
KALICIAK, L., MYRHAUG, H., GOKER, A. and SONG, D. 2015. Early fusion and query modification in their dual late 
fusion forms. Journal of advances in information fusion [online], 10(2), pages 183-198. Available from: 

http://isif.org/journal/10/2/1557-6418  

 
 
 
 

This document was downloaded from 
https://openair.rgu.ac.uk 

Early fusion and query modification in their dual 
late fusion forms. 

KALICIAK, L., MYRHAUG, H., GOKER, A. and SONG, D. 

2015 

http://isif.org/journal/10/2/1557-6418


JOURNAL OF ADVANCES IN INFORMATION FUSION 1

Early Fusion and Query Modification in Their Dual
Late Fusion Forms

Leszek Kaliciak, Hans Myrhaug, Ayse Goker, and Dawei Song

Abstract—In this paper, we prove that specific widely used
models in Content-based Image Retrieval for information fusion
are interchangeable. In addition, we show that even advanced,
non-standard fusion strategies can be represented in dual forms.
These models are often classified as representing early or late
fusion strategies. We also prove that the standard Rocchio algo-
rithm with specific similarity measurements can be represented
in a late fusion form.

Index Terms—Information and data fusion, early fusion, late
fusion, Content-based Image Retrieval, Information Retrieval,
Multimedia Retrieval, textual representation, visual representa-
tion, hybrid relevance feedback.

I. INTRODUCTION

FUSION strategies1 play an important role in many areas
of research, including text Information Retrieval (IR),

Content-based Image Retrieval (CBIR), Computer Vision,
Geospatial Information Systems, Business Intelligence, Bioin-
formatics - to name a few. In CBIR and Computer Vision,
the most widely used fusion schemes are early and late
fusion strategies. They are important because they allow us
to combine various notions of visual information, textual
information, etc. at the representation level or system decision
level.

In general, Content-based Image Retrieval is usually based
on the Vector Space Model. It represents information objects
as multidimensional vectors. A user query is also represented
as a vector which can be an image (referred to as visual
example) or text. It often contains two types of information -
visual and textual. When the user submits his/her query, the
similarity measurement is applied to compute the relevance
scores denoting the similarities between the query and images
in the data collection. The images are then ranked according
to the relevance scores and the top n images are presented to
the user.

Based on the experimental results, researchers have hinted
at the potential interchangeability of specific fusion schemes
([14]). In this paper, we mathematically prove that this in-
terchangeability is directly related to the interaction between
early fusion operators and similarity measurements. Thus, we
validate the hypotheses (interchangeability of specific fusion
approaches) that stem from experimental observations and
show the equivalence of particular fusion models. In addition,
we also derive equivalent, dual forms of the Rocchio query
modification model.

This journal paper is an extension and a follow-up of
our previous papers ([9], [10]). Here, we enrich the original

1In this paper, terms “fusion strategies”, “fusion schemes”, “fusion meth-
ods”, and “fusion techniques” will be used interchangeably.

publication with specific non-standard early fusion strategies
and show that even advanced models based on the early and
late fusion strategies can be interchangeable. We also devote
an entire section to proving that the standard Rocchio query
modification model ([20], [1], [34]) has its late fusion form
equivalent, a dual form - which would differ with respect to the
similarity measure. The late fusion analogues to the Rocchio
algorithm had so far been considered as separate, different
techniques ([22], [12]). Section related to hybrid relevance
feedback model is based on another conference publication
[10].

The rest of this paper is organized as follows: Section
2 presents the background and related work on the early
and late fusion schemes. Section 3 shows the relationships
between various models representing different fusion strategies
with examples. An interesting finding which presents dual
late fusion forms of the standard Rocchio query modification
model can be found in Section 4. Finally, conclusions and
information on future work are provided in Section 5.

II. BACKGROUND AND RELATED WORK

Different features (i.e. various visual, textual) in CBIR
represent complementary yet correlated aspects of the same
multimedia objects. This, in turn, presents an opportunity to
utilize this complementarity by combining the feature spaces
in order to improve their performance. Fusion strategies are the
main tools that can be used to accomplish the aforementioned
task ([5], [3]). Early fusion strategy combines the feature
spaces at the representation level (fusion of representations)
whereas late fusion strategy combines them at the decision
level (fusion of relevance scores). Thus, for example, one
can combine visual and textual features in the first round
retrieval. It is also possible to combine them in the context
of user relevance feedback ([10],[8],[6]). Moreover, search by
multiple visual examples also requires combination of features
corresponding to these visual examples. Many current state-of-
the-art CBIR systems combine various visual features (often
local and global) to achieve the best performance (e.g. [17]).

The most widely used early fusion technique is concate-
nation of visual and textual representations. In fact, some
researchers implicitly assume concatenation to be synonymous
with an early fusion strategy. Other recently proposed models
incorporate the tensor product to combine visual and textual
systems [30]. The tensor product represents a useful fusion
technique as it takes into account all the combinations of
different features’ dimensions. It has also other applications
in IR, for example, to model semantic (verb-noun pairs)
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composition [31]. The main drawback of the early fusion
approach is the well-known curse of dimensionality. Later in
the paper we show, that the curse of dimensionality can be
avoided if the equivalent late fusion form is known.

In the case of the late fusion, the most widely used method
is the arithmetic mean of the scores, their sum (referred
to as CombSUM in the literature), or their weighted linear
combination. One of the best performing systems on the Im-
ageCLEF2007 data collection, XRCE [17], utilizes both early
- concatenation of features and late - an average of relevance
scores fusion strategies for comparison purposes. Another
common combination method, referred to as CombPROD in
the literature, is the squared geometric mean of the relevance
scores - their product. It has been argued, that the major
drawback of the late fusion approaches is their inability
to capture the correlation between different modalities [18].
However, in the paper we show that in some cases the late
fusion can be represented in the form of an early fusion.

Early and late fusion strategies can be also considered in
the context of classification, e.g. image categorization [4]. In
the case of classification, late fusion is performed differently,
as a weighted voting strategy from the outputs of different
classiers ([21], [24]). Some fusion strategies in CBIR can be
also classified as intermediate fusion [4]. They simultaneously
learn individual classier and combination classier weights [33],
and this process happen at various levels of learning. In this
paper, however, our focus is on the similarity-based image
retrieval.

Thus, in general, most literature on fusion strategies in
Content-based Image Retrieval utilize either concatenation or
a linear combination of relevance scores in their models (i.e.
[29]). Others have used both for experimental comparison
([27], [28]) and conclude that both strategies generate similar
results (slightly better performance of a late fusion) or are
in favour of an early fusion strategy (i.e. [25]). All of them,
however, treat these fusion strategies as separate, individual
data combination approaches.

In this paper, we aim to prove that specific widely used
standard and non-standard fusion models in CBIR are equiv-
alent. All presented models are based on early and late fusion
strategies, and represent counterexamples showing that these
strategies should not always be considered as separate.

III. RELATIONSHIPS BETWEEN FUSION
STRATEGIES

The most widely used fusion models in Content-based
Image Retrieval are based on the early and late fusion schemes.
We are going to show, that specific combinations of similarity
measures and individual scores (late fusion) can be represented
as similarities computed on pre-tensored or pre-concatenated
individual representations (early fusion), and vice versa.

One of the best performing similarity measurements in
information retrieval in general are: cosine similarity and
metrics from the Minkowski family of distances (Euclidean,
Manhattan, etc.). In particular, Euclidean distance is often
utilized in visual search [11], while textual search often uses
cosine similarity [35]. Moreover, late fusion is most often

represented as a product of relevance scores, their sum, or their
weighted linear combination ([18], [29]). The early fusion,
on the other hand, is usually represented by concatenation of
feature spaces ([31], [29]).

Thus, in this section, we are going to investigate the
interactions between these similarity measurements and early
fusion operators. We are going to reveal the relationships
between concatenation and tensor product with the following
similarity measurements:

• inner product2

• cosine similarity
• weighted cosine similarity (can be used to change the

importance of different feature spaces)
• Euclidean metric

We also investigate the interactions of the aforementioned
early fusion operators with a combination of Euclidean dis-
tance and cosine similarity. That is because often cosine
similarity performs best in text IR (Information Retrieval)
while Euclidean distance gives the best performance in CBIR.
Therefore, we may want to utilize different similarity mea-
surements for different feature spaces. Interestingly, we can
combine these different similarity measurements in such a
way, that this combination will correspond to the feature fusion
at the representation level. Further, we explore the interactions
with the Minkowski family of distances, which encompasses
a wide range of various metrics and similarity measurements.
The discovered relationships are supported by examples.

For the clarity of the formulas, in this section we assume
that the visual and textual features were normalized. This is
not a necessary assumption as analogous relationships can be
found for representations that were not normalized.

Table I presents the notation used in the paper.

A. Interactions of early fusion operators (concatenation, ten-
sor product) with the dot product

1) : We can start by making a few simple observations.
Let us employ a standard inner product as the similarity
measurement. Let d be a vector representation of a multimedia
document. We can check that⟨

dv1 ⊕ dt1|dv2 ⊕ dt2
⟩
= ⟨dv1|dv2⟩+

⟨
dt1|dt2

⟩
(1)

where ⟨·|·⟩ denotes an inner product, ⊕ is the direct product
(concatenation of vectors) and dvi , d

t
i are the visual and textual

image representations of the ith image, for example. We
can assume that dv1, d

t
1 denote the visual and textual query

representations (query by visual example) and dv2, d
t
2 denote

the visual and textual representations of an image from the
image collection. We would measure these similarities for all
the images in the data collection and use the relevance scores
to rank the images.

From the above equation we can see, that concatenation
of vectors is equivalent to addition of measurements (scores)
performed on individual feature spaces.

2In this paper, terms “inner product” and “dot product” will be used
interchangeably.
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TABLE I: Overview of the notation used in the paper.

Symbol Meaning
dv1 , dt1 Visual and textual vector representations of the query, respectively
dv2 , dt2 Visual and textual vector representations of an arbitrary image from an image collection, respectively
⊕ Vector concatenation (early fusion operator)
⊗ Tensor product (early fusion operator)
⟨·|·⟩ Similarity measurement - inner product (dot product), sin (·, ·)
sc (·, ·) Similarity measurement - cosine similarity
se (·, ·) Similarity measurement - Euclidean metric
sb (·, ·) Similarity measurement - Bhattacharya similarity
sp (·, ·) Similarity measurements Minkowski family of distances
sin (·, ·) Similarity measurement - inner product (dot product)
|| · || Vector norm
Qd an arbitrary document vector from the data collection
Qm modified query vector
Qo original query vector
Dj related document vector
Dk non-related document vector
a original query weight
b related documents’ weights
c non-related documents’ weights
Dr set of related documents
Dnr set of non-related documents
(.)T transpose operator
A observable
M density matrix
⟨A⟩ = tr (MA) predicted mean value of the measurement
P = pT p projector onto a subspace
Pr probability of the projection

To clarify, concatenation (⊕) of two n and m dimensional
vectors produces a new n+m dimensional vector, for example

(a, b)⊕ (c, d, e) = (a, b, c, d, e) (2)

2) : Tensor product (⊗) of two n and m dimensional
vectors generates an n · m dimensional vector or an n by
m dimensional matrix. For example

(a, b)⊗ (c, d, e) = (ac, ad, ae, bc, bd, be) (3)

or

(a, b)⊗ (c, d, e) =

(
ac ad ae
bc bd be

)
(4)

It has been shown that the tensor product can be useful
when combining the representations as it takes into account
all of the combinations of vectors’ dimensions and gives
good discrimination in terms of similarity measurements [13].
Assuming that the systems were prepared independently, we
have ⟨

dv1 ⊗ dt1|dv2 ⊗ dt2
⟩
= ⟨dv1|dv2⟩ ·

⟨
dt1|dt2

⟩
(5)

where ⊗ denotes the tensor operator.
From the above equation it turns out that the inner product

of the tensor products is a product of the measurements
(scores) performed on individual feature spaces. One of the
implications of this observation is that there is no need for
performing the tensor operation.

B. Interactions of early fusion operators (concatenation, ten-
sor product) with the cosine similarity

One of the best performing similarity measures in text IR
is the cosine similarity (sc)

sc (d1, d2) =
⟨d1|d2⟩

∥d1∥ · ∥d2∥
(6)

The following equations hold∥∥dv1 ⊗ dt1
∥∥ =

=
√
⟨dv1 ⊗ dt1|dv1 ⊗ dt1⟩ =

=
√
⟨dv1|dv1⟩ · ⟨dt1|dt1⟩ =

= ∥dv1∥ ·
∥∥dt1∥∥ =

=1 =
∥∥dv2 ⊗ dt2

∥∥ (7)

and ∥∥dv1 ⊕ dt1
∥∥ =

=
√
⟨dv1 ⊕ dt1|dv1 ⊕ dt1⟩ =

=
√
⟨dv1|dv1⟩+ ⟨dt1|dt1⟩ =

=

√
∥dv1∥

2
+ ∥dt1∥

2
=

=
√
2 =

∥∥dv2 ⊕ dt2
∥∥ (8)

Therefore, we get

sc
(
dv1 ⊗ dt1, d

v
2 ⊗ dt2

)
= sc (d

v
1, d

v
2) · sc

(
dt1, d

t
2

)
(9)

sc
(
dv1 ⊕ dt1, d

v
2 ⊕ dt2

)
=

1

2

(
sc (d

v
1, d

v
2) + sc

(
dt1, d

t
2

))
(10)

Here, the square root of the similarity between the tensored
representations is the geometric mean of the scores computed
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independently and the similarity between the concatenated
representations is the arithmetic mean of individual scores.

Let us assume, that a model incorporates cosine similarity
as a measurement used in combining the sub-systems (i.e.
visual features or visual and textual features). Then, the
concatenation or tensor operation produces the same effect
as incorporation of the CombSUM or CombPROD late fusion
methods, respectively.

C. Interactions of an early fusion operator (concatenation)
with the weighted cosine similarity

If we utilize weighted combinations (with r1, r2 denoting
the weights, the importance of visual and textual representa-
tions, for example), then we get3

sc
(
r1d

v
1 ⊕ r2d

t
1, r1d

v
2 ⊕ r2d

t
2

)
=

=
1

r21 + r22

(
r21sc (d

v
1, d

v
2) + r22sc

(
dt1, d

t
2

))
(11)

Proof: Because∥∥(r1dv)⊕ (r2dt)∥∥ =

=
√

⟨(r1dv)⊕ (r2dt) | (r1dv)⊕ (r2dt)⟩ =
=
√

⟨r1dv|r1dv⟩+ ⟨r2dt|r2dt⟩ =

=
√

r21 ⟨dv|dv⟩+ r22 ⟨dt|dt⟩ =

=

√
r21 ∥dv∥

2
+ r22 ∥dt∥

2
=

=
√

r21 + r22

we get

sc
(
r1d

v
1 ⊕ r2d

t
1, r1d

v
2 ⊕ r2d

t
2

)
=

=
⟨r1dv1 ⊕ r2d

t
1|r1dv2 ⊕ r2d

t
2⟩

r21 + r22
=

=
⟨r1dv1|r1dv2⟩+ ⟨r2dt1|r2dt2⟩

r21 + r22
=

=
1

r21 + r22

(
r21

⟨dv1|dv2⟩
∥dv1∥ ∥dv2∥

+ r22
⟨dt1|dt2⟩

∥dt1∥ ∥dt2∥

)
=

=
1

r21 + r22

(
r21sc (d

v
1, d

v
2) + r22sc

(
dt1, d

t
2

))

D. Interactions of early fusion operators (concatenation, ten-
sor product) with the Euclidean metric

We can also find the relationships for Euclidean metric

se (d1, d2) =
√
⟨d1 − d2|d1 − d2⟩. (12)

Thus

se
(
dv1 ⊕ dt1, d

v
2 ⊕ dt2

)
=
√
s2e (d

v
1, d

v
2) + s2e (d

t
1, d

t
2) (13)

3Similar observations can be made for other similarity measurements. Here,
we only present the weighted combinations for the cosine similarity.

and

se
(
dv1 ⊗ dt1, d

v
2 ⊗ dt2

)
=

=

√
s2e (d

v
1, d

v
2) + s2e (d

t
1, d

t
2)−

1

2
s2e (d

v
1, d

v
2) s

2
e (d

t
1, d

t
2) (14)

Proof: (1) From the fact that

se (d1, d2) =

√
∥d1∥2 + ∥d2∥2 − 2 ⟨d1|d2⟩

and

∥d1 ⊕ d2∥ =
√
2

we can show that

se
(
dv1 ⊕ dt1, d

v
2 ⊕ dt2

)
=

=

√
∥dv1 ⊕ dt1∥

2
+ ∥dv2 ⊕ dt2∥

2 − 2 ⟨dv1 ⊕ dt1|dv2 ⊕ dt2⟩ =

=
√
4− 2 (⟨dv1|dv2⟩+ ⟨dt1|dt2⟩) =

=
√
2− 2 ⟨dv1|dv2⟩+ 2− 2 ⟨dt1|dt1⟩ =

=
√
s2e (d

v
1, d

v
2) + s2e (d

t
1, d

t
2)

(2) Notice that

s2e (d
v
1, d

v
2) · s2e

(
dt1, d

t
2

)
=

=(2− 2 ⟨dv1|dv2⟩) ·
(
2− 2

⟨
dt1|dt2

⟩)
=

=2 (2− 2 ⟨dv1|dv2⟩)+
+2
(
2− 2

⟨
dt1|dt2

⟩)
− 2

(
2− 2 ⟨dv1|dv2⟩

⟨
dt1|dt2

⟩)
=

=2s2e (d
v
1, d

v
2) + 2s2e

(
dt1, d

t
2

)
− 2s2e

(
dv1 ⊗ dt1, d

v
2 ⊗ dt2

)

E. Interactions of early fusion operators (concatenation, ten-
sor product) with the Bhattacharya similarity

Similarly, for the Bhattacharya similarity

sb (d1, d2) = −ln

(∑
i

√
(d1)i · (d2)i

)
(15)

we get

sb
(
dv1 ⊗ dt1, d

v
2 ⊗ dt2

)
= sb (d

v
1, d

v
2) + sb

(
dt1, d

t
2

)
(16)

and

sb
(
dv1 ⊕ dt1, d

v
2 ⊕ dt2

)
=

= −ln
(
e−sb(d

v
1 ,d

v
2) + e−sb(dt

1,d
t
2)
)

(17)

Proof: Let us denote
√
d =

(√
d1,
√
d2, . . . ,

√
dn

)
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Then

sb
(
dv1 ⊗ dt1, d

v
2 ⊗ dt2

)
=

=− ln

(∑
k

√
(dv1 ⊗ dt1)k · (dv2 ⊗ dt2)k

)
=

=− ln

(⟨√
dv1 ⊗ dt1|

√
dv2 ⊗ dt2

⟩)
=

=− ln

(⟨√
dv1 ⊗

√
dt1|
√
dv2 ⊗

√
dt2

⟩)
=

=− ln

(⟨√
dv1|
√

dv2

⟩
·
⟨√

dt1|
√
dt2

⟩)
=

=−
(
ln
⟨√

dv1|
√

dv2

⟩
+ ln

⟨√
dt1|
√
dt2

⟩)
=

=−

ln
∑
i

√
(dv1)i · (dv2)i + ln

∑
j

√
(dt1)j · (dt2)j

 =

=sb (d
v
1, d

v
2) + sb

(
dt1, d

t
2

)

For the concatenation, we have

sb
(
dv1 ⊕ dt1, d

v
2 ⊕ dt2

)
=

=− ln

(∑
k

√
(dv1 ⊕ dt1)k · (dv2 ⊕ dt2)k

)
=

=− ln

(⟨√
dv1 ⊕ dt1|

√
dv2 ⊕ dt2

⟩)
=

=− ln

(⟨√
dv1 ⊕

√
dt1|
√
dv2 ⊕

√
dt2

⟩)
=

=− ln

(⟨√
dv1|
√

dv2

⟩
+

⟨√
dt1|
√
dt2

⟩)
=

=− ln

(
eln⟨

√
dv
1 |
√

dv
2⟩ + e

ln
⟨√

dt
1|
√

dt
2

⟩)
=

=− ln
(
e−sb(d

v
1 ,d

v
2) + e−sb(dt

1,d
t
2)
)

F. Interactions of early fusion operators (concatenation, ten-
sor product) with the Euclidean Metric. Interpretation of
non-linear combinations of cosine similarity and Euclidean
distance

Sometimes it might be beneficial to utilize different simi-
larity measures for different feature spaces [7] (i.e. Euclidean
metric for visual features and cosine similarity for textual
space). Interestingly, we can fuse the scores in such a way,
that their combination would correspond to (for example)
measuring the Euclidean distance between the concatenated
or tensored representations

se
(
dv1 ⊕ dt1, d

v
2 ⊕ dt2

)
=

=
√
s2e (d

v
1, d

v
2)− 2sc (dt1, d

t
2) + 2 (18)

se
(
dv1 ⊗ dt1, d

v
2 ⊗ dt2

)
=

=
√
s2e (d

v
1, d

v
2) sc (d

t
1, d

t
2)− 2sc (dt1, d

t
2) + 2 (19)

Proof: Stems from the fact that

s2e
(
dt1, d

t
2

)
=

=2− 2
⟨
dt1|dt2

⟩
=

=2− 2
⟨dt1|dt2⟩

∥dt1∥ ∥dt2∥
=

=2− 2sc
(
dt1, d

t
2

)
and (5),(13).

G. Interactions of early fusion operators (concatenation, ten-
sor product) with the Minkowski Family of Distances

Minkowski family of distances include widely utilized
Manhattan and Euclidean metrics. Manhattan distance, for
example, was utilized in [15] to query the CBIR system
by multiple visual examples. In this aforementioned paper,
individual scores corresponding to visual examples where ag-
gregated. It is interesting to know, that if one concatenated the
representations corresponding to visual examples and utilized
Manhattan metric, then the influence of these fusion methods
on the retrieval performance would be exactly the same.

Minkowski family of distances is represented by the formula

sp (d1, d2) =

(
n∑

i=1

∣∣di1 − di2
∣∣p) 1

p

(20)

where p ∈ N.
For the fractional values of p ∈ (0, 1), the formula is not a

metric in the mathematical sense. However, it has been shown
[16], that the similarity measure with fractional values of p
works well in CBIR.

We are going to show, that

sp
(
dv1 ⊕ dt1, d

v
2 ⊕ dt2

)
=
(
spp (d

v
1, d

v
2) + spp

(
dt1, d

t
2

)) 1
p (21)

Proof:

sp
(
dv1 ⊕ dt1, d

v
2 ⊕ dt2

)
=

=
∥∥dv1 ⊕ dt1 − dv2 ⊕ dt2

∥∥
p
=

=
∥∥(dv1 − dv2)⊕

(
dt1 − dt2

)∥∥
p
=

=
(
∥dv1 − dv2∥

p
p +

∥∥dt1 − dt2
∥∥p
p

) 1
p

=

=
(
spp (d

v
1, d

v
2) + spp

(
dt1, d

t
2

)) 1
p

where

∥d∥p = (dp1 + dp2 + . . . dpn)
1
p

Here, the representations do not have to be normalized.

Hence, in these cases the early and late fusion approaches
are interchangeable. The fusion of representations is then,
in fact, the fusion of similarities computed independently on
visual and textual feature spaces. This is, in our opinion, an
interesting finding.
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H. Advanced Early Fusion and Interchangeability

The following section is based on and contains excerpts
from [10].

Even advanced, non-standard early fusion can in some cases
be represented as a late fusion. The hybrid CBIR relevance
model introduced in [10] can be considered as a dual form
fusion. The model is based on the tensor product of co-
occurrence matrices representing visual and textual subspaces
of queries and feedback images. It was proven that this
advanced measurement performed on the combined represen-
tations is equivalent to the non-trivial combination of measure-
ments performed on individual feature spaces. Knowledge of
this interchangeability makes the models easy to implement
and significantly faster (computations performed on individual
feature spaces).

Modern retrieval systems allow the users to interact with the
system in order to narrow down and refine the search ([18],
[10]). This interaction takes the form of implicit or explicit
feedback. The representations of the images in the feedback
set are often aggregated or concatenated (or co-occurrence
matrices may be aggregated to represent i.e. probability distri-
bution matrix). The information extracted from the feedback
set is utilized to expand the query or re-rank the top images
returned in the first round of the retrieval.

The proposed hybrid relevance feedback model was inspired
by the measurement used in quantum mechanics, which is
based on an expectation value, predicted mean value of the
measurement

⟨A⟩ = tr (ρA) (22)

where tr denotes the trace operator, ρ represents a density
matrix of the system and A is an observable. We can also rep-
resent an observable A as a density matrix (corresponding to
the query or an image in the collection). For more information
on the analogies between quantum mechanics and information
retrieval the curious reader is referred to [23].

We are going to use the tensor operator ⊗ to combine the
density matrices corresponding to visual and textual feature
spaces. In quantum mechanics, the tensor product of density
matrices of different systems represents a density matrix of
the combined system (see [32]).

Thus, the proposed measurement is represented by

tr
(
(M1 ⊗M2) ·

((
aT · a

)
⊗
(
bT · b

)))
(23)

where M1, M2 represent density matrices (co-occurrence
matrices) of the query and images in the feedback set cor-
responding to visual and textual spaces respectively, a and b
denote row vectors representing visual and textual information
for an image from the data collection4, and T is a transpose
operation on matrices. We would perform this measurement
on all the images in the collection, thus re-scoring the data
collection based on the user feedback.

Assuming that the systems were prepared independently
(otherwise we would have to try to model a concept analogous

4For the clarity of formulas a = dv2 , b = dt2.

to entanglement [2]), we get

tr
(
(M1 ⊗M2) ·

((
aT · a

)
⊗
(
bT · b

)))
=

=tr
((
M1 ·

(
aT · a

))
⊗
(
M2 ·

(
bT · b

)))
=

=tr
(
M1 ·

(
aT · a

))
· tr
(
M2 ·

(
bT · b

))
=

=
⟨
M1|aT · a

⟩
·
⟨
M2|bT · b

⟩
(24)

where ⟨·|·⟩ denotes an inner product operating on a vector
space.

Let qv, qt denote the visual and textual representations of
the query, ci, di denote visual and textual representations of
the images in the feedback set, r1, r2 denote the weighting
factors (constant, importance of query and feedback density
matrices respectively), and n denote the number of images
in the feedback set. Then, we define M1 and M2 as weighted
combinations of co-occurrence matrices (a subspace generated
by the query vector and vectors from the feedback set)5. Here,
Dv

q , Dt
q , Dv

f , and Dt
f represent co-occurrence matrices of

query and feedback images corresponding to visual and textual
features respectively.

M1 = r1 ·Dv
q +

r2
n

·Dv
f =

=r1 · qTv · qv +
∑
i

(r2
n

·
(
ci
)T · ci

)
(25)

and

M2 = r1 ·Dt
q +

r2
n

·Dt
f =

=r1 · qTt · qt +
∑
i

(r2
n

·
(
di
)T · di

)
(26)

The common way of co-occurrence matrix generation is to
multiply the term-document matrix by its transpose (rows of
the matrix represent the documents d1, . . . dm), that is D =
MT ·M . Notice, that this is equivalent to D =

∑n
i=1 d

T
i · di.

This observation, due to the properties of an inner product,
will allow us to further simplify our model⟨

M1 ⊗M2|
(
aT · a

)
⊗
(
bT · b

)⟩
=

=
⟨
M1|aT · a

⟩
·
⟨
M2|bT · b

⟩
=

=

⟨
r1 · qTv · qv +

∑
i

(r2
n

·
(
ci
)T · ci

)
|aT · a

⟩
·

=

⟨
r1 · qTt · qt +

∑
i

(r2
n

·
(
di
)T · di

)
|bT · b

⟩
=

=

(⟨
r1 · qTv · qv|aT · a

⟩
+
∑
i

r2
n

⟨(
ci
)T · ci|aT · a

⟩)
·

=

(⟨
r1 · qTt · qt|bT · b

⟩
+
∑
i

r2
n

⟨(
di
)T · di|bT · b

⟩)
=

=

(
r1 · ⟨qv|a⟩2 +

r2
n

·
∑
i

⟨
ci|a
⟩2) ·

=

(
r1 · ⟨qt|b⟩2 +

r2
n

·
∑
i

⟨
di|b
⟩2)

(27)

5Co-occurrence matrices are quite often utilized in the Information Retrieval
(IR) field. Because they are Hermitian and positive-definite, they can be
thought of as density matrices (probability distribution).
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Notice that the model breaks down into the weighted
combinations of individual measurements. The squares of the
inner products come from the correlation matrices and can
play an important role in the measurement. Later in the paper,
we are going to justify this claim.

We can consider a variation of the aforementioned model,
where just like in the original one M1 = r1 · Dv

q + r2
n · Dv

f

and M2 = r1 ·Dt
q +

r2
n ·Dt

f . We can decompose (eigenvalue
decomposition) the density matrices M1, M2 to estimate the
bases6 (pvi , ptj) of the subspaces generated by the query and
the images in the feedback set. Now, let us consider the
measurement ⟨

P1 ⊗ P2|
(
aTa

)
⊗
(
bT b
)⟩

(28)

where P1, P2 are the projectors onto visual and textual
subspaces generated by query and the images in the feedback
set (

∑
i (p

v
i )

T
pvi ,

∑
j

(
ptj
)T

ptj), and a, b are the visual and
textual representations of an image from the data set. Because
the tensor product of the projectors corresponding to visual and
textual Hilbert spaces (H1, H2) is a projector onto the tensored
Hilbert space7 (H1 ⊗ H2), the model can be interpreted as
probability of relevance context, the probability that vector
a ⊗ b was generated within the subspace (representing the
relevance context) generated by M1 ⊗M2. Hence⟨

P1 ⊗ P2|
(
aTa

)
⊗
(
bT b
)⟩

=

=
⟨
P1|aTa

⟩
·
⟨
P2|bT b

⟩
=

=

⟨∑
i

(pvi )
T
pvi |aTa

⟩
·

⟨∑
j

(
ptj
)T

ptj |bT b

⟩
=

=
∑
i

⟨pvi |a⟩
2 ·
∑
j

⟨
ptj |b

⟩2
=

=
∑
i

Prvi ·
∑
j

Prtj =

=
∥∥(⟨pv1|a⟩ , . . . , ⟨pvn|a⟩)⊗ (⟨pt1|b⟩ , . . . , ⟨ptn|b⟩)∥∥2 (29)

where Pr denotes the projection probability and ∥·∥ represents
vector norm.

We can see that this measurement is equivalent to the
weighted combinations of all the probabilities of projections
for all the images involved. In quantum mechanics, the square
of the absolute value of the inner product between the initial
state and the eigenstate is the probability of the system
collapsing to this eigenstate. In our case, the square of the
absolute value of the inner product can be interpreted as a
particular contextual factor influencing the measurement.

6It has been highlighted [19] that the orthogonal decomposition may not be
the best option for visual spaces because the receptive fields that result from
this process are not localized, and the vast majority do not at all resemble
any known cortical receptive fields. Thus, in the case of visual spaces, we
may want to utilize decomposition methods that produce non-orthogonal basis
vectors.

7A Hilbert space is a vector space with an inner product operation on
elements of the vector space. It is a generalization of the notion of a
Euclidean space. Hence, Hilbert spaces allow us to utilize a wider variety
of mathematical tools to model various phenomena in IR, for example. This
generalization can also often encompass many different models operating in
Euclidean space, thus unifying various approaches.

IV. QUERY MODIFICATION AND LATE FUSION

Query reformulation techniques are often used in multime-
dia retrieval to narrow down the search based on the user
feedback. We are going to show, that the Rocchio query
modification algorithm [26] can be represented as a late
fusion, a combination of a number of individual relevance
scores. This interesting finding shows that the same effect
can be achieved by either modifying the query or combining
individual relevance scores.

The late fusion analogues to the Rocchio algorithm have
been considered as separate, different techniques ([22], [12]).
We show that one of the standard query modification algo-
rithms, the Rocchio model, also has its dual late fusion form
representations.

Rocchio algorithm modifies the query so that it moves closer
to the centroid of relevant documents and further away from
the centroid of irrelevant ones

Qm = (a ·Qo)+

b · 1

|Dr|
·
∑

Dj∈Dr

Dj

−

(
c · 1

|Dnr|
·
∑

Dk∈Dnr

Dk

)
(30)

where
Qm - modified query vector
Qo - original query vector
Dj - related document vector
Dk - non-related document vector
a - original query weight
b - related documents’ weights
c - non-related documents’ weights
Dr - set of related documents
Dnr - set of non-related documents

We will show, that the modification of the query can be
interpreted as a weighted combination of the measurements
(scores, similarities) between a query and a document from
the data collection and between a query and each document
from the feedback set. In this section, for the clarity of the
formulas, we assume that all vectors were normalized to unit
vectors and Qd denotes an arbitrary document vector from
the data collection.

A. Inner Product

After modifying the query, we need to re-compute the
scores. Thus, we would get

⟨Qm|Qd⟩ =

=a ⟨Qo|Qd⟩+
b

|Dr|
∑

Dj∈Dr

⟨Dj |Qd⟩−

c

|Dnr|
∑

Dk∈Dnr

⟨Dk|Qd⟩ (31)

Proof:
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⟨Qm|Qd⟩ =

=

⟨
aQo + b

1

|Dr|
∑

Dj∈Dr

Dj − c
1

|Dnr|
∑

Dk∈Dnr

Dk|Qd

⟩
=

= ⟨aQo|Qd⟩+

+

⟨
b

|Dr|
∑

Dj∈Dr

Dj |Qd

⟩
−

⟨
c

|Dnr|
∑

Dk∈Dnr

Dk|Qd

⟩
=

=a ⟨Qo|Qd⟩+
b

|Dr|
∑

Dj∈Dr

⟨Dj |Qd⟩−

c

|Dnr|
∑

Dk∈Dnr

⟨Dk|Qd⟩

Hence, the query modification with the inner product as a
similarity measurement can be represented in a specific late
fusion form.

B. Cosine Similarity

For the cosine similarity, we get

sc (Qm, Qd) =
1

∥Qm∥

(
asc (Qo, Qd)+

+
b

|Dr|
∑
j

sc (Dj , Qd)−
c

|Dnr|
∑
k

sc (Dk, Qd)

)
(32)

∥Qm∥2 = a2 + c2+

+
2ab

|Dr|
∑
j

sc (Qo, Dj)−
2ac

|Dnr|
∑
k

sc (Qo, Dk)−

2bc

|Dr| · |Dnr|
∑
j

∑
k

sc (Dj , Dk) (33)

Proof:

sc (Qm, Qd) =
⟨Qm|Qd⟩

∥Qm∥ · ∥Qd∥
=

=
1

∥Qm∥

(
asc (Qo, Qd)+

+
b

|Dr|
∑
j

sc (Dj , Qd)−
c

|Dnr|
∑
k

sc (Dk, Qd)

)

where

∥Qm∥2 = ⟨Qm|Qm⟩ =

=

⟨
aQo +

b

|Dr|
∑
j

Dj −
c

|Dnr|
∑
k

Dk|aQo+

+
b

|Dr|
∑
j

Dj −
c

|Dnr|
∑
k

Dk

⟩
=

=a2 ⟨Qo|Qo⟩+
2ab

|Dr|
∑
j

⟨Qo|Dj⟩ −
2ac

|Dnr|
∑
k

⟨Qo|Dk⟩−

2bc

|Dr| · |Dnr|
∑
j

∑
k

⟨Dj |Dk⟩+
c2

|Dnr|2
∑
k

∑
k

⟨Dk|Dk⟩ =

=a2 + c2 +
2ab

|Dr|
∑
j

sc (Qo, Dj)−
2ac

|Dnr|
∑
k

sc (Qo, Dk)−

2bc

|Dr| · |Dnr|
∑
j

∑
k

sc (Dj , Dk)

Hence, the query modification with the cosine similarity as
a similarity measurement can be represented in a specific late
fusion form.

C. Euclidean Distance

For the Euclidean distance

s2e (Qm, Qd) =

=a2 + c2 + 2ab− 2ac− 2bc− 2a− 2b− 2c+ 1−
ab

|Dr|
∑
j

se (Qo, Dj) +
ac

|Dnr|
∑
k

se (Qo, Dk)+

+
bc

|Dr| · |Dnr|
∑
j

∑
k

se (Dj , Dk)+

+ase (Qo, Qd)+

+
b

|Dr|
∑
j

se (Dj , Qd) +
c

|Dnr|
∑
k

se (Dk, Qd) (34)

Proof:

Based on the previous observation (for cosine similarity),
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we get

s2e (Qm, Qd) =

=a2 + c2 +
2ab

|Dr|
∑
j

⟨Qo|Dj⟩−

2ac

|Dnr|
∑
k

⟨Qo|Dk⟩ −
2bc

|Dr| · |Dnr|
∑
j

∑
k

⟨Dj |Dk⟩+

+1− 2a ⟨Qo|Qd⟩ −
2b

|Dr|
∑
j

⟨Dj |Qd⟩ −
2c

|Dnr|
∑
k

⟨Dk|Qd⟩ =

=a2 + c2 + 1 +
2ab

|Dr|
|Dr| −

2ab

|Dr|
|Dr|+

2ab

|Dr|
∑
j

⟨Qo|Dj⟩+

+
2ac

|Dnr|
|Dnr| −

2ac

|Dnr|
|Dnr| −

2ac

|Dnr|
∑
k

⟨Qo|Dk⟩+

+
2bc

|Dr| · |Dnr|
|Dr| · |Dnr| −

2bc

|Dr| · |Dnr|
|Dr| · |Dnr| −

2bc

|Dr| · |Dnr|
∑
j

∑
k

⟨Dj |Dk⟩+

+2a− 2a− 2a ⟨Qo|Qd⟩+

+
2b

|Dr|
|Dr| −

2b

|Dr|
|Dr| −

2b

|Dr|
∑
j

⟨Dj |Qd⟩+

+
2c

|Dnr|
|Dnr| −

2c

|Dnr|
|Dnr| −

2c

|Dnr|
∑
k

⟨Dk|Qd⟩ =

=a2 + c2 + 2ab− 2ac− 2bc− 2a− 2b− 2c+ 1−
ab

|Dr|
∑
j

se (Qo, Dj) +
ac

|Dnr|
∑
k

se (Qo, Dk)+

+
bc

|Dr| · |Dnr|
∑
j

∑
k

se (Dj , Dk)+

+ase (Qo, Qd) +
b

|Dr|
∑
j

se (Dj , Qd) +
c

|Dnr|
∑
k

se (Dk, Qd)

Hence, the query modification with the Euclidean distance
as a similarity measurement can be represented in a specific
late fusion form.

D. Hybrid Relevance Feedback and Rocchio Algorithm

We can also tensor or concatenate the modified query
vectors in order to generate hybrid models. Then (v, t indexes
denote visual and textual representations respectively)⟨

Qv
m ⊗Qt

m|Qv
d ⊗Qt

d

⟩
=

= ⟨Qv
m|Qv

d⟩
⟨
Qt

m|Qt
d

⟩
=

=(a ⟨Qv
o|Qv

d⟩+
b

|Dr|
∑

Dj∈Dr

⟨
Dv

j |Qv
d

⟩
−

c

|Dnr|
∑

Dk∈Dnr

⟨Dv
k|Qv

d⟩)·

(a
⟨
Qt

o|Qt
d

⟩
+

b

|Dr|
∑

Dj∈Dr

⟨
Dt

j |Qt
d

⟩
−

c

|Dnr|
∑

Dk∈Dnr

⟨
Dt

k|Qt
d

⟩
) (35)

and for concatenation⟨
Qv

m ⊕Qt
m|Qv

d ⊕Qt
d

⟩
=

= ⟨Qv
m|Qv

d⟩+
⟨
Qt

m|Qt
d

⟩
=

=a
(
⟨Qv

o|Qv
d⟩+

⟨
Qt

o|Qt
d

⟩)
+

+
b

|Dr|
∑

Dj∈Dr

(⟨
Dv

j |Qv
d

⟩
+
⟨
Dt

j |Qt
d

⟩)
−

c

|Dnr|
∑

Dk∈Dnr

(
⟨Dv

k|Qv
d⟩+

⟨
Dt

k|Qt
d

⟩)
(36)

We can use other similarity measures

sc
(
Qv

m ⊗Qt
m, Qv

d ⊗Qt
d

)
= sc (Q

v
m, Qv

d) · sc
(
Qt

m, Qt
d

)
(37)

sc
(
Qv

m ⊕Qt
m, Qv

d ⊕Qt
d

)
=

1

2

(
sc (Q

v
m, Qv

d) + sc
(
Qt

m, Qt
d

))
(38)

se
(
Qv

m ⊗Qt
m, Qv

d ⊗Qt
d

)
=

=

√
s2e (Q

v
m, Qv

d) + s2e (Q
t
m, Qt

d)−
1

2
s2e (Q

v
m, Qv

d) s
2
e (Q

t
m, Qt

d)

(39)

se
(
Qv

m ⊕Qt
m, Qv

d ⊕Qt
d

)
=
√
s2e (Q

v
m, Qv

d) + s2e (Q
t
m, Qt

d)

(40)

se
(
Qv

m ⊕Qt
m, Qv

d ⊕Qt
d

)
=

=
√
s2e (Q

v
m, Qv

d)− 2sc (Qt
m, Qt

d) + 2 (41)

se
(
Qv

m ⊗Qt
m, Qv

d ⊗Qt
d

)
=

=
√

s2e (Q
v
m, Qv

d) sc (Q
t
m, Qt

d)− 2sc (Qt
m, Qt

d) + 2 (42)

where the last formula would be a suggested combination
choice (Euclidean distance for measuring the similarity be-
tween visual representations and cosine similarity for textual
representations).

Thus, the standard Rocchio query modification algorithm
can be represented as a late fusion, a combination of
individual similarity measurements. This late fusion strategy
is equivalent to the standard query modification approach.

Table II presents the summary of all the findings. Figures 1
to 11 in the Appendix show examples related to concatenation
operator interacting with the inner product, tensor product
interacting with the inner product, concatenation operator in-
teracting with the cosine similarity, tensor product interacting
with the cosine similarity, weighted concatenation operator
interacting with the cosine similarity, concatenation operator
interacting with the Euclidean distance, tensor product in-
teracting with the Euclidean distance, concatenation operator
interacting with the Bhattacharya similarity, concatenation
operator interacting with the Euclidean distance for visual
features and cosine similarity for text, tensor product interact-
ing with the Euclidean distance for visual features and cosine
similarity for text, and concatenation operator interacting with
the Minkowski Family of Distances, respectively.
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TABLE II: Summary of the findings.

Early fusion interacting with the similarity Late fusion equivalent
sin
(
dv1 ⊕ dt1, d

v
2 ⊕ dt2

)
sin
(
dv1 |dv2

)
+ sin

(
dt1|dt2

)
sin
(
dv1 ⊗ dt1, d

v
2 ⊗ dt2

)
sin
(
dv1 |dv2

)
· sin

(
dt1|dt2

)
sc
(
dv1 ⊗ dt1, d

v
2 ⊗ dt2

)
sc
(
dv1 , d

v
2

)
· sc
(
dt1, d

t
2

)
sc
(
dv1 ⊕ dt1, d

v
2 ⊕ dt2

)
1
2

(
sc
(
dv1 , d

v
2

)
+ sc

(
dt1, d

t
2

))
sc
(
r1dv1 ⊕ r2dt1, r1d

v
2 ⊕ r2dt2

) (r21sc(d
v
1 ,d

v
2)+r22sc(d

t
1,d

t
2))

r21+r22

se
(
dv1 ⊕ dt1, d

v
2 ⊕ dt2

) √
s2e
(
dv1 , d

v
2

)
+ s2e

(
dt1, d

t
2

)
se
(
dv1 ⊗ dt1, d

v
2 ⊗ dt2

) √
s2e
(
dv1 , d

v
2

)
+ s2e

(
dt1, d

t
2

)
− 1

2
s2e
(
dv1 , d

v
2

)
s2e
(
dt1, d

t
2

)
sb
(
dv1 ⊗ dt1, d

v
2 ⊗ dt2

)
sb
(
dv1 , d

v
2

)
+ sb

(
dt1, d

t
2

)
sb
(
dv1 ⊕ dt1, d

v
2 ⊕ dt2

)
−ln (w1 + w2)

w1 = e−sb(dv1 ,d
v
2)

w2 = e−sb(dt1,d
t
2)

se
(
dv1 ⊕ dt1, d

v
2 ⊕ dt2

) √
s2e
(
dv1 , d

v
2

)
− 2sc

(
dt1, d

t
2

)
+ 2

se
(
dv1 ⊗ dt1, d

v
2 ⊗ dt2

) √
s2e
(
dv1 , d

v
2

)
sc
(
dt1, d

t
2

)
− 2sc

(
dt1, d

t
2

)
+ 2

sp
(
dv1 ⊕ dt1, d

v
2 ⊕ dt2

) (
spp
(
dv1 , d

v
2

)
+ spp

(
dt1, d

t
2

)) 1
p

tr
(
(M1 ⊗M2) ·

((
aT · a

)
⊗
(
bT · b

))) (
r1 · ⟨qv |a⟩2 + r2

n
·
∑

i

⟨
ci|a

⟩2) ·
(
r1 · ⟨qt|b⟩2 + r2

n
·
∑

i

⟨
di|b

⟩2)⟨
P1 ⊗ P2|

(
aT a

)
⊗
(
bT b
)⟩ ∥∥(⟨pv1 |a⟩ , . . . , ⟨pvn|a⟩)⊗ (⟨pt1|b⟩ , . . . , ⟨ptn|b⟩)∥∥2

⟨Qm|Qd⟩ a ⟨Qo|Qd⟩+ b
|Dr|

∑
Dj∈Dr

⟨Dj |Qd⟩ − c
|Dnr|

∑
Dk∈Dnr

⟨Dk|Qd⟩

sc (Qm, Qd)
1

∥Qm∥

(
asc (Qo, Qd) +

b
|Dr|

∑
j sc (Dj , Qd)− c

|Dnr|
∑

k sc (Dk, Qd)

)
∥Qm∥2 a2 + c2 + 2ab

|Dr|
∑

j sc (Qo, Dj)− 2ac
|Dnr|

∑
k sc (Qo, Dk)− 2bc

|Dr|·|Dnr|
∑

j

∑
k sc (Dj , Dk)

s2e (Qm, Qd) a2 + c2 + 2ab− 2ac− 2bc− 2a− 2b− 2c+ 1−
ab

|Dr|
∑

j se (Qo, Dj) +
ac

|Dnr|
∑

k se (Qo, Dk) +
bc

|Dr|·|Dnr|
∑

j

∑
k se (Dj , Dk)+

ase (Qo, Qd) +
b

|Dr|
∑

j se (Dj , Qd) +
c

|Dnr|
∑

k se (Dk, Qd)

V. CONCLUSIONS AND FUTURE WORK

Fusion strategies are widely utilized in many areas of
research, including Information Retrieval. Findings presented
in this paper are universal and also apply to other areas of
research. Here, however, we focus on the application of fusion
strategies to Content-based Image Retrieval (CBIR).

In this paper, we have investigated some interesting in-
teractions between widely used similarity measurements and
widely used operators related to early fusion strategy. We
have shown that these interactions between specific similarity
measurements and specific early fusion strategies have resulted
in combinations of representations at the decision level (late
fusion strategy). In other words, we have mathematically
proved that specific combinations of early fusion strategies
and specific similarity measurements are equivalent to par-
ticular combinations of measurements (i.e. relevance scores)
computed on individual feature spaces.

We have also shown that the query modification method
with specific similarity measurements (classic Rocchio al-
gorithm) can be interpreted as weighted combinations of
individual similarity measurements. What this mean is that
the same effect can be achieved by either modifying the
query or combining individual relevance scores. The existing
late fusion analogues to the Rocchio algorithm have been
considered as separate, different techniques. However, we have
seen that the Rocchio model also have its dual late fusion form
representations.

For future work we plan to search for other combinations of
various operators and similarity measures that could interact
in such a way as to represent late fusion. We have discovered

that even advanced early fusion can be represented as specific
combinations of similarity measurements. We will be also
investigating whether the late fusion is capable of capturing the
correlation between feature spaces or the interaction between
the early fusion operators and the similarity measurements de-
correlates features.
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VI. APPENDIX

Example 1. Concatenation with the inner product.

Query visual representation:
(√

2
2
,
√

2
2

)
Query textual representation:

(√
2
2
, 0,

√
2

2

)
Arbitrary image from the collection (visual): (1, 0)
Arbitrary image from the collection (text): (1, 0, 0)
L =

⟨(√
2

2
,
√

2
2

)
⊕
(√

2
2
, 0,

√
2

2

)
| (1, 0)⊕ (1, 0, 0)

⟩
=⟨√

2
2
,
√

2
2
,
√

2
2
, 0,

√
2

2
|1, 0, 1, 0, 0

⟩
=

√
2

R =
⟨(√

2
2
,
√

2
2

)
| (1, 0)

⟩
+
⟨(√

2
2
, 0,

√
2

2

)
| (1, 0, 0)

⟩
=

√
2

2
+

√
2

2
=

√
2

L = R
Therefore the concatenation with the inner product as a similarity
measurement can be represented in a late fusion form.
This means that these specific early and late fusion strategies
must produce the same ranking of images.

Example 2. Tensor product with the inner product.

Query visual representation:
(√

2
2
,
√

2
2

)
Query textual representation:

(√
2

2
, 0,

√
2

2

)
Arbitrary image from the collection (visual): (1, 0)
Arbitrary image from the collection (text): (1, 0, 0)
L =

⟨(√
2

2
,
√
2

2

)
⊗
(√

2
2
, 0,

√
2

2

)
| (1, 0)⊗ (1, 0, 0)

⟩
=⟨

1
2
, 0, 1

2
, 1
2
, 0, 1

2
|1, 0, 0, 0, 0, 0

⟩
= 1

2

R =
⟨(√

2
2
,
√

2
2

)
| (1, 0)

⟩
·
⟨(√

2
2
, 0,

√
2

2

)
| (1, 0, 0)

⟩
=

√
2
2

·
√

2
2

= 1
2

L = R
Therefore the tensor product with the inner product as a similarity
measurement can be represented in a late fusion form.
This means that these specific early and late fusion strategies
must produce the same ranking of images.

Example 3. Concatenation with the cosine similarity.

Query visual representation:
(√

2
2
,
√
2

2

)
Query textual representation:

(√
2

2
, 0,

√
2

2

)
Arbitrary image from the collection (visual): (1, 0)
Arbitrary image from the collection (text): (1, 0, 0)
L = sc

((√
2

2
,
√

2
2

)
⊕
(√

2
2
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√
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2

)
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)
=

√
2√

1
2
+ 1

2
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2
+ 1

2
·
√

1+1
=

√
2

2
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2
·
(
sc
((√

2
2
,
√

2
2

)
, (1, 0)

)
+ sc

((√
2

2
, 0,

√
2

2

)
, (1, 0, 0)

))
=

1
2
·
( √

2
2

1·1 +

√
2

2
1·1

)
=

√
2

2

L = R
Therefore the concatenation with the cosine similarity as a similarity
measurement can be represented in a late fusion form.
This means that these specific early and late fusion strategies
must produce the same ranking of images.
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Example 4. Tensor product with the cosine similarity.

Query visual representation:
(√

2
2
,
√

2
2

)
Query textual representation:

(√
2

2
, 0,

√
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)
Arbitrary image from the collection (visual): (1, 0)
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L = R
Therefore the tensor product with the cosine similarity as a similarity
measurement can be represented in a late fusion form.
This means that these specific early and late fusion strategies
must produce the same ranking of images.

Example 5. Weighted concatenation with the cosine similarity.

Query visual representation:
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Therefore the weighted concatenation with the cosine as a similarity
measurement can be represented in a late fusion form.
This means that these specific early and late fusion strategies
must produce the same ranking of images.

Example 6. Concatenation with the Euclidean distance.
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Therefore the concatenation with the Euclidean distance as a similarity
measurement can be represented in a late fusion form.
This means that these specific early and late fusion strategies
must produce the same ranking of images.

Example 7. Tensor product with the Euclidean distance.

Query visual representation:
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Therefore the tensor product with the Euclidean distance as a similarity
measurement can be represented in a late fusion form.
This means that these specific early and late fusion strategies
must produce the same ranking of images.

Example 8. Concatenation with the Bhattacharya similarity.

Query visual representation:
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Query textual representation:
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L = R
Therefore the concatenation with the Bhattacharya similarity
as a similarity measurement can be represented in a late fusion form.
This means that these specific early and late fusion strategies
must produce the same ranking of images.

Example 9. Concatenation with the Euclidean distance for
visual features and cosine similarity for text.

Query visual representation:
(√

2
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2
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)
Query textual representation:
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Therefore the concatenation with the above similarity measurements
can be represented in a late fusion form.
This means that these specific early and late fusion strategies
must produce the same ranking of images.
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Example 10. Tensor product with the Euclidean distance for
visual features and cosine similarity for text.
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((√
2

2
,
√
2
2

)
⊗
(√

2
2
, 0,

√
2
2

)
, (1, 0)⊗ (1, 0, 0)

)
=

se
((

1
2
, 0, 1

2
, 1
2
, 0, 1

2

)
, (1, 0, 0, 0, 0, 0)

)
=
√

1
4
+ 1

4
+ 1

4
+ 1

4
= 1

se
((√

2
2
,
√
2
2

)
, (1, 0)

)
=
√

2−
√
2

sc
((√

2
2
, 0,

√
2
2

)
, (1, 0, 0)

)
=

√
2

2

R =

√(
2−

√
2
)
·
√

2
2

−
√
2 + 2 = 1

L = R
Therefore the tensor product with the above similarity measurements
can be represented in a late fusion form.
This means that these specific early and late fusion strategies
must produce the same ranking of images.

Example 11. Concatenation with the Minkowski Family of
Distances.

Query visual representation: dv1 = (1, 3, 4)
Query textual representation: dt1 = (12, 1, 4, 2)
Arbitrary image from the collection (visual): dv2 = (0, 3, 5)
Arbitrary image from the collection (text): dt2 = (11, 0, 3, 1)
sp= 1

4

(
dv1 , d

v
2

)
=(

|1− 0|
1
4 + |3− 3|

1
4 + |4− 5|

1
4

)4
= 24 = 16

sp= 1
4

(
dt1, d

t
2

)
=(

|12− 11|
1
4 + |1− 0|

1
4 + |4− 3|

1
4 + |2− 1|

1
4

)4
= 44 = 256

Therefore, the right-hand side of the equation becomes

R =

(
s

1
4

p= 1
4

(
dv1 , d

v
2

)
+ s

1
4

p= 1
4

(
dt1, d

t
2

))4

=(
16

1
4 + 256

1
4

)4
= (2 + 4)4 = 1296

For the left-hand side, we have
L = sp= 1

4

(
dv1 ⊕ dt1, d

v
2 ⊕ dt2

)
=

sp= 1
4
((1, 3, 4, 12, 1, 4, 2), (0, 3, 5, 11, 0, 3, 1)) =

(1 + 0 + 1 + 1 + 1 + 1 + 1)4 = 1296
Thus, L = R.
Therefore concatenation operation with the above similarity
measurements can be represented in a late fusion form.
This means that this specific early and late fusion strategy
must produce the same ranking of images.
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