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Abstract

SmartHouse technology offers devices that help the elderly and people with dis-
abilities to live independently in their homes. This paper presents our experiences
from a pilot project applying case-based reasoning techniques to match the needs
of the elderly and those with disabilities to SmartHouse technology. The Smart-

House problem is decomposed into sub-tasks, and generalised concepts added for
each sub-task. This decomposition and generalisation enables multiple case reuse
employing a standard decision tree index based iterative retrieval strategy. Docu-
mented real situations are used to create a small case base. An initial prototype is
evaluated empirically using leave-one-out testing, and separately with the domain
expert on newly created test cases. Results show that system generated solutions
to be comparable to those of a domain expert. Importantly, the iterative retrieval
strategy employing multiple indices generated solutions that were significantly bet-
ter compared to a one-shot retrieval without indices.
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1 Introduction

Smart House Technology has been around for about twenty years and aims
to encourage independent living for the elderly and disabled. This technology
may consist of something as simple as a telephone amplifying unit for those
with hearing impairments, to a field bus architecture system, where large
numbers of sensors and actuators each with their own microprocessors are
connected together, for people with severe mobility problems.

Occupational Therapists usually match assistive technology to people’s needs
by observing people engaged in daily tasks. If patients have difficulty doing
these tasks then a technological solution may be suggested, often based on
similar past patients. In recent years the range of technology has increased
considerably. This additionally makes it harder for occupational therapists
to keep abreast with SmartHouse devices, thereby creating a real need for
automated tools to help match SmartHouse technology to people’s needs (1).

A case-based reasoning (CBR) system solves new problems by reusing solu-
tions from previously correctly solved similar problems (2). These past expe-
riences consisting of problem descriptions and associated solutions are called
cases and are stored in a case base. For the SmartHouse domain a case con-
sists of a person’s disability needs together with the SmartHouse devices
that can enable this person to live independently. Case retrieval is the first
stage of the CBR cycle in Figure 1. Here given a description of the new prob-
lem (a person’s disability needs) a similar case or a subset of similar cases most
useful for solving the new problem are retrieved from the case-base. Depend-
ing on the differences between the current problem and the retrieved cases
some adaptation of the retrieved cases might be necessary before the retrieved
solution can be reused. Subsequent stages include verification of the proposed
solution and if necessary retention of the new problem and the modified solu-
tion with the aim of reusing it in the future.

Retrieval of relevant cases is crucial for the successful operation of any CBR
system. This is particularly true when adaptation knowledge is difficult to
acquire (3). This paper tackles two important issues for a retrieval only system
in the context of the SmartHouse domain:

• Case representation enabling storage of cases in the case base according to
a predefined structure; and

• An iterative retrieval strategy primarily comprising an indexing scheme to
restrict the similarity matching to just a selection of cases, but also facili-
tating multiple case reuse.

Typically case representation has a flat structure consisting of feature-value
pairs. Additionally the SmartHouse case representation captures the inher-
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Fig. 1. SmartHouse task and the CBR cycle (2).

ent task decomposition within this domain. The similarity measure used for
case retrieval can be a straightforward distance function, but it may also in-
volve some knowledge intensive matching of cases (4). Retrieval knowledge
typically comprises weights reflecting importance of features and relevance of
features for index creation. Given the relatively small size of the SmartHouse

case base, here we were able to acquire this knowledge from the domain expert.

In the rest of this paper we will describe how a prototype was built to match
people’s needs to SmartHouse technology. Section 2 discusses case repre-
sentation issues, and an iterative retrieval strategy is presented in Section 3.
Evaluation results are presented in Section 4 followed by related work in Sec-
tion 5, and conclusions in Section 6.

2 Case Representation

The EU funded Custodian project created a SmartHouse technology sim-
ulation tool to illustrate how different SmartHouse devices function in the
house (5). More importantly for the work presented in this paper eleven real
scenarios consisting of people needs and matching technology solutions were
acquired during this project.

The first task for developing our prototype CBR system was to manually

translate the documented textual cases into a more structured representation
of feature-value pairs. This involved identifying relevant features that belonged
to the problem space and the solution space; and establishing the data labels
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with which to instantiate these features.

Consider the SmartHouse textual case example in Figure 2, from this we can
extract the following to describe the problem: wheel-chair-indoor Yes, wheel-
chair-outdoor unknown, house-type ground-floor-flat, care-staff Yes, able-into-
bath with-help; and the solution described by: electric-locks-external-door Yes,
intercom-front-door video-hands-free. Converting the textual descriptions into
problem and solution features require establishing quantifiable values with
which to instantiate these nominal features. Some features are binary valued
(e.g. Yes/No) but many are multi-valued (e.g. the feature able-into-bath can
have values Yes, No or with-help). Missing values was another common prob-
lem because these cases were documented for an entirely different purpose
from that of developing a CBR tool. Although our domain expert could have
made informed guesses in some situations, often it was left as unknown.

... Ms M is an indoor wheelchair user with cerebral palsy. She 

is a tenant in her own ground-floor flat, and whilst living 


moderately independently, did have support from care workers 


to assist her in getting dressed and bathed... She required an 


intercom that was both hands free and with video so that she 


could operate it from her wheel chair ... also electrically 


operated locks were fitted on her external door ...


Fig. 2. Textual SmartHouse case.

A total of 108 features were identified of which 64 describe the problem in
terms of the person, their home, abilities and needs; and a further 44 features
describe the solution; i.e. SmartHouse devices. With increased numbers of
features and values it made sense to group these features particularly the solu-
tion features, according to their context, forming 10 problem space groups and
14 solution space groups consisting of SmartHouse devices (see Figure 3).
The number within brackets denotes the number of features in each group
and with solution space groups these features directly correspond to number
of devices, e.g. 5 MovementRelated devices. We will refer to solution space
groups as device groups and for consistency use the same terminology for the
3 singleton groups (RemoteAlarm, FBArchitecture and PoweredWindows).
Grouping devices is generally a straightforward task for the domain expert
and in difficult instances a pragmatic decision was made, e.g. would it make
a difference if devices associated with Doors is split into exterior and inte-
rior doors. Importantly this grouping decomposes the task thereby enabling
retrieval to concentrate on each sub-task separately.
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Fig. 3. SmartHouse case representation.

3 Retrieval Strategy

Several commercial CBR tools (e.g. ReCall, ReMind and Kate) use de-
cision trees (DTs) to index the case base in order to improve retrieval effi-
ciency (6). Although efficiency is a primary reason for using an index, a DT
index formed using C4.5’s information gain ratio heuristic (7) additionally pro-
vides a useful means to explain the underlying reasoning behind the retrieval;
a desirable feature for CBR applied to the SmartHouse domain. Essentially
the index is created for a selected concept (or class) and acts as a filter enabling
the CBR system to locate the relevant subset of cases for a given problem (see
Figure 4). The most similar k cases to the current problem are then identified
from this subset by applying the k Nearest Neighbour algorithm (k-NN).

Let us consider a retrieval sub-task within the SmartHouse domain. Figure 5
illustrates a case base index created by inducing a C4.5 DT for the sub-task
PoweredWindows (i.e. powered windows required or not). Given a new problem
the tree is traversed and depending on the person’s ability to open internal
doors the relevant leaf node and its cases are retrieved. These cases form the
neighbourhood and the majority solution obtained using k-NN instantiates
the PoweredWindows part of the solution for the new problem. Notice that
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Fig. 4. Multiple case retrieval.

the DT is built with the aim of partitioning cases according to a specified
concept; here it is PoweredWindows with possible instantiations values: Yes or
No. Generally the partitioning tends to result in leaf-nodes containing cases
with similar instantiations for PoweredWindows. However, with the second
leaf node in Figure 5 we have 2 cases that relate to persons who are unable to
open doors, yet one has powered windows, while the other does not, because
existing sash windows cannot be powered. Therefore if cases were retrieved
from this leaf node and the new problem also consisted of a house with sash
windows then applying k-NN would result in the PoweredWindows part of the
solution to be instantiated with value, No.

PoweredWindows: 15 cases


N (15 cases, 100%) 

OpenDoorInside = Able  


InfoGain: 0.1711

PoweredWindows: 2 cases


Y (1 case, 50%),  N (1 ex, 50%)  

OpenDoorInside = Unable  


InfoGain: 0.1711

PoweredWindows: 6 cases


N (6 ex, 100%)

OpenDoorInside = AbleWithDifficulty  


InfoGain: 0.1711

Cases:23

PoweredWindows:


Y (1 case),  


N (22 cases)

Fig. 5. Index aided retrieval for the PoweredWindows sub-task.

3.1 Using Multiple Indices for Iterative Retrieval

In previous work (8), we have shown how multiple DTs can be employed
to solve design problems, where each tree concentrates on retrieving cases
pertinent to solve a different part of a design task. Essentially this involves
an iterative retrieval strategy whereby at a given iteration a different sub-task
becomes the focus for case retrieval. The main advantage of this approach is
that it enables the CBR system to use different parts of different cases in the
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case base to solve different sub-tasks for the new problem.

A similar approach can be adopted for the SmartHouse domain, where iden-
tifying a suitable SmartHouse device is a sub-task and is solved in conjunc-
tion with a separate DT index given the new person’s description. Traversal of
each tree identifies a different subset of cases to solve each sub-task. This is the
approach we use for RemoteAlarms, PoweredWindows and FBArchitecture re-
quiring 3 DT indices. However if we were to insist on separate indices for the
remaining devices we would need a further 41 DTs, which from an efficiency
point of view does not make sense. Instead we exploit the fact that these 41 de-
vices are already grouped in 11 device groups. We create a generalised concept
feature, for each group. This means we induce 11 DTs (instead of 41), in ad-
dition to the 3 DTs for RemoteAlarm, PoweredWindows and FBArchitecture.

3.2 Creating Generalised Concepts

The new generalised concept feature that we wish to create for a given group
should be an abstraction or summarisation of the devices that are members
of that device group. We will now look at how a value can be assigned to
such a feature created for a device group with the aid of an example. Con-
sider two cases from the case base and their solution instantiations for just the
CookerRelated device group (see Table 1). With CaseX we have a solution
involving a timer-based automatic cooker shut-off, together with a detector
that can detect gas, heat or smoke, and three alarms; while CaseY does not
require detectors or alarms. So how do we establish a value for the new gener-
alised concept feature, Fcooker? The simplest approach is to instantiate it with
value Needed, if at least one of the cooker devices are needed, otherwise with
value Not-Needed. Accordingly, in our example, Fcooker, is instantiated with
Needed for CaseX and Not-Needed for CaseY .

In this manner all cases in the case base are modified by adding a gener-
alised concept feature, per device group 1 . We can then induce a DT for each
device group with the new feature selected as the concept. For example, to
establish suitable devices related with cookers for a given new problem, the
CookerRelated DT (induced with Fcooker as the concept) is traversed to iden-
tify the leaf node cases, and then k-NN is applied to access the k nearest
neighbours. The majority solutions for cooker detectors and alarms from these
k cases are reused and instantiate the cooker related solution part of the new
problem.

1 Note this generalisation is not required for the 3 singleton device groups.
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Table 1
Case values for the CookerRelated device group.

CookerRelated Instantiations For

Group CaseX CaseY

auto-cooker-shut-off {gas, heat, timer} No

detectors-over-cooker {gas, heat, smoke} unknown

alarm-for-carers No No

cooker-isolation-alarm No No

fire-alarm Yes No

gas-alarm Yes No

Fcooker Needed Not-Needed

4 Evaluation

In our experiments we implemented the SmartHouse prototype using the
ReCall CBR shell together with Tcl script to drive the retrieval. Multiple

is the iterative retrieval strategy described in Section 3, where multiple indices
enable reuse of multiple cases to solve different sub-tasks. Traversal of each
index identifies the relevant subset of cases to which 1-NN is applied, and
the solution part from the nearest neighbour corresponding to the sub-task is
reused. Multiple is compared with Single, where the entire solution of the
best match case is reused. Unlike Multiple, Single does not use indices,
instead applies 1-NN to the entire case base, once.

Eleven real-cases were supplemented with another twelve cases invented by
our domain expert, forming a case base of 23 cases. Evaluation was carried
out in two ways:

Leave-One-Out Testing: 10 cases from the real cases were each used in turn
as the probe to the CBR system containing a case base of the remaining 22
cases. This provides results from 10 different leave-one-out test runs; and

User Testing: Comparison of the system’s and expert’s solutions for 3 new
problem scenarios supplied by the expert.

Ascertaining the quality of a generated system solution involves establishing
its similarity to the expert’s solution. When the solution contains nominal
values it is typical to employ the standard overlap similarity metric for this
purpose (9). However this metric can be misleading when the distribution of
nominal values is highly skewed. Although there are 44 devices, a Smart-

House solution would very rarely require an instantiation consisting of all
devices. Instead it is more likely for a solution to require fewer than half of

8



these devices.

Consider the example in Table 2 listing the system’s and expert’s solution for
the Doors device group. Of the 8 listed devices we have an exact match in 5,
of which 4 are True Negatives (TN) and only one is a True Positive (TP). A
False Negative (FN) is a system fault caused when it fails to propose a device,
as with electric-locks-external-doors. In contrast with contacts-on-external-
doors we have the system incorrectly proposing a device, referred to as a False
Positive (FP). A similar situation arises with intercom-to-front-door, but here
the difference is that, although the system has proposed a device, it is not the
right one (Audio instead of Video-HF). We will consider such a system failure
also as a FP although it is actually referred to as a failing positive (10).

Table 2
Comparing system and expert solutions.

Doors Group Solution Categories

System Expert TP TN FP FN

alarm-when-open No No 0 1 0 0

contacts-on-external-doors Yes No 0 0 1 0

contacts-on-bedroom-door No No 0 1 0 0

contacts-on-bathroom-door No No 0 1 0 0

contacts-on-kitchen-door No No 0 1 0 0

intercom-to-front-door Audio Video-HF 0 0 1 0

powered-external-doors Yes Yes 1 0 0 0

electric-locks-external-doors No Yes 0 0 0 1

The overlap similarity metric (Sim), is the number of matching devices divided
by all the devices; (TP + TN)/(TP + TN + FP + FN). In the Table 2
example, this overlap is 0.625. Here the influence of the lesser important TNs
can suggest an overly optimistic similarity between solutions. Therefore, we
also employ traditional Information Retrieval measures (11) in the context of
SmartHouse devices:

• Precision (P) is the proportion of proposed devices that are actually correct
P = TP/(TP + FP ); and

• Recall (R) is the proportion of required devices that are correctly proposed
R = TP/(TP + FN).

Generally high recall is desirable because lower FN and higher TP is important
for the SmartHouse domain. The combined effect of these two measures is
commonly measured by the F-measure (F) calculated as their harmonic mean;
2PR/(P +R). By applying this to the Doors example in Table 2 we have a far
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more realistic similarity based comparison of system and expert solutions; P
is 0.33, R is 0.5 and F is 0.4. Significance is reported from a one-sided paired
Wilcoxon signed rank test.

4.1 Leave-One-Out Testing

The average results from 10 leave-one-out test runs appear in Table 3. The
first column lists the 14 device groups and the adjacent column indicates the
number of devices in each group. For comparison purposes both the Sim and
F values are provided for Single and Multiple.

Table 3
Averaged results from 10 leave-one-out test runs.

Device No Of Single Multiple

group Devices Sim F Sim F

Bathroom 2 0.85 0 0.85 0

Controllers 2 1 1 0.9 0.67

Cooker Related 6 0.83 0 0.83 0

Doors 8 0.85 0.57 0.89 0.71

Hearing Aids 3 0.93 0.8 1 1

Movement Related 5 0.86 0.46 0.86 0.46

Phone Related 3 0.73 0.42 0.8 0.7

Remote Alarms 1 0.9 0.8 0.9 0.67

Security 2 0.85 0 1 1

Taps 2 0.9 0 1 1

FB Architecture 1 0.9 0 1 1

Visual Aids 3 0.9 0 0.9 0

Water Related 5 0.98 0 1 1

Windows 1 0.6 0.33 0.8 0.67

Overall Average 0.86 0.31 0.91 0.63

Multiple shows a significant improvement in 8 of the 14 groups over Sin-

gle; with both F (p=0.016) and Sim (p=0.029) measures. The domain expert
indicated that some interesting valid alternative solutions were proposed by
Multiple. For instance in connection with WaterRelated for a person with
cognitive impairments, learning problems and challenging behaviour, Multi-

ple suggested the need for flood detectors in the bathroom while the expert
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solution contained special push to operate taps. With another problem, Mul-

tiple suggested the use of a pendant activated community alarm plinth as
one of the 3 devices grouped under Phone. Although the expert solution also
had the community alarm plinth the need for a pendant was documented as
a future need.

With Controllers, Multiple incorrectly suggests the use of environment
and lighting controllers for a person that only has some mobility problems
requiring the use of a wheelchair indoors, but otherwise having good manual
dexterity and therefore able to operate switches. However Multiple’s sug-
gestion of an environmental controller is not a totally wrong suggestion. Yet
if this overly expensive solution had been implemented it would have gradu-
ally reduced the person’s range of movements which would be both physically
and psychologically detrimental to the person. This highlights the fact that
system generated solutions should not be taken on board as the all encompass-
ing definitive solution, and instead should be treated as a guide that localises
search to potential solution areas. The over estimation of similarity with the
overlap measure (Sim) is clearly seen with 7 of the device groups; Single has
a Sim measure > 0.85 (because there are many TNs) but the F measure is 0
(because TP is 0).

4.2 User Testing

Three new problem scenarios authored by the expert were used as probes to
the CBR system. Test cases A and B were created by making minor variations
based on existing cases while test case C was created from scratch, hence
a more challenging problem. Importantly these test cases were generated to
portray realistic problem scenarios with different levels of similarity to existing
cases in the case base, and also with different levels of problem difficulty.

A comparison of the expert’s and Multiple’s solutions for test cases A and
B, appear in table 4. It is clear that these 2 test cases have a relatively low level
of difficulty; they each require only 3 and 5 devices in the solution. Therefore
it is not surprising that Multiple’s solution can be obtained by Single’s
one-shot retrieval. We further investigated solution quality by increasing the
nearest neighbours of Multiple from 1 to 3. However due to the small case
base size this increase actually had a detrimental affect on the solution.

Generally the domain expert felt that there was sufficient overlap between the
actual and system solutions for test cases A and B. With Controllers for case
A the expert solution suggests a lighting controller while the system solution
fails to suggest this device. The reason for this is that the DT for Controllers
selected, ambulant mobility, as a discriminatory feature to partition the case
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Table 4
Comparison of Multiple and expert solutions.

Device Test Case A Test Case B

group TP TN FP FN TP TN FP FN

Bathroom 0 2 0 0 0 2 0 0

Controllers 0 1 0 1 0 2 0 0

Cooker Related 0 6 0 0 0 6 0 0

Doors 0 8 0 0 1 5 2 0

Hearing Aids 0 3 0 0 0 3 0 0

Movement Related 0 5 0 0 0 5 0 0

Phone Related 1 2 0 0 1 2 0 0

Remote Alarms 0 1 0 0 0 1 0 0

Security 1 1 0 0 0 2 0 0

Taps 0 2 0 0 0 2 0 0

FB Architecture 0 1 0 0 0 1 0 0

Visual Aids 0 3 0 0 0 3 0 0

Water Related 0 5 0 0 3 2 0 0

Windows 0 1 0 0 0 1 0 0

Total 2 41 0 1 5 37 2 0

base. Since the only case with a lighting controller device in the case base
differed from test case A, in ambulant mobility, it did not fall under the same
leaf node as test case A. This is an obvious problem with the limited number
of cases in the case base. Similar explanations hold for test case B with for
instance the Doors device group.

The use of DTs was well received by the expert because the decision nodes
provides a useful explanation mechanism of the system’s retrieval stage. For
instance the selection of ambulant mobility, as the decision node for the
Controllers device group, enabled the expert to conclude that although test
case A involved a person with good ambulant mobility, a lighting controller
device was necessary because of the inability to operate light switches.

Test case C was a harder case to solve because the expert’s solution consisted
of 11 devices compared to 3 and 5 devices for A and B. Therefore it was
encouraging to see that the iterative retrieval strategy reflects this problem
solving difficulty in that it reused 9 different cases to solve different sub-tasks
of C. In Table 5, although Multiple and Single have equal Sim values, the
Recall measure drops from 0.64 to 0.18 with Single. Since the quality of the
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proposed solution is best ascertained by the system’s ability to predict (true)
devices here the increase in recall with Multiple is most encouraging.

Table 5
Results for test case C with Single and Multiple.

Device Single Multiple

group TP TN FP FN TP TN em FP FN

Bathroom 0 2 0 0 0 2 0 0

Controllers 0 2 0 0 0 2 0 0

Cooker Related 0 4 0 2 0 4 0 2

Doors 0 5 0 3 1 5 0 2

Hearing Aids 0 2 0 1 1 0 2 0

Movement Related 0 3 0 2 2 0 3 0

Phone Related 1 1 1 0 1 1 1 0

Remote Alarms 1 0 0 0 1 0 0 0

Security 0 1 0 1 1 1 0 0

Taps 0 2 0 0 0 2 0 0

FB Architecture 0 1 0 0 0 1 0 0

Visual Aids 0 3 0 0 0 3 0 0

Water Related 0 5 0 0 0 5 0 0

Windows 0 1 0 0 0 1 0 0

Total 2 32 1 9 7 27 6 4

Recall 0.18 0.64

Precision 0.67 0.54

Sim 0.77 0.77

Overall the poor performance with device groups containing a greater number
of devices; such as Doors, CookerRelated and MovementRelated, may suggest
that the binary valued approach adopted with generalised concept creation
(Fi), needs to be extended to a multi-valued concept.

5 Related Work

Task decomposition is commonly employed for complex problem solving, and
is particularly successful when sub-tasks have few interactions (12). One of
the main advantages of task decomposition is multiple case reuse, and a good
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demonstration of this is seen with a hierarchical CBR system developed for
automating plant-control software design (13). The design case base is organ-
ised as a hierarchy and interestingly uses abstract and concrete cases; top level
nodes are abstract cases decomposing the problem at subsequent levels in the
hierarchy, while leaf nodes contain concrete sub-solutions. Since concrete cases
can be attached to more than one parent the same case can be retrieved for
different sub-tasks, thereby facilitating multiple case reuse. With the Smart-

House prototype, task decomposition was achieved by tackling device groups
separately. Retrieval employed an automatically created DT structure as the
index for each of these groups. Although abstract cases can be viewed as an
index structure in a hierarchical case base, the knowledge engineering effort
involved with identifying abstract cases and manually discovering connections
between these would have been far more demanding for our domain expert.
Instead DT based indexing greatly relieves this burden by automatically in-
ducing a tree like structure which can then be examined by the expert.

The use of DTs as indices for sub-task retrieval has been applied with the
tablet formulation domain (8), where instantiation of each component of a
tablet is treated as a sub-task and a DT-based retrieval is triggered for each
sub-task. The main difference with the SmartHouse domain is that the sub-
tasks are too numerous to be dealt with separately and hence a grouping
of sub-tasks into device groups and the addition of generalised concepts is
required before iterative retrieval is manageable.

Iterative retrieval applied to decomposable tasks stands to gain much from a
well designed case structure. In fact it is the discovery of device groups that
enabled multiple case reuse with the SmartHouse prototype. The Auguste
Project, operating in a similar application domain, aids decision making with
regards to prescribing a neuroleptic drug for Alzheimer’s patients (14). The
case representation consists of a grouping of features where the top level view
contains personal information, physical health, behavioural aspects, etc. We
have also adopted this general approach of grouping areas of the problem and
solution space, although with SmartHouse devices the solution space being
more complex benefited from concept generalisation. An example of a hierar-
chical case representation can be seen with the NIRMANI system (15). This
hierarchic structure is employed as a means to enforce context guided retrieval,
where parts of cases are retrieved in stages. Presently the SmartHouse case
representation involves a single level hierarchy however it is possible that a
multi-level hierarchy might be appropriate particularly to cope with the in-
creasing range of devices in this domain.
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6 Conclusion

We have presented our experiences with developing a prototype CBR system
for the SmartHouse problem domain, where the task involved matching
SmartHouse technology to the needs of the elderly and people with dis-
abilities. The main users of a SmartHouse CBR system will be suppliers of
assistive technology, enabling them to match appropriate devices from sup-
plier catalogues. The number of companies supplying SmartHouse devices
to support independent living at home is growing as they recognise the market
opportunities in the increasing aging populations of developed countries.

Organising the solution space into device groups decomposed the Smart-

House task into manageable sub-tasks. Task decomposition with concept
generalisation enabled the use of a standard DT-based iterative retrieval strat-
egy. Importantly the use of multiple indices enabled re-use of different cases
to solve different parts of a given test case, thereby encouraging best use of
the relatively small case base. An empirical evaluation has clearly shown sig-
nificant improvement in solution quality with Multiple’s retrieval strategy
over Single’s best match retrieval without indexing. Subjective evaluation
with the expert has been promising, but we are conscious of the fact that
these results are partly based on cases invented by the domain expert. There-
fore a more realistic evaluation is needed before operational feasibility of this
approach can be fully justified.

The ability to explain the reasoning behind the proposed system’s solution is
a desirable facility and with the SmartHouse prototype the domain expert
found that the display of both index trees and similarity of cases at leaf nodes
to be a useful step in this direction. Finally it is worth mentioning that it was
the prototype’s ability to use multiple cases to solve different parts of a given
SmartHouse problem that most impressed our domain expert.
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