
Appears in International Journal of Human-Computer Studies, 44:245{256, 1996
Re�nement Complements Veri�cation andValidationSusan CrawSchool of Computer and Mathematical SciencesThe Robert Gordon UniversityAberdeen, ScotlandAbstractKnowledge based systems are being applied in ever increasing numbers. Thedevelopment of knowledge acquisition tools has eased the \Knowledge AcquisitionBottleneck". More recently there has been a demand for mechanisms to assure thequality of knowledge based systems. Checking the contents of the knowledge baseand the performance of the knowledge based system at various stages throughoutits life cycle is an important component of quality assurance. Hence, the demandnow is for veri�cation and validation tools. However, traditionally, veri�cation andvalidation have identi�ed possible faults in the knowledge base. In contrast, thispaper advocates the use of knowledge re�nement to correct identi�ed faults in par-allel with the ongoing veri�cation and validation, thus easing the progress towardscorrect knowledge based systems. An automated re�nement tool is described whichuses the output from veri�cation and validation tools to assemble evidence fromwhich the re�nement process can propose repairs. It is hoped that automated re-�nement in parallel with validation and veri�cation may ease the \Knowledge V&VBottleneck".

1 IntroductionThis demand for quality assurance has seen the emergence of veri�cation and valida-tion (V&V) as a theme in main stream AI. Instead of concentrating on the identi�cationof faults, this paper suggests that responding to faults identi�ed by V&V is both usefuland important, and so re�nement should be thought of as complementary to V&V.When a V&V phase has been completed, a re�nement phase should be executed, withthe bene�t of the information assembled by V&V.But how does V&V aggravate the already well-known knowledge acquisition bottle-neck? Carbonell conducted a study of the distribution of knowledge engineering e�ortduring Knowledge Based System (KBS) development (Carbonell 1991), and found thatthe reorganisation and correcting of knowledge is the most time consuming phase. Thus,the partial automation of checking and correcting is an obvious approach to reducing theconventional bottleneck, but also a more routine, and easier, treatment of checking willprovide improved facilities for assuring quality.Section 2 contains a description of the process of re�nement and some research inthis area. Section 3 focuses on the unusual features of our automated re�nement tool,KRUST. Section 4 describes the evidence of faults found by V&V tools and Section 5discusses how KRUST can utilise their output. The bene�ts of re�ning in parallel withV&V is summarised in Section 6.2 Knowledge Re�nementWe �rst consider re�nement, since this is the focus of our interest, leaving a descriptionof V&V until Section 4. A KBS consists of a knowledge base (KB) of static knowledgeand a control mechanism to make deductions. The type of application often suggestsa suitable problem solving strategy; e.g. heuristic classi�cation for diagnosis problems.In contrast, it is common for the acquired knowledge to contain faults; e.g. the KB isinconsistent, the KB is incomplete, the KBS performs badly on examples. Many of theidenti�ed faults must be removed before the KBS is acceptable; i.e. the KB must bere�ned. Notice that although the control mechanism will not be altered, its e�ect mustbe considered; e.g. altering certainty factors in the KB can a�ect deductions.Traditionally, re�nement has been identi�ed as a sub�eld of Knowledge Acquisition.Early in the KBS development, knowledge acquisition consists of new knowledge beingassembled and integrated in the KB. However, as the KB evolves, it is often more ap-propriate to change existing knowledge rather than always acquire new knowledge. Thisprocess of altering knowledge, and possibly incorporating new knowledge, is known asknowledge re�nement and is often a distinct step in the �nal phases of development; mostof the KB is acceptable, but small changes are made to the content of the knowledge (notthe structure) so that unwanted behaviour does not re-occur. As re�nement generationbecomes more automated it becomes an emerging �eld in Machine Learning, where it isoften referred to as theory revision. 1

A re�nement system responds to the existence of evidence suggesting the need forchange. So what types of evidence can be provided? Traditionally the evidence takes theform of examples provided by the expert. Here, it is suggested that the faults identi�edby V&V tools are also suitable triggers for re�nement. In many cases, evidence consists ofthe e�ects of the faults and the major e�ort within re�nement is precisely: \identifyingexactly what should be changed, and how". Here it is argued that knowledge re�nementis a natural extension to V&V systems, and may even be considered as a collaboratingsystem, which gains from the analysis undertaken during fault-�nding. Thus re�nement,also, becomes an ongoing process throughout the life cycle.Re�nement techniques developed within the knowledge acquisition community havefocused on updating the knowledge in a fairly mature system and many systems havebeen designed round particular KBSs and shells. The early classic re�nement system,TEIRESIAS (Davis 1984), interacted extensively with the expert, assisting him to identifyand correct the fault(s) in the Mycin KB. More recent systems reduced the interactionwith the expert by incorporating learning techniques where the tool suggests repairs forthe user to sanction. SEEK (Ginsberg 1988, Politakis 1985) chooses the re�nement thatrepairs the most faults in a set of training examples. The re�nement system for DipmeterAdviser relies on an extensive supply of meta-knowledge to provide causal evidence forthe failure of a case and thus to suggest updates. SALT and MOLE, both (Marcus 1988),and ODYSSEUS (Wilkins 1988) exploit an explicit representation of the problem solvingstrategy to identify missing or faulty domain knowledge.The evolution of theory revision systems has been more directly related to inductivetechniques and these systems often rely on the quality of their inductive learners tolearn appropriate new knowledge. Thus EITHER (Ourston & Mooney 1994), FORTE(Richards & Mooney 1991) and AUDREY-II (Wogulis & Pazzani 1993) get good resultsdespite restricting their changes to deleting a rule, inserting a rule, deleting a condition orinserting a condition. Multi-strategy revision systems apply several learning techniques toa range of knowledge sources, including the expert, in the process of repairing knowledge.WHY (Saitta, Botta & Neri 1993) revises a theory by learning from both a causal modeland examples; MOBAL (Morik, Wrobel, Kietz & Emde 1993) contains many knowledgeacquisition tools with access to a wide range of knowledge sources; and CLINT (DeRaedt 1992) combines inductive learning with user interaction.Many of these knowledge re�nement and theory revision tools lack the
exibility toadapt to novel situations; e.g. react to the evidence provided by V&V tools, able to copewithout many training examples.Ripple down rules (RDR) (Compton, Edwards et al. 1992) is a knowledge representa-tion which can be exploited to allow knowledge acquisition during maintenance (Kang,Gambetta & Compton 1994). In this case faults in the KB are �xed by always addingnew knowledge to the RDR structure. One advantage of this approach is that incremen-tal V&V is incorporated within the acquisition process. Disadvantages include the factthat the method relies on this particular knowledge representation and that re�nementsare achieved only by acquiring new knowledge to add to the KB. However, RDR allowknowledge acquisition and V&V to progress together in a maintenance role.2

3 KRUSTWe now focus on our KRUST re�nement system and highlight the features that makeit suitable for integration with V&V tools. In common with many other re�nementsystems, it re�nes rule-based KBSs on evidence provided by examples which the KBSfails to solve correctly. In contrast to other systems, however, KRUST considers manypossible re�nements to cure a single failure, but executes only a small subset of there�nements on the KB, thus proposing a small number of replacement KBs. It �lters there�nements by setting increasingly selective tests which the re�nements must pass. Asthe re�nements reduce in number, the tests can be computationally more complex. Inthis way KRUST only rejects a proposed re�nement once evidence against it has beenfound; i.e. it fails one of the tests.3.1 KRUST's ApproachThe components of KRUST are illustrated in Figure 1. A training example, which theKBS fails to solve correctly, is input and KRUST enters an interpretation phase. Possiblecauses of the failure are identi�ed and the classi�cation rules are grouped into di�erentcategories of interest: error-causing rules contain the faulty solution as their conclusionand target rules contain the desired conclusion. The re�nement generation step proposessuitable re�nements by considering changes that prevent the error-causing rules from�ring and allow a target rule to �re instead. A re�nement may alter a condition ofa target or error-causing rule; i.e. a single condition in error-causing rules should bestrengthened (made more di�cult to satisfy) or all unsatis�ed conditions in target rulesshould be weakened (made easier to satisfy) for the training example. Alternatively,these changes to error-causing and target rules may be propagated to rules with theseconditions as conclusion. For example, instead of strengthening the condition in anerror-causing rule, all rules concluding this condition which are �reable are disabled bystrengthening any one of their conditions. Similarly, any one rule concluding a failedcondition for a target rule should be enabled by weakening each of its failed conditions.These changes are propagated throughout the rule structure. In addition to these changesto rule content, KRUST is also able to a�ect the way that error-causing and target rulesare handled by the KBS control: error-causing rules are given a lower priority withrespect to the con
ict resolution strategy, and target rules have a raised priority. Finally,the conclusion of error-causing rules can be changed and new rules can be added. Thesere�nements have the e�ect of crippling a faulty solution graph at any level and promotinga potential solution graph which fails to be used. At this stage, an actual change is notspeci�ed but contains the aims of the change; e.g. weaken the ith condition in rule j andgive rule j a higher priority than rule k.The re�nements now meet a �lter that discards those re�nements that are believedto be poor; e.g. small changes are preferred so re�nements that specify more than say3 changes are rejected, or rule priority should not be changed so only strengthening andweakening re�nements are allowed, etc. 3

Propose
Refinements

Identify
Rules

Refinement Meta-knowledge

Inconsistency Specifications
Features of Favoured Refinements

Redundancy Specifications

Best Refined KB

Current KB

Tagged Rules

Filter

Filter

Refinements

Refined KBs

Training Example

Build
 Refined KBs

Interpretation
Im

plem
entation

Test Examples

Evaluate
Refined KBs

Figure 1: KRUST's ModulesThe re�nements are executed on the KB, thus creating a set of re�ned KBs. At thisstage, it is possible, and feasible, to run the re�ned KBs on sample tasks and comparethe results with expert solutions. Another �lter applies each re�ned KB to the trainingexample and a set of tasks which must be solved correctly. Any re�ned KB which failsany of these tests is rejected. We note that although each re�ned KB has been designedin reaction to the training case, rule interaction may mean that a re�ned KB still does notperform correctly on the training case. All the remaining re�ned KBs can be suggestedto the expert, or alternatively, as in the current system, a fairly detailed evaluationphase ranks the re�ned KBs and selects the most suitable one. A fuller description ofKRUST's architecture and its application to a wine advising KB is presented in (Craw& Sleeman 1990).
4

3.1.1 KRUST's Re�ned KBsAn e�ect of KRUST's generate-and-test approach is that the tests available to KRUSTcan be varied, to allow re�ned KBs with di�erent features to succeed. Experimentsusing a wine-advising KBS are described in (Craw & Sleeman 1991) and have comparedKRUST's behaviour in the following two scenarios.Improvement: This scenario is the normal use of KRUST for maintenance. The currentKB should be repaired because a fault has been identi�ed. However, the KB ismature so the repair should be small so that it does not a�ect already correctcases.The re�ned KB must solve the training example correctly and the �lteringtests are biased towards ones which the current KB being re�ned would pass. Thisis the normal use of KRUST { the KB is faulty, but not very!Recovery: This scenario is an arti�cial, contrived demonstration of KRUST's abilities.The original KB must be retrieved after an intentional corruption. This scenario isnot how KRUST would be used in reality but it demonstrates KRUST's ability toidentify and execute a particular change and thus indicates its
exibility. KRUSTis applied to the arti�cially corrupted KB, but now, the tests are not favourable tothis (the corrupted) KB, but to the KB before the corruption. KRUST has toretrieve the original KB from the corruption, and so KRUST should favour re�nedKBs which are most like the uncorrupted KB.KRUST was sensitive to the tests with which it was provided. In the recovery sce-nario testing above, the re�nement corresponding to the original KB survived all �lteringprocesses but it was not necessarily chosen as the best KB, because some other re�nedKBs might out-perform it in the �nal ranking, for the particular test examples. Thisis quite reasonable, since the original KB might not be the optimal KB for these testexamples. In fact if all the examples have the original KB's solution as their solutionthen KRUST does recommend the original KB as the re�ned KB.The types of changes made during the re�nement process in both trials were comparedand it was found that KRUST's behaviour was distinctive, despite the small number ofruns in the recovery scenario testing. Table 1 shows the type of change in the re�ned KBselected as best. The columns contain the following data.Improvement: the results from 60 test runs in the improvement scenario. These wereorganised as 4 batches of 15 test runs where the batches were of increasing di�culty;the training cases required more drastic changes.Recovery: the results from 5 test runs in the recovery scenario. We randomly gener-ated a corruption of each of 5 types: weaken a condition in a classi�cation rule,strengthen a condition in a classi�cation rule, alter the recommended wine in aclassi�cation rule, interchange 2 classi�cation rules and strengthen a condition in alower level rule. 5

It is interesting to compare the the distribution of changes. In the improvement scenariopreventing error-causing rules from �ring was a popular re�nement. In these cases thecorrect knowledge already appeared in the KB but the error-causing rule(s) were toogeneral. Inserting a new rule to cover an exceptional example was fairly common. Thepopularity of these changes suits the maturity of the KB.Changes in Best Re�ned KB KBs with these Changes (%)Improvement RecoveryStrengthen at least 1 Rule only 51 20Add a New Rule 25 60Change the Conclusion of 1 Rule 9 20Strengthen at least 1 Rule and Lower the Priorityof at least 1 Rule 7 ||Weaken 1 Rule and Strengthen at least 1 Rule 3 ||Weaken 1 Rule and Raise its Priority 3 ||Weaken 1 Rule only 1 0Lower the Priority of at least 1 Rule only 0 0Raise the Priority of at least 1 Rule only 0 0Weaken 1 Rule and Lower the Priority of at least1 Rule 0 ||Number of Best Re�ned KBs 67 5Table 1: Changes in Best Re�ned KBIn the recovery scenario, a completely di�erent pattern of re�nements were successful.Inserting a new rule to overcome the corruption was most popular and this re
ects the factthat the KB contained one isolated corruption. Thus, the inserted rule was su�cientlyspecialised to correct the corruption and not a�ect other examples. We note howeverthat the corruptions were actually evenly spread over the possible corruptions.KRUST's speculative re�nement generation has been
exible enough to consider arange of possible repairs. The rejection of proposed re�nements can be tailored to suitthe situation; in an improvement scenario re�nements which fail on general examplesare rejected but in a corruption scenario examples baised towards the uncorrupted KBreject re�nements which have added further corruptions. The ability to consider manyre�nements initially makes KRUST particularly suitable to cope with the output fromfault-�nding systems. 6

4 Veri�cation and ValidationIt is well known that the V&V of KBSs does not conform to the standard de�nitionsof Veri�cation and Validation for conventional software. The speci�cation for a KBS isfundamentally di�erent from those for other software, because the tasks the KBS mustachieve cannot be speci�ed exactly, in some domains it is allowable for the KBS to failsometimes, and plausibly correct answers are often su�cient. Since the problem solvingmethod and any procedural aspects of the knowledge can be checked by conventionalV&V, this paper concentrates on the V&V, and re�nement, of the declarative parts ofa KBS; i.e. the KB. The types of V&V processes will be categorised according to thetype of fault they identify.4.1 Consistency CheckingConsistency checking looks for contradictions which occur in the knowledge, or are de-ducible from the knowledge. Possible inconsistencies include:� contradictory values for attributes can be deduced for the same object - e.g. MY-CIN's apocryphal pregnant male;� a rule is redundant - i.e. its conditions imply the conditions of another with thesame conclusion;� a rule cannot be reached - i.e. its conditions are never satis�ed;� two rules are ambivalent - i.e. the conditions of one imply the conditions of theother and they contain contradictory conclusions - e.g. one rule deduces that thepatient is male, the other deduces \he" is pregnant.� a cycle exists - i.e. a set of rules R1 : : : Rn exist so that the conclusion of Ri appearsin the antecedent of Ri+1 8i = 1; 2; : : : n� 1, and the conclusion of Rn appears inthe antecedent of R1� an attribute has the wrong arity - e.g. parents(abel, cain, adam, eve);Static consistency checking is concerned with only the knowledge explicitly repre-sented in the KB and can often be achieved exhaustively (e.g. ONCOCIN's checker(Suwa, Scott & Shortli�e 1984)). Although dynamic checkers can be exhaustive (e.g.COVADIS (Rousset 1988), COVER (Preece & Shinghal 1992)), they often rely on heuris-tic guidance to focus on likely cases of inconsistency (e.g. SACCO (Ayel & Laurent 1991)).Clearly exhaustive checking produces a complete set of possible anomalies with respectto the speci�cations, whereas heuristic checking is unlikely to �nd all anomalies.Any anomalies found are, however, only possible faults; they logically follow fromthe knowledge but they may not occur in practice, if the KBS has a restrictive inferenceengine. The anomalies must be checked under the KBS's inference engine, to determinewhether they are actual faults. Alternatively, the inference engine can be taken intoaccount when de�ning consistency. 7

4.2 Completeness CheckingCompleteness checking is closely related to knowledge acquisition, but the term impliesthat the process occurs towards the end of a particular acquisition phase; one believes thatthe knowledge is complete, but small items of knowledge may be missing. Completenesscheckers have two distinct functionalities:� User-driven checkers display existing knowledge in a structured, but domain in-dependent way, and allow the user to inspect the knowledge and thus volunteeradditional knowledge (e.g. AQUINAS (Boose 1988), OPAL (Musen, Fagan, Combs& Shortli�e 1987)).� Automatic checkers discover missing knowledge and ask the user to supply knowl-edge which will �ll this gap. They often use knowledge about problem solv-ing to identify knowledge which is believed to be relevant. (e.g. MOLE, SALT(Marcus 1988)).4.3 TestingA testing tool measures the quality of the KBS by running it on examples. It can recordthe e�ects of testing by documenting traces, providing a statistical summary of ruleusage or recording any examples which the KBS cannot solve (e.g. VORTEX (Cross &Grisoni 1990)). Testing depends heavily on the relevance, importance, or even criticalityof the examples. SYCOJET (Ayel & Laurent 1991) is a testing tool with a di�erent slant;it generates pertinent examples.5 Integrating V&V and Re�nementWe now consider how the tasks undertaken by V&V tools can provide di�erent types ofevidence on which re�nement tools can base knowledge updating. In addition, the useof V&V tools can enhance the �ltering process which is so central to KRUST's success.This discussion is based on KRUST.In Figure 2, some V&V tools have been superimposed on KRUST's architecture. Thearrows show the
ow of evidence to KRUST, their labels indicating the type of evidence.We have included a test sample generation tool with the dual possible roles for KRUSTof providing evidence of faults and supplying pertinent examples for KRUST's evaluationphase.5.1 Providing EvidenceWe consider each class of tool and describe how the evidence each provides can be usedby KRUST. 8

Propose
Refinements

Test Examples
Contradictory

KB

Training

Inconsistent

Test Sample
Generation Tool

Rules/Attributes

Deduction

Example

Statistics

Identify
Rules

New
Knowledge

Knowledge Taxonomies

Validation Knowledge

Inconsistency Specifications
Redundancy Specifications

Build
 Refined KBs

Evaluate
Refined KBs

Testing Tool

Consistency

Completeness

Checking Tool

Checking Tool

Figure 2: KRUST's Evidence from V&VFrom Consistency Checking ToolsIf the identi�ed inconsistency does cause an actual fault then it must be removed.KRUST's reaction to each of the inconsistencies discussed in Section 4.1 follows:Contradictory Values: The expert decides which of these conclusions is correct andKRUST is presented with a training case consisting of the inputs to the KBS, to-gether with the correct and wrong conclusions. For the special cases of ambivalentrules and borderline examples, similar re�nement steps are appropriate.9

Redundant Rule: KRUST prevents the more general rule from �ring by strengthen-ing its conditions in all possible ways to remove the redundancy with the morespecialised rule.Unreachable Rule: KRUST weakens the rule's conditions so that it can be reached.Cycling Rules: KRUST breaks the cycle in all possible places by strengthening each ofthese rules one at a time.Attribute with Wrong Arity: KRUST removes the extra arguments, or adds suitablearguments, in all possible ways. New arguments are obtained from the knowledgetaxonomies used to implement changes.From Completeness Checking ToolsKRUST organises the integration of the user-supplied, new knowledge within the existingKB. The user supplies the di�erentiating facts for the unsolved case and KRUST assem-bles them into a new rule which it inserts with a higher priority than any error-causingrule. We wish to incorporate an inductive learner within KRUST so that more generalnew rules can be learned.From Testing ToolsTesting tools use a set of examples to monitor the testing process. These examples area source of training examples for KRUST. The user can investigate the testing output(e.g. traces) to select those examples for which he wishes the KB repaired. Testing toolsthat incorporate test sample generation can themselves provide pertinent examples fromwhich the expert may choose training examples.5.2 Supplying Evaluation MetricsIn addition to V&V evidence, KRUST can utilise the test examples used by V&V andthe metrics available to testing tools in its KBS �ltering and evaluation phases. KRUSTadopts a generate-and-test model and thus bene�ts from the pruning achieved by havingaccess to accurate rejection criteria. The second �lter requires important examples, oneswhich the KB must answer correctly. Test examples from the requirements speci�cationare suitable benchmarks on which to reject re�ned KBs which fail them. Test samplegeneration tools can supply pertinent examples from which the expert can select impor-tant ones. After this coarse �ltering the remaining re�ned KBs are ranked according to\performance". Again test generation tools can provide relevant test examples and, inaddition, constraints on the test generation can concentrate attention on particular partsof the KB.In addition to the use of testing tools to document �ltering, KRUST can also employV&V tools as coarse �lters; e.g. consistency checking rejects KBs containing contradic-tory values, incremental veri�cation (Meseguer 1992) would explore faults introduced by10

the updates. Testing tools also o�er a range of metrics, on which KRUST can base its�nal evaluation of re�ned KBs, thus extending KRUST's current statistical method. InFigure 2, the Completeness, Consistency and Testing tools have been linked to KRUST'ssecond �lter and evaluation module to indicate that these V&V tools can be called toperform part of the pruning and evaluation.5.3 Additional KnowledgeThe V&V tools described above are knowledge-based and often heuristic. Not only canKRUST utilise this additional knowledge, but also many dynamic V&V tools explorededuction chains within the KB, a type of search conducted by KRUST. The V&V toolscan pass the results of these e�orts directly to KRUST. Thus, the search e�ort withinthe integrated tools is not duplicated. Figure 2 also shows the links to KRUST from thisso called Validation Knowledge.5.4 The ViVa ProjectThe ViVa project (Esprit P6125)1 addressed the issue of integrating V&V and re�ne-ment tools as exempli�ed by its full title: \Veri�cation, Improvement & VAlidation ofKnowledge Based Systems". In addition to providing an integrated toolset of V&V andre�nement tools, ViVa aimed to de�ne a methodology for using the tools. ViVa also hada common knowledge representation, which contained all the necessary hooks requiredby the tools, easily available.An important criterion for KBS development tools is their suitability for real-lifeKBSs. Access to real-life KBSs for academic research is often di�cult, but the ViVaproject was applications-driven, and aimed to provide both KBSs and descriptions of theV&V and re�nement needs of KBS developers.Improvement, as de�ned above, implies the two stages: interpretation of faults andimplementation of changes. This coincides with KRUST's notion of re�nement, whosemajor task is identifying the cause of \failure"; making the changes is normally a relativelyeasy exercise. The two stages of interpretation and implementation were indicated inFigure 1. The other ViVa tools cover the types of V&V described in Section 4 andsatisfy the Veri�cation and Validation objectives of the project. Figure 2 thus representsthe functionality of a KRUST-based improvement tool within the ViVa toolset.This project was rescoped after 21 months to concentrate on building a toolbox ofvalidation and veri�cation tools.1The ViVa partners were Computer Resources International A/S (DK), CISI Ingenierie (F), EuropeanSpace Agency (Int), Lloyd's Register of Shipping (UK), Logica Cambridge Ltd. (UK), University ofAberdeen (UK) and Universit�e de Savoie (F).
11

6 SummaryIn this paper we have described how an automated re�nement tool can make use of theoutput of V&V tools and thus give added functionality to the V&V tools. In addition tosimply identifying possible faults, the KB is explored so that the causes of the faults canbe identi�ed and the anomalies can be recti�ed by actually re�ning the KB in responseto the evidence that faults have been found. We have discussed the suitability of ourKRUST re�nement tool to act in parallel with various V&V systems. Its behaviour canbe moulded to suit the available evidence and so can make use of various forms of outputfrom V&V tools as training information. In particular, KRUST is unusual in generatingmany re�nements initially to remove a particular anomaly. However its pruning andevaluation modules can be biased to suit the available evidence. Thus KRUST can beregarded as a
exible re�nement tool which can be adapted to favour the various typesof change which may be required.The importance of quality assurance means that a user should be encouraged toundertake V&V at all stages of the development of a KBS. The burden of V&V iseased by incorporating re�nement within the fault-�nding phase, because such a systemadditionally suggests how anomalies may be �xed. We feel that KBS developers may beencouraged to undertake more rigorous V&V if a complementary re�nement process cansuggest repairs for the anomalies which are highlighted. Thus the combined use of V&Vand re�nement may ease the \Knowledge V&V Bottleneck".7 AcknowledgementsThis work has developed from my PhD studies with Derek Sleeman at the University ofAberdeen and I thank him for this and my inclusion as part of the ViVa team in Aberdeen.I am also grateful to Marc Ayel, Laurence Vignollet and Stephane Talbot from LIA,Universit�e de Savoie for discussions about the SACCO and SYCOJET tools. Finally Iwish to thank the anonymous reviewer who directed my attention to Ripple Down Rulesfor his helpful discussion comparing their role to assist knowledge maintenance and morestandard knowledge re�nement.ReferencesAyel, M. & Laurent, J.-P. (1991), SACCO-SYCOJET: Two di�erent ways of verifyingknowledge-based systems, in M. Ayel & J.-P. Laurent, eds, `Validation, Veri�cationand Test of Knowledge-Based Systems', Wiley, pp. 63{76.Boose, J. H. (1988), `Uses of repertory grid-centred knowledge acquisition tools forknowledge-based systems', International Journal of Man-Machine Studies 29, 287{310. 12

Carbonell, J. G. (1991), Scaling up knowledge-based systems via machine learning, In-vited Talk, Fifth European Working Session on Learning (EWSL-91), Oporto, POR-TUGAL.Compton, P., Edwards, G. et al. (1992), `Ripple down rules: Turning knowledge acquisi-tion into knowledge maintenance', Arti�cial Intelligence in Medicine 4, 47{59.Craw, S. & Sleeman, D. (1990), Automating the re�nement of knowledge-based systems,in L. C. Aiello, ed., `Proceedings of the ECAI90 Conference', Pitman, Stockholm,SWEDEN, pp. 167{172.Craw, S. & Sleeman, D. (1991), The
exibility of speculative re�nement, in L. Birnbaum& G. Collins, eds, `Machine Learning: Proceedings of the Eighth International Work-shop', Morgan Kaufmann, Evanston, IL, pp. 28{32.Cross, S. & Grisoni, M. (1990), A methodology for producing validated real-time ex-pert systems, in `Proceedings of the Advisory Group for Aerospace Research andDevelopment: Knowledge Based System Applications for Guidance and Control,AGARD-CP-474', pp. 27{30.Davis, R. (1984), Interactive transfer of expertise, in B. Buchanan & E. H. Shortli�e,eds, `Rule-Based Expert Systems', Addison-Wesley, Reading, MA, pp. 171{205.De Raedt, L. (1992), Interactive Theory Revision, Academic Press, London.Ginsberg, A. (1988), Automatic Re�nement of Expert System Knowledge Bases, ResearchNotes in Arti�cial Intelligence, Pitman, London.Kang, B. H., Gambetta, W. & Compton, P. (1994), Validation and veri�cation withripple down rules, in `AAAI Workshop on Validation and Veri�cation', Seattle, WA,pp. 64{69.Marcus, S., ed. (1988), Automating Knowledge Acquisition for Expert Systems, Kluwer,Boston.Meseguer, P. (1992), Incremental veri�cation of rule-based expert systems, in B. Neu-mann, ed., `Proceedings of the ECAI92 Conference', Wiley, Vienna, AUSTRIA,pp. 840{844.Morik, K., Wrobel, S., Kietz, J.-U. & Emde, W. (1993), Knowledge Acquisition andMachine Learning, Academic Press, London.Musen, M. A., Fagan, L. M., Combs, D. M. & Shortli�e, E. H. (1987), `Use of a domainmodel to drive an interactive knowledge-editing tool', International Journal of Man-Machine Studies 26, 105{121. 13

Ourston, D. & Mooney, R. (1994), `Theory re�nement combining analytical and empiricalmethods', Arti�cial Intelligence 66, 273{309.Politakis, P. G. (1985), Empirical Analysis for Expert Systems, Research Notes in Arti-�cial Intelligence, Pitman, London.Preece, A. D. & Shinghal, R. (1992), Validating knowledge bases by anomaly detection:An experience report, in B. Neumann, ed., `Proceedings of the ECAI92 Conference',Wiley, Vienna, AUSTRIA, pp. 835{839.Richards, B. L. & Mooney, R. J. (1991), First-order theory revision, in L. Birnbaum &G. Collins, eds, `Machine Learning: Proceedings of the Eighth International Work-shop', Morgan Kaufmann, Evanston, IL, pp. 447{451.Rousset, M. C. (1988), On the consistency of knowledge bases:the COVADIS system, in`Proceedings of the ECAI88 Conference', M�unchen, GERMANY, pp. 79{84.Saitta, L., Botta, M. & Neri, F. (1993), `Multistrategy learning and theory revision',Machine Learning 11(2/3), 153{172.Suwa, M., Scott, A. C. & Shortli�e, E. H. (1984), Completeness and consistency in arule-based system, in B. G. Buchanan & E. H. Shortli�e, eds, `Rule-Based ExpertSystems', Addison-Wesley, Reading, MA, pp. 159{170.Wilkins, D. C. (1988), Knowledge base re�nement using apprenticeship learning tech-niques, in `Proceedings of the Sixth National Conference on Arti�cial Intelligence',Minneapolis, MN, pp. 646{651.Wogulis, J. & Pazzani, M. (1993), A methodology for evaluating theory revision systems:Results with AUDREY II, in R. Bajcsy, ed., `Proceedings of the Thirteenth IJCAIConference', Chambery, FRANCE, pp. 1128{1134.

14

