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Abstract 

 A novel approach to improve the efficiency of Fenton treatment for sludge reduction through the 

implication of a deflocculating agent citric acid, for the exclusion of extracellular polymeric substances 

(EPS) from waste activated sludge (WAS). Deflocculation was achieved with 0.06 g/g suspended solids 

(SS) of citric acid dosage. Fenton optimization studies using Response Surface Methodology (RSM) 

revealed that 0.5 g/g SS and 0.0055 g/g SS were the optimal dosages of H2O2 and Fe2+. The addition of a 

cation binding agent set the pH value of the sludge to 5 which did not affect the Fenton efficiency. The 

results presented in this study shows the advantage of deffloculating the sludge as SS and volatile 

suspended solids (VSS) reductions were found to be higher in the deflocculated (53% and 63%) than in 

the flocculated sludge (22% and 34%). Kinetic investigation of the treatment showed that the rate of the 

reaction was four times higher in the deflocculated sludge than control. The methodology reported in this 

manuscript was successfully applied to a real case were the deflocculated mediated Fenton process 

reduced the sludge disposal cost from 297.8 US dollar/ton to 61.9 US dollar/ton of sludge. 
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Introduction 

 The disposal of the excess sludge from waste water treatment plants causes major hazards to the 

environment. The most common processes employed in the degradation of the sludge excess, produced in 

water treatment plants, are aerobic and anaerobic. The general mechanism involved minimizes the excess 

sludge produced which helps to decompose the cell wall of microbes into protein and microbial 

degradation (Xun-an Ning et al. 2015a, 2015b; Tokumara et al. 2007). 

Advanced oxidation process (AOP) for contaminants is one of the pioneering techniques for waste 

water treatment. Many researchers (Chamarro et al. 2001; Badawy and Aline 2006; Bidga 1995; Ksibi 

2006) elaborated the methods based on the AOP of contaminants. The Fenton reaction has attracted great 

attention due to its unique advantages such as eco-friendliness and minimization of the excess sludge. 

The utilization of the Fenton’s reagent is the most effective method to treat the recalcitrant compound 

because the hydroxyl radicals formed during the reaction of ferrous sulphate to hydrogen peroxide have 

the tendency to degrade the aromatic and heterocyclic rings (Metcalf and Eddy 2003; Kavitha et al. 2015a). 

Furthermore, Fenton’s reaction has many advantages such as short reaction time compared with other 

advanced oxidation (Ultra violet, Photo catalyst) processes. The most common femton’s reagents are iron 

and H2O2 which present a number of advantages such as: cost effectiveness and non – toxicity, no mass 

transfer limitations due to its homogenous catalytic nature, no energy involved as catalyst and the process 

is easy to run and control (Rathod et al. 2012). 

Fenton’s reagent acts as the catalytic generation of hydroxyl radicals (OH.) coming out because of the 

chain response between ferrous ion and hydrogen peroxide. Equations 1 to 4 detail the oxidation of organic 

compounds (RH) by Fenton’s reagent (Kang and Hwang 2000; Neyens and Baeyens 2003). 

Fe2++ H2O2→Fe3+ + OH- + .OH  (1) 
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Fe2+ + .OH → Fe3+ + OH-   (2) 

RH + .OH  →  H2O + R.   (3) 

R. + Fe3+ → R+ + Fe2+   (4) 

 

The results from previous literature observations reveal that the effective impact of the Fenton reaction 

has been extended as a viable technique on the sewage sludge processing (Xun-an Ning et al. 2014; Carey 

1992; Prousek 1996). Although, the prelude observations of this method creates strong base and opens 

wide opportunities for future research, further improvements of this technology are yet to be explored.  

The organic polymers of Extracellular polymeric substances (EPS) are positioned about the cell 

surface. Flocculant characteristic of activated sludge is due to the presence of EPS, which are accountable 

for the formation of microbial colonies and protection of microbial cells from external factors (Leroy et 

al. 2008; Orgaz et al. 2006).Thus, removal of EPS from sludge matrix can enhance biomass solubilization. 

According to Guo-Ping et al. (2004) EPS divulges that divalent ions like Ca2+ and Mg2+ bridge the majority 

of proteins in EPS. In addition, these divalent ions are also associated with a fraction of carbohydrate and 

nucleic acid. Due to the raise in Ca2+ and Mg2+ concentrations in EPS, the carbohydrate, nucleic acid and 

protein contents are observed to be increasing. Many methods such as microwave conditioning (Peng et 

al. 2013), electrolysis (Yuan et al. 2010) and chemical method (Ye et al. 2012) have been developed for 

the removal of EPS. Citric acid is the most effective cation-binding agent that removes cations such as 

Ca2+ and Mg2+ from sludge flocs which helps the disruption of the floc structure. Due to easily 

biodegradable and environment friendly nature, citric acid is chosen for deflocculation (Wawrzyncyk et 

al. 2007).   There are only limited studies which explore deflocculation prior to treatment methods. 

However deflocculation prior to Fenton treatment has not been documented in literature so far. The present 
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study focuses on investigating the efficiency of deflocculation in the subsequent treatment. Thus in this 

study, a novel and new method is adopted to improve the efficiency of Fenton treatment process through 

deflocculation of sludge.  

  

Methods and Materials   

Sludge sampling 

Municipal waste activated sludge was collected from the sewage treatment plant at Trivandrum 

(India). The collected sludge was stored at 40 C in the laboratory for further studies. Initial characterization 

of the sludge is tabulated in Table 1. 

Optimization of Fenton’s oxidation conditions by RSM 

Fenton’s oxidation conditions were optimized using response surface methodology RSM. A central 

composite design (CCD) made with Design – Expert software, was employed to investigate the 

simultaneous effect of three independent variables: H2O2 dosage, Fe2+ dosage and time. In this study, the 

optimum H2O2 dosage, Fe2+ dosage and time for Fenton’s oxidation were analyzed through COD and SS 

reduction measurement of the sludge. Totally, 20 experimental runs were carried out. Based on the 

preliminary experiments, H2O2 dosage, Fe2+ dosage and time varied in the range of (0.1-0.9 g/g SS), 

(0.001-0.01 g/g SS) and (0-60min) respectively. The target response was COD and SS (mg/L) of sludge. 

To describe the response in the optimum CCD region, three factors for a full 23 factorial design with six 

central points, six axial points (with an axial design of ± 1.63 forming an orthogonal design) and eight 

factorial points with 20 sets of experiments were planned. 

Experimental procedure 
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Sludge deflocculation 

The addition of citric acid with 100 mL of sludge was carried out in nine dosages (0.01 to 0.09 g/g SS 

concentration) using 250 mL conical flasks. The mixtures were constantly agitated in a shaker at 150 rpm 

for thorough mixing and incubated for 3 h (Kavitha et al. 2014a). Furthermore, the mixtures were 

examined for soluble EPS after proper centrifugation (10,000xg for 20 min.). 

Fenton oxidation 

One hundred microliters of the sample was added with 0.06 g/g SS of citric acid in a 250-mL conical 

flask and agitated for 3 h to achieve deflocculation. Subsequently, Fe2+ (0.001 to 0.01 g/g SS) and H2O2 

(0.1 to 0.9 g/g SS) were mixed in appropriate dosages to the parent solution and stirred to ensure a 

homogeneous mixing. COD reduction and SS reduction tests were performed every 5 minutes in order to 

determine the efficiency of Fenton’s reagent which removed the organics during the chemical oxidation 

process. The complete experimental procedure was executed at room temperature and the initial mixed 

liquor suspended solids (MLSS) of the diluted sample was set at 5000 mg/L and pH 5. 

Analytical methods    

Standard measurement methods were followed for COD, MLSS, and Mixed Liquor Volatile 

Suspended Solids (MLVSS) parameters (APHA 2005). Total chemical oxygen demand (TCOD) of the 

sample was estimated by subjecting the homogeneous mixture of the sample to COD analysis, and soluble 

chemical oxygen demand (SCOD) was estimated by filtering the sample through a 0.45-μm filter and 

subjected to COD analysis (Kim et al. 2013). Loosely Bound EPS (LB EPS), tightly bound EPS (TB EPS), 

and DNA were estimated by adopting the methods described by Yu et al. (2009). Enzyme activity 

(protease and amylase) measurements were calculated as per the methodology described by Kavitha et al. 

(2013). 
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Calculation of deflocculation degree: 

Degree of deflocculation was calculated as per the Eq. (5) to explain the extent of deflocculation 

process. 

Degree of deflocculation = Total soluble EPS / Total extractable EPS*100 ----                           (5) 

where 

Total extractable EPS = LB-EPS + TB-EPS 

Energetic analysis and cost calculation:  

 The cost assessment of treatment methods has to be taken into account on a pilot scale treatment 

process. To evaluate the proficiency of the treatment process, energy studies and economic analysis were 

carried out for pilot scale study with the experimental value obtained. For cost assessment, the calculation 

was made for 1 ton of sludge based on our previous study (Kavitha et al. 2015a, 2015b). The energy 

employed for stirring in deflocculation and Fenton treatments was calculated based on the Eq. 6. 

P = NpρnD3           ----------- (6) 

where  

P power required, W 

Np power number for impeller, unit less 

ρ density of sludge, kg/m3 

n   revolutions per second, r/s 

D  diameter of impeller, m 

Results and discussions 

Removal of EPS with citric acid 

     EPS accumulating on the cell surface of sludge biomass provides colloidal stability to the biomass 

(Burgess and Pletschke 2008). The EPS acts as a barrier and diminishes the subsequent biomass 
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disintegration. Therefore, in the present study, EPS was removed with cation-binding agent, citric acid 

before cell disintegration. Citric acid could remove the cations that hold the EPS firmly (Wawrzyncyk et 

al. 2007). DNA was used as a marker to confirm the biomass disintegration. 

Figure 1 depicts the impact of citric acid on LB-EPS, TB-EPS and soluble EPS (SEPS). The amount 

of LB-EPS in the untreated (without citric acid treatment) sludge was observed to be 35, 45, and 10 mg/L, 

respectively.  

After treating the sludge with citric acid, the exocellular polymers existing in TB-EPS and LB-EPS were 

solubilized to aqueous phase (the quantity of LB-EPS got decreased and increased in soluble phase). The 

LB –EPS and the TB-EPS got decreased simultaneously due to the effective disruption of sludge matrix 

through citric acid. The citric acid removes the cations that hold the sludge EPS firmly which 

simultaneously releases the extracellular polymers from the TB-EPS and LB-EPS portion. Similar 

observation was noted by several researchers in their deflocculation studies. For example Vimala et al. 

(2015) observed simultaneous decrement in LB –EPS and the TB-EPS while using the salt of citric acid 

(Sodium citrate) for deflocculation of sludge matrix. Similarly Kavitha et al. (2015b) proposed that usage 

of NaCl in deflocculation leads to simultaneous decrement in LB –EPS and the TB-EPS from the sludge 

matrix. 

 By totaling the LB-EPS and TB-EPS, the amount of removable exopolymers was calculated to be 80 

mg/L. It can be seen from Fig. 1 that a notable decrease in LB-EPS (35 to 15 mg/L) and TB-EPS (45 to 

18 mg/L) amount was observed up to 0.06 g/g SS of citric acid. Concurrently, an increase in soluble EPS 

quantity (50 mg/L) was observed up to the same dosage of citric acid (0.06 g/g SS), indicating the effective 

removal of extractable exopolymers. Hence, the degree of deflocculated was calculated as 80%. Further 

increasing the citric acid dosage to 0.07 g/g SS, a steep increment in soluble EPS was observed (95 mg/L) 
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which went beyond the maximal removable exopolymers (80 mg/L). This interprets the dominance of cell 

disintegration with the release of intracellular polymers into the medium. Based on the above discussion, 

it can be confirmed that the maximal removal of EPS with limited biomass disintegration was attainable 

only up to 0.06 g/g SS of citric acid. Additionally, the amount of soluble EPS and DNA increased with 

increment in dosage of citric acid up to 0.06 g/g SS. At this optimal dosage, their concentrations were 

noted to be 50 mg/L and 10 mg/L, respectively. An abrupt release of DNA (25 mg/L) was observed beyond 

0.06 g/g SS of citric acid which specifies the biomass disintegration. The results of the present study 

confirm that the 0.06 g/g SS of citric acid dosage is observed to be optimal for effective removal of EPS 

with minimal biomass disintegration (Abac et al. 2009).  

Disintegration efficiency of sludge decreases due to the immobilized exoenzymes which establish the 

contact probability with organics solubles. The influence of citric acid dosage on exoenzyme activity 

(protease and amylase) was monitored and illustrated in Fig. 1. The values of protease and amylase 

increased up to a dosage of 0.06 g/g SS of citric acid which was similar to the EPS release. Protease of 

0.042 U/mL and amylase of 0.031 U/mL were observed at 0.06 g/g SS of citric acid dosage. The abrupt 

increases in protease and amylase concentrations were evident beyond the concentration of 0.06 g/g SS 

citric acid which reflected the releases of intercellular enzymes by cell lysis. By this analysis, the citric 

acid concentration of 0.06 g/g SS is considered to be optimal for extra cellular enzyme activity.  

Optimization of Fenton reagent dosage and time  

The central composite design was adopted for the Fenton treatment process. The efficiency of the 

Fenton process is influenced by a variety of parameters such as H2O2 dosage, Fe2+ dosage, and time (Dewil 

et al. 2005; Barbusinski and Filipek 2000). In view of a strong association between the factors H2O2 

dosage, Fe2+ dosage, and time on Fenton oxidation, optimization in terms of COD and SS reduction as 

suitable response factors was carried out. 
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The outcome of the significant analysis of the model and its parameters are shown in Tables S1 & S2 

(Supplementary information) for COD and SS reduction. The coefficients of the quadratic equation that 

are employed to calculate the optimum COD and SS reduction percentage were evaluated by regression 

analysis. The results of ANOVA analysis specifies  that the calculated R2 was found to be 0.9889 and 

0.9826, respectively, which indicated a high degree of correlation between predicted and observed values. 

The adjusted and predicted R2 values were found to be 0.9790, 0.9269 for COD reduction and 0.9669 and 

0.8866 for SS reduction, respectively, which indicated that the predicted R2 was in reasonable agreement 

with the adjusted R2 value.  

The quadratic equation and its coefficients are summarized as follows:  

COD = +5833.28450-7938.04567*H2O2-4.97976E+005*Fe2++39.19674*Time+1.00694E+005* 

H2O2*Fe2+-38.02083*H2O2*Time-8472.22222*Fe2+*Time+6903.96513*H2O2^2+ 

5.62958E+007* Fe2+^2+0.29438* Time^2 

SS = +4226.62553-3628.25123*H2O2-2.33843E+005*Fe2++25.69837*Time+68402.77778*  

H2O2*Fe2+-15.78125*H2O2*Time-5013.88889*Fe2+*Time+3075.45508*H2O2^2+ 

2.82283E+007* Fe2+^2+0.10481* Time^2 

From Tables S1 and S2 (Supplementary information), a very high significant influence on the Fenton 

process in terms of COD and SS reduction was noted, as the F values for the model were 99.82 and 62.63 

with a p value of <0.0001, respectively. The outcomes showed that the H2O2 dosage and its quadratic term 

are most significant, whereas the Fe dosage and its quadratic term are less significant. The lack of fit value 

possesses F values of about 3.12 and 3.05 and p values of about 0.1190 and 0.1229 for COD and SS 

reduction, respectively. From the above, it can be concluded that the lack of fit is not significant and hence 

the model is more significant. As elaborated in the above discussion, the influence of the independent 

factors on the dependent parameters is illustrated in response at surface plots (Figs. 2a-2c and 3a-3c). 
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From Figs. 2a-2c and 3a-3c, the combined influence of Fe dosage, and H2O2 dosage, and contact time on 

COD and SS reduction was assessed. 

Utmost desirability of 100% was achieved at 0.5g/g SS of H2O2 dosage, 0.005 g/g SS of Fe2+ dosage, 

and time of 30 min. From the RSM results, it is specified that the three variables studied have a significant 

effect on Fenton oxidation. There was an enhancement in COD and SS reduction at the central points 

when they were observed with the response of H2O2 dosage, Fe2+ dosage and time as variables. The model 

reveals that the central point recommends the actual process optimization region. The central point 

corresponds to 0.5 g/g SS of H2O2 dosage, 0.005 g/g SS of Fe2+dosage, and time of 30 min. 

Effect of pH  

It has been established that pH 3 is the optimum value for the Fenton reaction (Kavitha et al. 2015a). 

However, this highly acidic condition limits practical applicability of the Fenton process due to the 

demand of compounds to acidify as well as to neutralize the sample before and after the treatment. The 

pH of the raw sludge was measured to be 6.8. During deflocculation, the addition of citric acid changed 

the pH of the sludge to 5. The experiments were conducted over the pH range 3-6 to assess whether it is 

possible to make use of an advantage caused by citric acid. From Fig. 4a and 4b, the maximum amount of 

COD and SS reduction are observed at pH 3 and their respective values were measured to be 73% and 

56%, respectively. At pH 5, the COD and SS reduction percentage were recorded to be 71% and 53%, 

respectively. The variation of pH from 3 to 5 does not cause any significant reduction in the Fenton 

process. To statistically validate the results, a standard t test was performed. The p value for COD and SS 

reduction were calculated to be 0.31 and 0.22, respectively. This shows that the COD and SS reduction 

between the pH range from 3 to 5 is insignificant. Considering the above factor, it has been decided to 

conduct further experiments by keeping the sludge at pH 5. 
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Effect of deflocculation on the Fenton treatment 

Effect of EPS removal on the efficiency of the efficiency of the Fenton treatment is the focus of this 

investigation. In order to correlate the advantage of EPS removal, simultaneous experiments were carried 

out with flocculated (with EPS and Fenton treated) and deflocculated (EPS removed and Fenton treated) 

sludges. Treatment outputs such as COD and SS reduction are considered to be the main parameters for 

the evaluation of the Fenton process. 

Total COD reduction and Suspended solids reduction 

COD and SS reduction results of both flocculated and deflocculated sludges are illustrated in Fig. 5a, 

b, respectively. Oxidative decomposition of microbial cell wall and mineralization caused by OH radicals 

from the Fenton reaction are observed to be the main cause for the drastic increase in the COD reduction 

time. H2O2 concentrations have considerable impact on organic substances; at low dosages, OH radicals 

are highly reactive. On the other hand, at high dosages, H2O2 proceed as a scavenger of the OH radicals. 

Equations 7 and 8 detail the scavenging effect of H2O2 on OH radicals (Feng et al. 2003; Qiu et al. 2013). 

H2O2  +  
.
OH    →   

.
HO2  +  H2O        (7) 

.
HO2  +  

.
OH     →   O2  +  H2O         (8) 

The COD and SS reduction values were observed to be 72 and 53% for the deflocculated sludge, 

whereas in the flocculated sludge, this was found to be 34 and 22%, respectively. The results show that 

suspended solids and COD reduction is enhanced by deflocculation. The presently obtained SS reduction 

value of 53% is comparatively higher than 24% which was reported for a biological mode of sludge 

reduction (Kavitha et al 2013). In addition, the Fenton-mediated sludge reduction happens in relatively 

short retention time (30 min), when compared to other treatment processes (Vimala et al. 2015). As a 

consequence of the factors stated above, our proposed process reduces capital investment as well as 
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making the process more attractive for subsequent scale up. Interestingly, SCOD of the Fenton- treated 

sludge was found to be 100 mg/L and this gives an advantage of dewatering sludge directly. In the Fenton 

process, during the sludge disintegration, the SCOD release was simultaneously followed by its 

mineralization, which is the reason for low SCOD values (Mo et al. 2015). However, compared to other 

sludge disintegration methods such as physical, chemical and biological methods, the SCOD of the sludge 

remains high in the order of 2000 to 5000 mg/L which is due to the focus SCOD release only (Merlin et 

al. 2014; Kavitha et al. 2014b; Bougrier et al. 2005). The presence of high SCOD increases the sludge 

viscosity (Rajesh Banu et al. 2011 ) which in turn increases capillary suction time and it makes dewatering 

of the sludge difficult (Rajesh Banu et al. 2012). Hence, subsequent treatment is essential to reduce this 

SCOD which demands energy and cost. The MLSS value of WAS from the return line of secondary 

clarifier was in the range of 5 to 7g/L (Uan et al., 2010). Since the objective of this study is to reduce the 

sludge from the secondary clarifier, the suitability of the optimized citric acid and Fenton dosage was 

further evaluated by varying the MLSS concentration to 7 g/L. The evaluation did not show any significant 

deviation in the citric acid nor in the Fenton dosage, as it was calculated based on the SS concentration of 

the sludge.  

Total Volatile suspended solids reduction 

The organic fraction of the sludge was estimated in terms of volatile suspended solids (VSS). The 

effectiveness of the sludge management depends on the reduction of organic rather than inorganic portion 

of the sludge (Metcalf and Eddy 2003). Variations on VSS reduction for both flocculated and 

deflocculated sample during the Fenton treatment for different time intervals are expressed in Fig. 6. It is 

evident that the VSS reduction increases linearly during the initial reaction time from 0 to 30 min and 

attains a maximum reduction of about 34.8 and 63% for flocculated and deflocculated sludge, respectively. 

It is also observed that the reduction of VSS was relatively higher in the deflocculated than in the 
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flocculated sludge. The MLVSS-to-MLSS ratio was 0.76 at the beginning of the treatment. After the 

treatment, the value was reduced to 0.28, indicating the sludge degradation of the organic portion by the 

Fenton process. This makes the sludge handling process easy as the management of inorganic compounds 

was comparatively easier than the organic portion of the sludge (Metcalf and Eddy 2003).  

Kinetic assessment of the treatment process 

The influence of the citric acid which mediated the Fenton process on sludge treatment was assessed, 

and the results were evaluated through kinetic analysis. The kinetic analysis was carried out based on the 

literature (Kavitha et al. 2014a). 

Table 2 summarizes the kinetic parameters obtained through the first-order reaction. In the SS 

reduction, the rate constant of the flocculated and deflocculated samples were calculated to be 0.0087 and 

0.0286 per min, respectively, whereas in the COD reduction, the rate constant values were measured to 

be 0.0178 and 0.44 per min for the flocculated and deflocculated samples, respectively. Table 2 shows 

that the k value of the deflocculated sample was observed to be higher when compared to that of the 

flocculated sample. This implies that the reaction rate was found to be faster and rapid in the deflocculated 

samples due to easier accessibility of substrates for the Fenton reaction. The goodness of fit of both the 

sludges was between 0.92 and 0.99, indicating a better fit between the model and experiment. 

 

 

Economic analysis 

Field applicability of any treatment method depends upon its economic viability. Table 3 presents data on 

economic analysis of the present study. In comparison to other treatment methods used for sludge 
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reduction (ozonation, ultrasonication and microwave irradiation), the Fenton treatment is advantageous as 

it demands low capital investment and easy operation. The estimation cost for the present study was based 

on operational cost associated with the Fenton treatment. The operational cost calculation takes into 

account energy and consumable cost associated with the treatment. The energy required for agitating 1 

ton of the sludge during the EPS removal and the Fenton process was calculated and tabulated in Table 3. 

The energy cost to dewater the sludge in filter press was calculated to be 77.5 kWh (Yang et al. 2011). 

The total cost in US dollars were calculated to be 18.4, 20 and 17.8 to meet out the energy demand for the 

flocculated sludge, deflocculated sludge and control, respectively. Similarly, the cost required for 

consumables was calculated and tabulated. In Table 3, from the total cost, the cost benefit achieved by 

reducing SS to be disposed was subtracted (Kavitha et al. 2015a, 2015b). Table 3 shows the net cost of -

61.9 and -226.4USD/ton that was achieved for the deflocculated sludge and flocculated sludge, 

respectively. It can be concluded that the Fenton process was observed to be an economically viable 

method for the sludge reduction. 

 

Conclusions 

The sludge was successfully deflocculated with a minimum biomass damage of 0.06 g/g SS for a citric 

acid dosage. The pH correction is not warranted in this study as there is no statistically significant 

difference between the Fenton process efficiency at its optimum pH 3 and the deflocculated sludge 

medium at pH 5. The high efficiency of our proposed methodology can be measured by comparing the 

outcome of the disintegration process in which the deflocculated sludge has the maximum COD and SS 

reduction percentage of 72 and 53 % compared to 34 and 22 % for the flocculated sludge. The high degree 

of VSS profile of the Fenton treatment indicates the degradation of the organics. The reduction in the 
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organic portion of sludge makes it easy to undergo subsequent management process such as dewatering 

and disposal. In terms of the cost efficiency, it can be concluded that the process is economically viable 

since a net cost of -61.9 and -226.4 USD/ton was achieved for the deflocculated and flocculated sludges.  
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Figure Caption 

Fig 1. Effect of citric acid on release of EPS fraction – slime LB and TB , DNA and  enzyme activity  

during deflocculation 

Fig 2a. Response surface plot showing optimum COD reduction as a function of Fe2+and H2O2 dosage 

Fig 2b. Response surface plot showing optimum COD reduction as a function of Time and Fe2+ dosage 

Fig 2c. Response surface plot showing optimum COD reduction as a function of Time and H2O2 dosage 

Fig 3a. Response surface plot showing optimum SS reduction as a function of Fe2+ and H2O2 dosage 

Fig 3b. Response surface plot showing optimum SS reduction as a function of Time and H2O2 dosage 

Fig 3c. Response surface plot showing optimum SS reduction as a function of Time and Fe2+ dosage 

Fig 4a. Effect of pH on COD reduction 

Fig 4b. Effect of pH on SS reduction 

Fig 5a. Effect of Fenton’s reaction on COD reduction 

Fig 5b. Effect of Fenton’s reaction on SS reduction 

Fig 6. Effect of Fenton’s reaction on VSS reduction 
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Table 1: Initial characterization of municipal sludge 

S.No Description  Value (Unit) 
1 pH 6.8 
2 Total Chemical Oxygen Demand (TCOD) 8000±250(mg/L) 
3 Soluble Chemical Oxygen Demand (SCOD) 100±10(mg/L) 
4 Total solids 7300±500(mg/L)   
5 Total suspended solids 5000±200(mg/L) 
6 Dissolved solids 2300±100(mg/L) 
7 VSS 4400±100(mg/L) 
8 MLSS/MLVSS ratio 0.76 

 

 

 

Table S1: Analysis of variance for a quadratic response surface model with respect to COD reduction 

Source 
Sum of 
squares 

df 
Mean 
square 

F value 
P-Value 
Prob>F 

Remarks 

Model 5.405E+007 9 6.006E+006 99.22 < 0.0001 Significant 
A-H2O2 5.741E+006 1 5.741E+006 94.85 < 0.0001 
B-Fe2+ 1.884E+006 1 1.884E+006 31.13 0.0002 
C-Time 9.406E+005 1 9.406E+005 15.54 0.0028 

AB 2.628E+005 1 2.628E+005 4.34 0.0638 
AC 1.665E+006 1 1.665E+006 27.51 0.0004 
BC 1.047E+007 1 1.047E+007 172.90 < 0.0001 
A^2 1.758E+007 1 1.758E+007 290.52 < 0.0001 
B^2 1.873E+007 1 1.873E+007 309.42 < 0.0001 
C^2 1.012E+006 1 1.012E+006 16.71 0.0022 

Residual 6.053E+005 10 60528.59 - -  

Lack of Fit 4.582E+005 5 91640.51 3.12 0.1190 
Not 
significant 

Pure Error 1.471E+005 5 29416.67 - -  
Correlation 

Total 
5.466E+007 19  - - 
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Table S2: Analysis of variance for a quadratic response surface model with respect to SS reduction 

Source 
Sum of 
squares 

df 
Mean 
square 

F value 
P-Value 
Prob>F 

Remarks 

Model 1.305E+007 9 1.449E+006 62.63 < 0.0001 Significant 
A-H2O2 9.233E+005 1 9.233E+005 39.90 < 0.0001 
B-Fe2+ 4.325E+005 1 4.325E+005 18.69 0.0015 
C-Time 1.489E+005 1 1.489E+005 6.43 0.0295 

AB 1.213E+005 1 1.213E+005 5.24 0.0451 
AC 2.869E+005 1 2.869E+005 12.40 0.0055 
BC 3.665E+006 1 3.665E+006 158.38 < 0.0001 
A^2 3.489E+006 1 3.489E+006 150.79 < 0.0001 
B^2 4.709E+006 1 4.709E+006 203.48 < 0.0001 
C^2 1.282E+005 1 1.282E+005 5.54 0.0404 

Residual 2.314E+005 10 23142.01    

Lack of Fit 1.743E+005 5 34867.35 3.05 0.1229 
Not 
significant 

Pure Error 57083.33 5 11416.67    
Correlation 

Total 
1.328E+007 19    

 

 
 

 

 

Table 2: Kinetic investigation of SS and COD reduction enhanced by deflocculated Fenton process 

Sample Dynamic equation Rate constant k(h-1) Coefficient R2 
SS reduction COD reduction SS COD SS COD 

Flocculated Y=-0.0087X-
0.019 

Y=-0.0178X-
0.0638 

0.008 0.0178 0.969 0.93 

Deflocculated Y=-0.0286X-
0.0038 

Y=-0.044X-
0.0733 

0.028 0.044   0.995 0.973 

 
SS – Suspended Solids; VSS-Volatile suspended solids; COD-Chemical oxygen demand; EPS-

Extracellular polymeric substances; Flocculated-with EPS Fenton treated; Deflocculated-without EPS 

Fenton treated  
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Table 3: Economic analysis (per tonne SS of sludge) 

S.No. Content Flocculated Deflocculated Control Unit 
1 Energy applied  

a. for EPS removal 
b. for Fenton treatment 
c. for sludge dewatering 

 
- 

2.41 
77.5 

 
7.23 
2.41 
77.5 

 
- 
- 

77.5 

kWh 

2 Energy cost  
(S.No.1a+1b+1c*0.23 
USD/kWh) 

18.4 20.0 17.8 USD 

3 Consumable cost 

a. citric acid 
b. H2O2 
c. Fe2+ 
d. H2SO4 
e. Alkali(for sludge 

neutralization) 

 

- 

50.4 

0.055 

0.5 

0.3 

 

 

8.16 

50.4 

0.055 

- 

0.3 

 

 USD 

4 Consumable cost 
(3a+3b+3c+3d+3e) 

51.2 58.9 - USD 

5 Decreased in SS to be 
disposed 

220 530 - kg 

6 SS to be disposed 780 470 1000 kg 

7 Sludge disposal cost 

(S.No. 6*0.28 USD/kg SS) 
218.4 131.4 280 USD 

8 Reduced sludge disposal cost 

(S.No.5*0.28USD/kg SS) 
61.6 148.4 - USD 

9 Net cost (8-(2+4+7)) -226.4 -61.9 -297.8 USD 
 
(Source: Metcalf and Eddy (2003)) 
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Fig. 1 
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Fig. 2a 
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Fig. 2b  
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Fig. 2c 
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Fig. 3a  

0.001  
0.002  

0.003  
0.004  

0.005  
0.006  

0.007  
0.008  

0.009  
0.01  

  0.1

  0.3

  0.5

  0.7

  0.9

2500  

3000  

3500  

4000  

4500  

5000  

5500  

S
S

 (
m

g/
L)

A: H2O2 (g/g SS)

B: Fe2+ (g/g SS)

2800.922800.92



29 
 

 

 

 

 

 

Fig. 3b  
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Fig. 3c 
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Fig. 4a 
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Fig 4b 
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Fig. 5a 
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Fig. 5b 
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Fig. 6 
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