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Graphical abstract 

 

Highlights 

• First enantioselective method for chiral pharmaceutical TOrCs in soils 

• Chirobiotic V2® better suited for multi-residue separation than Chirobiotic V® 

• Enantioresolution (>1.0) achieved for 5 classes of chiral TOrCs simultaneously 

• Liophilic ion concentration had greatest influence on enantioseparations 

• Stereoselective degradation of pharmaceutical TOrCs observed for first time in soil 
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Abstract 

Reported here is the first analytical methodology for the enantiomeric determination of chiral trace 

organic contaminants (TOrCs) in soil.  Direct enantioselective separations were achieved on a 

Chirobiotic V2® column operated in polar ionic mode.  Initial screening of vancomycin stationary 

phases found Chirobiotic V2® better suited for multi-residue separation of chiral TOrCs than 

Chirobiotic V® due to differences in the ligand linkage chemistry.  Simultaneous enantioseparation of 

beta-blockers, beta-agonists, anti-depressants, anti-histamines and stimulants was achieved for the 

first time.  This included the first separation of chlorpheniramine enantiomers with a method suitable 

for environmental analysis (i.e., coupled to MS).  Investigation of mobile phase composition found 

the concentration of liophilic ions had the greatest influence on enantioseparations and of most 

importance during method development.  The optimized method achieved simultaneous separation of 

salbutamol, propranolol, atenolol, amphetamine, chlorpheniramine and fluoxetine enantiomers with 

satisfactory resolution (>1.0).  For completeness, such methods also need to support analysis of 

achiral TOrCs.  Therefore three achiral TOrCs (carbamazepine, carbamazepine 10,11 epoxide and 

triclocarban) were included to demonstrate the methods suitability.  Method recoveries for all analytes 

ranged from 76 to 122 % with method quantitation limits (MQLs) <1 ng g-1.  Application of the 

method to soil microcosm studies revealed stereoselective degradation of chiral TOrCs for the first 

time.  For example, S(+)-amphetamine degraded at a faster rate than its corresponding enantiomer 

leading to an enrichment of R(-)-amphetamine.  Therefore to better understand the risk posed from 

TOrCs on the terrestrial environment, chiral species need profiled at the enantiomeric level.  This can 

now be addressed using the proposed methodology whilst simultaneously profiling achiral TOrCs.                 

Keywords: micropollutant; soil; pharmaceutical; chiral; sludge; LC-MS/MS  
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1. Introduction 

Municipally derived trace organic contaminants (TOrCs) such as pharmaceuticals, personal care 

products and illicit drugs are ubiquitous in rivers impacted by wastewater effluent discharges [1].  

However in recent years there has been growing concern on the presence of TOrCs in the terrestrial 

environment [2,3].  The application of digested sludge (and untreated animal manure) to agricultural 

land has led to the occurrence and distribution of TOrCs in soils.  Furthermore, reclaimed wastewater 

used for irrigation purposes can lead to introduction of TOrCs to agricultural soils.  In amended soils 

TOrC concentrations >10 ng g-1 are found [4-11], with levels >100 ng g-1 not uncommon [4-6,9].  It is 

essential to monitor TOrCs in soils as they can cause toxicological effects on exposed organisms such 

as the earthworm Eisenia fetida [3].  Additionally bioaccumulation in exposed organisms is possible 

[6], posing a risk to predatory organisms at higher trophic levels.  The presence of TOrCs in soils has 

also been found to impact microbial respiration [9].  Establishing the fate and behaviour of TOrCs in 

soils is important as leaching can occur resulting in the contamination of surrounding surface and 

ground waters [7].   

The determination of TOrCs in soil requires a suitable extraction and analysis method.  Vazquez-Roig 

et al [12] established an analytical methodology for the determination of 17 pharmaceuticals from 

soils using ASE (or pressurized liquid extraction) followed by SPE clean-up and LC-MS/MS analysis.  

Analyte recoveries were 50-105 % and MQLs were 0.25-23 ng g-1 demonstrating the success of the 

developed protocol.  Similar methodologies have since been applied to determine TOrC levels in soil 

[13-15].  However these methods are unable to assess the enantiomeric composition of chiral TOrCs.  

Approximately 50 % of all pharmaceuticals on the market are chiral [16].  Furthermore, they are 

unlikely to be present in soils in racemic form because (i) they are applied to soils in non-racemic 

form due to stereoselective metabolism within the human body and during wastewater/sludge 

treatment [16,17] and, (ii) it is postulated that chiral TOrCs will undergo stereoselective degradation 

in soil.  To demonstrate this, Evans et al. [17] performed enantiomeric profiling of digested sludge 

destined for land application.  Of the 17 chiral TOrCs found in digested sludge, 11 were found to be in 

non-racemic form with enantiomeric fractions (EFs) ranging from 0.1-0.7 (alprenolol, amphetamine, 
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atenolol, citalopran, desmethylcitalopram, ephedrine, norephedrine, fluoxetine, 3,4-methylenedioxy-

methamphetamine (MDMA), metoprolol and tramadol).  Their presence in soil in non-racemic form 

may be significant because stereospecific toxicity of fluoxetine, propranolol and atenolol has been 

observed to exposed environmental aquatic organisms [18-21].  This demonstrates the importance of 

conducting analysis of TOrCs in soils at the enantiomeric level.  However, due to a lack of suitable 

enantioselective methods for the soil matrix, no field data exists on municipally derived chiral TOrCs 

at the enantiomeric level.              

Therefore the aim of this study was to develop and validate a new analytical methodology for the 

enantioselective determination of chiral TOrCs in soils.  This was achieved using ASE followed by 

off-line SPE and analysis by enantioselective HPLC-MS/MS.  It is important that such methods can 

support the simultaneous analysis of achiral micropollutants for a complete assessment of TOrC 

distribution.  Consequently, a total of 10 diverse achiral (carbamazepine, carbamazepine epoxide, 

triclocarban) and chiral (salbutamol, propranolol, atenolol, amphetamine, MDMA, chlorpheniramine, 

fluoxetine) TOrCs were selected for method development.  
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2. Materials and methods 

2.1. Materials 

Carbamazepine, carbamazepine 10,11 epoxide, triclocarban, R/S(±)-salbutamol, R/S(±)-propranolol 

hydrochloride, R/S(±)-atenolol, R/S(±)-amphetamine, R/S(±)-MDMA, R/S(±)-chlorpheniramine 

maleate and R/S(±)-fluoxetine hydrochloride were purchased from Sigma-Aldrich (Gillingham, UK) 

(Table S1).  The deuterated surrogate standards carbamazepine-D10, carbamazepine 10,11 epoxide-

D10, triclocarban-D3, R/S(±)-salbutamol-D3, R/S(±)-propranolol-D7 hydrochloride, R/S(±)-

amphetamine-D11, R/S(±)-MDMA-D5 and R/S(±)-fluoxetine-D6 hydrochloride were also purchased 

from Sigma-Aldrich.  The majority of analyte standards and deuterated standards were purchased as 

0.1 or 1 mg mL-1 ampules in methanol.  Those purchased as powders were prepared in methanol at 1 

mg mL-1.  All solutions were stored in the dark at -20 °C.  Methanol, ammonium acetate and acetic 

acid were HPLC grade and obtained from Sigma-Aldrich.  Water used throughout the study was of 

18.2 MΩ cm-1 quality.  Oasis HLB and MCX cartridges (60 mg, 3 mL) were purchased from Waters 

(Manchester, UK).  Enantioselective Chirobiotic V® and Chirobiotic V2® HPLC columns (250 x 2.1 

mm; 5 µm) were obtained from Sigma Aldrich.  Agricultural soil was collected from arable farmland 

in North-East Scotland.  The soil in question had not been treated with digested sludge or animal 

manure in the last 10 years. 

 

2.2. Accelerated solvent extraction 

Collected soil was sieved (2 mm) and dried in an oven overnight at 50 °C.  5 g samples were spiked 

with a methanolic mixture of all surrogate standards to achieve a concentration of 25 ng g-1 (12.5 ng g-

1 in the case of individual enantiomers).  Samples were left for a minimum of 1 h to allow the 

methanol to evaporate.  Samples were then mixed with 5 g diatomaceous earth and packed into 10 mL 

stainless steel ASE cells (Fisher Scientific, Loughborough, UK).  Remaining volume of the cell was 

filled with Ottawa sand.  Two 2-4 µm Dionex glass fibre filters (Fisher Scientific, Loughborough, 

UK) were then fitted to each end of the cell.  Extraction of prepared soil samples was performed using 

a Dionex ASE 350 (California, USA) system.  The final method utilized an extraction solvent of 
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20:80 water:methanol and an extraction temperature of 80 °C.  For each cell two extraction cycles 

were performed with the following settings: pre-heat for 5 min, heating for 5 min, static extraction 

time of 5 min, solvent flush volume of 60 % and nitrogen purge time of 150 s.  The extraction 

pressure was 1,500 psi.  During the development process the impact of changing solvent composition 

(80:20, 50:50 and 20:80 water: methanol), temperature (80, 100 and 120 ˚C) and sample mass (1, 2.5 

and 5 g) on TOrC recovery was investigated.  

 

2.3. Solid phase extraction  

Solvent extracts obtained from the ASE (~22 mL) were diluted to a final volume of 250 mL using 

water.  Aqueous extracts containing <10 % methanol are not considered to influence SPE extraction 

efficiency [17].  The final SPE method involved conditioning Oasis HLB cartridges with 2 mL 

methanol followed by 2 mL water for equilibration.  Both steps were conducted under gravity at 

approximately 1 mL min-1.  Samples were loaded at 5 mL min-1 using a vacuum manifold then dried 

under vacuum.  Analytes were eluted using a 4 mL aliquot of methanol under gravity (1 mL min-1).  

SPE extracts were subsequently dried under nitrogen and reconstituted in 0.5 mL mobile phase.  

Finally, the samples were filtered (0.2 µm) using pre-LC-MS PTFE syringe filters (Whatman, Kent, 

UK) ready for LC-MS/MS analysis. 

 

2.4. Enantioselective liquid chromatography tandem mass spectrometry 

Chromatography was performed using an Agilent 1200 Infinity Series HPLC (Cheshire, UK).  

Optimized analyte separations were achieved using a Chirobiotic V2® HPLC column (250 x 2.1 mm; 

5 µm) maintained at 20 °C.  Final mobile phase conditions were methanol containing 1 mM 

ammonium acetate and 0.01 % acetic acid operated under isocratic conditions at a flow rate of 0.2 mL 

min-1.  An injection volume of 80 µL was utilised and the run was 65 min.  During method 

development the impact of varying concentrations of acetic acid (0, 0.01, 0.05 and 0.1 %), ammonium 

acetate (1, 5, 10 and 20 mM), and water (0, 1, 5 and 10 %) all in methanol on enantiomeric separation 
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was investigated.  Each mobile phase was equilibrated for a minimum of 2 h at a flow rate of 0.2 mL 

min-1 to ensure equilibration was achieved (and duplicate injections performed). 

The HPLC was coupled to an Agilent 6420 MS/MS triple quadrupole.  Electro-spray ionization (ESI) 

was utilized in both negative and positive ionization modes.  Triclocarban and triclocarban-D5 were 

analysed in negative ionization mode.  All other analytes were determined in positive ionization 

mode.  The capillary voltage for both negative and positive ionization modes was 4,000 V.  The 

desolvation temperature was 350 °C with a gas flow of 12 L min-1.  The nebulizing pressure was 50 

psi.  Nitrogen gas was used as the nebulising, desolvation and collision gas.  Optimized MS/MS 

transitions for each analyte are compiled in Table S2.  Two multiple reaction monitoring (MRM) 

transitions were monitored for each analyte for quantification and confirmation purposes (one in the 

case of deuterated standards).  Other quality criteria used to ensure quality of data was pre-determined 

tolerances of ion ratio and retention time [22].     

   

2.5. Instrument and method performance 

Linearity was established through the injection of a 12 point calibration curve ranging in 

concentration from 0.1 to 2,000 ng mL-1 in mobile phase (0.05 to 1,000 ng mL-1 for individual 

enantiomers of chiral TOrCs).  Intra-day and inter-day precision and accuracy was determined by 

triplicate injection of 10, 100 and 1,000 ng mL-1 standards within a 24 h period and across three 

different days, respectively.  Robustness of the method was investigated by making small changes to 

the mobile phase conditions and assessing their impact to the separation.  Ammonium acetate and 

acetic acid concentration as well as column temperature were modified by ±2.5 %.   

Recovery of studied TOrCs using the ASE-SPE-enantioselective LC-MS/MS was determined by 

spiking soil in triplicate at total TOrC concentrations (sum of both enantiomers in the case of chiral 

TOrCs) of 2, 10 and 100 ng g-1.  Signal suppression from co-extracted matrix was evaluated by taking 

samples through the entire extraction process and spiking extracts post SPE to achieve a theoretical 

final concentration of 100 ng mL-1 in the vial for LC-MS/MS analysis.       
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2.6. Microcosm studies 

Microcosm studies were performed to investigate TOrC degradation in soil.  Preparation of 

microcosms was similar to those previously reported in the literature [14,23].  Soil (150 g) was 

collected and sieved (2 mm) but not dried to maintain field conditions.  Sub-samples of 5 g were then 

placed into eighteen plastic sacrificial 50 mL centrifuge tubes.  Each soil sample was then spiked with 

a mixture of TOrCs to achieve a theoretical concentration of 100 ng g-1 (50 ng g-1 in the case of 

enantiomers).  These were left in the dark (wrapped in foil) and open to the air at 20 ±1 ˚C.  Every 

few days these were adjusted to their initial weight using water to maintain the initial moisture content 

(~20 %).  Samples were then collected in triplicate at times 0, 3, 7, 14, 28 and 56 d, spiked with 

surrogate standards as described previously and analysed using the developed ASE-SPE-

enantioselective LC-MS/MS methodology.        
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3. Results and discussion 

3.1. Screening Chirobiotic V® and Chirobiotic V2® for enantioselective separation of chiral 

TOrCs using LC-MS compatible mobile phases   

Vancomycin based stationary phases were selected for method development due to their previous 

success in achieving enantioselective separations of various beta-blockers, beta-agonists and anti-

depressants [17, 24-29], as well as their versatility enabling operation in reverse phase, polar ionic and 

polar organic modes.  Previous studies utilized commercially available Chirobiotic V® HPLC 

columns.  However, a development of this column is Chirobiotic V2® which differs in the bonding 

chemistry between the ligand and the silica support.  Changing the position of several linkages and the 

chain length used to anchor the ligand offers differences in selectivity to Chirobiotic V® particularly 

when operated in polar organic and polar ionic modes [30].      

Chirobiotic V® and Chirobiotic V2® columns of identical dimensions (250 x 2.1 mm; 5 µm) were 

screened for the separation of target TOrCs.  Separation modes compatible with LC-MS analysis (i.e., 

reverse phase, polar ionic and polar organic) were trialled with recommended mobile phase 

compositions [31].  The recommended screening protocol suggests the addition of 0.1 % triethylamine 

in polar ionic mode but this was omitted as it is known to deteriorate the column due to irreversible 

attraction to the stationary phase [32].  As anticipated the most successful separation mode was indeed 

polar ionic due to the basicity of the studied TOrCs (Table S3).  This is the selected mode of 

enantioselective separation utilized in previous studies [17, 25, 26].  Successful enantioseparation in 

polar ionic mode is reliant on the TOrC having an ionisable group near its chiral centre as well as a 

further functional group in its structure [30].  All chiral TOrCs investigated except MDMA showed 

some enantioseparation during the screening exercise.  

In polar ionic mode Chirobiotic V® achieved similar or better enantioseparation of salbutamol, 

propranolol and atenolol in comparison to Chirobiotic V2® (Table S3).  However, Chirobiotic V2® 

achieved considerably improved separation of amphetamine (RS 0.9 v. 0.3) and fluoxetine (RS 1.9 v. 

0.9) enantiomers.  Furthermore Chirobiotic V2® achieved partial separation of chlorpheniramine (RS 

0.7) whereas Chirobiotic V® did not achieve any separation (Table S3).  Achiral TOrCs also exhibited 
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satisfactory chromatography (Gaussian distributed peaks) in polar ionic mode.  For these reasons 

Chirobiotic V2® operated in polar ionic mode was taken forward for further optimisation.  A previous 

study by Bosáková et al [33] noted generally better chiral TOrC enantioseparations by Chirobiotic 

V2® over Chirobiotic V® albeit operated in polar organic mode (with UV detection).      

   

3.2. Optimizing enantioselective separation of chiral TOrCs using Chirobiotic V2® 

Those TOrCs which exhibited (partial) enantiomer separation using Chirobiotic V2® in polar ionic 

mode had RS ranging from 0.7 for salbutamol, atenolol and chlorpheniramine to 1.9 for fluoxetine 

(Table S3).  The aim was to improve these separations such that RS were ≥1.0 which would satisfy a 

maximum 2 % overlap required for quantitative analysis [25]. 

Initially the impact of altering the percentage of acid modifier on enantiomer RS was investigated.  

Sanganyado et al [34] reported that the type of acid modifier is unlikely to influence separation as pH 

is the determining factor.  As vancomycin has several pKa values due to the diversity of its structure, 

changing the percentage of acid (and pH) of the mobile phase can lead to the ionization of different 

functional groups.  Acetic acid was varied from 0 to 0.1 % (in methanol containing 10 mM 

ammonium acetate representing a pH range from 7.4 to 6.0. Increasing the % acetic acid (reducing 

pH) resulted in reduced retention of the studied TOrCs, however little impact to RS was noted (Figure 

1).  It is proposed that greater ionization at lower pH resulted in increased repulsion between the 

positively charged TOrC and the cationic functional groups of the stationary phase reducing their 

retention time.  Nevertheless, at pH 7.0 (0.01 % acetic acid) four of the chiral TOrCs (salbutamol, 

amphetamine, propranolol and fluoxetine) exhibited satisfactory RS ≥1.0. 

A previous study investigated the influence of ammonium salts or liophilic ions (nitrate, formate and 

acetate) on the enantioresolution of atenolol and fluoxetine [34].  It was noted that RS increased with 

increased hydrophobicity of the liophilic ion.  Therefore ammonium acetate was utilized in the 

optimization process with concentrations ranging from 1 to 20 mM whilst at pH 7.0.  Increased 

ammonium acetate concentrations led to a reduction of RS (and retention) due to decreased chiral 
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interactions between the TOrC and the stationary phase (Figure 1).  It is postulated that at increased 

ammonium acetate concentrations, there is greater competition between the positively charged analyte 

ions and positively charged ammonium ions to oppositely charged ionic functional groups of the 

stationary phase, although several mechanisms could be at play.  Nevertheless, the findings are in 

agreement with those of Sanganyado et al [34].  A mobile phase containing 1 mM ammonium acetate 

achieved satisfactory RS ≥1 of six chiral TOrCs (salbutamol, amphetamine, propranolol, atenolol, 

chlorpheniramine and fluoxetine) (Figure 1).  During the optimization process no enantioseparation of 

MDMA was observed. 

The effect of adding small volumes of water (≤ 10%) to the mobile phase was also investigated.  It 

was found that the addition of water at 1 % v/v reduced RS considerably (Figure 1).  Therefore no 

water was added to the mobile phase.  Other factors that were optimized included flow rate and 

injection volume.  These were increased sequentially to select the conditions which gave the shortest 

possible run time and highest sensitivity which did not compromise RS.  Therefore the final method 

operated at a flow rate of 0.2 mL min-1 with an injection volume of 80 µL.  A further parameter which 

can be optimized is column temperature [32,34].  A temperature of 20 ˚C was used throughout as it 

was previously found to achieve satisfactory RS using polar ionic mobile phases containing 

ammonium acetate [34].                   

 

3.3. Enantioselective LC-MS/MS instrument performance 

Instrument performance using the optimized mobile phase conditions was determined by establishing 

linear response, enantiomer RS and EF, intra- and inter-day precision and accuracy, and sensitivity 

(Table 1).  A 12 level calibration curve was prepared and the majority of studied TOrCs exhibited 

linearity between the IQL and 1,000 ng mL-1 (2,000 ng mL-1 for those achiral TOrCs and MDMA).  

Coefficient of determination (r2) of the calibrations were ≥0.993 with the majority >0.999.  Of those 

chiral TOrCs separated at the enantiomeric level, RS’s were ≥1.1 across the studied concentration 

range.  Furthermore EFs were calculated according to: 
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𝐸𝐸𝐸𝐸 = (+)
[(+)+(−)]

               (1) 

Here (+) is the concentration of the (+)-enantiomer and (-) is the concentration of the (-)-enantiomer.  

The following equation was used for those compounds (salbutamol) whose order of enantiomer 

elution is unknown: 

𝐸𝐸𝐸𝐸 = 𝐸𝐸1
[𝐸𝐸1+𝐸𝐸2]

          (2) 

In this case E1 is the concentration of the first eluting enantiomer and E2 is the concentration of the 

second enantiomer.  All chiral TOrCs were injected as racemates and exhibited reproducible EFs of 

0.50 ±0.01 (0.49 ±0.01 for atenolol and chlorpheniramine).     

Both intra- and inter-day precision over the 3 different concentrations levels (total TOrC 

concentrations of 10, 100 and 1,000 ng mL-1) were <10 % for all studied TOrCs (Table 1).  

Furthermore, accuracy was within 90-110 % for the majority of studied TOrCs both in the same day 

and between different days.  The method was found to be robust with respect to small changes in 

mobile phase conditions (ammonium acetate concentration, acetic acid concentration and 

temperature).  No notable changes in resolution or retention time were noted.  The instrument 

detection limits (IDLs) and instrument quantitation limits (IQLs) ranged from 0.08 to 0.3 ng mL-1 and 

from 0.25 to 1.0 ng mL-1, respectively (Table 1).  Findings from the instrument performance tests are 

similar to previously published methods utilizing Chirobiotic V® operated in polar ionic mode for the 

determination of chiral TOrCs in diluent [17,25].    

 

3.4. Extraction method development 

A suitable SPE protocol was required prior to development of the ASE method.  This was achieved by 

spiking 250 mL ultra-pure water at 1 µg L-1 and extracting onto Oasis HLB (pH 7) and MCX (pH 2 to 

ionize basic TOrCs [35]) SPE cartridges.  Whilst the HLB cartridges were eluted using methanol, the 

cationic exchange MCX cartridges were eluted into individual acidic and basic fractions using 

methanol containing formic acid (wash step) and ammonium hydroxide (elution), respectively.  
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Extracts of MCX cartridges resulted in poor chromatography and loss of chiral recognition.  This is 

attributed to the ammonium hydroxide used for elution despite extracts being evaporated to dryness 

and reconstituted in methanol prior to injection.  Nevertheless, the HLB sorbent eluted with methanol 

successfully achieved simultaneous extraction of all studied TOrCs with recoveries ranging from 67 

to 96 % (Table S4).  The Oasis HLB sorbent which utilizes both hydrophilic and lipohilic retention 

mechanisms is a popular choice for environmental sample pre-treatment prior to enantioselective LC-

MS/MS [29]. 

Development of the ASE method involved investigating the impact of solvent composition, extraction 

temperature and sample mass on TOrCs recovery from soil in univariate fashion (i.e., each extraction 

variable was considered individually [4,11,12,17]).  These factors were considered likely to have the 

greatest influence on TOrCs recovery [35-37].  Optimizing extraction methods for environmental 

matrices require a trade-off between analyte extraction efficiency and signal suppression during ESI 

from co-extracted matrix.  The soil used during the development had not been previously treated with 

wastewater sludge (or compost/animal manure) and was found to be free from the studied TOrCs.  

Therefore considering peak areas from spiked samples taken through the entire ASE-SPE-

enantioselective LC-MS/MS method provides true representation of method performance.  This is 

because losses from the extraction process and signal suppression during ESI is considered 

simultaneously. Otherwise subtracting the response of unspiked matrix that already contains TOrCs 

from the spiked matrix can introduce bias to performance calculations (particularly due to signal 

suppression).  This is unavoidable in other matrices such as wastewater or river water.   

A popular solvent choice for extraction is water:methanol with ratios ranging from 100 % water to 

100 % methanol used previously [11,38].  Methanol is considered to give higher analyte recoveries 

compared to other solvents such as acetonitrile [35,39,40].  The water:methanol ratios investigated 

here were 80:20, 50:50 and 20:80.  As anticipated with multi-residue analysis not all TOrCs showed 

the highest recovery for the same solvent composition.  Highest recovery was achieved for most 

TOrCs using 50:50 or 20:80 water:methanol, with no substantial differences in recovery observed 

between the two (Figure 2).  Only recovery of salbutamol, amphetamine and atenolol enantiomers 
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was greater using 80:20 water:methanol.  However, their recovery was greater at 20:80 in comparison 

to 50:50 water:methanol therefore as a trade-off this solvent composition (20:80) was selected for 

further development. 

Extraction temperature can have a significant impact on TOrCs recovery from environmental 

matrices.  Increased temperature results in reduced solvent viscosity which facilitates better 

penetration of the matrix [41].  On the other hand increased temperature can lead to thermal 

degradation of the TOrC as well as increased extraction of unwanted matrix components which leads 

to greater signal suppression.  This is particularly important when using non-selective SPE sorbents 

such as Oasis HLB.  In this study highest recovery for all TOrCs was achieved at 80 ˚C (Figure 2).  

This temperature is in agreement with previous studies which extracted TOrCs from environmental 

matrices [35,38,42].  Several TOrCs (carbamazepine, carbamazepine epoxide, triclocarban, S(+)-

fluoxetine and R(-)-fluoxetine) showed considerably reduced recovery at each extraction temperature 

increase during the development process.  This was considered to be from increased interference from 

co-extracted matrix as these TOrCs were subject to greater signal suppression during ESI (Table 2). 

Finally, for environmental analysis of TOrCs it is essential to determine a sample mass which 

provides adequate sensitivity but is not detrimental to the analytical method.  As TOrCs tend to be 

found in amended soils at relatively low concentrations <100 ng g-1 [4-8,10,11], sample masses of 1, 

2.5 and 5 g were investigated.  All masses were spiked with 100 ng of each TOrC and recovery 

determined.  It can be seen (Figure 2) that increasing sample mass had no impact on recovery for the 

majority of studied TOrCs.  Those analytes which did show reduced recovery with increased sample 

mass (carbamazapine epoxide and triclocarban) were not proportional to the increased mass used.  For 

example, the reduction in recovery from 2.5 to 5 g was less than 50 %.  Therefore it is still beneficial 

to use the higher sample mass for these analytes when analysing real samples as their increased 

quantity present in 5 g outweighs losses from poorer recovery (extraction efficiency and increased 

signal suppression).                                  

             

3.5. Performance of the developed ASE-SPE-enantioselective LC-MS/MS method  
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To validate the ASE-SPE-LC-MS/MS method, recovery of studied TOrCs was performed in triplicate 

at three different spike levels of 2, 10 and 100 ng g-1, respectively.  These represent the ‘total’ TOrC 

concentration therefore spiking concentrations of individual enantiomers was 1, 5 and 50 ng g-1.  

Chromatograms obtained using the developed extraction method are shown (Figure 3).  Method 

recoveries (i.e., accounting for surrogate standard response) across the 3 different spike levels ranged 

from 76 to 122 % (Table 2).  The overall precision of the method was ≤16 % for all analytes.  These 

levels of accuracy and precision are within those previously reported for the determination of chiral 

drugs at the enantiomeric level in digested sludge using microwave assisted extraction [17].  For the 

majority of studied chiral TOrCs EFs in spiked soils was 0.49-0.50 (Table 2).  This is to be expected 

as the TOrCs were spiked as racemates (EF = 0.50).      

Suppression of analyte signal strength during ESI of environmental extracts is a well-known 

drawback of LC-MS analysis.  Signal suppression was quantified by comparing extracted soil samples 

spiked post ASE-SPE with the standard solution used for spiking: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑠𝑠𝑆𝑆 (%) = 100− �PA  spiked  extract
PA  standard

. 100�              (3) 

Where PA spiked extract is the analyte peak area in the extract spiked post SPE and PA standard is 

the ananlyte peak area in standard solution used for spiking.  Signal suppression (i.e., loss of response 

due to co-extracted matrix quenching analyte signal strength) ranged from 3 % (negligible) for S(+)-

chlorpheniramine to 93 % for carbamazepine (Table 2).  Those TOrCs which had the least interaction 

with the stationary phase and shortest retention times (carbamazepine, carbamazepine 10,11 epoxide 

and triclocarban) had the greatest signal suppression.  Stereoselective suppression was also noted for 

atenolol and fluoxetine.  For example, signal suppression for S(+)-fluoxetine and R(-)-fluoxetine were 

42 ±1 % and 26 ±2 %, respectively.  Stereoselective signal suppression has previously been noted for 

propranolol in river water and wastewater [26].  This demonstrates the necessity of using deuterated 

surrogate standards for accurate quantitation of TOrCs in environmental matrices at the enantiomeric 

level. 
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Finally method sensitivity was determined by calculating the method detection limit (MDL) and 

method quantitation limit (MQL) [35]: 

𝑀𝑀𝑀𝑀𝑀𝑀 (𝑆𝑆𝑆𝑆 𝑆𝑆−1) = 𝑆𝑆.𝐼𝐼𝑀𝑀𝑀𝑀  𝑥𝑥 100
𝑅𝑅𝑠𝑠𝑅𝑅  𝑥𝑥  𝐶𝐶𝐸𝐸

        (4) 

𝑀𝑀𝑀𝑀𝑀𝑀 (𝑆𝑆𝑆𝑆 𝑆𝑆−1) = 𝑆𝑆.𝐼𝐼𝑀𝑀𝑀𝑀  𝑥𝑥  100
𝑅𝑅𝑠𝑠𝑅𝑅  𝑥𝑥  𝐶𝐶𝐸𝐸

        (5) 

Here S is the volume of sample used for extraction divided by the mass of sample extracted (mL g-1), 

IDL and IQL are the instrument detection and quantitation limits, respectively (ng mL-1), Rec is the 

absolute recovery (%, not accounting for surrogate standard response) and CF is the concentration 

factor.  MDLs ranged from 0.02 to 0.24 ng g-1 whereas MQLs ranged from 0.07 to 0.91 ng g-1 (Table 

2).  These MDLs and MQLs are similar or better than previously reported ASE-SPE-LC-MS/MS 

methods applied to soils [12-14].  The low MDLs and MQLs achieved can be attributed to the use of 

polar ionic mobile phases which offer excellent sensitivity for use in MS [29].  These MQLs achieved 

are adequately sensitive for the concentrations of TOrCs expected to be present in amended soils [4-

8,10,11]. 

Other than being the first enantioselective LC-MS/MS method developed for the soil matrix, the 

newly developed methodology has several advantages over those previously reported.  Achieving 

multi-residue enantioseparation of several classes of TOrCs is essential.  This is the first reported 

method for the simultaneous separation of beta-blocker, beta-agonist, anti-depressant, anti-histamine 

and stimulant enantiomers which can be applied to environmental samples.  Previously reported 

methods are often limited to a single class of TOrC [43-47].  By focussing on a limited number of 

TOrCs from a single class, analysis run times can be comparatively shorter (usually <30 min).  On the 

other hand, those enantioselective LC-MS/MS methods which can perofrm multi-residue analysis 

often have run times ≥80 min with times up to 150 min not uncommon [48-51].  Therefore a run time 

of 65 min does offer improved sample throughput and turnover than these reported methods.  The 

developed method is also the first to achieve enantioseparation of the antihistamine chlorpheniramine 

in environmental matrices.  Furthermore, the suitability of the method to support achiral TOrC 
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determinations is essential and not considered in previous methods.  This is of great importance for 

future monitoring and assessing environmental risk.             

     

3.6. Behaviour of chiral and achiral trace organic contaminants in soil microcosms 

The validated method was applied to determine the fate of studied TOrCs in soil microcosms.  Sieved 

soil (2 mm) was separated into 5 g sacrificial samples and spiked at 100 ng g-1 of each individual 

TOrC (50 ng g-1 in the case of individual enantiomers).  These were then analysed in triplicate at pre-

set time intervals.  The moisture content of the soil was adjusted to field conditions (20 %) every few 

days.  During 56 days of incubation a range of fate behaviours was observed.  Low removal (<50 %) 

was observed for carbamazepine, triclocarban, R/S(±)-propranolol and R/S(±)-fluoxetine (Figure 4).  

The remaining TOrCs were all removed by >50 %.  Most interesting findings were observed for 

R/S(±)-amphetamine which showed stereoselective transformation in soil.  To demonstrate, initial 

concentrations of S(+)-amphetamine and R(-)-amphetamine following spiking were 52.3 ±1.7 and 

54.4 ±1.8 ng g-1, respectively.  This corresponds to an EF of 0.49 ±0.01 (Figure 4).  Concentrations 

were reduced to 1.1 ±0.1 and 10.0 ±0.8 ng g-1 after 3 days.  Here the EF was 0.10 ±0.01 due to the 

faster rate of transformation of S(+)-amphetamine over R(-)-amphetamine.  This is the first time 

stereoselective transformation of a drug has been observed in soil.  Selective degradation of S(+)-

amphetamine over R(-)-amphetamine has previously been observed in other matrices such as 

activated sludge [52] and river water [25,52].  This suggests that the metabolic processes in the 

studied microbial communities are similar.  Coupling this observation with the likelihood that 

digested sludge applied to land contain chiral TOrCs in the non-racemic form [52] and stereoselective 

toxicity is likely to occur, it is essential to monitor these pollutants in soil at the enantiomeric level.  

This method can be used to support such studies and develop more accurate environmental risk 

assessments.         

 

4. Conclusion 
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The developed method was suitable for the multi-residue determination of 10 achiral and chiral 

TOrCs at the enantiomeric level simultaneously.  High sensitivity was achieved utilizing ASE, SPE 

and enantioselective LC-MS/MS with MQLs achieved being 0.07-0.91 ng g-1.  Application of the 

method to controlled microcosm studies revealed stereoselective degradation of chiral TOrCs in soils 

for the first time.  This coupled with the likelihood that chiral TOrCs are applied to soils in the non-

racemic form, it is essential to monitor TOrCs in amended soils at the enantiomeric level. A greater 

understanding on the chiral distribution of TOrCs here is needed to underpin exposure driven studies.  

The new analytical methodology described here will help develop more accurate risk assessment.       
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Figure 1. Impact of mobile phase additives/composition on the resolution (RS) of TOrC enantiomers 
separated in polar ionic mode  

Key: RS, enantiomer resolution; A – methanol containing 10 mM ammonium acetate and varying % 
acetic acid; B - methanol containing 0.01 % acetic acid with varying concentrations of ammonium 
acetate; C - methanol containing 0.01 % acetic acid and 1 mM ammonium acetate and varying % 

water 
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Figure 2. Effect of accelerated solvent extraction variables/sample size on TOrC recovery (% 
±standard deviation).   

Key: MDMA, 3,4-methylenedioxy-methamphetamine; A – varying extraction solvent compositions 
(water:methanol) at 100 ˚C using 1 g soil spiked at 100 ng g-1 of each TOrC; B – different extraction 
temperatures using extraction solvent 20:80 water:MeOH using 1 g soil spiked at 100 ng g-1 of each 
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TOrC; C – varying sample masses extracted at 80˚C using 20:80 water:MeOH (all soils spiked with 
100 ng of each TOrC).  
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Figure 3. Enantioselective LC-MS/MS MRM chromatograms of TOrCs spiked in soil at 100 ng g-1 

(50 ng g-1 for individual enantiomers) and extracted using the developed ASE-SPE protocol 
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Figure 4. Concentration (and enantiomeric fraction) of chiral and achiral TOrCs in soil microcosms over 56 days 
Key: MQL, method quantitation limit; EF, enantiomeric fraction 
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Table 1. Enantioselective LC-MS/MS instrument performance for studied TOrCs in diluent 

TOrC class TOrC Rt 
(min) 

Linearity 
Enantiomer 

RS EF 
Intra-day performancea Inter-day performancea 

IDLS/N 
(ng mL-1) 

IQLS/N 
(ng mL-1) 

Range (ng mL-1) r2 Accuracy (%) Precision (%) Accuracy (%) Precision (%) 

Anti-epileptic Carbamazepine 5.1 0.50-2,000 0.9992 - - 105.7 1.1 105.2 1.4 0.15 0.50 
 Carbamazepine 10,11 epoxide 5.2 0.50-2,000 0.9996 - - 113.0 1.5 114.3 0.9 0.15 0.50 

Anti-bacterial Triclocarban 5.9 0.50-2,000 0.9994 - - 88.8 3.7 82.9 8.6 0.15 0.50 
Beta-agonist Salbutamol E1 20.1 0.25-1,000 0.9998 1.3 0.50 106.0 0.8 105.5 1.5 0.08 0.25 

 Salbutamol E2 23.8 0.25-1,000 0.9998 105.3 0.6 105.0 1.5 0.08 0.25 
Beta-blocker S(-)-propranolol 32.0 0.50-1,000 0.9996 1.6 0.50 103.1 1.1 104.8 2.0 0.15 0.50 

 R(+)-propranolol 36.1 0.50-1,000 0.9984 102.8 1.7 104.7 2.0 0.15 0.50 
Beta-blocker S(-)-atenolol 46.2 1.00-1,000 0.9996 1.3 0.49 96.3 1.1 93.4 5.6 0.30 1.00 

 R(+)-atenolol 51.8 1.00-1,000 0.9996 101.9 1.2 96.7 7.6 0.30 1.00 
Stimulant S(+)-amphetamine 32.0 0.25-1,000 0.9998 1.8 0.50 101.1 1.5 101.4 2.2 0.08 0.25 

 R(-)-amphetamine 36.9 0.25-1,000 0.9998 101.1 1.0 101.8 2.1 0.08 0.25 
Stimulant R/S(±)-MDMA 48.0 0.50-2,000 0.9998 - - 100.5 0.7 97.7 2.7 0.15 0.50 

Anti-histamine S(+)-chlorpheniramine 49.3 0.25-500 0.9935 1.1 0.49 93.0 2.5 99.7 8.6 0.08 0.25 
 R(-)-chlorpheniramine 54.8 0.25-500 0.9932 97.0 2.5 101.5 9.8 0.08 0.25 

Anti-depressant S(+)-fluoxetine 42.3 0.25-1,000 0.9994 3.0 0.50 102.6 1.9 102.7 2.0 0.08 0.25 
 R(-)-fluoxetine 54.9 0.25-1,000 0.9995 102.0 1.7 102.1 2.0 0.08 0.25 

Key: TOrC, trace organic contaminant; Rt, retention time; RS, enantiomer resolution; EF, enantiomeric fraction; IDL, instrument detection limit; IQL, 
instrument quantitation limit; S/N, signal to noise ratio; MDMA, 3,4-methylenedioxy-methamphetamine 
aMean of 3 concentration levels (10, 100 and 1,000 ng mL-1 - these levels represent the total TOrC concentration i.e., sum of all enantiomers)
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Table 2. Method performance for studied TOrCs extracted from 5g soil by ASE-SPE-enantioselective 
LC-MS/MS 
TOrC 
class TOrC 

Method recovery ±SD (%)a Signal 
suppressio
n ±SD (%) 

MDL 
(ng g-1) 

MQL 
(ng g-1) 2 ng g-

1 EF 10 ng 
g-1 EF 100 

ng g-1 EF 

Anti-
epileptic Carbamazepine 104.6±

2.6 - 99.9±5
.2 - 90.8±

3.8 - 92.8±0.3 0.27 0.91 

 Carbamazepine 
10,11 epoxide 

89.1±5
.1 - 81.8±5

.9 - 80.3±
1.0 - 82.5±0.9 0.13 0.42 

Anti-
bacterial Triclocarban 97.3±0

.1 - 108.1±
6.2 - 96.4±

6.7 - 61.0±7.5 0.07 0.25 
Beta-

agonist Salbutamol E1 104.7±
2.7 0.49±

0.02 

103.7±
6.3 0.50±

0.01 

98.5±
3.4 0.49±

0.01 

18.6±3.2 0.08 0.26 

 Salbutamol E2 108.2±
3.5 

103.7±
4.0 

101.7
±3.8 24.0±2.6 0.09 0.30 

Beta-
blocker S(-)-propranolol 104.1±

4.4 0.50±
0.01 

102.9±
4.0 0.49±

0.01 

96.0±
4.2 0.50±

0.01 

23.8±2.4 0.02 0.08 

 R(+)-propranolol 104.0±
2.6 

100.8±
4.5 

96.2±
3.7 22.7±4.3 0.02 0.07 

Beta-
blocker S(-)-atenolol 95.0±5

.3 0.50±
0.01 

89.9±2
.7 0.53±

0.02 

80.1±
0.4 0.54±

0.02 

30.9±0.8 0.24 0.81 

 R(+)-atenolol 93.7±1
5.6 

102.1±
4.9 

93.6±
10.5 13.3±1.2 0.21 0.69 

Stimulant S(+)-
amphetamine 

121.4±
8.9 0.50±

0.02 

119.3±
7.6 0.49±

0.01 

109.3
±6.1 0.50±

0.01 

23.7±2.0 0.05 0.17 

 R(-)-amphetamine 120.2±
7.4 

121.9±
6.3 

110.4
±4.6 21.3±1.7 0.04 0.15 

Stimulant R/S(±)-MDMA 102.0±
3.5 - 102.1±

6.2 - 100.7
±4.2 - 12.8±1.5 0.02 0.07 

Anti-
histamine 

S(+)-
chlorpheniramine 

118.1±
0.1 0.49±

0.01 

117.0±
14.2 0.50±

0.01 

76.1±
9.4 0.50±

0.01 

3.1±2.2 0.02 0.07 

 R(-)-
chlorpheniramine 

121.0±
2.5 

117.2±
14.0 

76.2±
7.9 6.9±1.7 0.02 0.07 

Anti-
depressant S(+)-fluoxetine 101.1±

14.3 0.50±
0.01 

102.9±
3.3 0.50±

0.01 

91.9±
6.9 0.50±

0.01 

41.6±1.1 0.03 0.10 

 R(-)-fluoxetine 99.4±9
.4 

101.0±
4.0 

90.6±
6.2 26.2±1.9 0.02 0.07 

Key: TOrC, trace organic contaminant; EF, enantiomeric fraction; SD, standard deviation; MDL, 
method detection limit; MQL, method quantitation limits; MDMA, 3,4-methylenedioxy-
methamphetamine 
aSpike levels represent the total TOrC concentration i.e., sum of all enantiomers 
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Multi-residue analysis of chiral and achiral trace organic contaminants in soil by accelerated 
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The supporting information contains four tables with details of the properties of studied TOrCs, MS/MS 

parameters, enantioresolution of chiral TOrCs screened on Chirobiotic V and V2 columns in reverse 

phase, polar organic and polar ionic modes, and recovery of TOrCs from water using Oasis HLB SPE 

cartridges. 
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Table S1. Chemical properties of studied TOrCs [1] 

TOrC Chemical structure Molecular weight  
(g mol-1) 

Water solubility  
(mg L-1) Log KOW Log KOC pKa 

Carbamazepine 
 

236.28 17.7 2.25 1.08E-10 13.94 (acidic) 
-0.49 (basic) 

Carbamazepine 10,11 epoxide 252.27 - - - 13.91 (acidic) 
-0.50 (basic) 

Triclocarban 
 

315.58 2.4E-3 4.50 - 11.42 (acidic) 
-4.60 (basic) 

Salbutamol 

 

239.31 1.4E4 0.40 - 10.12 (acidic) 
9.40 (basic) 

Propranolol 
 

259.35 228.0 2.60 7.98E-13 13.84 (acidic) 
9.50 (basic) 

Atenolol 
 

266.34 685.2 -0.03 1.37E-18 13.88 (acidic) 
9.43 (basic) 

Amphetamine 
 

135.21 2.8E4 1.76 1.08E-6 9.94 (basic) 

MDMA 
 

193.25 7.03E3 2.28 2.75E-9 10.32 (basic) 
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Chlorpheniramine 

 

274.79 5.5E3 3.67 - 9.47 (basic) 

Fluoxetine 

 

309.33 60.3 4.65 8.90E-8 10.05 (basic) 
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Table S2. MS/MS transitions, ion ratio and corresponding internal standards 

TOrC class TOrC MRM 1 Fragmentor 
(V) 

Collision 
energy 

(eV) 
MRM 2 Fragmentor 

(V) 

Collision 
energy 

(eV) 

Ion 
ratio Corresponding internal standard 

Anti-epileptic Carbamazepine 236.8>193.9 130 20 236.8>178.9 130 40 6 Carbamazepine-D10 
 Carbamazepine 10,11 epoxide 252.8>179.9 90 30 252.8>210.0 90 10 2.7 Carbamazepine 10,11 epoxide-D10 

Anti-bacterial Triclocarban 312.5>159.7 110 10 312.5>125.6 110 20 19.6 Triclocarban-D3 
Beta-agonist Salbutamol E1 239.9>147.9 90 10 239.9>165.9 90 10 3.6 Salbutamol-D3 E1 

 Salbutamol E2 Salbutamol-D3 E2 
Beta-blocker S(-)-propranolol 259.9>115.9 110 10 259.9>182.9 110 10 1.4 S(-)-Propanolol-D7 

 R(+)-propranolol R(+)-Propanolol-D7 
Beta-blocker S(-)-atenolol 266.9>144.9 110 30 266.9>189.9 110 20 2 R(-)-Amphetamine-D11 

 R(+)-atenolol R(-)-Amphetamine-D11 
Stimulant S(+)-amphetamine 135.8>90.9 70 20 135.8>65.0 70 40 3.2 S(+)-Amphetamine-D11 

 R(-)-amphetamine R(-)-Amphetamine-D11 
Stimulant R/S(±)-MDMA 193.9>162.8 90 10 193.9>104.8 90 30 3 R/S(±)-MDMA-D5 

Anti-histamine S(+)-chlorpheniramine 274.9>229.9 90 10 274.9>166.8 90 40 2.6 R(-)-Fluoxetine-D6 
 R(-)-chlorpheniramine R(-)-Fluoxetine-D6 

Anti-depressant S(+)-fluoxetine 309.8>44.0 90 10 309.8>147.7 90 5 20.9 S(+)-Fluoxetine-D6 
 R(-)-fluoxetine R(-)-Fluoxetine-D6 

Deuterated internal standards Carbamazepine-D10 246.9>204.1 130 20 - - - - - 
 Carbamazepine 10,11 epoxide-D10 263.0>189.9 90 30 - - - - - 
 Triclocarban-D3 318.9>161.9 110 10 - - - - - 
 Salbutamol-D3 E1 243.0>150.9 90 10 - - - - -  Salbutamol-D3 E2 
 S(+)-amphetamine-D11 147.0>98.0 70 20 - - - - -  R(-)-amphetamine-D11 
 S(-)-propranolol-D7 267.0>188.8 110 15 - - - - -  R(+)-propranolol-D7 
 R/S(±)-MDMA-D5 199.0>164.9 90 10 - - - - - 
 S(+)-fluoxetine-D6 316.0>154.0 90 2 - - - - -  R(-)-fluoxetine-D6 

Key: TOrC, trace organic contaminant; MRM, multiple reaction monitoring; MDMA, 3,4-methylenedioxy-methamphetamine
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Table S3. Enantioresolution of chiral TOrCs using reverse phase, polar ionic and polar organic 
mobile phases with Chirobiotic V® and Chirobiotic V2® columns 

TORC class TORC Reverse phasea Polar ionicb Polar organicc 
V V2 V V2 V V2 

Beta-agonist Salbutamol - - 0.9 0.7 ND ND 
Beta-blocker Propranolol - - 1.5 1.0 ND ND 
Beta-blocker Atenolol - - 1.1 0.7 ND ND 

Stimulant Amphetamine - - 0.3 0.9 ND ND 
Stimulant MDMA - - - - ND ND 

Anti-histamine Chlorpheniramin
e - - - 0.7 ND ND 

Anti-depressant Fluoxetine - 0.7 0.9 1.9 ND ND 
Key: TOrC, trace organic contaminant; MDMA, 3,4-methylenedioxy-methamphetamine; -, no 
separation; ND, not detected (not ionised) 
a70:30 10mM ammonium acetate at pH 4: acetonitrile, b10mM ammonium acetate in methanol + 
0.1% acetic acid, cEthanol 
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Table S4. Recovery of studied TOrCs from water spiked at 1 µg L-1 using 
Oasis HLB SPE 

TOrC class TOrC Recovery (%) 

Anti-epileptic Carbamazepine 72.9±0.5 

 Carbamazepine 10,11 
epoxide 86.7±1.9 

Anti-bacterial Triclocarban 93.6±5.6 
Beta-agonist Salbutamol E1 91.3±5.2 

 Salbutamol E2 93.1±4.2 
Beta-blocker S(-)-propranolol 94.1±4.6 

 R(+)-propranolol 95.1±5.8 
Beta-blocker S(-)-atenolol 93.6±4.2 

 R(+)-atenolol 95.6±4.8 
Stimulant S(+)-amphetamine 66.9±8.8 

 R(-)-amphetamine 68.1±8.6 
Stimulant R/S(±)-MDMA 85.0±6.1 

Anti-histamine S(+)-chlorpheniramine 83.0±7.6 
 R(-)-chlorpheniramine 85.8±7.4 

Anti-depressant S(+)-fluoxetine 83.8±4.7 
 R(-)-fluoxetine 84.1±5.4 

Key: TOrC, trace organic contaminant; MDMA, 3,4-methylenedioxy-
methamphetamine 
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