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26 Summary 
 
27 1. Biodiversity is declining worldwide with detrimental effects on ecosystems. However, we lack a 
 
28 quantitative understanding of the shape of the relationship between microbial biodiversity and 
 
29 ecosystem function (BEF). This limits our understanding of how microbial diversity depletion can 
 
30 impact key functions for human well-being, including pollutant detoxification. 
 
31 2. Three independent microcosm experiments were conducted to evaluate the direction (i.e. positive, 
 
32 negative or null) and the shape of the relationships between bacterial diversity and both broad (i.e. 
 
33 microbial respiration) and specialized (i.e. toxin degradation) functions in five Australian and two UK 
 
34 freshwater ecosystems using next-generation sequencing platforms. 
 
35 3. Reduced bacterial diversity, even after accounting for biomass, caused a decrease in broad (i.e. 
 
36 cumulative microbial respiration) and specialized (biodegradation of two important toxins) functions in 
 
37 all cases. Unlike the positive but decelerating BEF relationship observed most frequently in plants and 
 
38 animals, most evaluated functional measurements were related to bacterial diversity in a non-redundant 
 
39 fashion (e.g. exponentially and/or linearly). 
 
40 4. Synthesis. Our results suggest that there is a lack of functional redundancy in the relationship 
 
41 between bacterial diversity and ecosystem functioning; thus the consequences of declining microbial 
 
42 diversity on ecosystem functioning and human welfare have likely been considerably underestimated. 
 
43 
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50 Introduction 
 

51 A large body of literature has provided evidence that losses in biodiversity will negatively impact 
 

52 ecosystem functions and services provided to humanity in both terrestrial and aquatic ecosystems 
 

53 (Tilman et al. 1997; Cardinale et al. 2011; Isbell et al. 2011; Maestre et al. 2012). Most of the studies 
 

54 conducted with plants and animals support a consensus view that the relationship between biodiversity 
 

55 and ecosystem functioning (i.e. BEF relationship) follows a positive but saturating shape indicating 
 

56 functional redundancy (Ehrlich & Ehrlich, 1981; Cardinale et al. 2011). A growing number of studies 
 

57 also suggest that microbial diversity enhances ecosystem functioning (Downing & Leibold 2002; 
 

58 Horner-Devine et al. 2003; Bell et al. 2005; Ptacnik et al. 2008; Langenheder et al. 2010; Peter et al. 
 

59 2011a; Venail and Vives 2013). Unless there is a substantial functional redundancy in microbial 
 

60 communities (Allison and Martiny 2008), any loss in microbial diversity would likely alter the 
 

61 capacity of microbes to support ecosystem functions. However, none of the previous studies have 
 

62 explicitly examined the shape of the microbial BEF relationship, leaving a wide gap of knowledge that 
 

63 needs to be addressed (Bardgett and van der Putten 2014). Global environmental drivers such as 
 

64 climate change, land use intensification and nitrogen enrichment are impacting microbial diversity in 
 

65 both terrestrial and aquatic ecosystems (Gans et al. 2005; Wall et al. 2010; Cardinale et al. 2012; Singh 
 

66 et al. 2014). In order to evaluate the global consequences of shifting microbial diversity on ecosystem 
 

67 functioning, it is critical that we determine the shape of the microbial BEF relationship. However, we 
 

68 lack both the theoretical framework and solid empirical data to understand the shape of the microbial 
 

69 BEF relationship. This hampers our capacity to include microbial processes in ecosystem and earth 
 

70 system simulation models, as well as in conservation and management policy decision making (Singh 
 

71 et al. 2010; Bardgett & van der Putten 2014). 
 

72 Given that bacterial communities play key roles in ecosystem functioning but are considered by 
 

73 far the most abundant and diverse living forms on Earth (Whitman et al. 1998; Singh et al. 2009), it is 
 

74 usually presumed that the microbial BEF relationship will show a high functional redundancy (Allison 
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75 and Martiny 2008). Previous studies suggested a wide range of shapes (mainly saturating or linear) for 
 
76 the relationships between bacterial diversity and both broad and specialized ecosystem functions (Bell 
 
77 et al. 2005; Ptacnik et al. 2008; Peter et al. 2011a; Ylla et al. 2013). However, none of these studies 
 
78 have statistically and simultaneously tested for the shape of the microbial BEF relationship by 
 
79 comparing multiple functions; such as Logarithmic, Michaelis-Menten [M-M], Linear, Power and 
 
80 Exponential (Cardinale et al. 2011; Reich et al. 2012). Each of these models implies a different 
 
81 ecological interpretation. For example, a linear BEF relationship suggests that each species has a 
 
82 proportional effect on ecosystem functionality with no functional redundancy. The exponential 

83 relationship suggests that a small decrease in species richness can have a high negative impact on 

84 ecosystem functionality (also no functional redundancy). On the other hand, the logarithmic 
 
85 relationship decelerates without saturating, suggesting that the initial loss of species has an impact, but 
 
86 is minimal due to the redundancy on ecosystem functioning (functional redundancy; Yachi & Loreau 
 
87 1999). Similarly, the M-M relationship saturates, which suggests that some species are completely 
 
88 functionally redundant, and thus initial loss of diversity will not decrease functionality. Finally, the 
 
89 power function (fitted as in Reich et al. 2012) can fit multiple shapes and may represent either 
 
90 functional or no functional redundancy depending on each particular case. The lack of a quantitative 
 
91 understanding of the shape of these relationships limits our capacity to accurately predict the 
 
92 consequences of bacterial diversity reductions on critical functions and services for humanity; which 
 
93 include pollutant detoxification, primary production and climate regulation (e.g. CO2 exchange). 
 
94 Both broad (widely distributed across living organisms, e.g. decomposition) and specialized 
 
95 (conducted by particular groups of organisms, e.g. detoxification) functions are known to control key 
 
96 ecosystem processes such as respiration (aggregate CO2 fluxes) and toxin degradation, which are 
 
97 critical for human well-being and development. Despite this fact, our current knowledge on how 
 
98 microbial diversity relates to these two types of ecosystem functions are limited (Schimel et al. 2005). 
 
99 It has been posited that broad functions may follow a different shape (i.e. saturating relationship; Yachi 
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100 & Loreau 1999) than specialized functions (i.e. immediate catastrophe; Cardinale et al. 2011). The 
 

101 rationale for this hypothesis is that initial loss of diversity may modestly influence broad functioning 
 

102 due to considerable redundancy among taxa in overall metabolic processes, but can collapse 
 

103 specialized functions, which are linked to extremely narrow microbial groups (Schimel et al. 2005). 
 

104 Determining the shape of the relationship between microbial diversity and both broad and specialized 
 

105 functioning is critical to understand the impact that future losses of microbial diversity may have on 
 

106 ecosystem functioning and human well-being. 
 

107 Here, we conducted three independent microcosm experiments to evaluate the direction (i.e. 
 

108 positive, negative or null) and the shape of the relationships between bacterial diversity for both broad 
 

109 (i.e. microbial respiration) and specialized (i.e. toxin degradation) functions in five Australian and two 
 

110 UK freshwater ecosystems. Freshwater ecosystems are of paramount importance for human well-being 
 

111 since they provide water to Earth’s 7 billion people for agriculture, industry, recreation and municipal 
 

112 use (Sala et al. 2000; MEA 2005; Cardinale et al. 2012). In these ecosystems, microbial communities 
 

113 play an important role maintaining key processes such as freshwater purification (e.g. breakdown of 
 

114 pollutants). We hypothesize that any loss in bacterial diversity will promote at least a proportional 
 

115 depletion (no functional redundancy) in both broad and specialized functions. We propose this idea 
 

116 because even broad ecosystems functions such as microbial respiration rely on more complex 
 

117 processes, including organic matter degradation (Schimel et al. 2005), which involve large and diverse 
 

118 groups of specialized functions (e.g. lignin degradation; Horwath 2007; Ruiz-Dueñas & Martínez, 
 

119 2009). To properly interpret any pattern in the microbial BEF relationship, we need to consider the 
 

120 effects of microbial biomass, microbial composition, and other methodological issues. Moreover, if our 
 

121 hypothesis is valid, the shape of the microbial BEF relationship should arguably be similar across 
 

122 widely different systems (e.g. rivers, creeks and lakes) with different environmental status (e.g. pristine 
 

123 and polluted). 
 
12
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125 Materials and methods 
 
126 Study sites 
 
127 This study was based in two UK (Scotland) and five Australian (New South Wales) freshwater 
 
128 ecosystems. The five Australian sites belong to two independent microcosm studies including two 
 
129 (Australia.1) and three (Australia.2) sites, respectively. The two UK sites: Loch Freuchie (LF, 
 
130 56°31'6.93"N, 3°51'4.27"W) and Loch Rescobie (LR, 56°39'18.53"N, 2°47'43.00"W), represent 
 
131 pristine and polluted lakes, respectively (SEPA 2010a; 2010b). The two Australia.1 sites: Hawkesbury 
 
132 River (HR, 33°33'22.06"S, 151°14'21.36"E) and Farmers Creek (FC, 33°28'27.61"S, 150°7'59.61"E), 
 
133 both represent polluted/high nutrient rivers belonging to the Hawkesbury-Nepean river system in New 
 
134 South  Wales.  Finally,  the three  Australia.2  sites:  Parramatta River  (PAR,  33°48'13.49"S, 
 
135 150°59'56.44"E), Richmond Lagoon (RLA, 33°35'35.99"S, 150°44'31.38"E) and Wheeney Creek 
 
136 (WC, 33°25'32.49"S, 150°48'52.36"E) correspond to a polluted, and a pristine lake and a creek. We 
 
137 would like to highlight that the studies conducted in UK, Australia.1 and Australia.2 are independent 
 
138 from each other explaining the modest differences between experimental and sampling designs. 
 
139 Water sampling 
 
140 Three water samples (top 10cm) were randomly collected on August 2011 and February 2013 in the 
 
141 UK and Australia.1 sites, respectively. In addition, one water sample was collected in May 2015 at 
 
142 each location for the Australia.2 sites. In the case of Australia.1 and UK samples, the three water 
 
143 samples collected from each site were used to generate the three replicates. Water was sampled in 1L 
 
144 glass bottles wrapped in aluminum foil to minimize the input of light. One part of the water was 
 
145 directly stored (non-sterile water used for the microbial inoculums), while the other part was filter- 
 
146 sterilised via Stericup filters (0.22 µm, Millipore) and autoclaved at 121 °C for 20 minutes (sterile 
 
147 water). Water was then stored at 4°C ready to be used for the next steps. 
 
148 Experimental design: dilution-to-extinction approach. 
 
149 To develop bacterial diversity gradients, without using cultures, a dilution-to-extinction approach was 
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150 employed (Peter et al. 2011a). Here, we used two different versions of this approach including 
 

151 replicated diversity levels (Australia.1 and UK sites) and non-replicated diversity gradient (Australia.2 
 

152 sites) microcosms. The main reason to include these two approaches is that while replicated 
 

153 approaches allow us to statistically test for significant differences among dilution (i.e. diversity) levels 
 

154 (e.g. ANOVA), a wider range of dilutions, instead of 3 replicates, should enable a better description of 
 

155 the shape of the function. By using both replicated level and regression gradient approaches, we aim to 
 

156 provide robust scientific rigor to our findings. To create a gradient in bacterial diversity, a dilution 
 

157 series of the inoculum was prepared by serial transfer of the inoculum into sterile medium (1:10). 
 

158 These dilutions were conducted in a laminar flow hood to avoid contamination. In all cases (replicated 
 

159 and non-replicated approaches), microcosms were constructed using the original sterilised water as 
 

160 substrate, so we did not expect initial differences in substrate concentrations. In all cases, microcosms 
 

161 were constituted in a final volume of 225mL. 
 

162 Replicated studies (Australia.1 and UK): For the UK sites, dilutions of 10-1, 10-4 and 10-7 were used, 
 

163 while for the Australia.1 sites, dilutions of 1x (undiluted), 10-1, 10-2 and 10-4 dilutions were used. Three 
 

164 microcosms for each water dilution level were established, rendering a total of 42 microcosms (9 and 
 

165 12 microcosms for each of the sites in the UK and Australia.1, respectively). We selected these 
 

166 dilutions to cover a wide range of microbial diversity. Remaining dilutions not used throughout this 
 

167 experiment were discarded due to time and space constraints. Sterile controls were included to ensure a 
 

168 lack of contamination in our microcosms. For these samples, we used a replicated approach to 
 

169 statistically test for biomass influence on the relationship between microbial diversity and functionality 
 

170 by using ANCOVA analyses (see details below). 
 

171 Gradient approach (Australia.2): For the three Australia.2 sites, we established a continuous gradient 
 

172 (non-replicated design) from 10-0.18 to 10-7 (10-0.18, 10-0.48, 10-0.78, 10-1, 10-1.18, 10-1.48, 10-1.78, 10-2, 10- 
 

173 2.48, 10-2.78, 10-3, 10-3.48, 10-4, 10-4.48, 10-5, 10-5.48, 10-6, 10-6.48, 10-7). A total of 57 microcosms (19 for 
 

174 each location) were established. 
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175 All microcosms (Australia.1, UK and Australia.2) were incubated at 20 °C shaking at 70 rpm in 
 
176 dark conditions during the biomass recovery stage (see below). 
 
177 Biomass recovery stage. 
 
178 To separate effects of bacterial diversity from effects of abundance, we allowed bacterial biomass to 
 
179 recover (i.e. to achieve roughly similar levels of microbial biomass among microcosms for a particular 
 
180 location; Fig. S1) before starting (time zero) our measurements of microbial functions. Moreover, we 
 
181 measured the biomass across treatments, and statistically accounted for biomass in our analyses (see 
 
182 details below). We used quantitative PCR (qPCR) to quantify microbial abundance in our microcosms. 
 
183 This method has been reported to provide similar results to direct cell counting using microscopy (Al- 
 
184 Tebrineh et al. 2010; Perez-Osorio et al. 2010; Castillo et al. 2006; Ammann et al. 2012; Furukawa et 
 
185 al. 2012). DNA extraction was carried out using the PowerWater DNA isolation kit (MoBio 
 
186 Laboratories Inc.; Appendix S1). 16S rRNA qPCR was carried out using a modified protocol of Fierer 
 
187 et al. (2005) and using a Rotor Gene-3000 (Corbett Research, Cambridge, UK; see Appendix S1 for 
 
188 complete protocol). 
 
189 For UK and Australia.1 sites (replicated studies), biomass recovery was tested by means of 
 
190 bacterial 16S rRNA qPCR every three days starting from the moment when dilutions were made (till 
 
191 biomass recovery). Biomass recovery along the dilution (diversity) range was achieved within 3 days 
 
192 for LF, HR and FC, and within 6 days for LR (Fig. S1). Contrary to this, and based on previous 
 
193 experience, biomass from the Australia.2 sites (gradient approach), were directly tested one week after 
 
194 the time zero to ensure biomass recovery. We would like to highlight that we allowed biomass to 
 
195 recover so that all dilutions from each location started with a similar biomass (not amongst locations; 
 
196 Fig. S1). 
 
197 Assessment of microbial diversity 
 
198 Similar to microbial biomass, microbial richness and composition were measured immediately before 
 
199 starting (time zero) our measurements of microbial functions; first using T-RFLP (a rapid method that 
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200 provided results within 48 hours, Appendix S1 for methodological details) and then by next-generation 
 

201 sequencing. 
 

202 In the case of the UK and Australia.1 sites, we used 454 pyrosequencing (454 life-sciences); however, 
 

203 because this technology was no longer available and supported by the sole provider (The Roche Ltd), 
 

204 we used Illumina Miseq (Illumina Inc.), a similar but advanced next generation sequencing approach, 
 

205 for Australia.2 sites (see Appendix S1). Regrettably, we failed to sequence 1/9 (LR), 2/9 (LF), 3/19 
 

206 (PAR and WC) and 5/19 (RLA) of the water samples in the microcosms from UK and Australia.2 
 

207 sites. Consequently, these samples were not used in further analyses. We used species richness (i.e. 
 

208 number of OTUs at 97 % similarity from 454 or Illumina sequencing) as a proxy of diversity for 
 

209 simplicity, but also because this approach was more commonly used in BEF literature (Gotelli & 
 

210 Colwell 2001). The data were rarefied to ensure even sampling depth between samples (see Appendix 
 

211 S1). Bioinformatic analyses were completed independently for each of our experiments (Australia.1, 
 

212 UK and Australia.2). In all cases, bacterial richness was highly related to the Shannon and Simpson 
 

213 diversity indexes calculated from next generation sequencing techniques (Table S1). 
 

214 Broad functions 
 

215 We first measured a broad ecosystem function (i.e. cumulative microbial respiration) in UK, 
 

216 Australia.1 and Australia.2 sites. We selected microbial respiration because this general function is 
 

217 widely distributed among different groups of microorganisms and it is considered as a good proxy of 
 

218 total biological activity (Campbell et al. 2003; Schimel & Weintraub, 2003). The day immediately 
 

219 after biomass recovery (the day in which we achieved roughly similar levels of microbial biomass 
 

220 among microcosms for a particular location), we transferred 40 mL of water from the original 
 

221 microcosms to 125 mL serum bottles under sterile conditions. Water samples were incubated at 20 ºC 
 

222 with continuous shaking at 70 rpm to ensure oxygenation. Respiration was measured using an infrared 
 

223 gas analyser (IRGA) every 2-3 days in each water microcosm for 13 and 18 days in the Australian 
 

224 (Australia.1 and Australia.2) and UK sites, respectively (See Appendix S1 for details). We then 
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225 calculated the total cumulative microbial respiration in our microcosms from these individual 
 
226 measurements. Finally, for the Australia.2 sites, we also measured the dissolved organic carbon (DOC) 
 
227 at the end of the experiment using a TOC analyzer (Shimatzu, Japan). 
 
228 Specialized functions 
 
229 We measured two specialized functions (i.e. ability to degrade microcystin-LR and Triclosan) in the 
 
230 two Australia.1 freshwater ecosystems. Degradation of Microcystin-LR (MC-LR) and Triclosan was 
 
231 selected because these compounds are highly toxic, widely distributed and commonly used as proxies 
 
232 of natural and artificial toxins, respectively (Edwards & Lawton, 2009; Lee et al. 2012). In parallel, we 
 
233 transferred 40 mL from the original microcosms to 125 mL serum bottles. Then, MC-LR (0.5mg L-1) 
 
234 and Triclosan (10µg L-1; Bhargava & Leonard, 1996) were added aseptically to the water microcosms. 
 
235 Finally, we calculated the degradation rate constant k (after 16 days) for both MC-LR and Triclosan in 
 
236 our microcosms as explained in detail in Appendix S1. In brief, samples were incubated at room 
 
237 temperature (20 ºC) with continuous shaking at 70 rpm to ensure oxygenation in the dark for 16 days. 
 
238 Serum bottles were opened in sterile conditions every two days to allow oxygenation, taking 500 µL 
 
239 sub-samples for analysis every 4 days. Regarding MC-LR microcosms, sub-samples were analyzed by 
 
240 HPLC (Edwards et al. 2008). Quantification of Triclosan was achieved using a commercial kit 
 
241 (Abraxis kits, PA, USA). We then calculated the degradation rate constant k for both MC-LR and 
 
242 Triclosan in our microcosms using a first order kinetic curve as per the FOCUS software tool 
 
243 (http://focus.jrc.ec.europa.eu/dk/). 
 
244 Statistical analyses I: testing the success of our experimental design: dilution-to-extinction approach. 
 
245 The dilution-to-extinction approach used here mimics the response of natural communities, species and 
 
246 populations to environmental fluctuations where the rarest species are also more prone to extinction. In 
 
247 this regard, the dilution-to-extinction approach is considered as realistic as possible, and thus is an 
 
248 accepted method to quantify the effects of reductions in microbial diversity on ecosystem functionality 
 
249 (Peter et al. 2011a). To test whether we successfully achieved a diversity gradient from the dilution-to- 
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250 extinction approach, we first performed a one-way ANOVA to check for differences in the bacterial 
 

251 diversity between dilution levels for the Australia.1 and UK sites (replicated design). Further post-hoc 
 

252 analyses (i.e. Tukey) indicated that bacterial diversity consistently decreased with increasing dilution, 
 

253 even at comparable biomass (Figs. S2-3). In this sense, significant differences were observed in 
 

254 bacterial diversity across various dilution levels at all study sites (P<0.01; Figs. S2-3). In addition, we 
 

255 conducted correlation (Pearson’s) analyses between dilution level and bacterial diversity in 
 

256 Australia.1/UK (replicated approach) and Australia.2 (non replicated approach) sites. Bacterial 
 

257 diversity was negatively related to dilution level in all cases (P<0.05). 
 

258 Statistical analyses II: Comparing shapes of biodiversity and ecosystem functionality relationships 
 

259 We first evaluated the direction (i.e. positive, negative or null) and shape of the relationship between 
 

260 bacterial diversity and a broad ecosystem function (i.e. cumulative microbial respiration) in the 
 

261 Australian (Australia.1 and Australia.2) and UK sites. Then, we assessed how bacterial diversity 
 

262 related to two specialized functions (biodegradation of Microcystin-LR and Triclosan) in the two 
 

263 Australia.1 freshwater ecosystems. To identify the best shape describing the relationship between 
 

264 bacterial diversity and functioning, we fitted five different functions that involve different biological 
 

265 interpretations (Logarithmic, M-M, Linear, Power and Exponential; Cardinale et al. 2011; Reich et al. 
 

266 2012). Essentially these five functions are included in two groups of ecological shapes for the 
 

267 microbial BEF relationship: functional redundancy (logarithm and M-M) and no functional 
 

268 redundancy (linear or exponential). The power function can fit multiple shapes and may represent 
 

269 either functional or no functional redundancy depending on each particular case. We selected the best 
 

270 model fits by following Akaike Information Criteria (AICc; Burnham & Anderson, 2002). AICc is a 
 

271 corrected version of AIC that is highly recommended when dealing with small samples size as is our 
 

272 case (Burnham & Anderson, 2002). The lower the AICc index the better the model. Here, we consider 
 

273 a ΔAICc > 2 threshold (Burnham & Anderson 2002; Burnham et al. 2011) to differentiate between 
 

274 substantially different models. In some cases, we were able to identify a single best function shaping 
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275 the microbial BEF relationship. This happened when a particular function (e.g. exponential) was much 
 
276 better (ΔAICc > 2) than the rest of the explored models (Logarithmic, M-M, Linear and Power). In 
 
277 other cases, we were only able to differentiate among groups of functions (functional redundancy vs. 
 
278 no functional redundancy), but unable to identify the best function describing the shape of the 
 
279 microbial BEF relationship. For example, if the best model linked to no redundant models (linear and 
 
280 exponential and/or no redundant-power) was better (ΔAICc > 2) than redundant models (logarithm and 
 
281 M-M and/or redundant power), but similar to other functions within the same category (linear and 
 
282 exponential and/or no redundant-power), we viewed this as providing evidence for a lack of 
 
283 redundancy in the relationship between bacterial diversity and ecosystem functioning. However, if the 
 
284 best redundant model was better (ΔAICc > 2) than no-redundant models, but similar to other functions 
 
285 within the same category (logarithm and M-M and/or redundant power), this indicated a redundancy in 
 
286 the microbial BEF relationship. Once we identified the best group of models, we then used the most 
 
287 representative function of this group (i.e. the one with the lowest ΔAICc value) in the main text. All 
 
288 functions and AICc indexes were fitted using Sigmaplot (London, UK). 
 
289 Statistical analyses III: Evaluating the effect of microbial biomass on our analyses 
 
290 We conducted ANCOVA and partial correlation to quantify the effect of biomass on the function being 
 
291 measured, and then partitioned that away from the diversity effect- hence the diversity effect tests 
 
292 whether diversity matters even at a standardized biomass. It is important to clarify that by conducting 
 
293 these analyses, we do not mean to express that biomass is not important for functionality. Contrary to 
 
294 this, because of the huge importance of biomass on ecosystem functioning we have allowed biomass to 
 
295 recover to roughly similar levels among microcosms before measuring functions and for statistical 
 
296 analyses. 
 
297 Because differences in biomass can influence microbial diversity-functions relationships, the 
 
298 differences detected in biomass at the beginning of the measurements (Fig S1) (i.e. even after our best 
 
299 effort at biomass recovery) might have influenced the results. To assess this, for the Australia.1/UK 
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300 sites (replicated design), we statistically tested for any effect of these biomass differences among 
 

301 treatments by conducting a two-way ANCOVA (analyses of covariance) for each of the broad 
 

302 (microbial respiration) and specialized (MC-LR and Triclosan) functions, including site and dilution 
 

303 gradient as fixed factors and bacterial biomass based on qPCR (at the beginning of the experiment but 
 

304 after recovery; Fig S1) as a co-variable. Similar analyses were conducted to confirm the effect of 
 

305 bacterial diversity on the degradation of both MC-LR and Triclosan in the Australia.1 freshwater 
 

306 ecosystems. Besides ANCOVA analyses for replicated design, we conducted partial correlation to 
 

307 confirm the relationship between microbial diversity and ecosystem functionality after controlling for 
 

308 biomass (as measured with qPCR). ANCOVA, ANOVA and partial correlation analyses were 
 

309 performed using SPSS 15.0 software (SPSS Inc., Chicago, IL, USA). 
 

310 Statistical analyses IV and V: considering other methodological issues on our analyses 
 

311 Further analyses were conducted to consider the effects of microbial composition on our analyses. We 
 

312 first used Random Forests analyses (Breiman, 2001) to explore whether the microbial diversity effect 
 

313 on ecosystem functionality (broad and specialized) remained important after considering main 
 

314 bacterial groups in our analyses (Appendix S2). Random forest is a novel machine-learning algorithm 
 

315 that extends standard classification and regression tree (CART) methods by creating a collection of 
 

316 classification trees with binary divisions (Breiman, 2001; Delgado-Baquerizo et al. 2015). Unlike 
 

317 traditional CART analyzes, the fit of each tree is assessed using randomly selected cases (1/3 of the 
 

318 data), which are withheld during its construction (out-of-bag or OOB cases). The importance of each 
 

319 predictor variable is determined by evaluating the decrease in prediction accuracy (i.e. increase in the 
 

320 mean square error between observations and OOB predictions) when the data for that predictor are 
 

321 randomly permuted. This decrease is averaged over all trees to produce the final measure of 
 

322 importance (Breiman, 2001; Delgado-Baquerizo et al. 2015). Here, we used Random Forest modeling 
 

323 to simultaneously evaluate the relative importance of microbial richness and composition (originally 
 

324 main bacterial phyla and axes from 2D nMDS analyses at the OTU level) on ecosystem functioning 
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325 (Appendix S2). 
 
326 We further evaluated the effect of other methodological issues (e.g. filtering type, CO2 fluxes 
 
327 measurement and shift in microbial richness and composition during incubation period) on our 
 
328 analyses (Appendix S3). As explained above the water used for microcosm preparation was filtered 
 
329 (0.22µm), with the exception of undiluted samples (1x microcosms in Australia.1 sites). Thus, it may 
 
330 be argued that filtering can be a bias explaining the differences among microcosms in Australia.1 sites 
 
331 (Note that this issue does not affect UK and Australia.2 sites which did not include 1x microcosms). 
 
332 Moreover, it could be argued that the responses in microbial respiration (i.e. broad functioning) that we 
 
333 reported here may be the consequence of a non-linear CO2 release from water; and thus that CO2 could 
 
334 be taken up by the water and not released into the headspace unless there is a lot of CO2 being 
 
335 produced. Finally, both microbial richness and community composition might have changed during the 
 
336 incubation period during which ecosystem functions were measured, thereby biasing responses in 
 
337 ecosystem functioning. We evaluated the effects of filtering type, CO2 fluxes measurement and shift in 
 
338 microbial richness and composition during incubation period on our analyses in Appendix S3. 
 
339 
 
340 Results 
 
341 Bacterial diversity showed a positive relationship with both broad and specialized functions in 
 
342 freshwater ecosystems (Figs 1-3 and Figs S4-7). This was true in all studied ecosystems and for 100% 
 
343 of the measured functions (11 of 11). We were able to successfully identify a best group of models 
 
344 (functional vs. no functional redundancy) shaping the microbial BEF relationship in 7 of 11 cases 
 
345 (Table S2). In 6 of 7 cases, the best models supported a lack of functional redundancy in the microbial 
 
346 BEF relationship (linear and/or exponential and/or no redundant-power shapes; Figs 1-3; Table S2); 
 
347 indicating a major loss of function with the initial loss of diversity (Fig 4; Table S2). In particular, we 
 
348 have 1 of 7 cases of exponential/no redundant-power shapes (i.e. broad functioning in PAR; Fig. 2b; 
 
349 Table S2), 2 of 7 cases of linear/exponential/no redundant-power shapes (i.e. specialized functioning in 



 Journal of Ecology 
 
 
 

350 FC; Fig. 3a.1 and b.1; Table S2) and 3 of 7 exponential shapes (i.e. broad functioning in LF and HR 
 

351 and specialized functioning in HR; Figs. 1b and c and 2b.1; Table S2). Thus, most of the identified 
 

352 shapes for the microbial BEF relationship showed no functional redundancy patterns for broad (3 of 4 
 

353 cases; HR, LF and PAR; Figs. 1 and 2) and specialized (3 of 3 cases; FC for MC-LR and FC and HR 
 

354 for triclosan degradation; Fig. 3) functioning, respectively. The only evidence of any redundancy 
 

355 whatsoever was Loch Rescobie in the UK where we found a near-linear but only very slightly 
 

356 saturating Michaelis-Menten relationship between bacterial diversity and cumulative microbial 
 

357 respiration (Fig 1d; Fig. 4). In the other 4 of 11 cases (i.e. broad functioning in FC, WC and RLA and 
 

358 specialized functioning in HR), we were not able to differentiate the best shape of the microbial BEF 
 

359 relationship among different groups of models including functional redundancy and no-functional 
 

360 redundancy (ΔAICc < 2; Table S2). 
 

361 There were significant but minor differences in biomass among dilution treatments after the 
 

362 biomass recovery phases, at the start of the experiment (time zero; Fig S1), however proportionally 
 

363 much smaller than the differences in diversity among dilution treatments (Fig S2). To address this 
 

364 potential confounding factor in the present study, we tested for differences among treatments and for 
 

365 the effects of both biomass and diversity in the statistical analyses. In these ANCOVA analyses, we 
 

366 found significant differences between dilution treatments for all the measured functions (P ≤ 0.001), 
 

367 but no significant main effects from bacterial biomass (P > 0.275) were observed on these functions 
 

368 (Table S3). This indicates that the differences in Figs 1-3 arise from differences in diversity, not in 
 

369 bacterial biomass, supporting the robustness of our results. Similarly, partial correlation analyses 
 

370 provide evidence that the positive relationship between microbial diversity and ecosystem functionality 
 

371 is maintained after controlling for biomass (Table S4). 
 

372 As expected, we found some differences in bacterial composition across dilution levels 
 

373 (Appendix S2). To account for these differences and test whether diversity is still important compared 
 

374 to composition, we used Random Forest analyses. This approach provides insights on the relative 
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375 importance a several group of predictors (bacterial composition and diversity) on a particular response 
 
376 variable (functions). Our Random Forest analyses (Figs S8-9) indicated that changes in microbial 
 
377 diversity were more important (MC-LR degradation and microbial respiration) or similarly as 
 
378 important (e.g. Triclosan degradation) for ecosystem functioning as changes in microbial communities. 
 
379 Finally, further analyses provided evidence that key methodological details such as filtering 
 
380 type, CO2 fluxes measurements and shift in microbial composition during incubation period are not 
 
381 influencing our results (Appendix S3). 
 
382 
 
383 Discussion 
 
384 Our experimental results unequivocally show microbial diversity enhances function (11 of 11 cases) 
 
385 and provide evidence that there is often a lack of functional redundancy in the relationship between 
 
386 microbial diversity and broad and specialized ecosystem functioning. In particular, 6 of 11 of 
 
387 regressions followed linear, exponential and/or no redundant-power shapes, while only 1 was slightly 
 
388 decelerating (and the others four could not be distinguished in this regard). These observations are 
 
389 consistent with previous reports of positive effects on microbial diversity on selected functions 
 
390 (Downing & Leibold 2002; Horner-Devine et al. 2003; Bell et al. 2005; Ptacnik et al. 2008; Peter et al. 
 
391 2011a; Ylla et al. 2013), that however, did not explicitly check for the shape of the microbial BEF 
 
392 relationship. 
 
393 Strikingly, while most of the classic studies assessing the links between changing biodiversity 
 
394 and ecosystem functioning have observed a positive but decelerating relationship between BEF in 
 
395 plant and animals (Tilman et al. 1997; Cardinale et al. 2011), here we show that the shape of this 
 
396 relationship does not follow generally the same pattern in bacterial communities. The differences in the 
 
397 shape of the BEF relationship may be related to the particular manner in which these groups of 
 
398 organisms obtain their resources (Begon et al. 2006). For example, all plants acquire C, water and 
 
399 nutrients in the same general manner and do not require pre-processing by other plants prior to doing 
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400 so (in fact, such “pre-processing” largely represents resource competition among all species in the 
 

401 community). In other words, in plant ecosystems, if one species disappears, in general, others will 
 

402 acquire the unused resources in its place – thus moving the system only very slightly down the 
 

403 decelerating functional redundancy curve (Cardinale et al. 2011). On the contrary, the resource 
 

404 consumption structure of freshwater bacterial communities, linked to key processes such as 
 

405 decomposition, is distinct because resources for some species only become available once other 
 

406 species have degraded and consumed a part of that resource. For example, the observed abrupt 
 

407 reduction in cumulative microbial respiration (aggregated process as defined in Schimel et al. 2005) 
 

408 with decreasing bacterial diversity may be the consequence of a decrease in the microbial community 
 

409 capacity to break down complex and recalcitrant polymers into simpler and more labile monomers 
 

410 (organic matter degradation) which are rapidly consumed and largely respired (i.e. complementary 
 

411 hypothesis; Loreau and Hector 2001; Schimel et al. 2005; Horwath 2007). Organic matter degradation 
 

412 usually involves many different specialized functions (e.g. lignin degradation), and is known to require 
 

413 the cooperation of large and diverse groups of micro-organisms (Horwath 2007). In this regard, any 
 

414 depletion in bacterial diversity may limit aggregated processes such as microbial respiration (Schimel 
 

415 et al. 2005) to the most labile C sources, negatively impacting upon this ecosystem function. 
 

416 Supporting this notion, in Australia.2 microcosms, where we measured dissolved organic carbon 
 

417 (DOC) at the end of the experiment, we found a negative relationship between microbial diversity and 
 

418 DOC in all three studied sites (WC: Pearson’s r = -0.65; P = 0.003; PAR: Pearson’s r = -0.47; P = 
 

419 0.064; RLA: Pearson’s r = -0.58; P = 0.032). This reduction in DOC was negatively related to 
 

420 microbial respiration (WC: Pearson’s r = -0.76; P = 0.001; PAR: Pearson’s r = -0.53; P = 0.038; RLA: 
 

421 Pearson’s r = -0.45; P = 0.10); and suggests that a reduction in ecosystem functioning (e.g. microbial 
 

422 respiration) linked to losses in microbial diversity may impact upon important processes such as 
 

423 organic matter decomposition, promoting the accumulation of DOC in water with low levels of 
 

424 microbial diversity. 
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425 Consistent with the results observed for broad functions (at least in aggregated processes such 
 
426 as microbial respiration), we found a lack of functional redundancy in all three of the cases in which 
 
427 we identified the shape of the microbial BEF in specialized functions such as MC-LR and Triclosan 
 
428 degradation linked to bacterial diversity depletion. On the contrary to broad functions such as organic 
 
429 matter decomposition, which involve a large group of diverse microorganisms, specialized functions 
 
430 such as MC-LR and Triclosan degradation are carried out by small groups of microorganisms 
 
431 (Edwards & Lawton, 2009; Lee et al. 2012). Losses in the diversity of these particular groups of 
 
432 microorganisms, in parallel to the overall bacterial diversity depletion, may collapse the different 
 
433 metabolic routes and steps that allow the degradation of these toxins, explaining the observed 

434 exponential decrease in MC-LR and Triclosan degradation. These results can have important 
 
435 implications for freshwater ecosystems and human well-being. Both natural (i.e. MC-LR) and artificial 
 
436 (i.e. Triclosan) toxins such as used in this study are known to have negative effects on human health, 
 
437 vegetation growth, and animal and plant metabolism (Edwards & Lawton, 2009; Lee et al. 2012). A 
 
438 decrease of the natural capacity of ecosystems to remove nutrients and break down pollutants will 
 
439 increase the cost of water treatments as well as the percentage of people exposed to unclean water 
 
440 (Vörösmarty et al. 2010; Cardinale et al. 2012). 
 
441 Notably, the low redundancy of the microbial BEF relationship in our short-term study seems 
 
442 to match with the reported long-term responses of the shape of the plant BEF relationship (Duffy, 
 
443 2009; Reich et al. 2012). Recent studies suggest that although the shape of the plant BEF relationship 
 
444 is strongly saturating during the first years in BEF experiments, it became much less saturating over 
 
445 time (Duffy, 2009; Reich et al. 2012). In this regard, the recent BEF literature suggests that because of 
 
446 the common short time-scale employed in most terrestrial BEF experiments (≈2 years), classic studies 
 
447 conducted with macro-organisms may have underestimated the importance of biodiversity on 
 
448 ecosystem functioning; as the relationship becomes less saturating and more linear with time (Reich et 
 
449 al. 2012; Mora et al. 2014). This pattern of similarity of long-term plant BEF responses and short-term 
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450 microbial BEF responses could be related to the different life characteristics (e.g. growth and 

451 reproduction rates) of these groups of organisms and thus the different time needed for biotic 
 

452 interactions to develop. For example, microbes have a much more rapid life cycle (i.e. hours to days) 
 

453 than macro-organisms (i.e. months to decades; Schmidt et al. 2007). This fact may promote a fast 
 

454 establishment of positive effects from microbial diversity on ecosystem functioning, such as those 
 

455 linked to both horizontal (i.e. symbiosis, competition and mutualism; Reiss 2009) and vertical (i.e. 
 

456 multi-trophic food web interactions; Duffy et al. 2007) species interactions; whereas such interactions 
 

457 can take much longer to develop in plant and animal communities. Thus, our results support the notion 
 

458 that because of their fast growth and life cycle (e.g. up to 1 x 107 faster than animals; Schmidt et al. 
 

459 2007), the full spectrum of biotic interactions fueled by bacterial diversity can play out quickly, and 
 

460 bacterial communities in natural systems likely have little to no redundancy. In this respect, our study 
 

461 provides a strong experimental framework to test for ecological questions related to community 
 

462 interaction and succession that would take much longer to find an answer if using an experimental 
 

463 approach involving longer life cycle organisms such as plants or animals (Mora et al. 2014). 
 

464 It is important to note that the dilution-to-extinction approach used here is well-known to affect both 
 

465 diversity and biomass, making results derived from this approach potentially difficult to interpret, if 
 

466 steps to account for their co-variance are not taken (as was done in this study). The potential difficulty 
 

467 can arise as both higher biomass and higher diversity could result in higher rates of functional 
 

468 processes. In previous studies, this potential confounding of biomass and diversity was not accounted 
 

469 for (Peter et al. 2011a; Ylla et al. 2013). Here, we allowed biomass to recover at all dilution levels, and 
 

470 used ANCOVA and partial correlation analyses which indicated that the differences in Figs 1-3 arise 
 

471 from differences in diversity, not in bacterial biomass. They therefore provide support for our 
 

472 interpretation of the magnitude and shape of the relationship between bacterial diversity and broad and 
 

473 specialized ecosystem functioning. Overall, the large reduction in functioning linked to bacterial 
 

474 diversity losses, observed in all of the studied systems and functions, suggests that all bacterial species 
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475 are required to maintain both broad and specialized functions in freshwater ecosystems (i.e. no 
 
476 redundancy). In addition to accounting for biomass, we explored the effect of microbial composition 
 
477 on the reported microbial BEF relationships. Our Random Forest results (Figs S8-9) support the 
 
478 finding that, in general, changes in microbial richness seem to be more important for ecosystem 
 
479 functioning (microbial respiration, MC-LR and Triclosan degradation) than changes in microbial 
 
480 composition. Even so, the relative abundance of particular groups of microbes such as Proteobacteria 
 
481 and Actinobacteria were also important predictors of broad and specialized functioning in our study 
 
482 (Figs. S9-10), highlighting the importance of bacterial composition as a driver of ecosystem 
 
483 functioning (selection/sampling effect; Loreau and Hector 2001). Both Proteobacteria and 
 
484 Actinobacteria are highly functional microbial communities which possess an impressive array of 
 
485 genes allowing the breakdown of different organic components (Trivedi et al. 2013). 
 
486 In conclusion, our findings provide direct evidence that similar to macro-organisms (plants and 
 
487 animals), declining microbial diversity has direct, adverse consequences for important ecosystem 
 
488 broad (aggregated) and specialized functions and the services they provide. However, unlike the 
 
489 classical positive but decelerating relationship between ecosystem functions and macro-organism 
 
490 species richness, we most often found a lack of functional redundancy in the relationship between 
 
491 freshwater bacterial diversity with both broad and specialized ecosystem functions (exponential and 
 
492 linear and/or no functional-power functions). These results suggest that a loss of even a small number 
 
493 of bacterial species can have a strongly negative impact on overall ecosystem functioning and services, 
 
494 adversely affecting both freshwater ecosystems and human welfare. 
 
495 
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647 Figure legends 
 

648 Figure 1. Relationship between bacterial richness (number of OTUs) obtained via 454 pyrosequencing 
 

649 and broad ecosystem functioning (cumulative microbial respiration over approximately two weeks) in 
 

650 both Australian: a) Farmers Creek and b) Hawkesbury river and UK: c) Loch Freuchie and d) Loch 
 

651 Rescobie microcosms (n = 3 replications at each initial dilution level). The solid lines represent the 
 

652 best model. The solid lines represent fitted regressions for the best model. The long dashed lines 
 

653 represent fitted regressions for alternative models to the best model. The short dashed lines represent 
 

654 fitted linear regression and indicate that we failed to identify the best shape for this microbial BEF 
 

655 relationship. See Table S2 for AICc values. 
 

656 Figure 2. Relationship between bacterial richness (number of OTUs) obtained via Illumina Miseq and 
 

657 broad ecosystem functioning (cumulative microbial respiration over approximately two weeks) in 
 

658 Australia.2 sites. The solid lines represent fitted regressions for the best model. The long dashed lines 
 

659 represent fitted regressions for alternative models to the best model. The short dashed lines represent 
 

660 fitted linear regression and indicate that we failed to identify the best shape for this microbial BEF 
 

661 relationship. See Table S2 for AICc values. 
 

662 Figure 3. Relationship between bacterial richness (number of OTUs) obtained via pyrosequencing and 
 

663 the degradation rate constant k for both specialized functions: Mycrocystin-LR (a) and Triclosan (b) 
 

664 biodegradation (proportion of toxin degraded day-1) in two Australia.1 freshwater ecosystems: Farmers 
 

665 Creek (1) and Hakwesbury river (2; n = 3). The solid lines represent fitted regressions for the best 
 

666 model. The long dashed lines represent fitted regressions for alternative models to the best model. The 
 

667 short dashed lines represent fitted linear regression and indicate that we failed to identify the best shape 
 

668 for this microbial BEF relationship. See Table S2 for AICc values. 
 

669 Figure 4. Summary results on the shape of the microbial BEF relationship. Following our results, there 
 

670 is a lack of functional redundancy in the relationship between microbial diversity with ecosystem 
 

671 functioning which range from i) immediate catastrophe: even small losses in species richness can lead 
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672 to a large decline in ecosystem functioning to ii) proportional loss: each species has a proportional 
 
673 effect on the ecosystems functioning. In this graph, we only represent those cases in which we 
 
674 successfully differentiate between functional and no functional redundancy (7 of 11 cases). We failed 
 
675 to identify the best shape for the microbial BEF relationship in the other 4 of 11 cases. 
 
676 
 
677 Supporting Information 
 
678 Additional Supporting Information may be found in the online version of this article: 
 
679 Appendix S1. Supplementary methods. 
 
680 Appendix S2. Statistical analyses IV: Evaluating the effects of microbial composition on our analyses. 
 
681 Appendix S3. Statistical analyses V. Evaluating the effects of filtering style, CO2 fluxes measurements 
 
682 and shifts in microbial composition and diversity during incubation period on our analyses. 
 
683 Figure S1. Bacterial biomass over time at different dilution levels (1, 10-1, 10-2 and 10-4 for Australia.1 
 
684 and 10-1, 10-4 and 10-7 for UK) estimated for: a) Farmers Creek, b) Hawkesbury river, c) Loch Freuchie 
 
685 and d) Loch Rescobie. The different labels (1x, 10-1, 10 -2, 10-4 and 10-7) represent the exponent of each 
 
686 dilution level. Significant differences arising from one-way ANOVA analyses for each of the time with 
 
687 time as a fixed factor are as follows: ns = p > 0.05, * p < 0.05 and ** and p < 0.01. Error bars indicate 
 
688 standard error (n=3). Arrows indicate the beginning of the experiment. 
 
689 Figure S2. Bacterial richness (number of OTUs) estimated via pyrosequencing for the different 
 
690 dilution levels (1, 10-1, 10-2 and 10-4 for Australia.1 and 10-1, 10-4 and 10-7 for UK) at the beginning of 
 
691 the experiment for: a) Farmers Creek, b) Hawkesbury river, c) Loch Freuchie and d) Loch Rescobie. 
 
692 Error bars indicate standard error (n=3). The different labels (1, 10-1, 10-2, 10-4 and 10-7) representthe 
 
693 exponent of each dilution level. Lower case letters represent the groups created by ANOVA post-hoc 
 
694 tests which compare bacterial richness among dilution levels. 
 
695 Figure S3. Relationship between the dilution to extinction gradient and bacterial diversity for 
 
696 Australia.2 sites. Solid lines indicate either exponential or linear fits. 
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697 Figure S4. Cumulative microbial respiration for the different dilution levels (1, 10-1, 10-2 and 10-4 for 
 

698 Australia.1 and 10-1, 10-4 and 10-7 for UK) for: a) Farmers Creek, b) Hawkesbury river, c) Loch 
 

699 Freuchie and d) Loch Rescobie. The different labels (1, 10-1, 10-2, 10-4 and 10-7) representthe exponent 
 

700 of each dilution level. Error bars indicate standard errors (n=3). Lower case letters represent the groups 
 

701 created by ANOVA post-hoc tests which compare bacterial richness among dilution levels. 
 

702 Figure S5. Changes in microbial respiration with time during the functionality assay for a) Farmers 
 

703 Creek, b) Hawkesbury river, c) Loch Freuchie and d) Loch Rescobie. The different labels (1, 10-1, 10-2, 
 

704 10-4 and 10-7) representthe exponent of each dilution level. Error bars indicate standard error s (n=3). 
 

705 Differences among dilution treatments and time for microbial respiration of each studied site were 
 

706 evaluated using two-way ANOVAs, with dilution treatment as a fixed factor and repeated measures of 
 

707 time. 
 

708 Figure S6. Scatter plots illustrating the dependency between cumulative microbial respiration and the 
 

709 dilution to extinction gradient for Australia.2 sites. 
 

710 Figure S7. Mycrocystin-LR (a) and Triclosan (b) biodegradation rate constant k (proportion of toxin 
 

711 degraded day-1) for the different dilution levels (1, 10-1, 10-2 and 10-4 for Australia.1 and 10-1, 10-4 and 
 

712 10-7 for UK) for: 1) Farmers Creek and 2) Hawkesbury river. The different labels (1, 10-1, 10-2 and 10- 
 

713 4) representthe exponent of each dilution level. Error bars indicate standard errors (n=3). Lower case 
 

714 letters represent the groups created by ANOVA post-hoc tests which compare bacterial richness among 
 

715 dilution levels. 
 

716 Figure S8. nMDS graph exploring the effect of the different dilution levels on bacterial composition at 
 

717 a OTUs level for Australia.1, UK and Australia.2 sites. 
 

718 Figure S9. Random Forest mean predictor importance (% of increase of mean square error) of 
 

719 microbial richness and composition (i.e. relative abundance of main groups of microorganisms or main 
 

720 axes from a nMDS including information at a OTUs level) as drivers of cumulative microbial 
 

721 respiration in this study for the Australia.1, UK and Australia.2 sites. This accuracy importance 
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722 measure was computed for each tree and averaged over the forest (5000 trees). Significance levels are 
 
723 as follows: *P < 0.05 and ** P < 0.01. 
 
724 Figure S10. Random Forest mean predictor importance (% of increase of mean square error) of 
 
725 microbial richness and composition (i.e. relative abundance of main groups of microorganisms or main 
 
726 axes from a nMDS including information at a OTUs level) as drivers of MC-LR and Triclosan 
 
727 degradation in this study for the Australia.1 sites. This accuracy importance measure was computed for 
 
728 each tree and averaged over the forest (5000 trees). Significance levels are as follows: *P < 0.05 and 
 
729 ** P < 0.01. 
 
730 Figure S11. Calibration curve for microcosm CO2 emissions. A known amount of CO2 was added to 
 
731 40ml of water in a 125ml serum bottle. Bottles were shaken for 10 min and then the concentration of 
 
732 CO2 was measured using an IRGA PP systems WMA2 (Amesbury, MA, USA). 
 
733 Table S1. Correlation (Spearman’s ρ) between bacterial diversity (bacterial richness obtained via 454 
 
734 pyrosequencing for Australia.1 and UK and Illumina Miseq for Australia.2) and Shannon and Simpson 
 
735 diversity (obtained via 454 pyrosequencing for Australia.1 and UK and Miseq Illumina for 
 
736 Australia.2). FC = Farmers Creek; HR = Hawkesbury River; LF = Loch Freuchie; LR = Loch 
 
737 Rescobie; WC = Wheeney Creek; PAR = Parramatta River; RLA = Richmond Lagoon. 
 
738 Table S2. Model fit statistics and AICc index for the different functions describing the relationship 
 
739 between bacterial species richness based on 454 pyrosequencing / Illumina Miseq (X) and ecosystems 
 
740 functions (cumulative microbial respiration, Microcystin-LR and Triclosan; Y). AICc measures the 
 
741 relative goodness of fit of a given model; the lower its value, the more likely it is that this model is 
 
742 correct. Two models models with ΔAICc > 2 are substantially different. The selected models are in 
 
743 bold. FC = Farmers Creek; HR = Hawkesbury River; LF = Loch Freuchie; LR = Loch Rescobie; WC = 
 
744 Wheeney Creek; PAR = Parramatta River; RLA = Richmond Lagoon. The power function can fit 
 
745 multiple shapes and may represent either functional or no functional redundancy depending on each 
 
746 particular case. 
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747 Table S3. Summary results of the two-way ANCOVA analyses carried out with the ecosystem 
 

748 functions (cumulative microbial respiration, Microcystin-LR and Triclosan) as dependent variables and 
 

749 the site (FC and HR for Australia and LF and LR for UK) and dilution (1, 10-1, 10-2 and 10-4 for 
 

750 Australia and 10-1, 10-4 and 10-7 for UK) as fixed factors. Bacterial biomass was always included as a 
 

751 co-variable. df = degrees of freedom. P values below 0.05 are in bold. FC = Farmers Creek; HR = 
 

752 Hawkesbury River; LF = Loch Freuchie; LR = Loch Rescobie. 
 

753 Table S4. Partial  correlation  (Pearson’s  r)  between  bacterial  richness  (obtained  via  454 
 

754 pyrosequencing for Australia.1 and Uk and Illumina Miseq for Australia.2) and ecosystem functions 
 

755 controlling for biomass. FC = Farmers Creek; HR = Hawkesbury River; LF = Loch Freuchie; LR = 
 

756 Loch Rescobie; WC = Wheeney Creek; PAR = Parramatta River; RLA = Richmond Lagoon. 
 

757 
 

758 
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Figure 1. Relationship between bacterial richness (number of OTUs) obtained via 454 
pyrosequencing and broad ecosystem functioning (cumulative microbial respiration over 
approximately two weeks) in both Australian: a) Farmers Creek and b) Hawkesbury river and 
UK: c) Loch Freuchie and d) Loch Rescobie microcosms (n = 3 replications at each initial 
dilution level). The solid lines represent the best model. The solid lines represent fitted 
regressions for the best model. The long dashed lines represent fitted regressions for alternative 
models to the best model. The short dashed lines represent fitted linear regression and indicate 
that we failed to identify the best shape for this microbial BEF relationship. See Table S2 for 
AICc values.  
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Figure 2. Relationship between bacterial richness (number of OTUs) obtained via Illumina 
Miseq and broad ecosystem functioning (cumulative microbial respiration over approximately 
two weeks) in Australia.2 sites.  

The solid lines represent fitted regressions for the best model. The long dashed lines 
represent fitted regressions for alternative models to the best model. The short dashed lines 
represent fitted linear regression and indicate that we failed to identify the best shape for 
this microbial BEF relationship. See Table S2 for AICc values.  



Journal of Ecology 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Relationship between bacterial richness (number of OTUs) obtained via 
pyrosequencing and the degradation rate constant k for both specialized functions: 
Mycrocystin-LR (a) and Triclosan (b) biodegradation (proportion of toxin degraded day-1) in 
two Australia.1 freshwater ecosystems: Farmers Creek (1) and Hakwesbury river (2; n = 3). 
The solid lines represent fitted regressions for the best model. The long dashed lines represent 
fitted regressions for alternative models to the best model. The short dashed lines represent 
fitted linear regression and indicate that we failed to identify the best shape for this microbial 
BEF relationship. See Table S2 for AICc values.  
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Figure 4. Summary results on the shape of the microbial BEF relationship. Following our 
results, there is a lack of functional redundancy in the relationship between microbial diversity 
with ecosystem functioning which range from i) immediate catastrophe: even small losses in 
species richness can lead to a large decline in ecosystem functioning to ii) proportional loss: 
each species has a proportional effect on the ecosystems functioning. In this graph, we only 
represent those cases in which we successfully differentiate between functional and no 
functional redundancy (7 of 11 cases). We failed to identify the best shape for the microbial BEF 
relationship in the other 4 of 11 cases.  
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Supplementary information 
 
Appendix S1. Supplementary methods. 
 
DNA extraction. 25 mL of water from each bottle were filtered (0.2 µm, Stericup filter unit, 

Millipore) and the filters were stored in sealed sterile Petri dishes at -20 ºC until DNA extraction. DNA 

extraction were carried out using the PowerWater® DNA Isolation Kit (Mobio, Carlsbad, USA) 

following the manufacturers protocol, except that the DNA was eluted in 50 µL and not in 100 µL as 

suggested by the manufacturer. 
 
Quantitative PCR. qPCR assays were carried out on a Rotor Gene-3000 (Corbett Research, 
Cambridge, United Kingdom) in polypropylene thin-walled tubes. Each 25 µL reaction contained: 12.5 
µL of GoTaq® qPCR Master Mix (Promega), 1 µL of bovine serum albumin (20 mg mL-1; Roche), 
0.625 µL of primer EUB338 (20 µM, Seq: ACTCCTACGGGAGGCAGCAG) (Kolb et al. 2003), 
0.625 µL of primer EUB518 (20 µM, Seq: ATTACCGCGGCTGCTGG) (Muyzer et al. 1993), 5.25 µL 
of nuclease-free water (Promega) and 5 µL of template. PCR conditions were: 5 min at 95°C, followed 
by 30 cycles of 94°C for 30 s, 56°C for 30 s, 72°C for 60 s and 83°C for 15 s. To produce an amplicon 
standard, a plasmid containing the target regions was constructed and used as the template for PCR. 
Amplified products were run on 2% agarose gel to confirm specificity. Standard curves were generated 
in duplicate via 10-fold dilutions of the quantified PCR amplicon. At least five non-zero standard 
concentrations per assay were included, with standard concentration ranging from 10-9 to 10-2 copies 
µL-1. Melting curve analysis was carried out following each assay during the optimization stage of the 
assay to verify the specificity of the fluorescence signal, however once the assay gave optimal results 
(i.e. R2 ≥ 0.99 and efficiency at 100±5%) melting curve was removed to shorten the assay run time. 
Target copy numbers for each reaction were calculated assuming a product size of 200 bp from the 
standard curves, which in all assays gave optimal correlation coefficient and efficiency. 
 
454 pyrosequencing analyses (Australia.1 and UK). Due to the low concentration of DNA in 

individual samples, 16S rRNA gene amplicons were used as the template DNA. Amplicons were 

produced using three sets of primer (bacteria 16S genes). The amplicons were then cleaned up using 

Wizard® SV Gel and PCR Clean-Up System (Promega) following manufacturer protocol. 454 

Pyrosequencing of 16S rRNA gene was performed on a Roche Junior Titanium Series. A 466-bp 

fragment of 16S rRNA gene was amplified using the modified primers 341F 

(CCTAYGGGRBGCASCAG) and 806R (GGACTACNNGGGTATCTAAT; Caporaso et al. 2010). 

Data analyses, including assessment of main bacterial phyla abundance, were performed using the 

‘Quantitative Insights Into Microbial Ecology’ (QIIME v 1.6.0) software package (Caporaso et al. 
 
2010). Barcode, linker primer and reverse primer sequences were removed from the raw sequence 
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reads using the ‘split_libraries.py’ script while setting minimum sequence length of 200 and minimum 

quality score of 20. The ‘Acacia’ tool was used with default options to remove pyrosequencing noise 

(Bragg et al. 2012). Potential chimeras were removed using the UCHIME chimera detection utility of 

the USEARCH v6.0.307 tool (Edgar et al. 2011). Similar sequences were binned into OTUs using 

‘UCLUST’ method (minimum pairwise identity of 97%). OTU abundance tables were constructed 

using QIIME. Taxonomy was assigned to OTUs using Greengenes database version 13_5 (DeSantis et 

al. 2006; McDonald et al. 2012). Alpha diversity metrics were calculated on the rarefied OTU table. 

We used data rarefied at 4672 sequences for UK and 1366 for Australia.1 sites to ensure even sampling 

depth between samples. 
 

Illumina Miseq analyses (Australia.2). Samples were sequenced using the Illumina MiSeq platform 

and the same primers as used for 454 pyrosequencing sequencing. Low quality regions (Q < 20, 5 bp 

and 76 bp from forward and reverse reads, respectively) were trimmed from the 5’ end of the 

sequences using SEQTK (https://github.com/lh3/seqtk) and the paired ends were joined using FLASH 

(Magoc & Salzberg 2011). Primers were removed from the resulting sequences using SEQTK and a 

further round of quality control was subsequently conducted using trimmomatic (Bolger et al. 2014), 

applying the sliding window: 4:20 option and setting the minimum sequence length at 200. The 

resulting sequences were subsequently screened in MOTHUR (Schloss et al. 2009) to discard 

sequences with ambiguous characters or more than 8 homopolymers. Operational Taxonomic Units 

(OTUs) were built at 97% sequence similarity using UPARSE (Edgar 2013). Singletons were 

discarded, as well as chimeric sequences identified by the UCHIME algorithm using the SILVA gold 

16S rRNA gene reference database (Edgar et al. 2011). OTU abundance tables were constructed by 

running the usearch global command and uc2otutab.py script (http://www.drive5.com/). Taxonomy 

was assigned to OTUs in MOTHUR using the naïve Bayesian classifier (Wang et al. 2007) with a 

minimum bootstrap support of 60% and the Greengenes database version 13_5 (DeSantis et al. 2006; 

McDonald et al. 2012). The OTU abundance table was rarefied at 22118 sequences to ensure even 

sampling depth between samples. Alpha diversity metrics (bacterial richness and Shannon diversity) 

were calculated on the rarefied OTU table using MOTHUR (Schloss et al. 2009). 
 

Terminal restriction fragment length polymorphism analyses (T-RFLP; All samples). Regarding 

T-RFLP analysis, amplicons for terminal restriction fragment analysis were produced using the 

bacterial 16S primer sets: 63F (CAGGCCTAACACATGCAAGTC) and 1087R 

(CTCGTTGCGGGACTTACCCC) primer sets (Lane, 1991). For PCR amplification of the bacteria 

16S rRNA gene, the reaction mix (50 µL) consisted of: 1 x NH4 reaction buffer, 2 mM MgCl2, 400 

µM of each deoxynucleoside triphosphate, and 2.5 U of Biotaq DNA polymerase (all reagents from 
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BIOLINE, UK), 20 µg bovine serum albumin (BSA, Roche Diagnostics, UK) and 5 µL of template 

DNA. Bacterial primers were used at a concentration of 200 nM. PCR reactions were performed with a 

DYAD DNA Engine Peltier thermal cycler (MJ Research, Waltham, MA). The cycle consisted of 5 

min at 95°C, followed by 30 cycles of denaturing at 94°C for 30s, annealing at 55°C for 30s, 

elongation at 72°C for 1 min, and a last cycle of 10 minutes extension period at 72°C. PCR amplicons 

were purified using the Wizard® SV Gel and PCR clean up system (Promega) following the 

manufacturer instructions. Once the samples were purified using the commercial kit, the concentration 

and purity of DNA were measured using a NanoDrop™ 1000 spectrophotometer (Thermo Scientific). 

DNA concentration estimates were then used to normalize the amount of DNA at the restriction 

digestion step. The pools of bacterial DNA were digested at 37°C for 3 hours with the restriction 

enzyme HhaI (Promega) following manufactures guidelines in a 10 µL reaction. DNA fragment 

analysis was carried out on an ABI PRISM® 3130xl Genetic Analyzer (Applied Biosystems). After 

ensuring that the quality of the capillary electrophoresis run was satisfactory, relative abundance tables 

were obtained for statistical analysis that was carried out with GenStat (version 11.1, VSN). Before 

statistical analysis, only terminal fragments in the length range 30-500 base pairs were selected to 

comply with the range of the T-RFLP standard. Baseline was set up based on overall fluorescence 

noise of each run to exclude peaks resulting from technical artifacts. Also, peaks with relative 

abundance below 5% were removed from analysis and remaining peaks were combined when differing 

for less than one base pair. 
 
Broad functions (All microcosms). We first measured a broad ecosystem function (i.e. cumulative 

microbial respiration) in UK, Australia.1 and Australia.2 sites. The day immediately after biomass 

recovery stage (day in which we achieved roughly similar levels of microbial biomass among 

microcosms for a particular location), we transferred 40 mL of water from the original microcosms to 

125 mL serum bottles under sterile conditions. Water samples were incubated at 20 ºC with continuous 

shaking at 70 rpm to ensure oxygenation during 13 and 18 days for the Australian (Australia.1 and 

Australia.2) and UK sites, respectively. Bottles were wrapped with aluminium foil to ensure minimal 

exposure to light. Microbial respiration was measured using an infrared gas analyser (IRGA: EGM-4, 

PP systems for UK and WMA2, PP systems for Australia.1 and Australia.2 sites) in each of these 

serum bottles. Respiration was measured every 2-3 days in each water microcosm for 13 and 18 days 

in the Australian (Australia.1 and Australia.2) and UK sites, respectively. Gaseous samples (10 mL) 

from the headspace of each serum bottle were taken using syringes just before opening the bottle for 

atmospheric re-equilibration at each sampling time. The samples were injected into the IRGA to obtain 

the CO2 concentration. Thus, each measurement represents the CO2 accumulated in each microcosm 
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after 2-3 days. From one time step to the next, we calculated the difference in CO2 concentration 
relative to ambient. Finally, we calculated the total cumulative microbial respiration in our microcosms 
from these individual measurements (expressed as µg CO2). 

 
Specialized functions (Australia.1). We measured two specialized functions (i.e. ability to degrade 
microcystin-LR and Triclosan) in the two Australia.1 freshwater ecosystems. In parallel, we transferred 
40 mL from the original microcosms to 125 mL serum bottles. Then, MC-LR (0.5 mg L-1) and 
Triclosan (10 µg L-1) were added aseptically to the water microcosms. Bottles were wrapped with 
aluminium foil to ensure minimal exposure to light. Samples were incubated at room temperature 
(20ºC) and with continuous shaking at 70 rpm to ensure oxygenation in the dark for 16 days. Serum 
bottle were opened in sterile conditions every two days to allow oxygenation, taking aliquots (500 µL) 
for analysis every 4 days. Regarding MC-LR microcosms, aliquots were frozen, freeze-dried, 
reconstituted in 80% aqueous methanol and centrifuged at 15000 × g then the supernatant analyzed by 
HPLC (Edwards et al. 2008). HPLC eluents were milli-Q water-0.05% trifluoroacetic acid (TFA) 
(Fisher Scientific, Leicestershire, UK) and acetonitrile (Rathburn, Walkesburn, UK) 0.05% TFA, the 
latter being used as the ion pairing agent. The detector resolution was set at 1.2 µm and data were 
acquired in the wavelength range 200-400 µm. Separation was obtained with a Sunfire C18 column 
(2.1 mm i.d. x 150 mm long x 5 µm particle size) supplied by Waters corporation (Wilmslow, UK) 
kept at a temperature of 40 ºC. The instrument used was a Waters 2695 Separation Module with a 
Waters 2996 Photodiode Array Detector (Waters, Elstree, UK) at a flow rate of 0.3 mL min-1. Finally, 
quantification of Triclosan was achieved using a commercial kit (Abraxis kits, PA, USA) that applies 
the principles of enzyme linked immunosorbent assay (ELISA) with quantitation range from 0.05 to 
2.5 ppb. Prior to analysis, samples were diluted with the diluent provided by the manufacturer to meet 
the assay specifications. We then calculated the degradation rate constant k for both MC-LR and 
Triclosan in our microcosms using a first order kinetic curve as per the FOCUS software tool 
(http://focus.jrc.ec.europa.eu/dk/). The FOCUS tool requires the percentage of remaining compound in 
the flask at the different sampling time in order to calculate the degradation rate constant k (proportion 
of toxin degraded day-1) and the half life (DT-50 in days; time required for 50% dissipation of the 
initial concentration). For degradation with first order kinetic, k and DT-50 are linked by the relation 
DT-50 = ln (2) k-1. 

 
Appendix S2. Statistical analyses IV. Evaluating the effects of microbial composition on our 

 
analyses. 

 
First, we obtained information on the relative abundance of main bacteria phyla for the Australia.1, UK 
and Australia.2 sites using next generation sequencing. Moreover, we used a non-metric 
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multidimensional ordination (nMDS) on the matrix of bacterial composition at a OTUs level to obtain 

a metric of community composition at the lowest taxonomic rank. The two-dimensional nMDS 

solution sufficed to represent the data. We conducted nMDS ordinations on previously normalized data 

(Z-score) with the PRIMER v6 statistical package for Windows (PRIMER-E Ltd., Plymouth Marine 

Laboratory, UK), using the Bray-Curtis similarity measure. 
 

We then conducted a classification Random Forests analysis (RF; Breiman, 2001) to assess the 

relative importance of bacterial composition (i.e. relative abundance of main bacterial and phyla or 

main axes from a nMDS) and richness in controlling both broad and specialized functions, and to 

explore whether the microbial richness effect on ecosystem functionality was still important after 

considering main bacterial groups in our analyses. Random Forest is a novel machine-learning 

algorithm that extends standard classification and regression tree (CART) methods by creating a 

collection of classification trees with binary divisions (Wei et al. 2010). Unlike traditional CART 

analyses, the fit of each tree is assessed using randomly selected cases (1/3 of the data), which are 

withheld during its construction (out-of-bag or OOB cases). The importance of each predictor variable 

was determined by evaluating the decrease in prediction accuracy (i.e. increase in the mean square 

error between observations and OOB predictions) when the data for that predictor are randomly 

permuted. This decrease was averaged over all trees to produce the final measure of importance (Wei 

et al. 2010). This accuracy importance measure was computed for each tree and averaged over the 

forest (5000 trees). In RF, the different microbial variables (microbial diversity and percentage of 

abundance of the main groups of microorganisms) were included as predictor of the different functions 

in this study (response variables). We conducted these analyses independently for Australia.1, UK and 

Australia.2 sites because of the different next generation sequencing approaches (454 pyrosequencing 

vs. Illumina MIseq) and rarefaction levels used in this study. In addition, we merged those sites from 

Australia.1/UK (Farmers Creek, Hawkesbury River, Loch Freuchie and Loch Rescobie) and 

Australia.2 (Wheeney Creek, Parramatta River and Richmond Lagoon) to improve our number of 

samples. These analyses were conducted using the randomForest package (Liaw & Wiener, 2002) for 

the R statistical software, version 3.0.2 (http://cran.r-project.org/). The significances of the model and 

the cross-validated R2 were assessed with 5000 permutations of the response variable using the A3 R 

package (Fortmann-Roe, 2013). Similarly, the significance of the importance measures of each 

predictor (here microbial variables) on the response variable (functions) was assessed by using the 

rfPermute package for R (Archer, 2013). 
 

Proteobacteria was the dominant phylum of bacteria in all our sites ranging from 60 to 95%, 
followed by Bacteroidetes and Actinobacteria that ranged from 3 to 25% and from 1 to 9%, 
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respectively. As expected, we found some differences in composition across dilution levels. For 

example, relative abundance of Proteobacteria increased with dilution level in five of our seven sites 

(Spearman ρ > 0.825; P < 0.05), whereas relative abundance of other phyla such as Actinobacteria (5 

of 7; Spearman ρ < -0.732; P = 0.001), Bacteroidetes (4 of 7; Spearman ρ < -0.567; P = 0.022) and 

Gemmatimonadetes (4 of 7; Spearman ρ < -0.552; P = 0.026) proportionally decreased with dilution 

level. To account for these differences and test whether diversity is still important compared to 

composition, we used Random Forest analyses. Our Random Forest analyses (Figs S8-10) indicated 

that, in general, changes in microbial diversity were more important (MC-LR degradation, Triclosan 

degradation and cumulative microbial respiration) for ecosystem functioning as changes in microbial 

community composition (relative abundance of main bacterial phyla and main axes from a nMDS). 
 

Appendix S3. Statistical analyses V. Evaluating the effects of filtering style, CO2 fluxes 
measurements and shifts in microbial composition and diversity during incubation period on our 
analyses.  
Here, we conducted further analyses considering the effects of filtering style, CO2 fluxes 

measurements and shifts in microbial composition and diversity during incubation period on our 

analyses. The main goal of the analyses conducted in this appendix was to explore whether any of 

these important factors could have influenced the reported relationship between microbial diversity and 

ecosystem functioning. Please, notice that because of the differences in terms of experimental design 
and measured variables across microcosm studies, we conducted these analyses for the microcosms for 

which this information was available (indicated in brackets). 
 

Filtering style (Australia.2). Because the water used for microcosm preparation was filtered 
(0.22µm), with the exception of the undiluted samples (1x microcosms in Australia.1 sites), it may be 
argued that filtering can be a bias explaining the differences among microcosms. Thus, for a subset of 
our microcosms (Australia.2) we prepared parallel microcosms with (0.22µm; included in the main 
text) and without filtering (both of them autoclaved). We selected microcosms 1x, 10-1, 10-3, 10-5 and 
10-7 to cover the whole dilution gradient. We measured cumulative respiration in both water-filtered 
and no filtered microcosms in exactly the same way as explained in the Method section in the main 
text. Then, we used Pearson correlations to explore whether similar respiration trends were found in 
both water-filtered and non filtered microcosms. Our results supported that filtered and non filtered 
microcosms provide exactly the same results for the three water systems included here (Wheeny 
Creek: Pearsons’r = 0.98; P = 0.004; Richmond Lagoon: Pearsons’r = 0. 98; P < 0.001; and Parramata 
River: Pearsons’r = 0.99; P < 0.001). 
CO2 fluxes measurements (Milli-Q water). It could be argued that the responses in microbial 
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respiration that we reported here may be the consequence of a non-linear CO2 release from water; and 
thus that CO2 could be taken up by the water and not released into the headspace unless there is a lot of 
CO2 being produced. Such a process could produce the linear or accelerating pattern observed. To 
discard this issue we prepared 18 water microcosms (40 mL of water) in 125mL serum bottles using 
Milli-Q water and injected different CO2 concentrations in water across these microcosms. We then 
incubated these bottles for 10 minutes at 150rpm and measured the concentration of CO2 in the 
headspace with an infrared gas analyser (IRGA PP systems WMA2, Amesbury, MA, USA) as 
explained in the Material and Method section of this manuscript. Results indicate that CO2 release 
follows a linear trend (Fig S10), discarding any bias in our posteriori analyses. 
 
Shift in microbial richness and composition during incubation period (Australia.1 and UK). It 
 
could be argue that both microbial richness and community composition might have changed during 

the incubation period during which ecosystem functions were measured. To address this important 

point, we measured richness and composition at the end of the experiment (after 2 weeks incubation 

period) in two of our experiments (Australia.1 and UK) using 454 sequencing (UK) and T-RLFP 

(Australia.1), respectively. We then conducted further analyses to explore the relationship of microbial 

diversity and composition at the beginning and at the end of the experiment (linear regressions for 

microbial richness and mantel tests using Bray-Curtis similarity for microbial composition) to ensure 

that the reported patterns in richness and composition were maintained for each dilution during these 

two weeks incubation period. Note that in the case of 454 data, the matrix of composition was analysed 

at the OTU level. 
 

In all cases (two sites from Australia.1 and two sites from UK), microbial richness at the 

beginning of the experiment was highly related to those at the end of the experiments (LF: Pearson’s r 

= 0.84, P = 0.010; LR: Pearson’s r = 0.95, P < 0.001; HR: Pearson’s r = 0.75, P = 0.019; FC: Pearson’s 

r = 0.58, P = 0.10). Similarly, microbial composition at the beginning of the experiment was highly 

related to the one at the end of the experiments (LF: Pearson’s r = 0.94, P < 0.001; LR: Pearson’s r = 

0.75, P < 0.001; HR: Pearson’s r = 0.56, P < 0.001; FC: Pearson’s r = 0.26, P = 0.050). Thus, albeit 

differences along time are probable, these results support the main patterns in bacterial richness and 

composition are maintained with time. 
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Figure S1. Bacterial biomass over time at different dilution levels (1, 10-1, 10-2 and 10-4 for 

Australia.1 and 10-1, 10-4 and 10-7 for UK) estimated for: a) Farmers Creek, b) Hawkesbury river, c) 

Loch Freuchie and d) Loch Rescobie. The different labels (1x, 10-1, 10-2, 10-4 and 10-7) represent the 
exponent of each dilution level. Significant differences arising from one-way ANOVA analyses for 
each of the time with time as a fixed factor are as follows: ns = p > 0.05, * p < 0.05 and ** and p < 
0.01. Error bars indicate standard error (n=3). Arrows indicate the beginning of the experiment. 
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Figure S2. Bacterial richness (number of OTUs) estimated via pyrosequencing for the different 

dilution levels (1, 10-1, 10-2 and 10-4 for Australia.1 and 10-1, 10-4 and 10-7 for UK) at the beginning 

of the experiment for: a) Farmers Creek, b) Hawkesbury river, c) Loch Freuchie and d) Loch Rescobie. 

Error bars indicate standard error (n=3). The different labels (1, 10-1, 10-2, 10-4 and 10-7) represent the 

exponent of each dilution level. Lower case letters represent the groups created by ANOVA post-hoc 
tests which compare bacterial richness among dilution levels. 
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Figure S3. Relationship between the dilution to extinction gradient and bacterial diversity for 

 
Australia.2 sites. Solid lines indicate either exponential or linear fits. 
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Figure S4. Cumulative microbial respiration for the different dilution levels (1, 10-1, 10-2 and 10-4 for 

Australia.1 and 10-1, 10-4 and 10-7 for UK) for: a) Farmers Creek, b) Hawkesbury river, c) Loch 

Freuchie and d) Loch Rescobie. The different labels (1, 10-1, 10-2, 10-4 and 10-7) representthe 
exponent of each dilution level. Error bars indicate standard errors (n=3). Lower case letters represent 
the groups created by ANOVA post-hoc tests which compare bacterial richness among dilution levels. 
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Figure S5. Changes in microbial respiration with time during the functionality assay for a) Farmers 

Creek, b) Hawkesbury river, c) Loch Freuchie and d) Loch Rescobie. The different labels (1, 10-1, 10-

2, 10-4 and 10-7) representthe exponent of each dilution level. Error bars indicate standard error s 

(n=3). Differences among dilution treatments and time for microbial respiration of each studied site 
were evaluated using two-way ANOVAs, with dilution treatment as a fixed factor and repeated 
measures of time. 
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Figure S6. Scatter plots illustrating the dependency between cumulative microbial respiration and the 
 
dilution to extinction gradient for Australia.2 sites. 
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Figure S7. Mycrocystin-LR (a) and Triclosan (b) biodegradation rate constant k (proportion of toxin 

degraded day-1) for the different dilution levels (1, 10-1, 10-2 and 10-4 for Australia.1 and 10-1, 10-4 

and 10-7 for UK) for: 1) Farmers Creek and 2) Hawkesbury river. The different labels (1, 10-1, 10-2 

and 10-4) representthe exponent of each dilution level. Error bars indicate standard errors (n=3). Lower 
case letters represent the groups created by ANOVA post-hoc tests which compare bacterial richness 
among dilution levels. 
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Figure S8. nMDS graph exploring the effect of the different dilution levels on bacterial composition at 
 
a OTUs level for Australia.1, UK and Australia.2 sites. 
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Figure S9. Random Forest mean predictor importance (% of increase of mean square error) of 

microbial richness and composition (i.e. relative abundance of main groups of microorganisms or main 

axes from a nMDS including information at a OTUs level) as drivers of cumulative microbial 

respiration in this study for the Australia.1, UK and Australia.2 sites. This accuracy importance 

measure was computed for each tree and averaged over the forest (5000 trees). Significance levels are 

as follows: *P < 0.05 and ** P < 0.01. 
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Figure S10. Random Forest mean predictor importance (% of increase of mean square error) of 

microbial richness and composition (i.e. relative abundance of main groups of microorganisms or main 

axes from a nMDS including information at a OTUs level) as drivers of MC-LR and Triclosan 

degradation in this study for the Australia.1 sites. This accuracy importance measure was computed for 

each tree and averaged over the forest (5000 trees). Significance levels are as follows: *P < 0.05 and 

** P < 0.01. 
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Figure S11. Calibration curve for microcosm CO2 emissions. A known amount of CO2 was added to 
40ml of water in a 125ml serum bottle. Bottles were shaken for 10 min and then the concentration of 

CO2 was measured using an IRGA PP systems WMA2 (Amesbury, MA, USA). 
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Table S1. Correlation (Spearman’s ρ) between bacterial diversity (bacterial richness obtained via 454 

pyrosequencing for Australia.1 and UK and Illumina Miseq for Australia.2) and Shannon and Simpson 

diversity (obtained via 454 pyrosequencing for Australia.1 and UK and Miseq Illumina for 

Australia.2). FC = Farmers Creek; HR = Hawkesbury River; LF = Loch Freuchie; LR = Loch 

Rescobie; WC = Wheeney Creek; PAR = Parramatta River; RLA = Richmond Lagoon. 
 
 

  Shannon   Simpson   
 Site ρ P ρ P 
 FC 0.944  <0.001  0.867  <0.001  
 HR 0.993  <0.001  0.919  <0.001  
          

 LF 0.964  <0.001  1.000  <0.001  
 LR 0.976  <0.001  0.967  <0.001  
          

 WC 0.868  <0.001  0.802  <0.001  
 PAR 0.903  <0.001  0.857  <0.001  
          

 RLA 0.833  <0.001  0.874  <0.001  
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Table S2. Model fit statistics and AICc index for the different functions describing the relationship 

between bacterial species richness based on 454 pyrosequencing / Illumina Miseq (X) and ecosystems 

functions (cumulative microbial respiration, Microcystin-LR and Triclosan; Y). AICc measures the 

relative goodness of fit of a given model; the lower its value, the more likely it is that this model is 

correct. Two models models with ΔAICc > 2 are substantially different. FC = Farmers Creek; HR = 

Hawkesbury River; LF = Loch Freuchie; LR = Loch Rescobie; WC = Wheeney Creek; PAR = 

Parramatta River; RLA = Richmond Lagoon. The power function can fit multiple shapes and may 

represent either functional or no functional redundancy depending on each particular case. 
 

       Selected Model 
 

Function Site Model R2 P AICc DeltaAICc Model(s) group 
 

Microbial respiration FC Logarithmic 1 0.755 <0.001 150.556 8.553   
 

  2 0.879 <0.001 142.024 0.021 ✓ Redundancy 
 

  Michaelis-Menten    
 

         
 

          

  Power3 0.867 <0.001 142.008 0.005 ✓ No redundancy 
 

          

  Linear4 0.879 <0.001 142.003 0.000 ✓ No redundancy 
 

  Exponential5 0.858 <0.001 142.856 0.853 ✓ No redundancy 
 

 HR Logarithmic1 0.570 0.004 151.273 11.223   
 

  Michaelis-Menten2 0.696 <0.001 147.104 7.054   
 

  Power3 0.712 <0.001 146.455 6.405   
 

  Linear4 0.747 <0.001 144.891 4.841   
 

  Exponential5 0.831 <0.001 140.050 0.000 ✓ No redundancy 
 

 LF Logarithmic1 0.510 0.071 87.981 25.952   
 

  Michaelis-Menten2 0.833 0.004 80.437 18.408   
 

  Power3 0.957 <0.001 70.8561 8.827   
 

  Linear4 0.856 0.002 79.381 17.352   
 

  Exponential5 0.988 <0.001 62.029 0.000 ✓ No redundancy 
 

 LR Logarithmic1 0.855 0.001 92.642 18.245   
 

  Michaelis-Menten2 0.985 <0.001 74.397 0.000 ✓ Redundancy 
 

  Power3 0.982 <0.001 75.860 1.463 ✓ Redundancy 
 

  Linear4 0.979 <0.001 76.891 2.494   
 

  Exponential5 0.900 <0.001 89.699 15.302   
 

 WC Logarithmic1 0.618 <0.001 128.676 2.116   
 

  Michaelis-Menten2 0.618 <0.001 128.689 2.129   
 

          

  Power3 0.659 <0.001 126.863 0.303 ✓ Redundancy 
 

          

  Linear4 0.665 <0.001 126.560 0.000 ✓ No redundancy 
 

  Exponential5 0.637 <0.001 127.839 1.279 ✓ No redundancy 
 

 PAR Logarithmic1 0.310 0.025 183.116 5.414   
 

  Michaelis-Menten2 0.374 0.011 181.543 3.841   
 

Power3 0.508 0.001 177.702 0.000 ✓ No redundancy  
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  Linear4 0.389 0.005 180.068 2.366      
  Exponential5 0.449 0.002 178.394 0.692  ✓ No redundancy  
 RLA Logarithmic1  0.333  0.030 148.144 1.159  ✓ Redundancy  
  Michaelis-Menten2 0.263  0.060 149.544 2.559      
  Power3  0.386  0.017 146.985 0.000  ✓ No redundancy   
  Linear4  0.352  0.025 147.738 0.753  ✓ No redundancy   
  Exponential5  0.373  0.020 147.288 0.303  ✓ No redundancy   
MC-LR FC Logarithmic1 0.637 0.002 -73.932 4.959      
  Michaelis-Menten2  0.629  0.002 -73.689 5.202      
  Power3 0.760 <0.001 -78.891 0.000  ✓ No redundancy  
  Linear4 0.749 <0.001 -78.385 0.506  ✓ No redundancy  
  Exponential5 0.719 <0.001 -77.006 1.885  ✓ No redundancy 
 HR Logarithmic1  0.435  0.019 -68.094 2.982      
  Michaelis-Menten2 0.481  0.012 -69.124 1.952  ✓ Redundancy   
  Power3  0.533  0.007 -70.384 0.692  ✓ No redundancy   
  Linear4  0.506  0.009 -69.707 1.369  ✓ No redundancy   
  Exponential5  0.559  0.005 -71.076 0.000  ✓ No redundancy   
Triclosan FC Logarithmic 1 0.479 0.012 -37.780 6.432      
  Michaelis-Menten2  0.622  0.002  -41.624 2.588      
  Power3 0.670 0.001 -43.240 0.972  ✓ No redundancy  
  Linear4 0.641 0.002 -42.241 1.971  ✓ No redundancy  
  Exponential5 0.695 <0.001 -44.212 0.000  ✓ No redundancy 
 HR Logarithmic1  0.686  <0.001 -41.396 24.152      
  Michaelis-Menten2 0.842  <0.001 -49.687 15.861      
  Power3  0.910  <0.001 -56.444 9.104      
  Linear4  0.862  <0.001 -51.258 14.290      
  Exponential5  0.958  <0.001 -65.548 0.000  ✓ No redundancy   
              1 Y = a + b · log(X)  

2   
3 Y = a · Xb

 
4 Y = a + b · X 
5 Y = a · ebX

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table S3. Summary results of the two-way ANCOVA analyses carried out with the ecosystem 

 
functions (cumulative microbial respiration, Microcystin-LR and Triclosan) as dependent variables and 
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the site (FC and HR for Australia and LF and LR for UK) and dilution (1, 10-1, 10-2 and 10-4 for 

Australia and 10-1, 10-4 and 10-7 for UK) as fixed factors. Bacterial biomass was always included as a 
co-variable. df = degrees of freedom. P values below 0.05 are in bold. FC = Farmers Creek; HR = 
Hawkesbury River; LF = Loch Freuchie; LR = Loch Rescobie. 

 
 Location Function Factor df  F P 
 Australia.1 Microbial respiration Biomass 1  0.834  0.376  
   Dilution 3  39.007  <0.001  
   Site 1  0.254  0.621  
   Dilution x Site 3  1.871  0.178  
   Res 15      
 UK  Biomass 1 0.125  0.733  
         

   Dilution 2 36.734  <0.001  
         

   Site 1 4.709  0.062  
         

   Dilution x Site 2 2.531  0.141  
          

   Res 8      
         

 Australia.1 Microcystin-LR Biomass 1  0.043  0.839  
   Dilution 3  12.457  <0.001  
   Site 1  0.033  0.859  
   Dilution x Site 3  0.499  0.688  
   Res 15      
  Triclosan Biomass 1 1.28  0.275  
         

   Dilution 3 16.03  <0.001  
         

   Site 1 0.26  0.615  
         

   Dilution x Site 3 1.24  0.330  
          

   Res 15      
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Table S4. Partial correlation (Pearson’s r) between bacterial richness (obtained via 454 
pyrosequencing for Australia.1 and Uk and Illumina Miseq for Australia.2) and ecosystem functions  
controlling for biomass. FC = Farmers Creek; HR = Hawkesbury River; LF = Loch Freuchie; LR = 
Loch Rescobie; WC = Wheeney Creek; PAR = Parramatta River; RLA = Richmond Lagoon. 

 Function Site Parameter  
  FC Pearson's r 0.897 
   P-value <0.001 
  HR Pearson's r 0.861 

   P-value 0.001 
  LF Pearson's r 0.938 
   P-value 0.006 
  LR Pearson's r 0.994 
   P-value <0.001 
  WC Pearson's r 0.821 
   P-value <0.001 
  PAR Pearson's r 0.694 
   P-value 0.004 
  RLA Pearson's r 0.564 
   P-value 0.045 
 MC-LR FC Pearson's r 0.769 
   P-value 0.006 
  HR Pearson's r 0.667 

   P-value 0.025 
 Triclosan FC Pearson's r 0.644 
   P-value 0.032 
  HR Pearson's r 0.928 
   P-value <0.001 
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