
Learning Adaptation Knowledge to Improve

Case-Based Reasoning

Susan Craw a,∗ Nirmalie Wiratunga a Ray C. Rowe b

aSchool of Computing, The Robert Gordon University,
Aberdeen AB25 1HG, UK

bInstitute of Pharmaceutical Innovation, University of Bradford,
Bradford BD7 1DP, UK

Abstract

Case-Based Reasoning systems retrieve and reuse solutions for previously solved
problems that have been encountered and remembered as cases. In some domains,
particularly where the problem solving is a classification task, the retrieved solution
can be reused directly. But for design tasks it is common for the retrieved solution
to be regarded as an initial solution that should be refined to reflect the differences
between the new and retrieved problems. The acquisition of adaptation knowledge
to achieve this refinement can be demanding, despite the fact that the knowledge
source of stored cases captures a substantial part of the problem-solving expertise.
This paper describes an introspective learning approach where the case knowledge
itself provides a source from which training data for the adaptation task can be
assembled. Different learning algorithms are explored and the effect of the learned
adaptations is demonstrated for a demanding component-based pharmaceutical de-
sign task, tablet formulation. The evaluation highlights the incremental nature of
adaptation as a further reasoning step after nearest-neighbour retrieval. A new
property-based classification to adapt symbolic values is proposed, and an ensemble
of these property-based adaptation classifiers has been particularly successful for
the most difficult of the symbolic adaptation tasks in tablet formulation.

Key words: case-based reasoning, adaptation knowledge, knowledge acquisition,
machine learning, introspective learning.

∗ Corresponding author
Email addresses: S.Craw@comp.rgu.ac.uk (Susan Craw), nw@comp.rgu.ac.uk

(Nirmalie Wiratunga), R.C.Rowe@bradford.ac.uk (Ray C. Rowe).
URLs: www.comp.rgu.ac.uk/docs/info/staff/smc.php (Susan Craw),

www.comp.rgu.ac.uk/docs/info/staff/nw.php (Nirmalie Wiratunga),
www.brad.ac.uk/acad/ipi/ (Ray C. Rowe).

Preprint submitted to Elsevier Science 21 August 2006

1 Introduction

Case-Based Reasoning (CBR) solves new problems by retrieving previously
solved problems and their solutions from a knowledge source of cases, the case-
base. The solutions in the retrieved cases are reused as a proposed solution to
the new problem. CBR’s retrieval mechanism identifies similar problems from
the past, in the expectation that these solutions will be useful for the new
problem, and will be similar to its solution. CBR commonly uses a k-Nearest
Neighbour (k-NN) algorithm to retrieve similar past cases from the case-base.
CBR has some key differences to k-NN.

• Case Knowledge The case-base consists of carefully selected cases whose
knowledge represents both prototypical situations and exceptional circum-
stances. Estimating the competence of a case-base and identifying missing
or redundant cases are important areas of CBR research [1].

• Similarity The k-NN algorithm is designed to be used with numeric data
that allows a natural distance function to define similarity. CBR systems
often also have symbolic attributes for which similarity knowledge is needed.

• Reuse Aamodt & Plaza’s cycle [2] contains Retrieve as the first stage and
corresponds to k-NN. The Reuse and Revise stages follow, where the re-
trieved solution may be refined to reflect the effect of differences between
the new and retrieved problems, or feedback on the solution’s suitability.
Finally, there is a Retain stage where the newly solved problem may be
added as new case knowledge. Reuse can be more knowledge intensive than
k-NN and Revise and Retain are additional stages peculiar to CBR [3].

Classification tasks (e.g. diagnosis) may reuse the retrieved solution directly.
It would be normal to expect at least one case representing each class, but
a case-base with insufficient coverage may not have a case which is similar
to a particular new set of circumstances, and thus adaptation may still be
necessary. For constructive tasks like design or planning, it is impossible for
the case-base to contain all possible solutions (i.e. all designs, plans, etc).
Therefore it is common for the retrieved solution to be refined to take account
of differences in the requirements between the new and retrieved problems [8].

Case knowledge is a fundamental knowledge source for a CBR system and no
problem-solving would be achieved without it. However, Richter identified two
other knowledge containers whose knowledge improves the reasoning of a CBR
system [4]. Similarity knowledge captures the similarities between the values
of each attribute and is particularly important for symbolic attributes, and the
relative importances of attributes is similar to feature selection and weighting
in machine learning research; e.g. [5–7]. Adaptation knowledge is peculiar to
CBR, since it is used in the Reuse stage to refine the initial solution proposed
by the k-NN Retrieve stage.

2

Learning adaptation knowledge with which to refine CBR reasoning is the sub-
ject of this paper. We develop an approach that assembles adaptation training
data from the case-base itself, and learns adaptation knowledge that refines
initial CBR solutions retrieved from the case-base. Section 2 reviews existing
research on adaptation in CBR. Our approach to acquiring adaptation train-
ing examples from the case-base is described in Section 3. Section 4 introduces
pharmaceutical tablet formulation as a component-based design task and mo-
tivates its suitability as our test domain for adaptation. Section 5 presents
results for a simple retrieve-only case-based approach and a CBR system with
adaptation using the adaptation training examples for tablet formulation. Sec-
tion 6 develops our adaptation approach by applying rule-learning algorithms
to the adaptation training examples. Section 7 introduces a new property-
based adaptation for symbolic solutions which is used to learn adaptation
classifiers for these properties. An ensemble of the individual property-based
classifiers is evaluated for the symbolic components in tablet formulation. Our
conclusions on the introspective approach for adaptation, the challenges of
adapting symbolic solutions and the suitability of the various learning algo-
rithms for different adaptation tasks are summarised in Section 8.

2 Related Work

Given the open-ended nature of constructive tasks, it is not surprising that
much of the CBR research on adaptation is devoted to design and planning
systems; e.g. [9–12]. Another popular, simpler domain that demands refine-
ment of the retrieved solution are domains involving numeric predictions; e.g.
house price predictions [13]. The difficulty of acquiring adaptation knowledge
was identified in early CBR research [14]. However, the dominance of classi-
fication in early CBR systems has meant that research into the adaptation
needs of CBR has been quite limited [15]. More recent understanding of CBR
for non-classification tasks [16] has highlighted the importance of adaptation,
and the subsequent increased knowledge engineering demands of case-based
design and planning systems. This has provided the motivation to devote ef-
fort to understanding adaptation knowledge, and exploring automated tools
to assist with the acquisition of adaptation knowledge for the reuse stage.

Leake et al.’s Dial [12] incorporates case-based adaptation for which the
knowledge sources are humans, a rule-based repair theory, and existing adapta-
tion cases. During problem-solving, adaptation is achieved using CBR retrieval
from the adaptation case-base if possible, or otherwise applying a theory-
generated or human-based adaptation. Any successful new adaptation is re-
tained in the adaptation case-base allowing it to grow as new problems are
solved and new adaptations are applied.

3

Hanney & Keane create adaptation rules by considering numeric differences
between pairs of cases in a house price case-base [13]. Rule generalisation
replaces each subset of rules with the same antecedent, with a single rule whose
conclusion is the average of the price differences in the subset. This simple form
of learning works well for their domain because of its small set of problem
differences. McSherry’s Crest system utilises a similar numeric difference
approach, also for house prices [17]. When a new problem is to be solved,
the CBR system retrieves three cases from the case-base: the new problem’s
nearest neighbour; and two cases whose differences are the same as those of the
new and retrieved cases. The retrieved solution is updated with the solution
difference between the pair of same-difference cases. Again this case-based
approach works well when the case-base has a good coverage of the problem
space and the differences that occur. Crest employs no form of generalisation
of the differences; e.g. by retrieving pairs with similar differences.

The existing knowledge in the case-base is a natural source of information.
Case-base maintenance tools routinely assume that the case-base contains
knowledge that is representative of the problem-solving domain, and case-base
competence modelling has relied on leave-one-out-testing from the case-base to
predict CBR performance [1]. Wilke et al. [18] proposed a framework for learn-
ing adaptation knowledge from knowledge already in the CBR system. They
apply their framework to create a knowledge-light learning system to optimise
the value of k for k-nearest neighbour retrieved solutions. They also fit Han-
ney & Keane’s learning of house price adaptations to their framework. Wilke
et al.’s framework is the inspiration for our work but we learn more sophis-
ticated adaptations and incorporate different learning algorithms to achieve
more robust learning. Our earlier work acquiring similarity knowledge for the
retrieve stage has also used introspective learning to exploit the knowledge
already in the case-base [19]. This work is a natural extension, but developed
for the more demanding task of acquiring adaptation knowledge.

3 Adaptation Task

A CBR system retrieves cases corresponding to similar problems from its case-
base. The adaptation step must recognise differences between the new and
retrieved problems, and refine the retrieved solution to reflect these differences,
as appropriate. For example, in a house pricing CBR system, a retrieved house
with fewer bedrooms should have the retrieved price increased to reflect the
additional bedrooms in the new house. Kolodner [20] identifies three types of
adaptation:

• Substitution replaces values in the retrieved solution with new values ap-
propriate for the new problem (e.g. changing a house price);

4

• Transformation alters the retrieved solution by adding, deleting or replacing
parts of the retrieved solution to suit the new problem (e.g. altering steps
in a plan); and

• Special methods apply specialised heuristic knowledge to repair the retrieved
solution, or replay the method used to derive the retrieved solution for the
new problem.

For adaptation, the task is to recognise when an adaptation should be applied
because the new and retrieved problems are sufficiently different in some rele-
vant way, and to perform some change(s) to the retrieved solution. An adap-
tation can be considered as a situation/action pair. The situation contains the
differences between the new and retrieved problems. The action captures the
update for the retrieved solution: new values for the reused solution (substitu-
tion); solution components to be added, deleted or changed (transformation);
or more specialised knowledge to achieve the update (special).

This paper discusses adaptation by substitution, but similar techniques are
likely to be appropriate for the more complex transformation methods where
the structure of the solution is altered in some way. Special methods are the
most knowledge intensive adaptation and may be more difficult to capture,
particularly for knowledge-light methods, since the update to be performed
will be more complex and must be represented somehow for the action part.

3.1 Training Data for Learning Adaptations

The case-base is a useful source of knowledge about the problem-solving do-
main. It contains a set of cases each comprising a problem, together with its
solution. By its nature, the case-base is deemed to be a representative sample
of problem-solving in the domain, and so adaptation training data acquired
from this source is likely to generate representative adaptation knowledge.

We adopt a leave-one-out approach to generate adaptation examples as illus-
trated in the top half of Figure 1. One case, consisting of a problem part and
solution, is removed from the CBR case-base, and the remaining cases are
used to form a smaller, cut-down, version of the case-base. As a result, the ex-
tracted case and the most similar cases retrieved from the cut-down case-base,
are available to provide data to assemble the adaptation training example, as
shown in the lower half of Figure 1. Each adaptation example captures the
adaptation situation that the extracted problem and the retrieved case demon-
strate and the adaptation action that should be applied. The adaptation situ-
ation consists of the attribute values in the problem part of the extracted case,
the differences (dissimilarities) between the extracted and retrieved cases for
each of these problem part attributes, and the retrieved solution. The adap-

5

remaining casesCBR cut down
case-base

problem part solution

retrieval

retrieved

problem

problem

differences

actionfeatures describing an adaptation situation

problem part
retrieved
solution

solution

differences

solution

cases
extract
case

Adaptation Example

CBR Retrieval

Fig. 1. Assembling Adaptation Training Data from the Case-base

tation action captures the update that is necessary to change the retrieved
solution into the solution of the extracted case.

It is important to note that adaptation examples are training data in which
actions are recorded together with situations. The adaptations are generalised
later by whatever learning algorithm is applied. Since each of the k nearest
neighbours retrieved for an extracted case from its cut-down case-base can be
the basis of an adaptation example, the set of adaptation examples may be
several times larger than the original case-base.

3.2 Adaptation Actions

The adaptation action captures the update that transforms the retrieved so-
lution into the target solution for the extracted case. For numeric solutions,
the action part of the adaptation example is a calculation, perhaps to add the
numeric difference between the target and retrieved solutions. Adaptation of
symbolic solutions is more challenging for several reasons.

• Numeric attributes have a natural way to calculate dissimilarity and this can
be used to generate the update to a numeric solution. Symbolic attributes
in the solution may not have a similarity defined for them since CBR uses
only the similarity of attributes in the problem part.

• The numeric dissimilarity can be used to generate the refined solution. In
contrast there may not be a symbolic solution that has the correct dissimi-
larity to the retrieved solution as determined by the adaptation action.

• There is a natural calculation based on the numeric dissimilarity that can
be applied to the retrieved numeric solution to calculate a refined solution,
but there is no equivalent for symbolic dissimilarities.

6

Nevertheless, adaptation data for numeric solutions provides insight into what
is desirable for the adaptation of symbolic solutions. Figure 2 gives examples of
the initial adaptation actions we propose in this section. For a numeric solution
like age, when the target and retrieved solutions are both 40, then the action
noted is to add zero, but when the values are 40 and 21 respectively then -19 is
noted as the correction to the retrieved solution. The first method developed
here for symbolic solutions uses the standard binary similarity (different or
same) to inform a coarse adaptation (whether adaptation is needed or not). For
a symbolic solution like colour, when the target is ‘red’, and ‘red’ is retrieved,
then the value ‘ok’ indicates that no adaptation is needed. When they are
different, say a ‘red’ target and ‘yellow’ is retrieved, the value ‘¬ok’ indicates
that a different solution should be used; e.g. from repeated CBR retrieval. In
the second approach, the ‘¬ok’ adaptation is replaced by a näıve multi-class
adaptation which nominates the target solution as the refined solution. For
the colour example, a retrieved yellow creates an adaptation example where
the adaptation action indicates that a new red solution should be used.

Numeric Target Retrieved Adaptation Action

Age 40 40 0

21 40 -19

Symbolic Target Retrieved Adaptation Action

Colour red red ok

red yellow ¬ok (binary)

red yellow red (multi-class)

Fig. 2. Translating Solution Differences into Adaptation Actions

4 Tablet Formulation Domain

We evaluate our methods to automatically acquire adaptation knowledge on a
CBR system for a demanding design task, chemical formulation for a tablet of a
particular drug and dose. CBR has been used successfully for other challenging
chemical formulation tasks: Cheetham’s FormTool for selecting pigments to
produce a given colour [21]; formulation of rubber compounds for tyres [22].
Formulation domains provide good opportunities to improve the problem-
solving of retrieve-only CBR using adaptation.

Tablet formulation and the characteristics that make it suitable for this eval-
uation are introduced in this section. Pharmaceutical companies create a for-
mulation when they develop a tablet to deliver a given dose of a new drug. A

7

formulation is a recipe for the tablet in which inert compounds, called excipi-
ents, are added to the drug to deliver certain physical and chemical properties
of the tablet as a whole. A tablet contains five components in addition to the
drug: the filler provides bulk for compression; the binder makes the tablet
ingredients hold together; the disintegrant allows rapid breakdown after swal-
lowing; the lubricant enables the tablet to be ejected from the manufacturing
die; and the surfactant aids mixing of the ingredients and disintegration. The
formulation is the choice for each of filler, binder, disintegrant, lubricant and
surfactant, selected from a list of possible excipients, and the quantity of each.
The tablet formulation problem is represented by the dose of the drug, together
with five physical and 22 chemical properties of the drug. Figure 3 shows the
contents of a Tablet Formulation case.

Problem Part Physical Properties of the Drug

Dose Solubility Contact Yield YP Fast Strain-Rate
Angle Pressure Sensitivity

Type Numeric Numeric Numeric Numeric Numeric Numeric
Range 0–720 0–300 0–110 0–160 0–140 0–130

Chemical Properties of the Drug

Stabilities of Drug with Excipients

Type Numeric Numeric Numeric Numeric
Range 0–130 0–130 0–130 0–130

Solution Part Components

Filler Binder Disintegrant Lubricant Surfactant

Type Symbolic Symbolic Symbolic Symbolic Symbolic
#Values 5 5 3 1 a 2

Quantities

FillerQ BinderQ DisintegrantQ LubricantQ SurfactantQ

Type Numeric Numeric Numeric Numeric Numeric
Range 50–190 2–12 2–20 1–4 0–1.2

Tablet Properties

tYP tSRS

Type Numeric Numeric
Range 80–550 0–25

a Only one lubricant is used so the task reduces to predicting its quantity.

Fig. 3. Contents of a Tablet Formulation Case

Components are chosen to balance the physical properties of the drug; e.g.
solubility, hardness as measured by yield pressure, etc. Components must also
be chemically stable with the drug. The overall accuracy of tablet formulation

8

is dominated by the important choice of filler and binder. Fillers provide bulk
and so one can increase or decrease the quantity to compensate for physical
properties. A different filler may be acceptable in a formulation and so for-
mulation accuracy applies our expert defined similarity threshold for fillers to
indicate when formulations should be considered correct. The binder predic-
tion task is particularly demanding because there are six dissimilar binders
and small quantities of binder have to provide several physical properties.

Tablet formulation can be described as a component-based design problem
because there are a small number of components (five) and only a few inter-
actions among them. The design is decomposable because it can be solved
by choosing the more important components first: filler and its quantity, then
binder and its quantity, leaving the less demanding disintegrant, lubricant,
and surfactant until later. It allows incremental multi-task learning where we
use multiple retrieval with increasingly instantiated problems; e.g. the binder
is chosen assuming the original physical and chemical properties of the drug
plus the filler name and quantity. Further details are available in an early
paper on case-based tablet formulation [23].

Adaptation can be decomposed in a similar component-based fashion and this
means that substitution adaptation is often suitable. The relative simplicity
of this adaptation means it is a good target with which to explore automated
acquisition of adaptation knowledge. Formulation is an ideal test-bed for our
research because the formulations (solutions) contain both symbolic compo-
nents and numeric quantities. The organisation as component-based design
allows CBR to concentrate on the problem-solving rather than the case rep-
resentation, and enables the adaptation methods to be structured in a similar
component-based fashion. Figure 4 shows the content of an adaptation case.

5 Results from Case-Based Adaptation

Our initial experiments use the adaptation training examples directly in a
nearest-neighbour case-based retrieval system, to achieve adaptation within
the CBR cycle. Case-based adaptation is illustrated in Figure 5; it is named
CbrA to distinguish it from the main problem-solving CBR system. The top
part of the diagram shows the standard CBR retrieve stage suggesting an ini-
tial solution for a new problem. The adaptation problem is then assembled
from the problem part of the original problem, the differences between the
original problem and the retrieved (CBR) problem, and the retrieved (CBR)
solution. In the middle of the diagram, the CbrA system retrieves an adap-
tation case consisting of a CbrA problem and solution. At the base of the
diagram, the retrieved CbrA solution (an adaptation action) is applied to
refine the retrieved (CBR) solution.

9

Problem Part of an Adaptation Case

Formulation Problem

Physical Properties Chemical Properties

Dose Sol . . . SRS Stabilities with Excipients

Type Numeric Numeric . . . Numeric Numeric . . . Numeric
Range 0–720 0–300 . . . 0–130 0–130 . . . 0–130

Problem Differences

Physical Differences Chemical Differences

∆Dose ∆Sol . . . ∆SRS Stability Differences

Type Numeric Numeric . . . Numeric Numeric . . . Numeric
Range 0–720 0–300 . . . 0–130 0–130 . . . 0–130

Retrieved Formulation

Components Quantities

Filler . . . Surfactant FillerQ . . . SurfactantQ

Type Symbolic . . . Symbolic Numeric . . . Numeric
Range 5 . . . 2 50–190 . . . 0–1.2

Tablet Properties

Similarity tYP tSRS

Type Numeric Numeric Numeric

Range 0–1 80–550 0–25

Solution Part of an Adaptation Case

One of these Component Adaptation Quantity
Adaptation Actions Binary Multi-Class Adaptation

Attribute Type Symbolic Symbolic Numeric
#Values/Range 2 #Components 0–130

Fig. 4. Contents of Adaptation Cases for Tablet Formulation

5.1 Experimental Design

The performance of case-based adaptation is evaluated by comparing the com-
petence of CBR systems with and without adaptation.

• Retrieve-Only has no adaptation and its Reuse simply copies the retrieved
solution.

• NNA includes a simple CbrA system where a non-optimised retrieval selects
the nearest adaptation example to apply.

• CBA includes a more knowledge-rich CbrA system where the adaptation
cases incorporate some feature selection. Sets of adaptation examples are

10

CBR
cases

problem
retrieval

retrieved problem

problem
solution

CBRA
cases

retrieval

CBRAsolution

problem differences

+
adaptation
solution

refined
problem solution

CBR solution

CBR

CBRA

Fig. 5. Case-Based Adaptation

created in which different adaptation problem features are selected. C4.5 [24]
is applied to each set of adaptation examples and the sets whose decision
trees have the highest predicted accuracy are used to form the case-base
for CBA. Thus CBA has access only to adaptation cases that have problem
feature selections that discriminate the adaptation actions.

The CBR cases and retrieval knowledge for the formulation CBR systems are
fixed in the experiments, but the adaptation enabled CBR systems have an
additional stage which uses either NNA or CBA with the adaptation examples.

Our complete dataset contains 156 tablet formulations: formulations for 39
drugs and 4 doses of each. It is common for tablets with different doses of
the same drug to have similar formulations, and so we apply a ‘leave N drug

out’ testing, rather than ‘leave N out’. Figure 6 shows the ‘leave 4 drug out’
experiment we used. The formulations for four randomly selected drugs (16
formulations) are extracted to be used as the unseen test set. The 140 formu-
lations corresponding to the remaining 35 drugs become the case-base. The
35-drug case base generates its own adaptation examples using 10-NN retrieval
from the 34-drug cut-down case-base in a further ‘leave 1 drug out’ method
as illustrated in Figure 1. The accuracy of the 35-drug case-base, together
with its 1400 adaptation examples, is measured for the 16 withheld formula-
tions. This experiment is repeated 25 times with randomly selected test sets
consisting of four 4-drug formulations.

11

4x4 test
formulations

2
5
 re

p
e
a
te

d
e
x
p
e
rim

e
n
ts

complete set of

39x4 formulations

1x4 formulations

of target drug

re
p
e
a
te

d
1
0
-N

N
 r

e
tr

ie
v
a
l

35x4 formulations

for case-base

34x4 formulations for
cut-down casebase

3
5

x
4

x
1

0
 a

d
a

p
ta

ti
o

n
 e

x
a

m
p

le
s

fo
r

c
a

s
e

-b
a

s
e

d
 a

d
a

p
ta

ti
o

n

Fig. 6. Dataset Split into Test Formulations and Case-Base

Performance for numeric quantities is evaluated by calculating the root mean-
squared error for the test set. Percentage accuracy is used for symbolic com-
ponents, where a predicted filler/binder is deemed to be correct if it is at
least 90% similar to the actual filler/binder. Our domain expert has provided
these excipient similarities. This accuracy allows fillers to be correct without
matching exactly, but binders are sufficiently dissimilar that this happens to
be identical to an exact match.

5.2 Results

Table 1 contains the adaptation results for NNA and CBA for the sym-
bolic filler and binder and their numeric quantities. The other tablet compo-
nents and their quantities are less demanding, and are often solved well using
Retrieve-Only CBR [25]. The straw-man Retrieve-Only results are shown in
italics and the best results are highlighted in bold. These simple case-based
adaptations have not made significant improvements. Only CBA adaptation
for filler quantities has made a modest gain.

Table 1
Average Accuracies/Errors for NNA and CBA Adaptation

Retrieve-Only NNA CBA Metric

Filler 81.1% 80.2% 80.0% % Accuracy

Binder 33.7% 22.7% 31.8%

Filler Quantity 0.0496 0.0638 0.0447 Error

Binder Quantity 0.0020 0.0017 0.0020

Adaptation is a refinement stage after retrieval. Therefore the less accurate
the Retrieve-Only solutions, then the more opportunity there is to improve the
solution. Table 1 shows that, overall, binder retrieval offers much more scope
for adaptation, than does filler, and conversely the binder quantity retrieval
already has an extremely low error. This effect is also demonstrated across the

12

25 experiments. For all our evaluations, we also present a scatter plot showing
the relative performances of the Retrieve-Only and with-adaptation methods.
In each plot Retrieve-Only is presented as a grey line and the experiments
have been ordered so that the lowest problem-solving performance Retrieve-
Only experiments are to the left of the graphs. The adaptation methods are
presented as a scatter plot around this line.

Figure 7 is an error plot for filler and binder quantities. The Retrieve-Only
graph drops from left to right because the error decreases as problem-solving
performance increases, and effective adaptation occurs when the error after
adaptation lies below the Retrieve-Only error. These plots demonstrate a re-
peated pattern: at the left-hand side, where Retrieve-Only is relatively poor,
adaptation is more likely to improve the predictions. Both NNA (©) and CBA

(△) have made improvements when the Retrieve-Only errors are quite high.
The optimised CBA has continued to gain even when Retrieve-Only is per-
forming well, whereas NNA has made some good improvements but also dra-
matic deteriorations. CBA’s case and feature selection was designed to reduce
over-fitting and this is demonstrated in these initial results. Retrieve-Only
binder quantities are already very accurate; the highest binder error is 5 times
smaller than the lowest filler error. Therefore our adaptation knowledge needs
to be better at predicting when the retrieved quantity is ok.

Binder Quantity

0.000

0.001

0.002

0.003

0.004

0.005

0.006

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

trial

ro
o

t
m

ea
n

-s
q

u
a

re
d

 e
rr

o
r

Filler Quantity

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

ro
o

t
m

ea
n

-s
q

u
a

re
d

 e
rr

o
r

NNA CB ARetrieve-Only

Fig. 7. Quantity Predictions with NNA and CBA Knowledge

13

Figure 8 shows the corresponding NNA, CBA and Retrieve-Only accuracy
plots for filler and binder predictions. In accuracy plots, the Retrieve-Only
graph rises from left to right because the accuracy rises as the problem-solving
performance increases, and adaptations above the Retrieve-Only accuracy are
sought. For these experiments CBA predicts when repeated retrieval is neces-
sary according to the binary ok/¬ok decision [25], and NNA predicts a new
excipient according to the multi-class adaptation action. For both filler and
binder, CBA adaptation has had little effect over Retrieve-Only accuracy and
the few gains are counter-balanced by losses. Nearest neighbour retrieval has
not been effective for filler and binder adaptations and more effective adap-
tation mechanisms for these symbolic predictions are explored in the rest of
this paper.

Filler

40%

50%

60%

70%

80%

90%

100%

Binder

0%

10%

20%

30%

40%

50%

60%

70%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
trial

a
cc

u
ra

cy
a
cc

u
ra

cy

NNA CB ARetrieve-Only

Fig. 8. Filler and Binder Predictions with NNA and CBA Knowledge

6 Learning Generalised Adaptation Knowledge

Nearest neighbour adaptation in NNA and CBA uses adaptation training ex-
amples directly as the knowledge source, and generalisation to unseen adap-
tation problems is achieved using k-NN retrieval rather than explicit gener-
alised knowledge. Having extracted adaptation training examples from the
case-base, we now explore other machine learning algorithms with which to
learn explicit adaptation knowledge. The CbrA system in Figure 5 is replaced
with the knowledge learned from the same adaptation examples, and the same
adaptation problem is solved by applying this learned adaptation knowledge

14

instead of CbrA. We explored a model tree learning algorithm for adapting
numeric solutions, and a decision tree and a rule learning algorithm for adapt-
ing symbolic solutions, each to be applied to the adaptation training data that
has been assembled from the original case-base.

6.1 Decision Tree Learning

C4.5 [24] was applied to learn a decision tree to adapt symbolic solutions. The
adaptation examples with multi-class adaptations were used as training data.
The decision nodes are chosen from the attributes describing the adaptation
situation; e.g. the formulation problem attributes, the problem differences, and
the retrieved formulation, in the top part of Figure 4. The decision tree nodes
are those that have the highest information gain when predicting the adapta-
tion actions; e.g. the new filler. The leaf nodes predict the updated formulation
component using a majority vote of the class attribute in its adaptation ex-
amples. Figure 9 shows a fragment of a sample C4.5 decision tree for filler
adaptation. The uppercase internal nodes are stabilities of the drug with the
named excipient or a stability difference. Other internal nodes are physical
properties, dose, retrieved solution, similarity of retrieved problem etc. The
leaf nodes name the new filler.

CRO_diff

filler retrieved

ypf

dose CCA

dose

= LAC

<= 47.8

<= 0

<= -72.5

<= 150

<= 300

> 47.8

> 0

> -72.5

> 150

> 300

MGC (2.0)

TCP (4.0/2.0)LAC (6.0)

TCP (2.0) TCP (2.0)

LAC (307.0)

= DCP = MGC = MCC= CCA

CRO_diff

filler retrieved

ypf

dose CCA

dose

= LAC

<= 47.8

<= 0

<= -72.5

<= 150

<= 300

> 47.8

> 0

> -72.5

> 150

> 300

MGC (2.0)

TCP (4.0/2.0)LAC (6.0)

TCP (2.0) TCP (2.0)

LAC (307.0)

= DCP = MGC = MCC= CCA

Fig. 9. Fragment of C4.5 Decision Tree for Filler Adaptation

The algorithm moves in a general-to-specific direction in which the nodes lower
in the tree contain more specific partitions of adaptation examples. Boosting
is known to improve the performance of learning algorithms particularly with
tasks that exhibit varying degrees of difficulty [26]. Since this is typical of de-

15

sign tasks, and the adaptation of initial designs, we used a boosted version of
C4.5 [27]. Boosting iteratively generates rule-set classifiers, with each learner
biased by the incorrectly adapted examples in the previous iteration. Train-
ing examples are initially weighted equally, but when a training example is
adapted correctly by the classifier from one iteration, its weight is reduced by
an error-based factor. Thus incorrectly adapted examples have increased im-
portance and the learner tries harder to correctly adapt these difficult training
examples in the next classifier. When learning is completed, the set of rule-sets
apply a weighted vote to adapt unseen examples.

We used a decision tree learning approach similar to C4.5 for learning adap-
tations for numeric solutions. The M5′ algorithm induces a model tree where
the leaf nodes contain a linear expression to predict the numeric solution [28].
Figure 10 shows a fragment of a sample M5′ model tree for filler quantity
adaptation. The linear equation calculating the quantity difference to be ap-
plied for one of the leaf nodes LM1 is also given. Adapting quantities in tablet
formulation is not as variable as adapting the symbolic components and so
boosting was not explored.

PGS

dose

dose_diff

<= 275

<= 99.55

<= -27.5

> 275

> 99.55

> -27.5

LM1 (25/73%)

LM2 (10/21%)

LM4 (16/42%)

LM3 (4/52%)

dose_diff

similarity

<= -15.5 > -15.5

<= 0.737 > 0.737

PGS

dose

dose_diff

<= 275

<= 99.55

<= -27.5

> 275

> 99.55

> -27.5

LM1 (25/73%)

LM2 (10/21%)

LM4 (16/42%)

LM3 (4/52%)

PGS

dose

dose_diff

<= 275

<= 99.55

<= -27.5

> 275

> 99.55

> -27.5

LM1 (25/73%)

LM2 (10/21%)

LM4 (16/42%)

LM3 (4/52%)

dose_diff

similarity

<= -15.5 > -15.5

<= 0.737 > 0.737

LM1: qdiff = 0.0597

+ 0.0001 * sol

- 0.0001 * sol_diff

- 0.0001 * ca

+ 0.0001 * ca_diff

- 0.0001 * yp_diff

+ 0.0001 * CRO

+ 0.0001 * MCC_diff

- 0.0001 * dose

- 0.0008 * dose_diff

+ …

- 0.025 * fill ≠ TCP,LAC

- 0.0169 * q_retrieved

Fig. 10. Fragment of M5′ Model Tree for Filler Quantity Adaptation

6.2 Bottom-Up Learning

We also explored a hybrid classification algorithm that combines nearest neigh-
bour retrieval with rule induction. Domingos’ Rise algorithm grows rules
around clusters of examples with the same class [29]. Rise’s rules are gen-
eralised by broadening numeric intervals and dropping conditions. Therefore

16

the conditions in a Rise rule use those attributes that may appear in the inter-
nal nodes of the decision tree, and the conclusion chooses the new component.
Rise’s specific-to-general direction of search provides a contrasting alternative
to C4.5’s search, and generalises the local search of 1-NN. We developed and
applied a boosted version of Rise, the details of which can be found in [30].

6.3 Adaptation Results for Quantities with Model Tree Learning

Table 2 summarises the average root mean-squared error for filler and binder
quantities for Retrieve-Only, the two nearest neighbour adaptations NNA and
CBA in section 5.2, and the M5′ adaptation knowledge. M5′ has produced sig-
nificant adaptation gains for filler quantities over the other systems. However
improving the binder quantities remains a serious problem with M5′ making
substantially worse predictions than Retrieve-Only!

Table 2
Average Errors for Generalised Numeric Adaptation Knowledge

Quantity Error Retrieve-Only NNA CBA M5′

Filler 0.0496 0.0638 0.0447 0.0250

Binder 0.0020 0.0017 0.0020 0.0112

Figure 11 compares the adaptation gains from M5′ (2) with those from CBA

(△). The gain for filler quantities is clear. For binder quantities, a single very
extreme M5′ error (0.2315 not shown) in trial 4 spoils an otherwise improved
performance compared to CBA for higher retrieve errors. There is nothing
unusual about the tablets in trial 4, and it is hard to explain why the M5′

calculations here are so wrong. None of our adaptations have made an impact
on the right-hand side of the binder plots. Our conclusion is that the retrieval of
binder quantities is already effective, and that adaptation should concentrate
on recognising situations when no adaptation should be performed.

6.4 Results for Rule-based Adaptation of Symbolic Components

Table 3 summarises the average accuracies for filler and binder prediction us-
ing the rule-based adaptation learned by boosted versions of C4.5 and Rise,
applied to adaptation examples that capture the multi-class adaptation. The
table also contains the earlier CbrA adaptations and Retrieve-Only predic-
tions. The generalised adaptation rules have provided significant improvements
over Retrieve-Only predictions. However successful filler adaptation is achieved
only by C4.5 knowledge, and binder prediction is improved only by Rise. The
adaptation space for each type of tablet component seems to be different: filler

17

Filler Quantity

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M5'

ro
o

t
m

ea
n

-s
q

u
a

re
d

 e
rr

o
r

Binder Quantity

0.000

0.001

0.002

0.003

0.004

0.005

0.006

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

trial

ro
o

t
m

ea
n

-s
q

u
a

re
d

 e
rr

o
r

CB ARetrieve-Only

Fig. 11. Quantity Predictions with M5′ Knowledge

adaptation suits hyper-plane partitioning; whereas binder adaptation fits a
generalised nearest neighbour. This may be explained by binders having to
achieve a difficult balancing act with physical properties of the drug, whereas
the increased volume of filler allows a trade-off, but it is more important to
satisfy strict stability thresholds for fillers.

Table 3
Average Accuracies/Errors for Generalised Adaptation Knowledge

Accuracy Retrieve-Only NNA CBA C4.5 Rise

Filler 81.1% 80.2% 80.0% 83.9% 79.6%

Binder 33.7% 22.7% 31.8% 26.6% 44.9%

Figure 12 contains the accuracy plots for C4.5 (△) and Rise (2) knowledge.
The nearest neighbour adaptations are not superimposed because their accu-
racies were very close to Retrieve-Only. For filler, both C4.5 and Rise tend to
improve Retrieve-Only predictions to a similar level until Retrieve-Only accu-
racy is above 80%. The average filler accuracy for Rise is lowered by several
very poor results particularly for drug selections with a high retrieval accu-
racy. Binder Retrieve-Only accuracy is low in all trials and Rise is effective in
almost all trials. The improvement with Rise adaptation is quite substantial
but it is important to note that the average binder accuracy is still less than
45%!

18

Binder

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
trial

Filler

20%

30%

40%

50%

60%

70%

80%

90%

100%

C4.5 RISE

a
cc

u
ra

cy
a

cc
u

ra
cy

Retrieve-Only

Fig. 12. Filler and Binder Predictions with C4.5 and Rise Knowledge

7 Adaptation Ensembles for Symbolic Solutions

The adaptation of symbolic components in tablet formulation remains a chal-
lenge. However, the adaptations considered so far do not capture the spirit of
CBR adaptation. The ok/¬ok prediction with repeated retrieval is not really
adaptation, but repeated problem-solving from scratch. On the other hand,
adaptation that predicts a different filler or binder is a new choice, rather
than a refinement of the retrieved solution. Instead, adaptation of a symbolic
solution should change its value in a way that achieves some desired effect.

7.1 Property-based Adaptations

This motivation led us to consider properties related to a symbolic solution. In
tablet formulation the solutions (e.g. fillers) have physical properties; e.g. solu-
bility, yield pressure, etc. These properties will be used to drive the adaptation
of symbolic solutions. In tablet formulation there happens to be correspond-
ing physical properties of the drug (problem), the components (solution), and
the resulting tablet. However, property-based adaptation in general does not
depend on such a correspondence, but instead relies on some properties of the
solution that will guide adaptation.

Table 4 shows filler examples of the binary ok/¬ok and multi-class adapta-
tions from section 3.2, together with a new property-based adaptation, based

19

on the yield pressure of the filler. Notice that in the last two lines of the table
the numeric difference in yield pressure is not used to suggest fillers whose
yield pressures are exactly 76 higher (or 14 lower) than that of the retrieved
filler; such a filler is unlikely to exist. Instead, the value inc (or dec) indicates
that the new filler should have an increased (or decreased) yield pressure.

Table 4
Property-Based Adaptation Actions

Adaptation
Property-of Attribute Target Retrieved Action Type

Filler mgc mgc ok

mgc dcp ¬ok Binary

mgc dcp mgc Multi-class

Yield Pressure Filler 166 166 ok

166 90 inc Property-based

166 180 dec Property-based

To illustrate the use of property-based adaptation, suppose situations involv-
ing solubility appear in yield pressure adaptation examples with dec as the
adaptation action, then a rule that might be learned could be:

“If the Drug Solubility > 10 and the Retrieved Filler Solubility > 8

then select other fillers with decreased Yield Pressure”

There are many possible property-based adaptations. To restrict these refine-
ments to informative properties, we use an approach similar to McSherry’s
[31] in which we select the n most discriminatory properties from a C4.5 de-
cision tree that predicts the filler name from all the filler properties. A set of
adaptation examples is collected for each of the selected properties and each
set is used to build a classifier for that property-based adaptation. We use
only these properties as the basis for refinements.

7.2 Ensemble Results for Filler and Binder

We have experimented with ensembles of 1-NN, C4.5 and Rise property-
based classifiers. Figure 13 shows an ensemble of experts where each experti is
devoted to adapting the component with respect to a particular property. The
knowledge in experti is learned from the adaptation examples corresponding
to that property. Each experti predicts ok, inc or dec for its property and
hence nominates new components from this property-based view. A weighted
vote selects the new solution from the ensemble-based adaptation.

20

CBR
cases

problem
retrieval

retrieved

problem
solution

new adaptation task

expertnexpert2expert1

ensemble

of experts

majority vote

candidates for the

revised solution

solution after

adaptation

Fig. 13. Ensemble-Based Adaptation

Table 5 shows the average accuracy for filler and binder of an ensemble of
property-based experts each learned from a set of property-based adaptation
training examples. The results for ensembles of 1-NN, C4.5 and Rise property-
based experts are reported. Those for Retrieve-Only, the earlier CbrA adap-
tations (binary CBA and multi-class NNA), and the most recent multi-class
rule-based adaptations (C4.5 and Rise) are also included.

Table 5
Average Accuracies for Adaptation Ensembles

Accuracy Retrieve-Only 1-NN CBA C4.5 Rise

Filler 81.1% Single 80.2% 80.0% 83.9% 79.6%

Ensemble 77.2% 85.7% 78.0%

Binder 33.7% Single 22.7% 31.8% 26.6% 44.9%

Ensemble 74.1% 64.7% 72.7%

For filler, the C4.5 ensemble method has made a further improvement on the
gain already made with the individual C4.5 rule-based method. The instance-
driven ensemble methods, like their individual counterparts, make no improve-
ment over Retrieve-Only for filler; in fact the property-based ensembles are
worse than NNA and Rise. Fillers are used to balance physical properties of
the drug but being the largest component of a tablet it is very important that
the stability is high enough. Thus adaptation may be driven by this stability
requirement and this would suit C4.5’s hyper-plane approach.

Binder prediction is the big success. Its continued low accuracy until now was
one of the motivating factors to try a property-based ensemble. The improve-
ment has been spectacular, with accuracy more than doubled compared to
Retrieve-Only. We believe that this success is due to the nature of the binder

21

prediction task. There are several independent constraints on binders, and bal-
ancing them is what an ensemble of independent property-based adaptations
can achieve through negotiation and consensus. We regard these results as a
major triumph because binder prediction is a very important subtask of tablet
formulation. Our results for binder up until now had been very disappointing
despite retrieval optimisation and adaptation efforts in several directions.

Figure 14 shows the scatter plots for ensemble-based adaptation. The results
for earlier adaptation methods are not superimposed to improve clarity be-
cause the ensemble gains are much bigger than for previous adaptations. Look-
ing at individual filler experiments, the success of ensemble based methods is
still variable. However, there is some agreement that when one adaptation
ensemble does well then the others do also, and vice versa. The C4.5 ensemble
may be best overall but it is nevertheless worse than the retrieved filler for
nine trials. But in each of these, the other ensembles are also poor. There is
still a tendency not to recognise when the retrieved filler is good enough and
adaptation is unnecessary.

Filler

30%

40%

50%

60%

70%

80%

90%

100%

a
cc

u
ra

cy

Retrieve-Only 1-NN-Ensemble C4.5-Ensemble RISE-Ensemble

Binder

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
trial

a
cc

u
ra

cy

Fig. 14. Filler and Binder Predictions with Ensemble-based Adaptation

The binder graphs show the general dramatic improvement in all experiments
for all the ensemble-based adaptations. Although the 1-NN ensemble has an
average accuracy above that of the Rise and C4.5 ensembles, it has the high-
est number of trials where the adapted accuracy is worse than Retrieve-Only
(trials 19, 22, 23, 25). The C4.5 ensemble is worse for only two of these (22
and 25), and trial 22 is the only poorer accuracy for the Rise ensemble. The
retrieved binders in trial 22 must be quite hard to adapt because all the other,

22

non-ensemble, adaptations also make its accuracy worse. The 1-NN, C4.5 and
Rise property-based binder ensembles each give improvement over the corre-
sponding individual classifier in all but one, two and four trials, respectively.
It is noticeable from the high trial numbers that the better retrieval is, the
more difficult it is for adaptation to improve.

8 Conclusions

Retrieve-Only CBR has been improved by learning adaptation knowledge in
the form of cases or rules. The learning has been introspective because adapta-
tion knowledge is acquired by exploiting the original knowledge in the problem-
solving case-base. The adaptation knowledge has been applied to the retrieved
solution as part of the reuse stage of CBR. Predicting filler, binder, and their
quantities in tablet formulation are challenging tasks with different influences,
and so they provide varying demands on adaptation. Nevertheless, adaptation
has improved the prediction of Filler and Binder for tablet formulation and
has reduced the error of the predicted quantities of these components. Not all

adaptation methods have been successful for all tablet formulation subtasks
but at least one method has improved each of the tasks. This demonstrates
the usefulness of the knowledge captured in the adaptation examples and in-
dicates the importance of choosing the right learning algorithm to gain the
appropriate generalisation from this training data.

The naturalness of numeric differences to update retrieved solutions is hard
to replicate directly for symbolic CBR solutions. Our novel, property-based,
adaptation chooses a new component based on the need to increase or decrease
some property of the retrieved solution. Thus it captures the purpose behind
the refinement of the solution. The approach is generally applicable, unless
there are no properties of the solution to relate different solutions; in this case
there can be no reason to choose the new value for the solution. Adaptation
can be based on the requirements of a single property. However, in our domain,
there are several competing properties of the filler or binder, and so property-
based ensembles have been effective in exploiting the trade-offs. The effect of
adaptation was particularly dramatic for binder, where each ensemble method
roughly doubled the accuracy of previous adaptation methods.

Several adaptation methods have adversely affected the basic Retrieve-Only
CBR system. Binder quantity retrievals are already very accurate and so
reducing the error further is difficult; but also unnecessary since the error
is already well within the manufacturing tolerances. However, this problem
has highlighted that adaptation needs to predict no change more readily.
Our adaptation examples for binder quantities never capture pairs of exactly
matched formulation and retrieved problems and their resulting null adapta-

23

tions, and so knowledge that predicts no adaptation for close problem matches
is hard to learn. One approach would represent a small quantity change as zero
in an adaptation example and thus avoid over-fitting small changes during
learning. A similar problem happens for multi-class adaptation for compo-
nents, where the new component is named explicitly. If we were to add the
class “SAME” to the existing classes then we would explicitly capture circum-
stances when no change was needed. Capturing “no change” more effectively
in adaptation examples for both numeric and symbolic solutions would enable
the generalisation of situations when no adaptation should be used.

The dependency between the adaptation and problem-solving cases raises the
issue that any bias in the problem solving cases will be replicated in the
adaptation cases. Although the complete dataset contains 156 formulations,
many are very similar because they differ only in drug dose. Viewed instead
as a dataset of 39 drugs, the sparseness of formulation data could mean that
the adaptation examples are limited in variety. Also, the 10-NN retrieval to
generate adaptation data could suffer from adaptation examples based on
distant formulations. The 4-dose groupings of formulations for each drug will
also create clusters of similar 4-dose adaptations. Therefore the lack of tablet
formulation data, together with the case and adaptation clusterings, is likely
to have made adaptation for this dataset particularly difficult.

We have developed and evaluated the different approaches to learning adap-
tation examples on a single problem solving domain, tablet formulation. How-
ever, the techniques are applicable in general to CBR systems. Formulation
solutions contain both symbolic and numeric parts and so adaptation of these
different types is demonstrated. The distinctive problem-solving traits of the
different formulation tasks put different demands on adaptation. It is impor-
tant to realise that the choice of learning method depends on features of both
the problem-solving and adaptation tasks. We have seen that fillers are best
adapted using C4.5 because this recognises the stability threshold, but that
binders require the trade-off in binder properties offered by an ensemble.

Further work is needed to understand the features of the adaptation space for
different domains. Firstly, an understanding of adaptation is needed so that
adaptation tasks can be matched with the appropriate learning algorithm; e.g.
local search or hyper-plane partitioning. Secondly, an appropriate representa-
tion of possible adaptation problems would be helpful, particularly for those
problems where small differences result in no adaptation. Finally a greater un-
derstanding of learning suitable adaptations would allow multi-algorithm en-
sembles to be created where the individual algorithm for the ensemble would
be specifically chosen for the particular property it refined. Understanding
the learning environment of adaptation better is an important precursor to
improving the automated acquisition of adaptation knowledge.

24

Acknowledgments

The authors thank Dietrich Wettschereck and Stewart Massie for feedback that
helped to improve and correct this paper. Jacek Jarmulak also contributed to
the earlier retrieval knowledge phase of this research, and its underpinning of
the project’s subsequent approach to learning adaptation knowledge.

The first two authors would like to acknowledge EPSRC for its support of this
project (GR/L98015) and the two industrial collaborators on this research,
AstraZeneca 1 and ISoft 2 , for their contributions of data, software and exper-
tise.

References

[1] B. Smyth, E. McKenna, Competence models and the maintenance problem,
Computational Intelligence 17 (2) (2001) 235–249.

[2] A. Aamodt, E. Plaza, Case-based Reasoning: Foundational Issues, Method-
ological Variations, and System Approaches, AICOM 7 (1) (1994) 39–59.

[3] R. López de Mántaras, D. McSherry, D. Bridge, D. Leake, B. Smyth, S. Craw,
B. Faltings, M. L. Maher, M. T. Cox, K. Forbus, M. Keane, A. Aamodt,
I. Watson, Retrieval, reuse, revision, and retention in case-based reasoning,
Knowledge Engineering Review 20 (3) (2005) 215–240.

[4] M. M. Richter, Introduction, in: M. Lenz, B. Bartsch-Spoerl, H.-D. Burkhard,
S. Wess (Eds.), Case-Based Reasoning Technology: From Foundations to
Applications, LNAI 1400, Springer-Verlag, 1998, pp. 1–16.

[5] D. Wettschereck, D. W. Aha, T. Mohri, A review and empirical evaluation
of feature weighting methods for a class of lazy learning algorithms, Artificial
Intelligence Review 11 (1997) 273–314.

[6] R. Kohavi, P. Langley, Y. Yun, The utility of feature weighting in nearest-
neighbor algorithms, Poster Papers: 9th European Conference on Machine
Learning (1997).
URL http://robotics.stanford.edu/~ronnyk/diet.ps.Z

[7] D. B. Skalak, Prototype and feature selection by sampling and random
mutation hill-climbing algorithms, in: S. Wrobel (Ed.), Proceedings of the 11th
International Conference on Machine Learning, Morgan Kaufmann, San Mateo,
CA, 1994, pp. 293–301.

1 www.astrazeneca.com
2 www.alice-soft.com/html/about.htm

25

[8] A. K. Goel, S. Craw, Design, innovation and case-based reasoning, Knowledge
Engineering Review 20 (3) (2005) 271–276.

[9] A. Gómez de Silva Garza, M. L. Maher, A Process Model for Evolutionary
Design Case Adaptation, in: J. S. Gero (Ed.), Proceedings of the Artificial
Intelligence in Design Conference, Kluwer Academic Publishers, 2000, pp. 393–
412.

[10] K. J. Hammond, Explaining and repairing plans that fail, Artificial Intelligence
45 (1–2) (1990) 173–228.

[11] M. Veloso, J. Carbonell, Case-based reasoning in Prodigy, in: R. Michalski,
G. Tecuci (Eds.), Machine Learning: A Multistrategy Approach Volume IV,
Morgan Kaufmann, San Francisco, CA, 1994, pp. 523–548.

[12] D. B. Leake, A. Kinley, D. Wilson, Acquiring case adaptation knowledge: A
hybrid approach, in: W. J. Clancey, D. Weld (Eds.), Proceedings of the 13th
National Conference on Artificial Intelligence, AAAI Press, 1996, pp. 684–689.

[13] K. Hanney, M. T. Keane, The adaptation knowledge bottleneck: How to ease
it by learning from cases, in: D. B. Leake, E. Plaza (Eds.), Proceedings of the
2nd International Conference on Case-Based Reasoning, LNAI 1226, Springer-
Verlag, 1997, pp. 359–370.

[14] J. Kolodner, Improving human decision making through case-based decision
aiding, AI Magazine 12 (2) (1991) 52–68.

[15] B. Smyth, P. Cunningham, Complexity of adaptation in real-world case-
based reasoning systems, in: Proceedings of 6th Irish Conference on Artificial
Intelligence & Cognitive Science, 1993, pp. 228–240.

[16] D. Wettschereck, D. W. Aha (Eds.), Proceedings of the ECML-97 Workshop on
Case-Based Learning: Beyond Classification of Feature Vectors, Prague, Czech
Republic, 1997.

[17] D. McSherry, An adaptation heuristic for case-based estimation, in: B. Smyth,
P. Cunningham (Eds.), Proceedings of the 4th European Workshop on Case-
Based Reasoning, LNCS 1488, Springer-Verlag, 1998, pp. 184–195.

[18] W. Wilke, I. Vollrath, K.-D. Althoff, R. Bergmann, A framework for learning
adaptation knowledge based on knowledge light approaches, in: Proceedings of
the 5th German Workshop on Case-Based Reasoning, 1997, pp. 235–242.

[19] S. Craw, J. Jarmulak, R. Rowe, Maintaining retrieval knowledge in a case-based
reasoning system, Computational Intelligence 17 (2) (2001) 346–363.

[20] J. L. Kolodner, Case-Based Reasoning, Morgan Kaufmann, San Mateo, CA,
1993.

[21] W. Cheetham, Tenth anniversary of the plastics color formulation tool, in:
Proceedings of the 16th Conference on Innovative Applications of Artificial
Intelligence, AAAI Press, 2004, pp. 770–776.

26

[22] S. Bandini, S. Manzoni, A support system based on CBR for the design of rubber
compounds in motor racing, in: E. Blanzieri, L. Portinale (Eds.), Proceedings of
the 5th European Workshop on Case-Based Reasoning, LNAI 1898, Springer-
Verlag, 2000, pp. 348–357.

[23] S. Craw, N. Wiratunga, R. Rowe, Case-based design for tablet formulation,
in: B. Smyth and P. Cunningham (Eds.), Proceedings of the 4th European
Workshop on Case-Based Reasoning, LNAI 1488, Springer-Verlag, 1998, pp.
358–369.

[24] J. R. Quinlan, Induction of decision trees, Machine Learning 1 (1986) 81–106.

[25] J. Jarmulak, S. Craw, R. Rowe, Using case-base data to learn adaptation
knowledge for design, in: B. Nebel (Ed.), Proceedings of the 17th International
Joint Conference on Artificial Intelligence, Morgan Kaufmann, 2001, pp. 1011–
1016.

[26] Y. Freund, R. Schapire, Experiments with a new boosting algorithm, in:
L. Saitta (Ed.), Machine Learning: Proceedings of the 13th International
Conference, Morgan Kaufmann, 1996, pp. 148–156.

[27] J. R. Quinlan, Bagging, boosting, and C4.5, in: W. J. Clancey, D. Weld (Eds.),
Proceedings of the 13th National Conference on Artificial Intelligence, AAAI
Press, 1996, pp. 725–730.

[28] I. H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations, Morgan Kaufmann, San Francisco,
2000.

[29] P. Domingos, Unifying instance-based and rule-based induction, Machine
Learning 24 (1996) 141–168.

[30] N. Wiratunga, S. Craw, R. Rowe, Learning to adapt for case-based design, in:
S. Craw, A. Preece (Eds.), Proceedings of the 6th European Conference on
Case-Based Reasoning, LNCS 2416, Springer-Verlag, 2002, pp. 423–437.

[31] D. McSherry, Minimising dialog length in interactive case-based reasoning, in:
B. Nebel (Ed.), Proceedings of the 17th International Joint Conference on
Artificial Intelligence, Morgan Kaufmann, 2001, pp. 993–998.

27

