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Highlights 

 Lymnaea stagnalis was exposed to non-MC or MC-producing cyanobacteria without 

and with RoundUp®. 

 We examine MC bioaccumulation and activities of catalase and glutathion-S-

transferase enzymes.  

 During the intoxication CAT activity was induced by cyanobacteria independently of 

their MC content. 

 Non-MC producing cyanobacteria and Roundup® increased GST activity whereas 

MC inhibited it. 

 MC accumulation was higher under cyanobacteria with Roundup® exposure, 

suggesting interacting effects of both stressors.  

 

Abstract 

Freshwater gastropods are increasingly exposed to multiple stressors in the field such as 

the herbicide glyphosate in Roundup formulations and cyanobacterial blooms either producing 

or not producing microcystins (MCs), potentially leading to interacting effects. Here, the 

responses of Lymnaea stagnalis to a 21-day exposure to non-MC or MC-producing (33 µg L-1) 

Planktothrix agardhii alone or in combination with the commercial formulation RoundUp® 

Flash at a concentration of 1 µg L-1 glyphosate, followed by 14 days of depuration, were studied 

via i) accumulation of free and bound MCs in tissues, and ii) activities of anti-oxidant (catalase 

CAT) and biotransformation (glutathione-S-transferase GST) enzymes. During the 

intoxication, the cyanobacterial exposure induced an early increase of CAT activity, 

independently of the MC content, probably related to the production of secondary 

cyanobacterial metabolites. The GST activity was induced by RoundUp® Flash alone or in 

combination with non MC-producing cyanobacteria, but was inhibited by MC-producing 

cyanobacteria with or without RoundUp® Flash. Moreover, MC accumulation in L. stagnalis 

was 3.2 times increased when snails were concomitantly exposed to MC-producing 

cyanobacteria with RoundUp®, suggesting interacting effects of MCs on biotransformation 

processes. The potent inhibition of detoxication systems by MCs and RoundUp® Flash was 
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reversible during the depuration, during which CAT and GST activities were significantly 

higher in snails previously exposed to MC-producing cyanobacteria with or without RoundUp® 

Flash than in other conditions, probably related to the oxidative stress caused by accumulated 

MCs remaining in tissues. 

Keywords: gastropod, cyanobacteria, microcystins, glyphosate (Roundup® Flash), oxidative 

stress, biotransformation, accumulation. 

 

 

1. Introduction 

 

Freshwaters within agricultural and human activity areas are frequently subjected to 

abiotic stressors related to anthropogenic activities inducing a contamination by runoff 

containing various molecules such as pesticides and surplus nutrients (Sumpter, 2009). One of 

the most frequently applied pesticides in the world is the non-selective herbicide glyphosate 

also known under a variety of commercial names worldwide such as RoundUp®. The 

glyphosate acts in plants by inhibiting the amino acids synthesis through the shikimic acid 

pathway thus leading to an inhibition of protein synthesis (Blackburn and Boutin, 2003). The 

commercial formulations consisting in an isopropyl-amine salt and surfactants are known either 

to induce negative effects or to increase those induced by the glyphosate alone (e.g., oxidative 

stress, DNA damage, inhibition of acetylcholine esterase, acceleration of energy usage and 

impact on reproduction and development) in freshwater organisms (Contardo-Jara et al., 2009; 

Frontera et al., 2011; Fuentes et al., 2011; Ortiz-Ordoñez et al., 2011; Poletta et al., 2011; 

Menéndez-Helman et al., 2012; Moore et al., 2012; Omran and Salama, 2013; Rzymski et al., 

2013).  
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Besides anthropogenic pollutants and in relation to enhanced eutrophication, 

cyanobacterial blooms are becoming more and more frequent and intense in freshwaters 

worldwide (Paerl and Otten, 2013). These excessive proliferations of cyanobacteria constitute 

a serious threat to human health and aquatic biota due to the production of numerous secondary 

metabolites and toxins (e.g., hepatotoxins, neurotoxins, cytotoxins, dermatotoxins and irritant 

toxins –lipopolysaccharides, LPS-) (for reviews: Wiegand and Pflugmacher, 2005; Ferrão-

Filho and Kozlowsky-Suzuki, 2011). The hepatotoxic microcystins (MCs) are the most 

widespread cyanotoxins in limnic ecosystems being found in up to 75 % of cyanobacterial 

blooms (de Figueiredo et al., 2004; Ferrão-Filho and Kozlowsky-Suzuki, 2011). Intoxication 

of freshwater organisms may occur by absorption of MCs dissolved in water or adsorbed on 

various mineral or organic particles, by ingestion of cyanobacteria and/or intoxicated food. 

Once present in organisms, MCs are accumulated in the liver (vertebrates) or the digestive gland 

(invertebrates), where they specifically interact with protein phosphatases (PPases) (Hastie et 

al., 2005). Inhibition of PPases first occurs via a rapid but reversible hydrophobic binding, 

followed by a covalent binding to proteins leading to the accumulation of MCs irreversibly 

attached to animal tissues, i.e., bound MCs (Hastie et al., 2005; Pereira et al., 2013). The 

inhibition of PPases results in reorganization of cytoskeletal components and disruption of 

hepatic architecture, inducing severe and irreversible damages, and potentially death (for 

reviews: Zurawell et al., 2005, Wiegand and Pflugmacher, 2005). MCs are also known to 

generate the production of reactive oxygen species (ROS) that are extremely toxic (e.g., lipid 

peroxidation and protein oxidation possibly leading to enzymatic inhibition and DNA damages) 

for cells and tissues of organisms (for review: Amado and Monserrat, 2010). Oxidative stress 

induces damages when the antioxidant defences do not intercept the propagation reactions 

promoted by the overproduction of ROS. The activation of anti-oxidant processes in cells 

including enzymatic (e.g., superoxide dismutase SOD, catalase CAT, glutathione peroxidase 
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GPx, glutathione reductase GR) and non-enzymatic (e.g., GSH, vitamins E, C, A) mechanisms 

can quench the oxidative stress induced by MC exposure (e.g., Cazenave et al., 2006; Amado 

and Monserrat, 2010; Sabatini et al., 2011, Zhang et al., 2015). Cells may also exhibit 

biotransformation processes involving glutathione-S-transferase (GST) isoenzymes that allow 

elimination of MCs after their conjugation to glutathione decreasing the binding to PPases, 

increasing their water solubility thus aiding excretion (Pflugmacher et al., 1998; Metcalf et al., 

2000;  Contardo-Jara et al., 2008; Fernandes et al., 2009).  

Living in the littoral zone where cyanobacteria accumulate in scums under wind drift, 

freshwater gastropods are frequently exposed to cyanotoxins. Free or bound MC accumulation 

by gastropods associated to adverse effects on their physiology has been demonstrated in the 

field (e.g., Xie et al., 2007; Gérard et al., 2009; Zhang et al., 2009; Papadimitriou et al., 2012; 

Barda et al., 2015) and in the laboratory (e.g., Lance et al., 2006; Zurawell et al., 2007; Lance 

et al., 2010a; Lance et al., 2010b; Zhu et al., 2011; Zhang et al., 2016). Besides being exposed 

to cyanobacteria, freshwater gastropods may concomitantly be exposed to various 

anthropogenic herbicides as the widespread used RoundUp®. The active ingredient glyphosate 

has been extensively used for agricultural purposes and can be detected in freshwaters reaching 

up to 430 µg L-1 despite EU regulation limits of 2 µg L-1 for an individual pesticide in raw water 

(EU Directive 2000/60/EC Water Framework Directive, Woodburn, 2000; Botta et al., 2012; 

Coupe et al., 2012). It enters the water bodies via spray drift and run-off from the fields during 

rain events. Adverse effects of exposure to herbicides (e.g., atrazine, diquat, endosulfan) on 

lymnaeid pulmonates are demonstrated (e.g., Otludil et al., 2004; Russo and Lagadic, 2004; 

Coutellec and Lagadic, 2006; Coutellec et al., 2008). However, interactions between the effects 

of toxic cyanobacteria (biotic stressor) and herbicides (abiotic stressor) are still unknown, 

although multi-stress conditions can potentially result in greater effects than expected from 

either of the stress types alone as observed under combined abiotic stressors (Ban et al., 2014). 
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This study compares the effects of cyanobacteria (non-MC or MC-producing strains of 

Planktothrix agardhii) and of the RoundUp® Flash, separately and in combination and both at 

realistic concentrations (33 µg MCs L-1 and 1 µg L-1 glyphosate), on the gastropod Lymnaea 

stagnalis during a 3-week exposure period followed by a 2-week depuration period. As 

Planktothrix sp showed capacity to resist to high RoundUp® Flash concentration (up to 200 

µM) in the field (Saxton et al., 2011), the concomitant exposure of gastropods to both stressors 

is environmentally realistic. The duration of exposure mimics the duration of cyanobacterial 

blooms, changing with weather conditions. Moreover, since also other secondary metabolites 

produced by cyanobacteria may affect aquatic organisms, we added a non-MC producing strain 

of P. agardhii to controls in order to discriminate MC effect. We examined the bioaccumulation 

(bound and free MCs), and the anti-oxidant (CAT enzyme) and biotransformation (GST 

enzyme) responses in order to determine the potential interactive/synergistic effects of both 

stressors in L. stagnalis.  

 

2. Material and methods 

 

2.1. Biological material 

The two filamentous cyanobacteria P. agardhii strains (MC-producing strain PMC 7502 

and non-MC producing strain 8702) were obtained from the Pasteur Institute collection (Paris, 

France), cultured at constant temperature (20 ± 0.5°C) and photoperiod (12/12 L/D) with a light 

intensity of 40 µEm−2 s−1 in a BG11 medium. The strain PMC 7502 produced three MC variants: 

dmMC-LR, dmMC-RR and MC-YR as demonstrated in Lance et al. (2010a). The concentration 

of MC-producing suspensions used to expose gastropods were adjusted in order to obtain a MC 

concentration of 33 μg MC-LR equivalents (MC-LReq) per liter as measured by HPLC using 

the method described in Lance et al. (2006). The dilution factor of the non-MC producing 

suspensions was adapted to obtain the same cellular density than in the MC-producing 
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suspensions and therefore the same energetic supply for gastropods.  

The gastropod L. stagnalis (Pulmonata, Lymnaeidae) was obtained from laboratory 

populations in the Experimental Unit of the Institut National de Recherche en Agronomie (U3E, 

INRA, Rennes). Prior to experiment, adult snails (25 ± 3 mm shell length) were placed in glass 

containers (two snails per 150 mL glass container) with artificial fresh water (AFW), containing 

0.1 g L-1 NaCl, 0.2 g L-1 CaCl2 and 0.103 g L-1 NaHCO3 in reverse osmotic water, at 12/12 L/D, 

20 ± 0.5°C and were acclimated to these conditions at least 2 weeks prior the experiment. All 

the snails were fed ad libitum on biological grown lettuce.  

 

2.2. Experimental setup 

During the 21-day intoxication period, gastropods were divided in 6 groups of 100 

individuals (2 snails per 150 mL glass containers), according to treatments:  

1) toxic-free medium, control C;  

2) the RoundUp® Flash (450 g active ingredient glyphosate L-1, Monsanto) at a concentration 

of 1 µg L-1 glyphosate, R;  

3) non-MC producing P. agardhii, Pa; 

4) non-MC producing P. agardhii with RoundUp® Flash at a concentration of 1 µg L-1 

glyphosate, PaR;  

5) MC-producing (33 µg MCs L-1) P. agardhii, MCPa;  

6) MC-producing (33 µg MCs L-1) P. agardhii with RoundUp® Flash at a concentration of 1 

µg L-1 glyphosate, MCPaR. 

During the 21-day exposure period, medium and P. agardhii suspensions were renewed 

twice a week. The exposure period was followed by a 14-day depuration period in AFW, during 

which all the gastropods were fed with biological grown lettuce ad libitum. Gastropods were 

sampled at days 0, 1, 3, 7, 14 and 21 of the intoxication period and days 3, 7 and 14 of the 
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depuration period (the day 21 of the intoxication period corresponded to the day 0 of the 

depuration period). For each gastropod, the shells were removed, the body was weighed, then 

dissected, the digestive gland and the foot were separated. Samples (digestive glands and feet) 

were instantly frozen in liquid nitrogen and placed at -80°C. Each group consisted of 100 

gastropods from which 3 individuals were used for MC accumulation measurements and 5 for 

enzyme activities at each of the 9 time steps.  

2.3. Measurement of free and bound MC content in gastropod digestive gland 

At each sampling time, free and total (i.e., free plus bound) MC accumulation was 

measured in the digestive gland of gastropods (n = 3) exposed to MC-producing cyanobacteria 

in presence or absence of Roundup®. Each digestive gland was freeze-dried and crushed to 

powder (10 mg of dried tissues). Total MC content in snail tissues was detected through the 

formation of 2-methyl-3-methoxy-4-phenylbutiric acid (MMPB) as an oxidation product of the 

MCs as described by Neffling et al. (2010). Samples were analyzed using an Agilent High 

Performance Liquid Chromatography (1200) coupled to an Agilent 1640 Triple Quad mass 

spectrometer. Extracts were separated on an Agilent XDB C18 column (4.6 x 5.0 mm; 1.8 µm 

particle size) which was maintained at 40°C. Injection volume was 10 µL into mobile phase 

Milli-Q Water plus 0.1% formic acid (A) and acetonitrile plus 0.1 % formic acid (B), at 0.5 ml 

min-1. Separation was achieved using a gradient increasing from 40% B to 70% B over 3 min, 

followed by a 90% B wash step and re-equilibration. Molecules were fragmented using ion 

electrospray with 10 ml/min gasflow at 300° C and 50 psi nebulizer with 4000 V capillary 

energy, 3 V collision energy, 100 V fragmentation energy. Data were acquired in negative 

mode, with 131 as production ion from 207 as the precursor ion. LOD of MMPB was 1.56 ng 

mL-1. The method used here was developed by Neffling et al (2010) and Lance et al (2010a) 

for which the sample oxidation recovery (i.e., the measure of the proportion of MCs in a tissue 

recovered as the oxidation product MMPB), the MMPB extraction efficiency and the matrix 
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effects were elaborated and optimized by spiking of control samples. The oxidation recovery 

controls were spiked with a known amount of MCs before any treatment and compared to 

controls spiked with the corresponding amount of MMPB standard after the oxidation 

procedure, but before the SPE. To assess the MMPB extraction efficiency, controls spiked with 

MMPB standard before and after SPE were compared. The matrix effect gives the percentage 

signal recovered from spiked samples as compared to recovered signal from MMPB standard 

in the absence of tissue. The average recovery for the oxidation, the MMPB extraction 

efficiency and the matrix effect of this method were respectively of 32.33 ± 8.67%, 61.20 ± 

15.73% and 23.73 ± 5.03% as reported by Neffling et al. (2010).  

The free MC content in each gastropod digestive gland was extracted as described by 

Lance et al. (2010a). Samples were analysed using a Waters Acquity Ultra-High Performance 

Liquid Chromatography coupled to a Xevo quadrupole time of flight mass spectrometer. 

Extracts were separated on a BEH C18 column (100 x 2.1 mm; 1.7 µm particle size) which was 

maintained at 40°C. Mobile phase was Milli-Q Water plus 0.1% formic acid (A) and acetonitrile 

plus 0.1 % formic acid (B). Separation was achieved using a gradient increasing from 20% B 

to 70% B over 10 min, followed by a 100% B wash step and re-equilibration. Autosampler was 

maintained at 6°C at all times. Data were acquired in positive ion electrospray scanning from 

m/z 50 to 2000 with a scan time of 2 s and inter-scan delay of 0.1 s. Ion source parameters, i.e., 

capillary and sampling cone, were 2.9 V and 25 V respectively; desolvation temperature, 300ºC; 

and source temperature, 80ºC. Cone gas and desolvation gas flows were 50 L h-1 and 400 L h-

1, respectively.  Sodium iodide (2 µg µL-1 in 50/50 Propan-2-ol/H2O) was used as the calibrant 

with Leucine-enkephalin (0.5 mg mL-1 in 50/50 methanol/Milli-Q) as the lockspray.  Instrument 

control, data acquisition (centroid) and processing were achieved using MassLynx v4.1. LOQ 

of MCs was a minimum 10 ng mL-1 depending on the particular MC variant (MC-LR, dmMC-

RR, MC-RR, MC-YR). The characterization of the analytical method was done using freeze-
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dried control tissues of gastropods spiked with pure standard of MC-LR before and after 

extraction and treated in the same way as the sample. The average recovery for the extraction 

was 49.07%. The matrix effect, corresponding to differences in results between spiked matrix 

and 100% methanol spiked with the same amount of standard, was 239% due to signal 

enhancement caused by the matrix.  

The bound MC content was calculated by subtracting the free MCs from the total MC 

content. Free and bound MC contents in gastropods were expressed in µg g-1 dry weight (DW) 

of snail digestive gland. 

 

2.4. Extraction of enzymes (GST and CAT) and measurement of their activity   

Enzymes (GST, CAT) were extracted according to Wiegand et al. (1999). Digestive gland 

or foot tissues (n=5) were homogenized in ice-cooled buffer (0.1 M sodium phosphate buffer 

pH 6.5 containing 20% glycerol, 1 mM EDTA, and 1.4 mM dithioerythriol) and centrifuged to 

remove cell debris. The supernatant was centrifuged again (105000 x g) to separate soluble 

(mostly cytosolic) and microsomal (mostly membrane) fractions. The soluble proteins were 

concentrated by precipitation with ammonium sulfate and centrifugation after which the pellet 

was suspended in 20 mM sodium phosphate buffer pH 7.0, desalted, frozen in liquid N2 and 

stored at -80°C. The microsomal fraction was homogenized in 20 mM sodium phosphate buffer 

pH 7.0 containing 20% v/v glycerol, frozen in liquid N2 and stored at -80 °C until enzyme 

analysis.  

GST was assayed at 340 nm in both soluble (sGST) fraction (present in the cell cytosol) 

and microsomal (mGST) fraction (membrane bound to the endoplasmic reticulum) using 

CDNB (1-chloro-2, 4-dinitrobenzene) as substrate (Habig et al., 1974). The CAT activity was 

assayed measuring the rate of disappearance of H2O2 at 240 nm (Chang and Kao, 1997). All 
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enzyme activities were related to the protein content in the sample, determined according to 

Bradford (1976), and calculated using a standard curve of Bovine Serum Albumin (BSA).  

 

2.5. Statistical analysis 

Statistical analyses were performed with the R software (v 2.14.1). Data are reported as 

mean  standard deviation (± SD). Significant differences were determined at p < 0.05 for all 

statistical analyses. For comparison of the GST activities between microsomal and cytosolic 

cellular fractions, we considered data from the same replicate, and therefore analysed them as 

paired data. Similarly, for comparison of the GST and CAT activities between the foot and the 

digestive gland from the same snail, data were considered as paired data. These data did not 

follow a normal distribution (Shapiro-Francia test) with no equality of variances (Fisher test) 

and were analysed for differences using the Wilcoxon test. Comparisons of GST and CAT 

activities between each treatment group and the controls were done for each sampling date 

using the Student t-test. Only the results concerning the MC content in gastropod digestive 

gland were not statistically analysed due to the relatively low number of replicates (n = 3).  

 

3. Results and discussion 

 

3.1. MC accumulation in the digestive gland of L. stagnalis 

As shown in the present and previous studies (Lance et al., 2006; Lance et al., 2010b; 

Sabatini et al., 2011; Zhu et al., 2011), MCs mainly accumulated in the digestive gland of 

gastropods, which is the primary site of secretion, intracellular (lysosomal) digestion, 

assimilation, accumulation, detoxification and metabolism (Zurawell et al., 2005; Zurawell et 

al., 2007). MC accumulation increased during the exposure to MC-producing cyanobacteria 

with or without RoundUp® Flash, reaching at maximum 9.38 ± 2.98 µg g-1 DW of total MCs 
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(free and covalently bound form) on the 21st day of exposure in gastropods exposed to 

cyanobacteria with RoundUp® Flash (Fig. 1). Accumulation of free and covalently bound MCs 

has been demonstrated in tissues of bivalves (Williams et al., 1997; Dionisio Pires et al., 2004) 

and gastropods (Lance et al., 2010a; Lance et al., 2010b). During the intoxication period, the 

main part of MCs was found as free form in the gastropods and bound MCs represented an 

average of 29.41 ± 19.28% and 40.79 ± 27.87% of total MCs respectively for exposure to P. 

agardhii without and with RoundUp® Flash. 

The addition of RoundUp® Flash to exposure with MC-producing cyanobacteria 

increased the accumulation of total MCs and the proportion of bound MCs during the 

intoxication period: 9.38 ± 2.98 µg g-1 DW with 78.18% of bound MCs in gastropods exposed 

to cyanobacteria with RoundUp® Flash compared to 2.93 ± 0.19 µg g-1 DW with 38.03% of 

bound MCs in gastropods exposed to cyanobacteria without RoundUp® Flash at day 21. This 

increase in total MC accumulation during the combined intoxication indicates an interacting 

effect of RoundUp® Flash and MCs impairing the ability of gastropods to perform 

detoxification and excretion processes, as discussed in section 3.2. 

The free MCs decreased in both groups from the beginning of the depuration period to 

remain under the limit of detection (0.05 µg g-1 DW) after 14 days in toxin-free water (Fig. 1). 

Surprisingly, the amount of total MCs in tissues increased in both groups during the first three 

days of depuration reaching the maximum values recorded during the experiment (9.63 ± 2.69 

µg g-1 DW and 11.64 ± 1.34 µg g-1 DW of total MCs respectively in MCPa and MCPaR groups). 

This continuous accumulation of total MCs three days after termination of the exposure could 

be explained by the time required for the digestion of cyanobacteria and the PPases association 

of MCs, resulting in bound MC accumulation as discussed in Lance et al. (2010b). The total 

MC content in gastropods decreased strongly between day 3 and day 7 of depuration and 

reached a minimum of 0.63 ± 0.05 µg g-1 and 1.06 ± 0.52 µg g-1 DW with and without 
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RoundUp® Flash after 14 days in pure AFW. The proportion of bound MCs among total MCs 

remained higher during the depuration period (i.e., 92.06%) than during the intoxication period 

(i.e., 35.11%) in both groups, but similar between groups during the depuration with an average 

of 90.16 ± 14.07% and 93.97 ± 10.46% of total MCs, respectively, for exposure to P. agardhii 

without and with RoundUp® Flash. These proportions were similar to those previously found 

during the exposure of L. stagnalis to MC-producing (33 µg·L-1) P. agardhii, i.e., around 60% 

at the end of a 5-week intoxication period and 91% at the end of a 3-week depuration period 

(Lance et al., 2010a).  The increase of the percentage of bound MCs during the depuration may 

be due to several concomitant factors such as a rapid elimination of free MCs, the presence of 

free MCs remaining in the gut and becoming protein-bound, and a very slow elimination of 

bound MCs from tissues as observed by Lance et al. (2010a). Protein-bound MCs remained 

higher also during the depuration period in the combined exposure, apart from day 7, indicating 

once more the hampered detoxification and excretion capability of the snails discussed in 

section 3.2. 

 

3.2 Enzyme (GST, CAT) activities 

3.2.1 Cellular and tissue-specific enzyme activities of CAT and GST  

The microsomal form of the GST was of significant lower activity (around 100 times) 

compared to the cytosolic isoforms regardless of the treatment, body part or exposure period 

(V = 43658, P < 0.001, Tables 1, 2). It didn’t change much during the treatment periods; hence 

the mGST of L. stagnalis seems not to be involved in the detoxification of cyanobacterial 

compounds including MC or RoundUp® Flash. Moreover, the activities of cytosolic GST (V = 

5846, P < 0.001, Table 2) and of CAT (V = 3905, P < 0.001, Table 3) were significantly higher 

in the digestive gland than in the foot of gastropods regardless of the treatment and period. 

These observations have already been reported for invertebrates: bivalves (Vasconcelos et al., 
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2007; Contardo-Jara et al., 2008), nematodes (Contardo-Jara et al., 2009), and crustaceans 

(Pinho et al., 2005). We therefore discuss results on sGST and CAT activities in the digestive 

gland of L. stagnalis. 

 

3.2.2 Kinetics of CAT and sGST activities in the digestive gland of L. stagnalis in relation 

to the production of MCs by cyanobacteria 

Exposure to cyanobacteria and MC accumulation induces oxidative stress via formation 

of reactive oxygen species (ROS), which also contributes to their toxicity in various organisms 

(Amado and Monserrat, 2010), including gastropods (Zhang et al., 2016). To ameliorate 

oxidative stress in gastropods exposed to cyanobacteria either producing or not producing MCs, 

and both with or without RoundUp® Flash, CAT activity increased after one day of intoxication 

compared to controls (t = -3.37, P < 0.05 and t = 6.08, P < 0.01, respectively, for Pa and MCPa 

groups and t = -5.61, P < 0.01 and t = -4.93, P < 0.05, respectively, for PaR and MCPaR groups, 

Fig. 2A). This immediate increase of CAT activity in the digestive gland suggested that 

gastropod antioxidant systems were initiated in response to the presence of cyanobacteria, and 

not only in response to the MCs they produce. Similarly, Burmester et al. (2012) reported a 

higher activity of antioxidant enzymes SOD and CAT in the freshwater bivalve Dreissena 

polymorpha and, to some extent, also in Unio tumidus after exposure to crude extract of MC-

producing cyanobacteria compared to the exposure to pure MC-LR. Moreover, MC-producing 

cyanobacteria induced more severe tissue damages and impact on life-history traits in L. 

stagnalis than dissolved MCs (e.g., Lance et al., 2006; Lance et al., 2010b). The 

lipopolysaccharides (LPS) and the numerous secondary metabolites and water-soluble 

bioactive compounds such as micropeptins, cyanopeptolins, aeruginosins, microviridins 

potentially produced by cyanobacteria (Welker and Von Döhren, 2006; Rohrlack and Utkilen, 

2007) could induce such antioxidant responses (Pietsch et al., 2001; Dao et al., 2013). 
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The early rise of this antioxidant enzyme activity is followed at day 3 of intoxication by 

a return of CAT activity to control values in groups exposed to non-MC producing 

cyanobacteria and by a more significant decrease in groups exposed to MC-producing 

cyanobacteria with or without RoundUp® Flash compared to control group (t = 4.53, P < 0.01 

and t = 4.79, P < 0.01 respectively for MCPa and MCPaR groups, Fig. 2A) and compared to 

the group exposed to non-MC producing cyanobacteria (t = -4.42, P < 0.01 and t = -4.84, P < 

0.01 respectively for MCPa and MCPaR groups, Fig. 2A). This transitory decrease of CAT 

activity may suggest that the catalase became overwhelmed by ROS production during 

cyanobacterial exposure, and more particularly during MC-producing cyanobacterial exposure. 

The stronger decrease of CAT at day 3 in snails exposed to MC-producing cyanobacteria might 

also be explained by a molecular binding and inhibition of CAT by MCs, as shown by Hu and 

Da (2014). An inhibition of CAT activity after initial induction has been demonstrated in crabs 

and Daphnia exposed to MCs (Pinho et al., 2005; Arzate Cadenas et al., 2011).  

In groups exposed to non-MC producing P. agardhii without RoundUp® Flash the CAT 

remained at control levels between day 7 and 14 of intoxication, corresponding to increased 

biotransformation processes via sGST activities (day 14, t = -4.45, P < 0.01, Fig. 2B).  The 

concomitant sGST induction and CAT stagnation to control values could be explained by the 

sGST activity limiting the oxidative stress caused by the secondary metabolites produced by 

cyanobacteria via potent biotransformation and elimination of cyanobacterial compounds. 

Therefore cyanobacterial bioactive compounds other than MCs can induce antioxidant and 

biotransformation enzymes. The sGST activity returned to control values at day 21 of 

intoxication and until the end of the depuration period for treatment groups with non-MC 

producing P. agardhii (Fig. 2B). This decrease of sGST activity despite the intoxication still 

occurred, probably linked to a depletion of sGST stock, may induce a de novo synthesis of 

ROS, and then the second increase of CAT activity compared to the controls as observed at day 
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21 in all groups exposed to cyanobacteria (t = -3.57, t = -3.75, t = -4.16, t = -5.46, all P < 0.05 

respectively for Pa, PaR, MCPa and MCPaR groups, Fig. 2A). The continuous involvement of 

CAT reducing oxidative stress has been proved in the freshwater shrimp, Palaemonetus 

argentinus, exposed for 4 weeks to a cyanobacterial bloom in the field – again after a reduction 

of its activity shortly after the start (day 3, Galanti et al., 2013). 

In groups exposed to MC-producing cyanobacteria, the sGST activities never exceed 

control values except for MCPa-exposed group at day 21 (t = 3.03, P < 0.05, Fig. 2B), 

suggesting an absence of induction despite the fact that GST is known to be involved in MC 

biotransformation in freshwater mollusks (Vasconcelos et al., 2007; Contardo-Jara et al., 2008; 

Sabatini et al., 2011; Burmester et al., 2012; Zhu et al., 2011). This can be the sign of:  

i) an inhibition or a saturation of sGST by MCs and other cyanobacterial secondary 

metabolites as shown by Pietsch et al. (2001). The GST activity can be increased or inhibited 

during MC exposure, depending on the timing and the intensity of intoxication, as shown by 

Zhang et al. (2016) in the gastropod Radix swinhoei. In Unio pictorum, MC-LR induced a slight 

down regulation of one isoenzyme, the µGST (i.e., a decrease by a factor of 1.3 at a constant 

protein level) (Malécot et al., 2013). Moreover, Fernandes et al. (2009) demonstrated that MC-

producing cyanobacteria inhibited the sGST activity in the bivalve Mytilus galloprovincialis.  

or ii) an impairment of the energy balance due to the stressful effect of combined MCs 

and other cyanobacterial metabolites inducing a lack of energy available for detoxification. The 

gastropod Bellamya aeruginosa exposed to MC-producing cyanobacteria with an additional 

food source exhibited a GST induction, whereas no induction occurred when the animals were 

exposed to MC-producing cyanobacteria alone (Zhu et al., 2011).  

In our study, MCs together with other cyanobacterial compounds may not elevate sGST 

activity until a certain limit of exposure as shown by the induction occurring at day 21 probably 

related to a high cumulative exposure dose. Similarly, Sabatini (2011) showed an induction of 
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CAT and sGST in the freshwater clam Diplodon chilensis respectively only after 5 and 6 weeks 

of exposure to MC-producing Microcystis agardhii. 

During the first week of depuration, a significant decrease of CAT activity compared to 

the control was observed in all cyanobacterial treatments at the day 3 (t = 3.32, t = 3.88, t = 

2.99, and t = 2.45, all P <0.05, respectively, for Pa, PaR, MCPa and MCPaR groups, Fig. 2A), 

as well as a decreased of sGST activity (respectively, t = -2.03, P < 0.05 and t = -1.96, P < 0.05 

for MCPa and MCPaR groups) in gastropods previously exposed to MC-producing 

cyanobacteria. From day 7 to day 14 of depuration, CAT activity in gastropods previously 

exposed to MC-producing cyanobacteria, with or without RoundUp®, was significantly higher 

than in the control group (t = -5.12 and t = -5.85 P < 0.05, respectively, for MCPa and MCPaR 

groups, Fig. 2A), suggesting an oxidative stress caused by the occurring elimination of bound 

and free MCs as shown by the MC kinetic in tissues. This MC elimination during the depuration 

period was probably mediated via the sGST activity that concurrently presented a significantly 

increased activity at the day 7 in the MCPaR group (t = 3.65, P < 0.05) and at the day 14 in the 

MCPa group (t = 4.28, P <0.05, Fig. 2B).  

 

3.2.3 Impact of RoundUpFlash® in combination with cyanobacteria on sGST and CAT 

activities  

The formulation RoundUp® Flash has already been shown to promote oxidative stress in 

various organisms such as bullfrog tadpoles (Costa et al., 2008) and the annelid Lumbriculus 

variegatus (Contardo-Jara et al., 2009). A significant increase of CAT activity following 

exposure to Roundup® Flash alone was observed in L. stagnalis only at the end of the 

intoxication period (day 21, t = -3.64, P < 0.05, Fig. 2A) when the cumulative exposure dose 

was the highest. In Lumbriculus variegatus, CAT responded only when challenged with 0.5 mg 

L-1 RoundUp® and the superoxide dismutase (SOD) was more sensitive (Contardo-Jara et al., 
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2009). Therefore the induction of CAT activity following Roundup® Flash exposure occurred 

later compared to cyanobacterial exposure and the early induction of CAT activity observed at 

day 3 was probably only related to the production of secondary metabolites and of MCs by 

cyanobacteria. The induction of the CAT by RoundUp® Flash alone reversed to a significant 

decrease of CAT activities compared to controls at the day 3 of the depuration period (t = 4.15, 

P <0.05 for R group Fig. 2A) as was also observed in all cyanobacteria-exposed groups. From 

day 7 to day 14 of depuration, CAT activity in gastropods exposed to RoundUp® Flash alone 

was similar to the control (Fig. 2). The addition of RoundUp® Flash to non-MC and to MC-

producing cyanobacteria (PaR and MCPaR groups) did not modify the response of CAT during 

either intoxication or depuration period (Fig. 2A). These results suggest that the RoundUp® 

Flash in the applied concentration of 1µg L-1 of glyphosate causes less oxidative stress than the 

cyanobacteria, either producing or not producing MCs. 

The activity of the sGST in the digestive gland of L. stagnalis was increased after 7 days 

of exposure to RoundUp® Flash alone or in combination with non-MC producing P. agardhii 

(t = -2.94, P < 0.05 for R group and t = -5.24, P < 0.01 for PaR group, Fig 2B) and remained 

higher compared to the controls (respectively t = -3.88, P < 0.01 for R group and t = -3.19, P < 

0.01 for PaR group, Fig. 2B) until 14 days of intoxication. Therefore, the exposure to 

RoundUp® Flash alone or with non-MC producing cyanobacteria enhanced the sGST activity 

in L. stagnalis tissues earlier than the exposure to cyanobacteria alone (i.e., significant increased 

at day 7 vs day 14). These results indicated the involvement of the biotransformation system in 

the detoxication of various ingredients of the RoundUp® Flash formulation. Similarly, 

Contardo-Jara et al. (2009) observed an increased activity of sGST at day 7 of exposure of 

Lumbriculus variegatus to Roundup®. Moreover, the sGST induction at day 7 was stronger in 

snails exposed to non-MC producing cyanobacteria with RoundUp® than without RoundUp®, 

suggesting an additive effect during concomitant exposure. During the depuration period, the 
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sGST activity returned to control values for both treatment groups with RoundUp® Flash alone 

and with non-MC producing P. agardhii. At day 7 of the depuration period, we observed a 

transitory slight decrease of sGST activity compared to controls in snails exposed to non-MC 

producing P. agardhii in combination with RoundUp® Flash (t = -1.73, P < 0.05, Fig. 2B).  

As discussed above, until day 21 of intoxication, the activity of sGST in snails exposed 

to MC-producing cyanobacteria, with or without Roundup® Flash, did not differ from the 

control values, probably in relation with an inhibition or a saturation of sGST by MCs and other 

cyanobacterial metabolites. This induction of sGST finally occurred at day 21 of exposure to 

MC-producing cyanobacteria without RoundUp® Flash (in the MCPa group) whereas 

inhibition continued with Roundup®, suggesting complex interaction between MCs and the 

RoundUp® Flash formulation. The addition of RoundUp® Flash to the MC-producing 

cyanobacteria treatment seemed to more strongly impact (e.g., inhibition or saturation) the 

sGST activity, preventing MC elimination from snail tissues. Indeed, as discussed in section 

3.1, the MC accumulation was higher when specimens of L. stagnalis were concomitantly 

exposed to RoundUp® Flash and MC-producing cyanobacteria. The active ingredients of the 

Roundup® formulation, including adjuvants and surfactants, might either interact with sGST 

(or prevent detoxification and excretion) or facilitate the MC transport into the cells, resulting 

in an increased MC bioaccumulation during the exposure. Consequent to the higher 

accumulation during combined intoxication, we observed an increased activity of sGST at day 

7 of depuration: gastropods previously exposed to MC-producing cyanobacteria alone showed 

a decreased activity of sGST activity compared to controls (t = -1.35, P < 0.05, Fig. 2B) whereas 

the MCPaR group showed a significant increase of sGST activity (t = 4.28, P <0.05, Fig. 2B).  
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Conclusion  

The timing of induction of CAT and sGST during the exposure to MC-producing 

cyanobacteria suggested an inhibition or a saturation of the enzymes in relation to the 

cumulative exposure to MCs and to other secondary metabolites produced by cyanobacteria. 

The addition of RoundUp® Flash to the MC-producing cyanobacteria treatment more severely 

inhibited the sGST activity thus causing a higher MC accumulation by L. stagnalis during the 

intoxication. Consequently, during the depuration period, the sGST activity was increased in 

snails previously exposed to both stressors in relation with the higher amount of MCs remaining 

in tissues and that were eliminated.  

Our study also revealed that the numerous secondary metabolites produced by a non MC-

producing cyanobacteria, for which toxicological studies are lacking, can alone induce cellular 

defenses against oxidative stress via the CAT, and also the biotransformation processes via the 

sGST. Detoxification and biotransformation responses of freshwater organisms at different 

ages, exposed to secondary metabolites produced by cyanobacteria, excluding MCs, therefore 

remain to be investigated. We also demonstrated the involvement of the biotransformation 

system in the detoxification of various ingredients of the RoundUp® Flash formulation when 

used alone and suggested a potent additive effect on sGST activity during concomitant exposure 

of RoundUp® Flash with the cyanobacterial secondary metabolites. 

This study adds to the scarce knowledge about cyanobacteria being a confounding factor 

in the environment, when evaluating effects of anthropogenic stressors on freshwater 

organisms. Interactions between effects of natural stressors and environmental chemicals are 

synergistic in more than 50% of the available studies (Holmstrup et al., 2010 for review). This 

study revealed that various effects on CAT and sGST enzymes depended on i) the nature of the 

stressor: anthropogenic (Roundup®) and natural (secondary metabolites produced by 

cyanobacteria without or with MCs), ii) their combination, and iii) the exposure period (during 
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and after the intoxication). In the field, responses of biomarkers may be also influenced by 

intrinsic (e.g., age, sex, reproductive status…) and extrinsic (biotic and abiotic) factors.  
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Figures captions 

 

Figure 1: MC accumulation (µg g-1 DW) in the digestive gland of L. stagnalis exposed to MC-

producing (33 µg MCs L-1) P. agardhii alone or with RoundUp® Flash (1 µg L-1), during the 

21-day intoxication period (I1-21) and the 14-day depuration period (D3-14). Free MCs 

represent the accumulation of MCs that remained free in the snail tissues and total MCs 

represent both MCs free and covalently bound to the tissues. Values are given as mean ± SD. 
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Figure 2: Enzyme activity of CAT (A) and cytosolic GST (B), relative to the control group of 

each date, in the digestive gland of L. stagnalis exposed to: 1) RoundUp® Flash (1 µg L-1), R, 

2) non-MC producing P. agardhii, Pa, 3) non-MC producing P. agardhii with RoundUp® Flash 

(1 µg L-1), PaR, 4) MC-producing (33 µg MCs L-1) P. agardhii,  MCPa, and 5) MC-producing 

(33 µg MCs L-1) P. agardhii with RoundUp® Flash (1 µg L-1), MCPaR, during the 21-day 

intoxication period (I0-21) and the 14-day depuration period (D3-14). Significant differences 

(Student t-test) in CAT and sGST activities between control and treatments are indicated as * 

for p < 0.05. Values are given as mean ± SD.  
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Table 1: Mean (± SD) and range of enzyme activity (nkatal mg-1 of proteins) of microsomal 

fraction of GST in the digestive gland and in the foot of L. stagnalis during the 21-day 

intoxication period and the 14-day depuration period. Snails were exposed to: 1) toxic-

free medium, control C; 2) the glyphosate–surfactant herbicide RoundUp® Flash (1 µg L-

1), R; 3) non-MC producing P. agardhii, Pa; 4) non-MC producing P. agardhii with 

RoundUp® Flash (1 µg L-1), PaR; 5) MC-producing (33 µg MCs L-1) P. agardhii, MCPa; 

and 6) MC-producing (30 µg MCs L-1) P. agardhii with RoundUp® Flash (1 µg L-1), 

MCPaR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Intoxication period Depuration period 

 Foot Digestive gland Foot Digestive gland 

C 
0.035 ± 0.025 

[0.015-0.079] 

0.063 ± 0.032 

[0.030-0.104] 

0.028 ± 0.013 

[0.015-0.041] 

0.069 ± 0.022 

[0.050-0.094] 

R 
0.029 ± 0.011 

[0.015-0.044] 

0.053 ± 0.018 

[0.028-0.074] 

0.039 ± 0.008 

[0.029-0.044] 

0.076 ± 0.037 

[0.046-0.117] 

Pa 
0.029 ± 0.007 

[0.014-0.031] 

0.049 ± 0.015 

[0.034-0.072] 

0.035 ± 0.009 

[0.026-0.044] 

0.065 ± 0.007 

[0.056-0.069] 

PaR 
0.033 ± 0.021 

[0.015-0.073] 

0.059 ± 0.031 

[0.032-0.117] 

0.027 ± 0.006 

[0.022-0.034] 

0.075 ± 0.012 

[0.061-0.083] 

MCPa 
0.033 ± 0.020 

[0.015-0.065] 

0.049 ± 0.027 

[0.022-0.090] 

0.024 ± 0.002 

[0.023-0.026] 

0.081 ± 0.015 

[0.072-0.099] 

MCPaR 
0.035 ± 0.025 

[0.016-0.078] 

0.047 ± 0.018 

[0.026-0.055] 

0.029 ± 0.002 

[0.026-0.031] 

0.076 ± 0.018 

[0.055-0.091] 
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Table 2: Mean (± SD) and range of enzyme activity (nkatal mg-1 of proteins) of cytosolic 

fraction of GST in the digestive gland and in the foot of L. stagnalis exposed to various 

treatments during the 21-day intoxication period and the 14-day depuration period. See 

table 1 for abbreviations of treatment groups. 

 Intoxication period Depuration period 

 Foot Digestive gland Foot Digestive gland 

C 
3.041 ± 1.742 

[1.586-5.958] 

4.108 ± 1.918 

[2.075-7.132] 

1.671 ± 1.447 

[0.506-3.291] 

6.208 ± 2.307 

[0.015-0.036] 

R 
3.376 ± 1.980 

[1.832-5.774] 

5.228 ± 1.756 

[3.303-6.693] 

4.458 ± 2.891 

[1.484-7.260] 

6.033 ± 4.083 

[1.865-10.027] 

Pa 
3.182 ± 1.679 

[1.502-4.193] 

5.167 ± 2.224 

[2.824-7.436] 

3.155 ± 1.623 

[1.292-4.284] 

7.291 ± 0.452 

[6.772-7.498] 

PaR 
3.027 ± 1.577 

[1.671-5.651] 

5.118 ± 1.507 

[2.971-7.031] 

2.412 ± 1.841 

[0.906-4.464] 

6.724 ± 1.073 

[5.999-7.957] 

MCPa 
2.813 ± 1.896 

[0.963-5.122] 

4.747 ± 2.029 

[2.172-6.909] 

1.318 ± 0.492 

[0.750-1.615] 

6.159 ± 2.623 

[4.513-9.185] 

MCPaR 
2.689 ± 1.955 

[1.632-5.641] 

4.455 ± 1.895 

[2.867-6.998] 

2.733 ± 1.082 

[1.518-3.595] 

7.745 ± 2.086 

[5.682-9.854] 
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Table 3: Mean (± SD) and range of enzymatic activity (nkatal mg-1 of proteins) of 

cytosolic fraction of catalase (CAT) in the digestive gland and the foot of L. stagnalis 

exposed to various treatments during the 21-day intoxication period and the 14-day 

depuration period. See table 1 for abbreviations of treatment groups. 

 

 

 

 

 

 
 

 Intoxication period Depuration period 

 Foot Digestive gland Foot Digestive gland 

C 
26.814 ± 9.846 

[14.224-41.315] 

55.875 ± 13.016 

[37.659-77.712] 

19.444 ± 6.517 

[12.598-25.574] 

77.380 ± 11.032 

[70.517-90.107] 

R 
25.733 ± 6.970 

[15.398-32.831] 

74.934 ± 19.607 

[43.593-101.811] 

16.696 ± 1.864 

[15.147-18.766] 

81.542 ± 47.430 

[28.887-120.918] 

Pa 
27.221 ± 8.023 

[12.274-35.591] 

72.870 ± 13.353 

[51.095-90.043] 

30.372 ± 11.446 

[18.023-40.626] 

98.682 ± 18.691 

[83.872-119.684] 

PaR 
27.236 ± 13.208 

[12.222-48.544] 

69.096 ± 19.302 

[33.869-91.591] 

33.211 ± 11.168 

[21.211-43.302] 

93.613 ± 9.905 

[87.127-105.016] 

MCPa 
24.151 ± 7.946 

[14.477-34.751] 

62.416 ± 24.719 

[25.017-95.322] 

24.391 ± 8.219 

[16.659-33.024] 

100.475 ± 17.624 

[87.784-120.59] 

MCPaR 
30.818 ± 13.462 

[9.041-44.877] 

72.163 ± 23.215 

[29.683-98.523] 

27.931 ± 18.392 

[15.859-49.100] 

100.650 ± 20.237 

[79.751-120.154] 
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