,
(d) the self learns that some of these others are distinct from one another through interaction, and (e) the
self becomes aware that others are also selves who have their own interactions apart from us. The self has
learned that it is not at the centre of the universe, and must now move forward into that much larger,
redefined world, or fall backward into the familiar, more comfortable, self-centred perspective. If the self
becomes comfortable with and respectful of the awareness of others (f), then it can empathise and learn
from their experiences.

locations, or alternatively, if their sensors can perceive different data in the same location. How-
ever, if we can share our sensory data, then the amount of shared data must be greater than the
individual amount of data perceived

[1;] < |2 U O > |O].

Furthermore, we can turn our sensed data into actionable models and if we can incorporate the
sensed information from others, this model becomes a richer and more detailed representation
of the world. Further, we can use these models to operate toward our goals. If we are now able
coordinate with others and share our tasks to focus our efforts toward a common problem, then
we might be able to overcome this problem more quickly.

To apply this concept to real-world CPS, let us return to the example of the autonomous car
mentioned earlier. It is understood that a single autonomous car can use streams of sensor data,
including ultrasonics, radar, and passive video, to model its immediate environment in real time
to mitigate driving hazards such as lane encroachment. If other cars are constructing their models
in the same manner, then it is possible for their models of the road-space to be combined in order
to cooperate in mitigating hazards that a single vehicle cannot escape. For example, two vehicles
driving one behind the other might adjust their speed and relative distance to provide room for a
third vehicle in the lane next to theirs to move between them and avoid an incipient crash. With
that practical example in mind, let us look briefly at how Psychogenesis and Sociogenesis work
together in the healthy human mind to better understand how they could work together in CPS.
Being able to compare one’s ideas to a larger database of ideas is how humans learn, and it is how
humans judge their ability to reason. We can see this in the feedback loops in Figure 1. In the
simple version of the feedback loop, one or more stimuli trigger one or more reactions. A more
complicated loop follows (Figure 1(b)) in which the individual receives second-hand stimuli from
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other feedback loops. Now, let us imagine a second layer of each feedback loop (Figure 1(c)) that
represents our conscious or unconscious expectations during the cycle. The difference between
what we anticipate and what actually happens is the opportunity to learn. If this difference occurs
in an internal system, then the resultant learning is psychogenesis. Such is the case when we
miss the last step in a staircase and need to quickly adjust our balance to keep from falling. If
the difference occurs in interaction between internal and external systems, then the learning is
sociogenesis. Such is the case when we miss the last step in a dance and tread on the toes of our
partner.

For Cyber-physical Systems to move from a system that is self-centred and does not know about
its environment, toward self-aware CPS that also considers other system to have similar capabil-
ities requires research in several different domains. The first step, from a self-centred system (a)
to (b) with knowledge of the environment can already be achieved by giving the system knowl-
edge about the environment as well as sensor and simple machine learning capabilities [121].
Returning to automobiles for practical examples of CPS, let us look back in time to illustrate this
idea. Early drivers could not tell that their engine was overheating until it did. Adding a simple
temperature sensor and a driver-centered output display in which a needle moved from a green
zone of safe operating temperature, through yellow and orange zones before reaching a red zone
signifying danger, allowed the driver to take action before the engine overheated. Early CPS in
automobiles provided combined feedback on engine temperature, oil pressure, and cooling fluid
levels by flashing a generic “check engine” message in yellow, orange, or red [57]. The next advance
was to enable a live support network of diagnosticians who would be remotely provided with the
detailed information that a common driver would not be able to accurately interpret [14]. Sys-
tems able to identify other systems and objects in its environment (c) and potentially distinguish
them one from another (d) are addressed in research on affordance [21, 64, 126] and in research
on life-long machine learning [22, 112, 116, 123]. Moving from the ability to distinguish between
objects and other agents (d) to the consideration that other agents are active and have an impact
on the environment, is covered in research self-integrating systems [12]. An important aspect of
such self-integration is the ability to perform automatic causal reasoning [66, 95] and to determine
knowledge of others, e.g., through dynamic epistemic reasoning [129, 130].

A question arises as to whether or not (networked) self-awareness enables and facilitates self-
organising and self-optimising behaviour. There is some discussion in the field regarding the dif-
ferences between networks of systems where each system is capable of reasoning, and networks of
unreasoning systems from which spontaneous reasoning may or may not be expected to emerge.
In living creatures, this difference has been discussed for millennia. Perhaps the parameters from
those discussions can shed some light on the issue of emergence in our field. The ancients debated
whether or not fire was alive, because it can be born and, if it does not get enough air or food, it can
die. A forest fire seems like a living enemy to those fighting it. It responds to environmental pres-
sures, seeming to sense changes in wind, humidity, atmospheric pressure, and temperature, but this
should not be confused with reasoning. As we have recently witnessed in many parts of the world,
even the convergence of many fires into the largest conflagrations in recent history has not led to
the emergence of intelligence. Similarly, living cells that respond to environmental conditions are
not showing rational thought, any more than the exchange of gasses and fluids through 4.5 billion
year-old vents between subterranean chambers shows us that the planet is a living thing—despite
the fact that these exchanges so closely mirror the microscopic gas exchanges exhibited in the cells
of all creatures on the planet and may have been a crucial step in the evolution from geochem-
istry to biochemistry [124]. We argue that self-organization can take place without self-awareness.
Consider the coordinated movements of multiple fields of sunflowers. All around the world, they
rotate in synchronicity with the sun. One should not argue that the totality or any of the subsets
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of flowers is aware of itself, of its peers or of the fact that the radiation that triggers its movement
emanates from an astral body. The attribution of complex social and behavioural characteristics
to objects or elemental components of living creatures was first formally described by Sir Edward
Tylor in 1871 [127]. This aspect of his concept of Animism is now often labelled as Anthropomor-
phism, a logical fallacy in which all humans engage at some point in their cognitive development
[60]. Related research in computing systems investigates its origins and potential benefits [7].

We believe that a system does not need to be self-aware to self-optimise in a given environment
or self-organise with others. However, in quickly unfolding situations, we believe that networked
self-awareness will allow systems to achieve better optimisation results when compared to non-
self-aware counterparts. Specifically, (networked) self-aware properties, such as understanding
the goals and abilities of others and of one’s own, can improve the ability of multiple independent
systems to self-organise. Those abilities enable systems to find optimal collaborators and to self-
organise autonomously during runtime. The benefit of recognising self and others has also been
observed in nature [5, 49, 52, 55, 61].

Previous work minimizes or ignores the importance of recognizing that other systems are also
self-aware, able to build internal models of themselves, reason upon these models, and hence im-
prove their performance toward their individual goals, irrespectively of the actions, interactions,
or goals of others. However, we believe, enabling systems to reason about other systems’ self-
awareness is key, whether in developing individual self-awareness, cooperating toward common
goals, or optimising individual performance to achieve Pareto-efficient outcomes in competing
situations.

3 LEVELS OF NETWORKED SELF-AWARENESS

Given the nature of interaction among different devices, entities, and systems, individuals need
to be aware of more than just themselves and their immediate environment, they also need an
understanding of the impact of their own actions on others and how this reflects back on them.
We call this type of self-awareness Networked Self-awareness and, similar to the computational
self-awareness, as defined by Lewis [75] and Kounev [70], we utilise different levels to categorise
a computational system’s awareness of its networked environment (cf. Figure 3). In the following
we shed light on the different levels and their requirements in terms of understanding their envi-
ronment as well as the impact that they have on a system. Importantly, the different levels do not
have hard and distinct borders. Instead, the characteristics of each level may overlap with others,
because old skills are not abandoned, but developed, and modified, and applied in new ways. As an
example, networked stimulus awareness gives computational systems the ability to reason about
stimuli that impact their environment and, so, have an indirect impact on themselves. This means
there is an interaction between at least two elements in the environment. Networked interaction
awareness would enable systems to understand that the source of this impact, though unaware
of the secondary effects of its actions, is acting with intent and could be induced to cooperate to
mutual benefit.

3.1 Networked Stimulus-awareness

Stimulus-awareness allows a system to recognise stimuli impacting itself, regardless of whether
they originated internally or externally. Network stimulus-awareness allows the system to perceive
how stimuli impact the perceived environment, regardless (again) of the internal or external origin
of the stimulus. The ability to associate a stimulus to reactions from both the general environment
and the individual actors within it is an important step in what psychologists call “calibration.” This
is the iterative skill of evaluating our own abilities, and it is fundamental to human learning [69].
We might consider different granularities of networked stimulus-awareness. This can originate
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Fig. 3. The different levels of networked self-awareness. There is not necessarily a clear distinction between
the different levels and they might sometimes even overlap. Nevertheless, a certain level of computational
self-awareness is required to implement the corresponding level of networked self-awareness.

Fig. 4. Networked stimulus awareness enables a system to perceive stimuli in its environment and map them
to effects on itself. Where stimuli originate from is unclear at this point but a system knows that these stimuli
affect its own immediate known environment.

from being aware of actions and stimuli that affect the perceived environment that have further
effects on the system. Networked stimulus-awareness is depicted in Figure 4. We can further refine
networked stimulus-awareness, enabling system to understand whether the stimuli has an external
or internal origin or whether it originates from within the perceived or the extended environment
or even from outside the extended environment. Furthermore, we can improve this such that the
system is aware of the source of the stimulus or the recipient within the environment. As discussed
in the beginning of this section, knowing both the sources and the action can be considered an
awareness of an interaction, which would be part of the networked interaction-awareness.
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An example for this would be temperature changes on Systems-on-Chips (SoCs) where the SoC
itself might be responsible for changing the temperature but there might also be outside conditions
responsible for the temperature change. While at this stage, the SoC might only be able to identify
that there is a temperature change, it has no concept of whether this is self-inflicted or caused by an
external source [2]. Medical Cyber-physical Systems would be another field where self-awareness
has the potential to deliver enormous benefits. Using network stimulus-awareness, the system
could reduce hazards through multimodal redundancy, detecting—for example—whether or not
an input has been measured correctly through on-board sensors, or if the sensors have detected
an accidental or deliberately induced type 1 or type 2 error, as could be the case if the medical CPS
were hacked, as was reported in the case of some insulin pumps [134].

3.2 Networked Interaction-awareness

When exhibiting interaction-awareness, a system can reason about its own interactions with the
environment including other systems. In networked interaction-awareness a system models how the
interactions of others affect itself and vice versa. This means the system might be able to observe
interactions of others, might know the participants of the interactions and, potentially even knows
the details and individual actions of their interaction. Importantly, while the interaction might
take place even outside the extended environment of a system, it is still aware of the effects the
interaction has on its perceived environment or directly on itself.

An early awareness of such interactions is depicted in Figure 5(a). In this first case, D; knows
that there is an interaction between different entities within its environment that has some kind
of affect on it. Figure 5(b) illustrates a system able to trigger this external interaction even though
it is unaware of the individual entities performing the interaction. By increasing its awareness of
interactions, a system D; might potentially even be able to trigger a reaction from D,. Importantly,
this is not just a simple stimulus but active interaction between two or more entities originating
from D,. However, in this early stage of networked interaction-awareness, the system is not aware
of all participants of this interaction (cf. Figure 5(c)). This might be due to the fact that some partic-
ipants of the interaction are outside the perceived environment. Improving this awareness allows
the system to trigger this interaction (Figure 5(d)). At a later stage, the system can become aware
of a subset or even all participants in the interaction and also how this interaction is performed
(cf. Figure 5(e)). Finally, being fully aware of the interactions of others and how they can affect Dy,
the system can explicitly trigger the interaction in anticipation of triggering specific reactions and
specific effects on its own immediate environment (cf. Figure 5(f)).

One might think of robotic systems able to interact with each other, when two robots interact in
a way that aids a third robot, one that is not directly involved in the original interaction. This idea
can be continued toward the extent of social self-awareness [13] where systems become aware of
social concepts such as rules, norms, and traditions of the society they are operating in.

Networked interaction-awareness will be beneficial in many kinds of multi-robot applications,
autonomous transportation for goods and passengers, in particular. By exploiting the knowledge
gathered through the interaction of other devices, they will be able to plan and revise their own
behaviour accordingly [11, 26]. In a similar way, self-organising surveillance systems and multi-
robot exploration teams will be able to benefit from networked interaction-awareness [34, 39].

3.3 Networked Time-awareness

Networked time-awareness describes a system that is aware of how everything in its greater en-
vironment is susceptible to change over time. Networked time-awareness therefore spans across
all other levels of networked self-awareness.
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Fig. 5. Different levels of granularity for networked interaction-awareness. Figure 5(a) indicates the system
being aware of an interaction even though it does not know about the participants nor the actual actions
taking place. Figure 5(b) indicates that the system Dj is not only aware of the interaction but also knows
how to trigger it. Figure 5(c) indicates that D; knows about at least one participant of the interaction, and
in 5(d) D1 can trigger the interaction of D2, Figure 5(e) shows networked interaction awareness where the
system Dj knows about all participants and potentially the performed actions among them that affect it,
and Figure 5(f) shows a system D; able to trigger an interaction among other systems and is aware of all
participants of the interaction.

Figure 6 illustrates the different granularities in this level of networked self-awareness. At first,
a system may only be aware of the stimuli happening at different times (6(a)). Refining this infor-
mation, allows the system to become aware of the temporal order of actions and identify sequence
of stimuli within the environment that will eventually have an affect on itself (Figure 6(b)). Fur-
ther, systems may even become aware of when entire interactions take place that have an effect
on the system. This is closely related to networked interaction awareness. However, at first, the
system might not be able to distinguish the individual actors and actions of the interactions but
only the time T; at which the interaction takes place (Figure 6(c)). Figure 6(d) illustrates a system
that is aware of interactions, including all their participants and performed actions. Importantly,
at this level of granularity, the system is even aware of the sequence of actions performed in the
interaction and how they are temporally ordered. This allows the system to have a more fine-
grained model of how interactions take place, enabling it to identify potential reasons and sources
that affect it. Figure 6(e) shows systems being aware of temporal aspects of goals. A system is
aware that goals of others may not arise in parallel at the same time but might be scattered tempo-
rally. Having full networked time-awareness, the system is able to identify sequences of goals that
affect itself. Having this granularity of awareness also requires a high granularity of networked

ACM Transactions on Cyber-Physical Systems, Vol. 4, No. 4, Article 39. Publication date: June 2020.



| Think Therefore You Are 39:13

Immediate environment Immediate environment

T T

Ts 3

(0) (d)

(e (f)

Fig. 6. Different levels of granularity for networked time-awareness. Figure 6(a) shows how a system not
only becomes aware of stimuli but also of their different timings ;. Importantly, the system is not able
to distinguish the order in the sequence of stimuli at this point. Figure 6(b) shows a refined networked
time-awareness where a system is able to identify sequences of stimuli as well as their order. Figure 6(c)
illustrates the ability to assign timings (Tr) to general interactions. Only with having refined the ability,
the sequence of actions (A) and reactions (R) and their timings within the interaction can be identified (cp.
Figure 6(d)). Figure 6(e) illustrates a system being able to assign temporal properties to goals (Gx) and when
refining networked time-awareness it will even be aware of sequences of goals (G1 — G4) within systems as
illustrated in Figure 6(f).

goal-awareness. This is illustrated in Figure 6(f). Importantly, a system might even become aware
of interdependencies between the different goals due to their temporal properties.

Autonomous production and manufacturing systems, and more specifically autonomous lean
systems, will require very high flexibility and understanding of time [74, 87, 117]. In a similar way,
on autonomous construction sites, where multiple robots build common structures, individual
robots need to be able to rely on timely interaction [79]. This will improve overall construction
time, keep waiting times to a minimum, and rid the system of faults and collisions.

3.4 Networked Goal-awareness

Goal-awareness allows a system to reason about its own goals. In contrary, networked goal-
awareness identifies system able of understanding and knowing the goals of others, how they
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Fig. 7. Different levels of granularity for networked goal-awareness. Figure 7(a) illustrates actions of other,
unknown systems have an impact on goals of system Dj. Figure 7(b) shows a system being aware of goals
of other systems in its environment. This awareness does not necessarily constitute awareness of the actual
systems or how they are exactly mapped to the different goals. The awareness of how systems and goals are
mapped is shown in Figure 7(c). Further improving networked goal-awareness, systems can map actions and
stimuli from specific systems toward corresponding goals. Finally, systems will be able to map the effects of
interactions toward goals. The different granularities are shown in Figure 7(e) and (f).

are pursued, and how this affects them. If a system is aware of the goals of others, then it can
start adapting its own actions, behaviour, and even goals to align them to the goals of these other
systems. As with the other levels of networked self-awareness, we can conceive different gran-
ularities of networked goal-awareness. This may initially be related to own goals and how they
are affected by the actions (A in Figure 7) originating from some source in the environment. A
system may not be able to distinguish where the stimuli are coming from but knows they affect
specific goals (cf. Figure 7(a)). Whether the source of the stimulus is within the perceived or the
extended environment or even outside the extended environment might be unclear to the system.
This can be due to a lack of knowledge or the ability to generate this knowledge. Figure 7(b) shows
a system that is aware of the different goals in the environment. It may initially not know which
system correspond to which goal. Only by improving its knowledge of the environment, such a
mapping can be achieved (cf. Figure 7(c)) and a system gets aware of the what goals are pursued
by which system. Extending its own knowledge about the environment further allows systems to
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gain awareness how actions performed by other systems to pursue goals affect themselves. This
can specifically be problematic when performed actions require shared resources. In a similar way,
systems can be aware of the effects (E in Figure 7) on itself, generated by the interactions of others
toward their respective goals (cf. Figure 7(e) and (f)).

Having knowledge about the goals of others in the environment and how these other sys-
tems pursue those goals affects myself allows for more sophisticated interaction and collaboration
among multiple systems. Importantly, devices and systems could improve more than just their
own performance. If they are aware of the goals of others, then they can make sure that, so long as
their goals do not conflict with each other, their actions do not interfere with one another. If their
goals are in conflict, then being aware of this would be the first step toward resolving it. Systems
that are aware of the goals of others can develop policies of non-interference, which is an essential
step toward benevolent and empathetic self-aware computational systems able to respect the goals
of others.

Being aware of the goals of others will become immensely important in future applications
for the Internet-of-Things, as well as multi-robot systems such as search-and-rescue or building
surveillance [68, 97]. Here, we imagine that individual, autonomous devices collaborate and form
teams when they identify the goals they have in common, and the wider range of their disparate
abilities [35].

3.5 Networked Meta-self-awareness

Meta-self-awareness is a system able to determine its own level of self-awareness. This ability
requires them to have an understanding of the existence of different levels of self-awareness as
well as differentiate between them. Employing this ability allows a system to even change its
current level of self-awareness. In the same way, we can use networked meta-self-awareness; a
system is aware of the existence of the different levels of networked self-awareness. However, we
can bring this even one step further and make systems aware of the existence of other systems
also being self-aware. Furthermore, system may even be able to distinguish identify and assess the
level of self-awareness of another system [36].

While all the above levels of networked self-awareness—as well as self-awareness itself—will be
important for future CPS, implementing these features requires a lot of perception, memory, and
processing power. Networked meta-self awareness will allow a system to deal with this potential
shortcoming. Space systems in particular will benefit from such abilities, since they will be oper-
ating under largely unknown circumstances, with limited and shared resources, in environments
where manual interactions and adjustments are likely to be conducted by other machines. While
we also envision that terrestrial multi-robot systems or applications in the Internet-of-Things will
benefit from these abilities, resources are still often likely to be constrained, and direct manual
intervention much easier.

4 BUILDING KNOWLEDGE

Our next question, then, should be “How is this knowledge built?” Is it a linear process [82], in
which one type of perception is replaced by another type of perception and one mode of thinking
is replaced by another mode of thinking, until immature, childish thought is replaced by mature
logic, or do types of perception and modes of thinking build up in a cumulative process [108]?
Neuroconstructionism [33, 103] theorises that experience changes the structure of the brain. Na-
tivism of Cognitive Architectures [6, 98] is a modification of a theory from evolutionary psychol-
ogy. Marcus proposes a modification into Neo-Nativism, and suggests the concept of “pre-wiring”
rather than “hardwiring” [107]. Farina proposes another alternative, based in part on Roepstorff
et al.’s concept of Dynamic Enskilment [109]: Neo-Neuroconstructionism [41]. This is the theory
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Fig. 8. Three approaches to learn skills. (a) Advanced skills replace previously learned skills, (b) skills build
upon each other, and (c) skills can be reused and support each other independent from when they have
originally been learnt.

that brain plasticity continues through infancy and adulthood, perhaps using the modular develop-
ment described by Coltheart [24]. Though some say that can only happen in peripheral processing
systems [43], others say it can also happen in the central processing system(s) [6]. We propose that
the evolution-based hierarchy of brain structures [18, 80] could allow for the presence of different
mechanisms and degrees of plasticity. It seems intuitive that the algorithm that allows your cere-
bellum to coordinate the complex neuromuscular interactions involved in dribbling a basketball
should be implicitly different to the algorithm that allows you to turn this series of letters and
spaces into a meaningful phrase. Is there a single, clear barrier between these levels of awareness?
If so, then is it a simple binary step, or is it a more gradual transition? Is it a threshold reaction, like
the electrochemical exchanges between axon and dendron in our nervous system, or is the tran-
sition itself incremental? Once the transition happens, are the old skills replaced, do they change,
or is it just that new skills are added? Are cognitive skills more like building blocks that can be
stacked one-upon-another so that new heights can be reached (Figure 8(a) and Figure 8(b))?

Consider that a skill is a collection of iterative feedback loops where each individual loop is
learned slowly and deliberately and, once well-ingrained, can be run unconsciously as a subrou-
tine. More complex skills are learned as combinations of simpler skills [18]. Consider the example
of walking. A child learns the deliberate skill of standing, which consists of finding and main-
taining one’s balance through a dynamic series of adjustments to keep from falling in any given
direction. Once that is learned, the child can learn to walk by keeping from falling in almost every
direction. In walking, the child deliberately regains balance during a controlled forward fall by ad-
justing the placement of first one foot and then the other. When appropriate, simple and complex
skills can also be applied in new circumstances with minimal modifications, and without having
to be re-learned. Having mastered one skill, one might master a related skill relatively quickly and
effortlessly. This would suggest that we can easily transfer certain skills to similar tasks. However,
we also speculate that learned skills are made up of new and old cycles of patterned responses;
combined like subroutines to accomplish new tasks. Like building blocks, they can be combined
and recombined in non-intuitive ways into previously used or completely new patterns, in re-
sponse to the environment (Figure 8(c)). In a similar way, we would require computational systems
to be able to decompose skills, knowledge and capabilities into individual subroutines. To foster
collaboration among systems, each individual will also require knowledge, potentially generated
at runtime, mapping the skills available from other devices. This will allow systems to efficiently
decide who to collaborate with for a given problem. Finally, subroutines need to be combined to
establish a new skill online and within the constraints of the current situation.

5 OPEN CHALLENGES

In this position paper we outlined a human-centred approach enabling future CPS to become aware
of themselves and of others, based on the latest literature in the field. Introducing networked self-
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awareness to CPS will increase their autonomy; capitalising on their abilities and resources even
when the number of devices and systems will overwhelm human coordinators and centralised
controllers. However, there are several challenges that need to be tackled to achieve self-awareness
and even more to achieve networked self-awareness.

One of the biggest challenges to implement and achieve networked self-awareness is the limited
resources a CPS usually has at its disposal. With limited processing capability and storage on each
individual device, observing the environment and generating corresponding models and adapting
them at runtime quickly becomes ambitious. Extending this toward different domains (e.g., goals,
interactions, or stimuli) makes this task even more complicated.

Another challenge is the inherent uncertainty the CPS face throughout their deployment in the
physical world. This uncertainty can manifest itself in different ways:

e Noise: Did the system notice a change in the state of the observed event/situation/object or was
this observations caused by environment fluctuation? Making observations using sensors is
usually noisy. Having information about the type of noise can allow modelling and subse-
quent filtering of the noise. Alternatively, knowing what should be sensed (ground truth),
the system can identify the noise and filter it in subsequent observations. However, in au-
tonomous, self-aware CPS, the system might not be aware of the sensed information nor of
the noise in the environment. The CPS can only gain that awareness by gathering sufficient
data over time, and learning to recognise and then filter the noise from the real, physical
occurrence of the phenomenon.

e Timeliness: Did the system look long enough, or at the right time? When attempting to ob-
serve a phenomenon, the frequency and duration of sensing becomes crucial in order to
make sure it is not missed. If the phenomenon occurs between two measurements, then the
system might assume the event or phenomenon did not occur. At the same time, the ques-
tion arises of how long something should be observed. The system could be very certain that
the observed objects, system, or phenomenon behaves in a very specific way after observing
it for a longer period of time. Nevertheless, the observed object/system/phenomenon might
still change as soon as the CPS stops observing it. (e.g., “I looked at this object for all this
time and it did nothing ergo it is not self-aware and might actually be just and inanimate
object.”)

e Situatedness: Does the current location in the real world allow perception of all necessary
information? Being deployed in the real world, each CPS has its very own perception of
the environment, including the other systems in that environment. Two systems observing
the environment from fundamentally different locations may have a different experience
of the same object/system/phenomenon/event. This can easily occur through occlusions
and other unanticipated problems, such as a change of noise due to location, and can there-
fore easily lead to misinterpretation of the situation. (e.g., “That’s not what it looked like
from my point of view.”)

e Locality: Is the system able to perceive and sense enough to draw meaningful conclusions
based on events/phenomena? The principle of locality in physics states that a system can
only be directly influenced by its immediate environment. While this view is challenged
by quantum physics, it is definitely true for current CPS. However, there it is possible to
imagine events that could trigger a chain reaction where the CPS can only perceive the final,
immediate event/phenomena. This becomes important when a system can only model the
environment (and its events and phenomena) by observing results or intermediate events,
without observing the initial actions. (e.g., “I am struck by a toppling stone, unaware that
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it is a domino, in a chain of dominoes, put in place and set in motion by players I cannot
perceive.”)

Intention: Can a system derive intention behind perceived actions performed by other sys-
tems in the environment? Due to locality, a system might only be able to perceive events
and phenomena in its immediate environment. That said, even when a system can observe
the root cause of an event or phenomena, it may require further information to be able to
decide whether the action was performed intentionally or accidentally (e.g., “The domino
that struck me in the previous example had no inherent intent to do so, and we may not be
able to derive the intent of the human who pushed the first domino in the chain. Was she
made to do it? Did she intend to hit me in this complicated way? Did my being in the path
of the final domino actually interfere with her original intent?”)

Skill Mapping: Is a system able to determine with absolute certainty whether specific actions
caused a phenomena/event? Future CPS will be able to learn about their own actions and
behaviours. They will also be able to decompose actions and skills and re-compose them
to create new behaviours. However, a system deployed in the real world will not be able to
decide whether an action it performed resulted in a desired or undesired event, or whether
this event was only caused by chance. (e.g., “I combined 2 skills and can now achieve better
performance when tackling this task, but which skill did the trick? Or was it something else
in the environment of which I am not aware?”).

6 ROADMAP AND CONCLUSION

The list presented in the previous section only represents the most important challenges that need
to be tackled to achieve initial networked self-awareness. Some of these challenges are being tackled
by researchers either directly or partially. For example, systems could rely on the information of
others to determine the level of self-awareness of another system or to mitigate Situatedness or
Locality. However, relying on the information of others raises the issue of trust in the information-
providing systems. To tackle this issue, mechanisms for computational trust are applied [4].

In the following, we outline a roadmap of research areas required to achieve the initial steps
toward networked self-awareness for Cyber-physical Systems:

e Explainable AI: Initially conceived as an approach for machines to explain and rationalise

their behaviour to humans; having systems with an ability to explain their own behaviour
allows humans to understand the decision and reasoning processes of the machine [58, 133].
Work in this area will also allow for machines having the ability to explain themselves to
other machines. However, machines will require common semantics. If they do not have
such a semantics, then they require the ability and possibility to generate such a common
understanding themselves.

Runtime modelling: CPS need to be able to model various aspects of themselves and their
environment at runtime. These models will need to include ongoing internal and external
readings [15]. As a next step they will need to model their own behaviour, and that of others
in the environment [17, 31, 128]. Furthermore, they will need to generate causal models to
track the reasons for certain behaviours and interactions [66]. While there is a rich body of
research around modelling various aspects of CPS at runtime, modelling one’s own goals,
as well as the goals of others seems to be a largely unexplored research area.

Sensor and model fusion: There has been a lot of research on fusing information from
numerous sensors, whether on single systems or distributed among multiple systems [92,
110, 119]. However, this assumes that the syntax and semantics of diverse sensors are un-
derstood across the different devices. In a similar way, CPS have to be able to agree on
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models before they can fuse them. There remains a risk of misunderstanding, and a risk
that models might be incorrectly fused. There would be a requirement that mechanisms
could decide whether or not to rely on fused information. This could be the case when a
CPS is in a non-critical state and, the use of a potentially incorrect model could not harm
either the system, or anything or anyone in the environment. This would, again and in turn,
rely upon well-established models of the environment.

e Affordance: The ability to learn about the current environment and how it can be used
toward one’s own goals is called affordance [50]. In robotic systems there is a large research
community working on the problem of learning about the environment and how to exploit
it to more quickly achieve one’s own goals [64, 77, 85, 88]. Importantly, these goals are all
predefined, and each of the robots is operating toward their own specific, individual goals.

e Runtime goal generation, decomposition, and adaptation: As with current comput-
ing, Cyber-physical Systems are designed to operate toward specific goals. Systems usually
become idle as soon as these goals are satisfied, and remain so until the goals are either no
longer satisfied or replaced. We argue that, once future systems have reached their initial
goals, they will be required to generate their own further goals during runtime. This needs
to be done in a way that enables them to remain available to the stakeholder. In addition,
we argue that, when cooperating with other systems, each individual will need to be able to
decompose and adapt its own goals. This will become specifically important when systems
have conflicting goals and run into stalemates or deadlocks.

e Runtime state estimation and verification: Having systems estimate their current state,
and verify this estimate during runtime, is a core topic of CPS [9, 23, 62, 67, 90, 120]. This
has been extended toward collaborative verification and state estimation in distributed CPS.
Estimating and verifying state requires a definition of how the system should behave [8].
Generating these definitions during runtime for individual systems embedded in a highly
dynamic environment requires an understanding of the situatedness and location of the
systems. Establishing this at runtime remains a difficult and unsolved problem.

e Knowledge de-composition and re-organisation: In transfer learning, the goal is to ap-
ply previously learned knowledge in new tasks. This has the benefit of getting a better initial
performance and learned models only need to be adapted to new situations [25, 93, 125].
However, this approach assumes that the new task fits to the previously learned knowledge
at least partially. In other cases, where the learned knowledge does not fit at all with the
new task, this can have the opposite effect. An alternative approach to this would be to
de-compose tasks into smaller chunks and learn models for each individual task. In case of
new goals arising where different tasks have to be tackled, previously de-composed tasks
can be recompiled to achieve this goal. Autonomous task-decomposition is a first step in
this direction [63].

e Online plan synthesis: In dynamically changing environments, next actions should be
carefully planned. Online plan synthesis for multi-robot systems in uncertain environments
has only recently received a lot of interest [42, 78, 91, 115]. However, this still assumes
knowledge about the environment and the available robots or relies on central controller
and planner. These assumptions have only been relaxed recently [83, 84] and need further
relaxation to achieve networked self-aware CPS.

e Computational trust: Trust among machines is tackled with mechanisms of computa-
tional trust [4, 81]. Future, self-aware machines will be required to reason about these trust
mechanisms and apply them differently depending on the machine they are expected to
trust. Another question arising is how to deal with machines deliberately but falsely trying
to generate trust in themselves.
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This roadmap summarises the areas currently under research; areas intended to lead, eventu-
ally, to networked self-aware Cyber-physical systems. Of course, this list will be extended over
time as new research fields arise and novel challenges are identified. In this article, we have pre-
sented two novel ideas, namely networked self-awareness and knowledge de-composition and
re-organisation. We discussed different levels of networked self-awareness inspired by both the
original levels described by Neisser [89] and the computational levels described by Lewis [75]. We
identified the remaining challenges to the achievement of networked self-aware CPS, and outlined
a roadmap to overcome them. Self-awareness and networked self-awareness will make future CPS
more resilient, more robust, and more dependable by allowing them to develop a deeper under-
standing of the dynamic environments in which they will operate, and the quickly unfolding sit-
uations with which they will be faced. These techniques will also enable systems to self-integrate
during runtime, mitigating extensive deployment efforts and human intervention [104]. In those
situations, future CPS will need to balance the pursuit of their primary goals against the pursuit of
improved performance through the development of a better understanding of their environment
and how to interact with it. In this way, Networked Self-aware Systems will be able to weigh their
own options and decide whether or not to spend resources on the latter in order to improve their
ability to do the former.
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