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Abstract

This paper studies the hidden dynamics of a class of two-dimensional maps inspired by

the Hénon map. A special consideration is made to the existence of fixed points and their

stabilities in these maps. Our concern focuses on three typical scenarios which may generate

hidden dynamics, i.e. no fixed point, single fixed point, and two fixed points. A computer search

program is employed to explore the strange hidden attractors in the map. Our findings show

that the basins of some hidden attractors are tiny, so the standard computational procedure for

localization is unavailable. The schematic exploring method proposed in this paper could be

generalized for investigating hidden dynamics of high-dimensional maps.

Keywords: hidden dynamics; two-dimensional maps; fixed point; stability; coexistence.

1. Introduction

This paper is devoted to the investigation of hidden dynamics of a class of two-dimensional

maps inspired by the Hénon map [1]. From a computation point of view, Leonov et al. proposed

a new classification of attractor in [2, 3]. If the basin of attraction for an attractor does not

intersect with small neighborhoods of equilibria, this attractor is called a hidden attractor.
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Otherwise, it is called a self-excited attractor. Self-excited attractors can be localized numerically

by the standard computational procedure, i.e. choose a point from the unstable manifold in a

neighborhood of an unstable equilibrium, and then trace the state of the attractor. While there

is no regular way to predict the existence or coexistence of hidden attractors in a system since

their basins of attraction are not connected with unstable equilibria. So one cannot guarantee the

localization of a hidden attractor by following its trajectories with random initial conditions as

its basin of attraction could be very small. Algorithms for finding hidden attractors in nonlinear

systems have been proposed by Bragin et al. in [4], and one of these algorithms has been used

to localize hidden attractors in the Chua’s system in [5, 6].

In the last few years, there was a growing interest in studying hidden chaotic attractors in

continuous systems. For example, Wei studied a simple three-dimensional autonomous chaotic

system with no equilibria in [7]. The particularity of this system is that there exists a constant

controller which can adjust the type of chaotic attractors. Jafari et al. [8] performed a systematic

search to find additional three-dimensional chaotic systems with quadratic nonlinearties and no

equilibria. Wei et al. studied a new four-dimensional hyperchaotic system by extending the

generalized diffusionless Lorenz equations in [9], and the new model did not show any equilibria

but two-scroll hyperchaos with chaotic, quasiperiodic and periodic dynamics. In [10], Molaie et

al. found that a stable equilibrium point coexisted with 23 simple chaotic flows with quadratic

nonlinearities by using the Routh-Hurwitz stability criterion and a systematic computer search.

Wei and Zhang [11] reported the finding of a four-dimensional non-Sil’nikov autonomous system

with three quadratic nonlinearities, and observed hidden hyperchaotic attractors with one stable

equilibrium. In [12], Wei and Yang studied a new three-dimensional autonomous chaotic system

which displayed double-scroll chaotic attractors in a very wide parameter domain with two stable

equilibria. Moreover, a line equilibrium has been found in the nine simple chaotic flows with

quadratic nonlinearities in [13], and Wang and Chen proposed a method in [14] for constructing

the chaotic system with pre-assigned number of equilibria. In the meantime, the coexistence of

hidden attractors has attracted great attention by many researchers, e.g. [15–19]. In [15, 16],

the rare and hidden attractors in the externally excited van der Pol-Duffing oscillator have been

investigated by using the concept of perpetual points in [17]. In [18], a coexisting stable limit

cycle was found in a chaotic system which has only one stable equilibrium. Li and Sprott [19]

studied a new four-dimensional simplified Lorenz system and obtained that it had an attracting

torus in some regions of parameter space coexisting with either a symmetric pair of strange

2



attractors or with a symmetric pair of limit cycles whose basin boundaries had an intricate

fractal structure. In [20], hidden attractors which coexisted with a stable equilibrium were

observed in a drilling system indicating that such hidden oscillations may cause costly drilling

failure. In addition, hidden attractors in multi-stroll chaotic systems [21–23] have also been

studied in [24].

On the other hand, dynamics of discrete-time maps, such as the Logistic map and the Hénon

map, have been studied extensively in different disciplines fueled by their broad applications in

economics, biology, and engineering (see [25–28] for examples). However, there are very few

results on hidden attractors in discrete-time maps. In [29], three second-order counterexamples

to the discrete-time Kalman conjecture were constructed and hidden stable periodic solutions

were shown for these examples. Zhusubaliyev et al. [30] studied the multistability and hidden

attractors in a multilevel DC/DC converter which was reduced to the analysis of the two-

dimensional piecewise-smooth map with multiple borders by integrating the equations of motion

for the continuous-time system from switching event to switching event. In [31], some hidden

attractors in one-dimensional map has been introduced by extending the Logistic map. In this

paper, we will study a class of two-dimensional maps and explore their hidden attractors. Our

main purpose is to devise a schematic approach for investigating hidden attractors in discrete-

time systems. The findings would allow one to study the mechanisms of hidden dynamics and

the evolution of their basins of attraction in high-dimensional discrete-time systems.

The rest of this paper is organized as follows. In Section 2, the mathematical model of a

class of two-dimensional maps is given, and the existence and the stability of its fixed points are

studied. The strange hidden attractors with no fixed point, and with a single stable fixed point

are investigated in Section 3 and 4, respectively. Finally, some conclusions are drawn in Section

5.

2. System model and fixed points

2.1. System model

Inspired by the Hénon map, we consider a class of two-dimensional map which is described

by the following difference equation xk+1 = yk,

yk+1 = a1xk + a2yk + a3x
2
k + a4y

2
k + a5xkyk + a6,

(1)
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where a1, a2, a3, a4, a5, a6 are real coefficients.

The Jacobian matrix of the map is given as

J =

 0 1

a1 + 2a3xk + a5yk a2 + 2a4yk + a5xk

 (2)

and the characteristic equation of the Jacobian matrix can be calculated as

det(λI − J) = λ2 − tr(J)λ+ det(J) = 0, (3)

where det(J) = −(a1 + 2a3xk + a5yk) is the determinant of the Jacobian matrix, and tr(J) =

a2 + 2a4yk + a5xk is the trace of the Jacobian matrix. According to the theory of matrix, the

sum of the eigenvalues of Jacobian matrix is equal to tr(J) and the product of the eigenvalues

of Jacobian matrix is equal to det(J).

2.2. Fixed points and stability analysis

The fixed point of the map (x, y) must satisfy the following conditions x = y,

y = a1x+ a2y + a3x
2 + a4y

2 + a5xy + a6.
(4)

Then the problem of finding fixed point can be transformed into solving the following equation

with respect to y

(a3 + a4 + a5)y
2 + (a1 + a2 − 1)y + a6 = 0. (5)

Assume that there exists a fixed point (x, y) of the map (1). The fixed point is stable if

the roots λ1, λ2 of the characteristic equation satisfy that |λ1,2| < 1. To establish the stability

conditions of the fixed points, the following lemma is used.

Lemma 1. [26–28] The fixed point (x, y) of the map (1) is stable if the following conditions

are satisfied
det(J)− 1 < 0,

tr(J)− det(J)− 1 < 0,

tr(J) + det(J) + 1 > 0.

(6)

where det(J) = −(a1 + 2a3x + a5y) is the determinant of the Jacobian matrix, and tr(J) =

a2 + 2a4y + a5x is the trace of the Jacobian matrix.
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Remark 1. If det(J) = 1, λ1λ2 = 1. If tr(J) + det(J) + 1 = 0, there is a real root λ = −1. If

tr(J)− det(J)− 1 = 0, there is a real root λ = −1.

If a3 + a4 + a5 ̸= 0, ∆ = (a1 + a2 − 1)2 − 4(a3 + a4 + a5)a6 is denoted as the discriminant

of Eq. (5).

2.2.1. Case 1: no fixed point

(1) No fixed point I (NF I)

If a3+a4+a5 = 0, a1+a2−1 = 0 and a6 ̸= 0, Eq. (5) has no solution, and the map (1) has

no fixed point. For any existence of attractors, they must be hidden as the basins of attraction

of these attractors do not contain any fixed point.

(2) No fixed point II (NF II)

If a3 + a4 + a5 ̸= 0 and ∆ < 0, Eq. (5) has no solution, and the map (1) has no fixed

point. Again, if there exists an attractor, it must be hidden since the basin of attraction of this

attractor does not contain any fixed point.

2.2.2. Case 2: single fixed point

(1) Single fixed point I (SF I)

If a3 + a4 + a5 = 0 and a1 + a2 − 1 ̸= 0, Eq. (5) has a single solution y = − a6
a1+a2−1 , and

the map (1) has a fixed point (x∗, y∗), where x∗ = y∗ = − a6
a1+a2−1 . This fixed point is stable if

the eigenvalues λ1, λ2 of the Jacobian matrix J1 = J |x=x∗,y=y∗ lie in the unit circle, i.e. |λi| < 1,

where i = 1, 2. By Lemma 1, the fixed point (x∗, y∗) is stable if the following conditions are

satisfied
det(J1)− 1 < 0,

tr(J1)− det(J1)− 1 < 0,

tr(J1) + det(J1) + 1 > 0,

which leads to

(a1 − a1a2 + 2a3a6 + a5a6 − a21)/(a1 + a2 − 1)− 1 < 0,

a2 − (a1 − a1a2 + 2a3a6 + a5a6 − a21)/(a1 + a2 − 1)

−(2a4a6)/(a1 + a2 − 1)− (a5a6)/(a1 + a2 − 1)− 1 < 0,

a2 + (a1 − a1a2 + 2a3a6 + a5a6 − a21)/(a1 + a2 − 1)

−(2a4a6)/(a1 + a2 − 1)− (a5a6)/(a1 + a2 − 1) + 1 > 0.
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Suppose that there exist some other attractors except this single fixed point. Since the fixed point

(x∗, y∗) is stable and the basins of attraction cannot contain any fixed point, these attractors of

the map except this single fixed point are hidden.

(2) Single fixed point II (SF II)

If a3+a4+a5 ̸= 0 and ∆ = 0, Eq. (5) has two equal real roots y1 = y2 = − a1+a2−1
2(a3+a4+a5)

, and

the map (1) has a fixed point (x∗, y∗), where x∗ = y∗ = − a1+a2−1
2(a3+a4+a5)

. However, the Jacobian

matrix at this fixed point J2 = J |x=x∗,y=y∗ satisfies tr(J2) = det(J2) + 1 which gives that one of

the eigenvalues of the Jacobian matrix equals to one. Thus the fixed point (x∗, y∗) is not stable.

2.2.3. Case 3: Two fixed points (TF)

If a3 + a4 + a5 ̸= 0 and ∆ > 0, Eq. (5) has two distinct real roots y1,2 = −(a1+a2−1)±
√
∆

2(a3+a4+a5)
,

and the map (1) has two fixed points (x∗1,2, y
∗
1,2), where x

∗
1,2 = y∗1,2 =

−(a1+a2−1)±
√
∆

2(a3+a4+a5)
. These two

fixed points are stable if the eigenvalues λ1, λ2 of the Jacobian matrices J3 = J |x=x∗
1,y=y∗1

and

J4 = J |x=x∗
2,y=y∗2

all lie in the unit circle, i.e. |λi| < 1, where i = 1, 2. Thus both fixed points

are stable if the following conditions are satisfied

det(J3)− 1 < 0,

tr(J3)− det(J3)− 1 < 0,

tr(J3) + det(J3) + 1 > 0,

det(J4)− 1 < 0,

tr(J4)− det(J4)− 1 < 0,

tr(J4) + det(J4) + 1 > 0.

However, by using the command “simplify” in the scientific computing software MATLAB, the

conditions are “FALSE”, which implies that there is a contraction in these inequalities. So it

indicates that the map cannot have two stable fixed points.

3. Strange attractors with no fixed point

A computer search program [32] was used to explore the strange attractors with no fixed

point. In this section, we will show some typical examples, and the elemental dynamics of the

map will be studied. The Lyapunov exponents of the chaotic attractors were computed by using

the same method given in [33–36]. If the Lyapunov exponents of the point p0 = (x0, y0) on the

chaotic attractors are L1(p0) and L2(p0), i.e., L1(p0) > 0 and L2(p0) < 0, the local Lyapunov
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(Kaplan-Yorke) dimension dimLp0 can be given as dimLp0 = 1− L1(p0)/L2(p0). In this paper,

a grid of points on chaotic attractors were used to find the maximum of the local Lyapunov

dimensions, i.e., dimL = maxp0∈B(dimLp0), where B is the set of points on chaotic attractors

with a grid step h = 0.1 of the phase space. In the reorthogonalization procedure, the time-step

and the number of iterations were chosen as 10 and 100000, respectively. For the details of the

computing procedure, readers could refer to [33–36].

3.1. NF I

Nine typical examples for the case with NF I are presented in Table 1 in which the initial

value (x0, y0), the Lyapunov exponents (Les) and the maximum of the local Lyapunov dimensions

(dimL) are given. It can be verified that all the maps listed in Table 1 satisfy a3 + a4 + a5 = 0,

a1 + a2 − 1 = 0 and a6 ̸= 0 indicating that they have no fixed point. Thus the attractors

obtained in the map are hidden. As shown in [37, 38], positive Lyapunov exponents may not

lead to chaos since there are known examples with the so-called Perron effects of sign reversal

for the largest Lyapunov exponent. However, because the considered map (1) belongs to a class

of autonomous discrete systems with real coefficients, positive Lyapunov exponents are still

adopted as an indicator of chaos in this paper. It can be seen from Table 1 that all the maximal

Lyapunov exponents are positive, so the maps with the given initial values are all chaotic.

The basins of attraction for the examples of the map with NF I listed in Table 1 are

presented in Fig. 1, where the chaotic attractors, the period-two orbits, and the period-ten

orbits are marked by black, red, and blue dots, respectively, and the basins of unbound, the

chaotic attractors, the period-two orbits, and the period-ten orbits are shown in cyan, white,

yellow, and orange, respectively. As can be seen from Fig. 1(a)-(e), there is one chaotic attractor

for each map and the basins of the chaotic attractors in Fig. 1(a)-(d) are large. However, the

basin of the chaotic attractor in Fig. 1(e) is very small such that it is difficult to be obtained

by using the standard computing method. In Fig. 1(f) and (g), a period-two attractor and a

chaotic attractor coexist, and the basins of the chaotic attractors are very small. In Fig. 1(i),

a period-two attractor, a period-ten attractor, and a chaotic attractor coexist, and the basin of

the chaotic attractor is also very small.
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Fig. 1. Basins of attraction for the examples of the map with NF I listed in Table 1. The chaotic

attractors, the period-two attractors, and the period-ten attractor are marked by black, red, and

blue dots, respectively. The basins of unbound, the chaotic attractors, the period-two attractors,

and the period-ten attractor are shown in cyan, white, yellow and orange, respectively.
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Table 1. Examples of the two-dimensional map with NF I

Case Maps (x0, y0) Les dimL

NFIa

 xk+1 = yk

yk+1 = xk + 0.2x2
k + 0.71y2

k − 0.91xkyk − 1.14
(0.93,−0.44)

0.0623

−0.3248
1.1947

NFIb

 xk+1 = yk

yk+1 = xk − 0.6x2
k + 0.74y2

k − 0.14xkyk − 0.33
(−0.78, 0.45)

0.0827

−0.2349
1.3572

NFIc

 xk+1 = yk

yk+1 = xk + 0.51x2
k + y2

k − 1.51xkyk − 0.74
(−0.81, 0.51)

0.0886

−0.2448
1.3649

NFId

 xk+1 = yk

yk+1 = xk + 0.6x2
k + y2

k − 1.6xkyk − 0.72
(−0.26, 0.18)

0.1012

−0.2067
1.4932

NFIe

 xk+1 = yk

yk+1 = xk − 0.3y2
k + 0.3xkyk + 2.98

(3.02,−2.78)
0.0430

−0.3523
1.1229

NFIf

 xk+1 = yk

yk+1 = xk + 0.38y2
k − 0.38xkyk − 1.6

(−0.07, 0.71)
0.0535

−0.2455
1.2188

NFIg

 xk+1 = yk

yk+1 = xk + 0.12y2
k − 0.12xkyk − 3.62

(1.03, 2.68)
0.0303

−0.1589
1.1928

NFIh

 xk+1 = yk

yk+1 = xk + 0.57y2
k − 0.57xkyk − 1.54

(−0.6, 0.62)
0.0489

−0.3468
1.1415

NFIi

 xk+1 = yk

yk+1 = xk − 0.3y2
k + 0.3xkyk + 1.09

(1.33, 0.12)
0.0154

−0.1079
1.1430

3.2. NF II

Six typical examples for the map with NF II are presented in Table 2 where their initial

values, the Lyapunov exponents (Les) and the maximum of the local Lyapunov dimensions

(dimL) are given. It should be noted that all these maps satisfy a3 + a4 + a5 ̸= 0 and ∆ < 0 so

that they do not have any fixed point and the attractors of these maps are hidden. The basins

of attraction of these maps are shown in Fig. 2, where the chaotic attractors are marked by

black dots, and the basins of unbound and the chaotic attractors are given in cyan and white,

respectively. It is worth noting that the maximal Lyapunov exponents in Table 2 are positive,

so the maps with the given initial values are all chaotic.

4. Strange attractors with a single stable fixed point

Four typical examples for this case are presented in Table 3 in which the fixed points, the

absolute values of the eigenvalues of the Jacobian matrix at the fixed points, the initial values,
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Fig. 2. Basins of attraction for the examples of the map with NF II listed in Table 2. The chaotic

attractors are marked by black dots, and the basins of unbound and the chaotic attractors are

shown in cyan and white, respectively.
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Table 2. Examples of the two-dimensional map with NF II

Case Maps (x0, y0) Les dimL

NFIIa

 xk+1 = yk

yk+1 = 2.16xk + 0.22x2
k − 0.02y2

k + 0.6xkyk + 0.76
(0.51,−5.04)

0.0467

−1.1251
1.0419

NFIIb

 xk+1 = yk

yk+1 = 1.77xk − 0.08yk + 0.23x2
k + xkyk + 0.1

(−0.52,−1.17)
0.1927

−0.4278
1.4525

NFIIc

 xk+1 = yk

yk+1 = 0.9xk − 0.72yk − 0.3x2
k − xkyk − 0.15

(2.78,−0.75)
0.1805

−0.8048
1.2252

NFIId

 xk+1 = yk

yk+1 = −0.16xk + 0.7y2
k − xkyk − 1.67

(−0.07,−1.5)
0.2069

−1.0328
1.2009

NFIIe

 xk+1 = yk

yk+1 = 0.6xk + 0.49y2
k − xkyk − 1.46

(−0.95, 0.13)
0.1219

−0.7715
1.1589

NFIIf

 xk+1 = yk

yk+1 = −0.73yk − 0.37y2
k + 0.81xkyk + 1.79

(1.78,−0.79)
0.0901

−0.8162
1.1109

the Lyapunov exponents (Les) and the maximum of the local Lyapunov dimensions (dimL) are

given. Since all the maps in Table 3 satisfy a3 + a4 + a5 = 0 and a1 + a2 − 1 ̸= 0, they have a

single fixed point. Moreover, all the absolute values of the eigenvalues of the Jacobian matrix

at the fixed points are less than 1, so these fixed points are stable.

The basins of attraction for the maps in Table 3 are presented in Fig. 3, where the chaotic

attractors and the fixed points are shown by black and red dots, and the basins of unbound, the

chaotic attractors, and the fixed points are depicted in cyan, white, and yellow, respectively. It

can be see from Table 3 that the maximal Lyapunov exponents are positive, all the attractors

obtained by the given initial values are chaotic. As can be seen from the figure, the basins of

attraction of the hidden chaotic attractors are relative smaller than the ones of the fixed points

in Fig. 3(a)-(c), while the basin of the hidden chaotic attractor in Fig. 3(d) is large and the one

for the fixed point is tiny.

5. Conclusion

The hidden dynamics of a class of two-dimensional maps was studied in this paper. The

existence of fixed points and their stabilities of these two-dimensional maps were considered

firstly. Then different types of fixed points related to possible hidden dynamics were considered

in three cases, i.e., no fixed point (NF), single fixed point (SF) and two fixed points (TF). Finally,
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Fig. 3. Phase-basin portraits of the maps listed in the Table 3. The chaotic attractors and fixed

points are denoted in black and red. The basin of unbound, chaotic attractors and fixed points

are indicated in cyan, white and yellow, respectively.
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Table 3. Examples of the two-dimensional map with SF I

Case Maps Fixed point |λi| (x0, y0) Les dimL

SFIa


xk+1 = yk

yk+1 = −0.33xk + 0.17yk − 0.48x2
k

+0.47y2
k + 0.01xkyk − 0.9

−0.7759

−0.7759

0.4146

0.9817

0.32

−1.85

0.0107

−0.0279
1.3937

SFIb


xk+1 = yk

yk+1 = −0.84xk + 0.15y2
k

−0.15xkyk − 5.85

−3.1793

−3.1793

0.6026

0.6026

4.61

−6.99

0.0389

−0.3537
1.1112

SFIc


xk+1 = yk

yk+1 = −0.99xk + 0.23y2
k

−0.23xkyk − 4.24

−2.1307

−2.1307

0.7071

0.7071

3.15

−4.82

0.1111

−0.5854
1.1913

SFId


xk+1 = yk

yk+1 = −1.29xk + 2yk − 0.35x2
k

−0.85y2
k + 1.2xkyk + 0.17

0.5862

0.5862

0.9984

0.9984

−1.44

−0.23

0.0388

−0.0408
1.9505

a computer search program was used to explore the strange hidden attractors, and some typical

strange hidden attractors with no fixed point and with a single stable fixed point were presented

in the phase-basin portrait. As can be observed from these phase-basin portraits, the basins of

hidden attractors are very small in some cases, and therefore it is vital to investigate the hidden

dynamics of these maps. In this paper, we only studied a special class of two-dimensional maps,

but the proposed schematic method can be generalized to other maps. The future work would be

to investigate the mechanism of hidden dynamics and the evolution of their basins of attraction

in high-dimensional maps.
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