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Abstract  

Platinum gamma-alumina (Pt/γ-Al2O3) impregnated membrane was prepared through the evaporative-

crystallization deposition method for volatile organic compounds (VOCs) conversion to carbon dioxide 

(CO2) and water (H2O). The catalytic oxidation of VOCs (propane, n-butane and propylene), fed alone 

with oxygen were obtained after characterization (SEM-EDXA observation, BET measurement, 

permeability assessment). VOC conversion of 95%, 52% and 82% for propane, n-butane and propylene 

was achieved at 378
0
C, 245

0
C and 420

0
C respectively, by varying the reaction temperature using the 

contactor flow-through catalytic membrane reactor operating in the Knudsen flow regime. The BET 

surface area and the pore diameter of the 3.52 wt% Pt membrane are 0.426m
2
/g and 3.70nm respectively. 

The results are comparable with the literature. 

Keywords— platinum catalysts; flow-through membrane reactor; VOC oxidation; tubular mesoporous 

membrane.  

1. Introduction 

VOC abatement is a great challenge and of paramount importance to the process industry [1]. Some 

common VOCs are listed in Table 1 [2-4]. Besides the more established VOC abatement processes, 

destruction of VOC to form CO2 and H2O (Fig. 1) has been widely studied using membrane reactors 

(MRs) [5-12].  

A membrane reactor is a process which combines reaction and separation in a single unit [13]. They can 

be made from different materials such as metals, ceramics and polymers. Different definitions exist for 

MRs [14]. The International Union of Pure and Applied Chemistry (IUPAC) define a membrane reactor 

as a device for simultaneously carrying out a reaction and membrane-based separation in the same 

physical enclosure [15]. According to a wider definition any reactor in which a chemical reaction is 

performed in presence of a membrane is called membrane reactor [16]. The application of membrane 
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reactors have received a lot of attention over the past five decades and quite a large number of papers 

have been published on the subject [17-21]. The membrane can also be used as an active candidate in a 

chemical conversion for increasing the reaction rate, selectivity and yield [17]. The interest of membrane 

reactors has been demonstrated at the laboratory scale for dehydrogenation, hydrogenation, 

decomposition and oxidation reactions among others [17]. The concept has yet to be used widely for 

industrial applications although some small industrial installations already exist. The drawback for 

commercial development of membrane reactors are the membrane themselves, their support and issues 

such as performance, cost and stability among others which still need to be optimized [17]. 

TABLE 1: Some common VOCs [2-4] 

Number                       VOCs 

1                              Acetaldehyde 

2                              Acetamide                           

3                              Acetone 

4                              Acetonitrile 

5                              Benzene 

6                              Benzyl chloride 

7                              Carbon tetrachloride 

8                              Cyclohexane 

9                              Ethyl ecetate 

10                            Ethylene glycol 

11                            Formaldehyde 

12                            Heptane 

13                            Hexane 

14                            Isopropyl alcohol 

15                            Methyl ethyl ketone 

16                            Methylene chloride 

17                            Naphthalene 

18                            Propylene 

19                            Styrene 

20                            Toluene 

 

 

In recent years, the concept applied in the combination of membranes and reactors is being proposed. The 

concept is classified into three groups namely; extractor, distributor and contactor which are related to the 

role of the membrane in the process [17]. Extractor mode is used to selectively remove the product(s) 

from the reaction mixture. Distributor mode is used to control the addition of reactants to the reaction 

mixture. And lastly, the contactor mode used to intensify the contact between reactants and the catalyst. 
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The active contactor mode membrane reactor involves a forced flow-through membrane reactor, where 

the membrane acts as a diffusion barrier and is catalytically active [17, 18]. This type of membrane is 

used to provide a reaction space where the catalyst is deposited inside the membrane pores. The catalyst-

membrane arrangement leads to high catalytic activity [1, 18]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flow-through catalytic membrane reactor. 

 

The forced flow-through contactor mode has been widely employed by many researchers in the total 

oxidation of VOCs [5, 22-32]. Our aim is to investigate the catalytic oxidation of propane, n-butane and 

propylene as a chemical reaction using membrane catalysts prepared via an evaporative-crystallization 

deposition method. The influence parameters such as platinum (Pt) loading, total gas flow rate, VOC 

concentration, oxygen content and conversion reaction temperature were examined. 

2. Experimental procedure  

2.1 Materials 

Commercially available tubular porous alumina supplied by Ceramiques Techniques et Industrielles (CTI 

SA) France was used in this study. The tubular alumina possesses an internal and outer diameter of 7 and 

10 mm respectively, with a permeable length of 348 mm and a porosity of 0.45. The support was found to 

be defect free after characterization. 

2.2 Membrane preparation 

Hexachloroplatinic acid solution (H2PtCl6) was impregnated into the tubular alumina using dip-coating 

method. The tubular support was first dried at 65 
0
C. The support was dipped for 2 hours in deionised 
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water before Pt introduction. The deposition procedure used was based on evaporation-crystallisation. 

This method was based on the so-called “reservoir” method proposed by Uzio et al. [33]; Iojoiu et al. [34] 

and Kajama et al. [35]. The tube was dipped for 10 hours in a 10g/l Pt/H2PtCl6 precursor solution. The 

sample was then dried at room temperature overnight to favour evaporation from the inner side and 

deposition in the top layer. Platinum membrane was obtained after thermal treatment of the sample under 

flowing hydrogen at 400 
0
C for at least 10 min followed by nitrogen flow for 10 min at 400 

0
C.  

2.3 Characterization of catalytic systems 

Scanning electron microscopy (SEM) (Zeiss EVO LS10) image was obtained in order to determine the 

position of platinum particles on the porous structure of the ceramic material. Samples for crosswise Pt-

impregnated membrane energy diffraction X-ray analysis (EDXA) were also obtained. SEM and EDXA 

results indicated the presence of Pt. The surface area of the bare support and Pt/Al2O3-impregnated 

membrane were measured using Brunauer-Emmett-Teller (BET) method from nitrogen adsorption-

desorption at -196.15 
0
C using automated gas sorption analyzer (Quantachrome instrument version 3.0) 

[35]. All samples were first degassed at 400 
0
C for 2 hours prior to the nitrogen adsorption analysis. Gas 

permeation measurements of hydrogen [35] were performed before and after Pt deposition using a 

conventional setup [35]. The gas was introduced inside the tube and the flow permeating outside the tube 

was measured by a digital flowmeter (Cole-Parmer 32908-71).   

2.4 Catalytic activity measurements 

Oxidation of the VOCs was carried out in a lab-scale tubular reactor in which 3.52 wt% of catalyst was 

loaded and a total flow rate ranging from 166 to 270, 310 to 445 and 187 to 297 (ml/min) for propane, n-

butane and propylene respectively, passed through the catalytic membrane. The catalytic tests were 

carried out using a stainless steel shell housing the membrane tube by means flow-through contactor 

configuration. Leak test was carried out by flowing N2 through the system prior to the experiment. 

Permeate was measured to ensure the system was leak-free. The reactor was then heated up to 

experimental temperature. The temperature in the reactor was regulated by an electro thermal power 

regulator. Temperatures in the tube side were measured using a k-type thermocouples. Pressures were 

also measured by pressure gauges along the reactor. The reactants (VOCs and oxygen) were fed using 

mass flow controllers to the feed side of the membrane reactor. Products (CO2 and H2O) flows from the 

permeate stream through a moisture trap where the moisture trap absorbs the H2O, and the CO2 flows 

through the digital flowmeter to the CO2 analyzer (CT2100-Emissions Laser Sensor). After each 

experiment, the reactor was cooled down to room temperature. Before starting each experiment, N2 gas 
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was purged through the system and hoses to remove residual reaction gases from the system. This was 

used in order to minimize error that any residual gases may cause.  

3. Results and discussion 

3.1 Pt membrane characterization 

SEM micrograph and EDXA of the outer side surface of the membrane after Pt impregnation is depicted 

in Figs. 2 and 3. Pt metallic particles are clearly visible (Fig. 2). From Fig. 3, the Pt wt% is 3.52 wt%. 

 

 

Figure 2: SEM image of the Pt particles outside diameter. 
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Figure 3: EDXA image of the Pt membrane outer surface. 

The Pt/Al2O3 membrane sample was subjected to BET surface area and pore size measurement. The data 

of specific surface area, average pore diameter and pore volume for the samples are presented in Table 2. 

The effect of the Pt weight gain using the reservoir method was studied by measuring the BET surface 

area. The results clearly showed an increase in BET surface area between the support and the Pt-alumina 

membrane, which may be attributed to the formation of nano-dispersed platinum particles. As may be 

expected, there was also a reduction in pore diameter which is possibly due to pore blockage caused by 

the metal platinum particles. Although, no changes in the pore volume were observed.  

TABLE 2: BET surface area, average pore diameter and pore volume measurements  

 

Catalyst 

BET surface 

area (m
2
/g) 

Average pore 

diameter (nm) 

Pore volume 

(cm
3
/g) 

Support 0.364 4.171 0.005 

Pt-alumina 0.426 3.70 0.005 

 

3.2 Catalytic results 

The influence of reaction temperature on the conversion efficiency of the concentration of VOCs in air 

over the catalyst was tested on a tubular reactor and some data was obtained on the activity. This 

influence is illustrated by the rise in conversion efficiency for the VOCs which occurred with increasing 

reaction temperature (Figs. 4-6). The alumina support provides the surface for the metallic phase 

dispersion which has a great influence on VOC oxidation. The conversion efficiencies as a function of 
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reaction temperature was evaluated when converting the VOCs in air at a flow rate ranging from 166 up 

to 445 ml/min.  

Various VOCs such as propane, n-butane and propylene typically found in industrial gaseous emissions 

were selected to examine their activity on 3.52 wt% Pt/Al2O3 catalyst. Fig. 4 depicts the propane 

conversion versus reaction temperature on the Pt membrane. It can be seen that 95.47% propane 

conversion is achieved at a reaction temperature of 378 
0
C. Saracco and Specchia, (2000); Gluhoi, 

Bogdanchikova and Nieuwenhuys, (2006) obtained complete oxidation of propane at almost 450 
0
C with 

5-wt% Pt content. Saracco and Specchia, (2000) in their work, have achieved 95% propane conversion at 

a temperature of nearly 430 
0
C. Therefore, in this study, the temperature at which the catalytic 

combustion takes place for propane is lower to the one obtained from the literature [32] for the same VOC 

on Pt/γ-Al2O3 catalysts. 

 

Figure 4: Propane conversion against reaction temperature. 

 

Fig. 5 depicts the relationship between n-butane conversion versus reaction temperature on the Pt catalyst.  

As can be seen from Fig. 5, 52% n-butane conversion is achieved at a temperature of 245 
0
C on Pt/γ-

Al2O3 catalyst. This result corroborates with the literature [36] using 4.6% Ru/γ-Al2O3 catalyst where they 

achieved 52% n-butane conversion at almost 320 
0
C, were 75 

0
C temperature difference is observed 

between Pt and Ru catalysts. This is an indication that Pt/Al2O3 is the best catalyst for oxidation reactions 

if a similar noble metal loading is used [11].    
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 Figure 5: N-butane conversion against reaction temperature. 

Fig. 6 depicts the relationship between propylene conversion versus reaction temperature on the Pt 

catalyst. From Fig. 6, 82% propylene conversion is achieved at a temperature of 420 
0
C on Pt/Al2O3 

catalyst. Saracco and Specchia, (2000) obtained similar conversion at nearly 300 
0
C with 5-wt% Pt 

content. From Fig. 6, it can be seen that 75% conversion is obtained at 262 
0
C were it takes up to 372 

0
C 

before the next conversion occurred. Therefore, the residence time before the next conversion occurred 

was longer. This could be as a result of exothermic reaction which takes longer to release energy for the 

next conversion to occur.  

 

 

Figure 6: Propylene conversion against reaction temperature. 
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The above results indicates that the temperature at which the oxidation was performed depend on the 

nature of the organic compounds present in the waste gas stream. The catalyst was exposed to several 

activity runs. The same catalyst was then cooled down and the temperature was lowered to ambient 

temperature before starting each experiment. The activity procedure was repeated for up to three to four 

runs for each organic compound and no deactivation of the catalyst occurred for over 100 h of operation.  

Conclusion 

The study of catalytic oxidation of VOCs (propane, n-butane and propylene) as a chemical reaction using 

platinum catalysts was presented. The catalyst was effective to destruct various aliphatic hydrocarbons 

and no effect showed on the activity at high temperature (420 
0
C). These results on VOC combustion also 

showed that the catalytic membrane reactor performed better in the flow-through membrane reactor using 

the simple but effective “reservoir technique”. Finally, this confirms that the Pt membrane reactor is a 

promising alternative for the combustion of VOCs.  
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