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Abstract

The knowledge acquisition bottleneck in the development of large knowledge based
applications has not yet been resolved. One approach which has been advocated is the
systematic use of Machine Learning (ML) techniques. However, ML technology poses
difficulties to domain experts and knowledge engineers who are not familiar with it. This
paper discusses Consultant-2, a system which makes a first step towards providing system
support for a “Pre- and Post- Processing” methodology where a cyclic process of experi-
ments with an ML tool, its data, data description language and parameters attempts to
optimise learning performance.

Consultant-2 has been developed to support the use of the Machine Learning Toolbox
(MLT), an integrated architecture of ten ML tools, and has evolved from a series of earlier
systems. Consultant-O and Consultant-1 had knowledge only about how to choose an ML
algorithm based on the nature of the domain data. Consultant-2 is the most sophisticated.
It, additionally, has knowledge about how ML experts and domain experts pre-process
domain data before a run with the ML algorithm, and how they further manipulate the
data and reset parameters after a run of the selected ML algorithm, to achieve a more
acceptable result. How these several KBs were acquired and encoded is described. In fact,
this knowledge has been acquired by interacting both with the ML algorithm developers
and with domain experts who had been using the MLT toolbox on real-world tasks. A
major aim of the MLT project was to enable a domain expert to use the toolbox directly;
i.e. without necessarily having to involve either a ML specialist or a knowledge engineer.
Consultant’s principal goal was to provide specific advice to ease this process.

*Seconded to the MLT project at the University of Aberdeen, 1990/91; permanent address, The Robert
Gordon University, Aberdeen



1 Introduction

Machine Learning (ML) has been seen as one approach to overcome the classical knowledge
acquisition bottleneck in the development of knowledge based applications [4]. Originally, it
was envisaged that the principal task which would face the domain specialist would be the
choice of an appropriate ML algorithm. This was the position which we held when we began
the MLT (Machine Learning Toolbox) project in 1989. (Section 2 gives more details of the
several aspects of the project.) Thus one of the objectives of the MLT project was to produce
an advisor program, we called it a Consultant, to give such advice. Additionally, as part of
this project, we observed ML specialists and domain experts using ML systems on a number
of industrially important tasks and we soon realised:

e the examples to be used for learning often have to be “massaged” into a form suitable
for a particular Machine Learning algorithm; and

e the domain expert often is unhappy with the results produced by a Machine Learning
algorithm, and hence results also have to be “massaged” or the algorithm re-run with
different data and parameters once the initial results are obtained. So we have realised
that the processing of data by a ML algorithm is not a single-step, but a cyclic process,
[15].

The first version of the Consultant implemented, Consultant-O [16], basically gave advice on
the selection of a ML algorithm from a pre-specified set of algorithms. The knowledge needed
to make this decision had been acquired from both algorithm experts and domain experts who
had used ML algorithms. (This knowledge was essentially standardised by the developers of
the advisory system.) The next advisory system produced, Consultant-1 [5], had essentially
the same knowledge base but had a better interface, allowed the user access to a glossary, as
well as an example-bank, and most significantly it allowed the user to modify decisions and
inputs provided as his/her knowledge of the domain improved. The version of the Consultant,
Consultant-2, discussed in this paper is an enhancement of Consultant-1. In addition, it also
tries to provide support for the user in preparing his data and secondly support when the
results of the initial run with the algorithm do not satisfy the expert. Thus it attempts to
provide support for the 2 points above.

When the advisory system was first conceived, it was intended that these systems should
make it possible for domain experts with no knowledge of Machine Learning to use the
Consultant, and thereby use the toolbox to acquire knowledge about his/her chosen task
domain. Given the difficulties which we encountered with Consultant-0, we weakened our
position slightly, and our objectives became that of providing an advisory system and toolbox
which could be used by knowledge engineers (who again would have no detailed knowledge of
ML). In section 6, we summarise the types of users who have actually used the Consultants,
and to what effect.

The paper is structured as follows. Section 2 describes the context of the system within the
MLT project, the available ML tools and the Case Studies. Section 3 discusses methodological
issues of using ML, the Pre- and Post-Processing methodology, and the functional specification
of Consultant-2. The implemented architecture of the system is presented in section 4. The
knowledge incorporated in this architecture is then outlined in section 5. Section 6 shows a
particular run (a protocol) for Consultant-2 in a medical domain; this protocol particularly
illustrates the post-run phase. Section 7 outlines an alternative perspective of the system in
terms of learning bias. Finally, section 8 presents conclusions and discusses future directions.



Figure 1: The Machine Learning Toolbox Architecture

The architecture of the MLT is outlined in figure 1. The main parts of the toolbox are:

the learning tools (MLT tools): ten ML tools with a common Human-Computer Inter-
face (HCI), a Common Knowledge Representation Language (CKRL), and Program-
ming Interfaces (PIs),

the Consultant: a central advice-giving expert system for supporting the use of the MLT,
and

other general purpose tools: an evaluation module, an example post-processor and a
CKRL editor.



The learning tools have been selected to provide a wide range of learning capabilities.
There are knowledge-free induction algorithms (NewID, CN2, LASH), knowledge-intensive
concept learners (Cigol, Makey), symbolic clustering algorithms (KBG, DMP), statistical
data analysis tools (SICLA) and more integrated systems for the acquisition, modelling and
refinement of knowledge (Mobal, APT).

The diversity and complexity of the toolbox has raised several issues which are important
from the practical and research viewpoints: the selection of appropriate tools, their actual
usage and various knowledge integration issues. The selection and initialisation of tools
is addressed by the Consultant and will be discussed in the rest of this paper. Knowledge
integration issues are addressed by work on the Common Knowledge Representation Language
(CKRL); for details see [10].

The iterative process of building the MLT permitted its developers to undertake ongoing
evaluation of the MLT tools, the Consultant and the CKRL using the Case Studies as a
testbed. Thirteen Case Studies exist [8], taken from the following application areas:

e Fault diagnosis in electronic devices and networks
e Computer aided design

e Temporal sequence prediction

e Image recognition and clustering

e Medical diagnosis and planning.

Given the sophistication of the individual MLT tools, and the complexity of the target
applications there is a need for an advice-giving system to support the use of the MLT; three
versions of the Consultant have been built to date!.

The goal of Consultant-0, [16], was to support the selection of a suitable MLT tool. This
was viewed as a classification task; it takes as input a description of the task and the appli-
cation data, and discriminates among the ten classes (the ten MLT tools). Consultant-0 was
built as a simple classification expert system using the Nexpert”™ shell. Substantial inter-
viewing with ML experts and domain experts took place to acquire the knowledge embedded
in the system.

Consultant-1 [5, 6] was built after an extensive critical analysis of Consultant-0. The
discrimination knowledge of Consultant-0 was judged satisfactory and so this knowledge was
only slightly revised for Consultant-1. On the other hand, Consultant-0 was substantially
criticised for rigidity during its interaction with the user, as it did not allow the user to revise
answers once the overall task had become better understood by the domain expert. The
architecture of the system was redesigned to provide flexibility during the acquisition of task-
and data- descriptions. A help system was also added to provide the necessary ML-specific
knowledge that the intended user often lacked.

In Consultant-2 (C-2), the functionality of the system is further enhanced to support the
pre- and post-processing phases discussed earlier. This functionality is discussed in the next
section. We should mention that, although the new functionality represented a substantial
increase in the scope of the system, there was, surprisingly, little need to change the overall

Tn the rest of the paper, when the version of the MLT or the Consultant is not explicitly stated, the latest
one, MLT-2 or Consultant-2, is implied.



architecture of the system from that used in Consultant-1; the increased functionality was
mainly achieved by acquiring and embedding functionally different knowledge in the system.

3 The Functionality of Consultant-2: Pre- and Post- Process-
ing

ML tools can, in some circumstances, be used to extract knowledge required for the develop-
ment of knowledge based systems. When this is done, it can radically reduce the development
time of the applications. This contribution of the ML field to knowledge acquisition can be
substantial, but we are still quite far from completely automating such tasks. It has been
realised that the process of using ML tools is not as straight forward as was initially expected.
Thinking of an ML tool as a black box, that can be applied, once, in a straight forward manner
to a data set, to produce useful and possibly complete knowledge, is certainly appealing, but
rather unrealistic, when it comes to real world tasks. Working with the MLT Case Studies
showed that the right way to view the development process is not as a one-off application of
an ML tool but as a cyclic process that closely resembles the traditional process of systems
development. We have abstracted our experience gained from the Case Studies, as to what is
typically done during this cyclic process, into a “methodology for applying ML on real world
problems”. The methodology was first published in [8], and is outlined in figure 2.

1. Decide on the appropriate problem solving method [3, 19].

2. Decide on the appropriate problem solving tool; this decision will imply
specific data structures as the desired format of the output of the learning
process.

3. Decide on the appropriate ML tool, based on descriptions of the task, the
data and the desired format of the output.

4. Use data transformation tools to adapt the data format.
5. Use data manipulation tools to form the training set.

6. Given the task and data description, select promising values for the ML
tool’s parameters.

7. Run the ML tool.
8. Evaluate results using statistical, knowledge-based or intuitive methods.
9. If evaluation is satisfactory, then FINISH.

10. Otherwise, modify some of the previously made decisions on tool param-
eters, training data, data representation, background knowledge, ML tool,
problem solving tool and/or problem solving type AND goto step 7.

Figure 2: A methodology for applying ML on real world problems

In the rest of the paper we will use the term “Pre-Processing” to refer to all those actions
undertaken to prepare the application for the initial use of the ML tool; i.e., the first six steps
of the methodology. The term “Post-Processing” will refer to steps 8 to 10 i.e. the steps
of evaluating the learning process and taking actions for improving it. The term “Pre- and



Post-Processing” will refer to the whole of the methodology, excluding actually running the
ML tool.

It is clear that automated support for such a methodology would be of significant academic
interest and would have significant industrial value. Initial steps towards this goal have been
taken by building tools to assist subtasks within the overall process. Building an integrated
evaluation package (LEM) is reported in [12]; a program for interactive data Post-Processing
(SMILE) is described in [11]; and the WILA workbench for supporting a user throughout
Pre- and Post-Processing with simple attribute-value ML tools is described in [17].

Consultant adopts a pro-active approach, rather than just a user-supportive role. The
user is still present, and can always reject suggestions made by the system during the process,
but it is the Consultant rather than the user that drives the process. There has been a
gradual shift of responsibilities to the system, in the series of Consultants built. Consultant-0
performed only step 3 of the process; Consultant-1 performed step 3 and supported steps
4-6; while Consultant-2 attempts to automate steps 3-10. Consultant-3 is currently being
specified to extend the scope of advice giving by also including steps 1 and 2.

The first stage in implementing Pre- and Post- Processing facilities was to identify clearly
the factors that are manipulated during the two processes. We will refer to this list as the
L-factors 2. The ones we have identified as the most important are:

e The problem solving method chosen; i.e., whether the problem solving task is basically
classification, propose-and-refine, optimisation, etc, [3, 19].

e The problem solving tool; this is linked to the previous factor, and specifies the actual
algorithm to be used to solve the task.

e The ML tool; the algorithm chosen to perform the learning. (This choice is influenced
by the input data and the form of the output required.)

e The formalism of the data; ie, whether the data is for example propositional, or first
order etc.

e The representation and content of the background knowledge, i.e., what formalism has
been used to represent the background knowledge, and

e Specific values for the parameters of the ML tool.

It is interesting to notice that all actions taken during Pre- and Post-Processing, as
outlined, in figure 2, can actually be seen as decisions favouring specific choices of the L-
factors. Notice also that the same L-factors are manipulated both in Pre-Processing and
Post-Processing. Hence, the required output of both Pre-Processing and Post-Processing
could be specified as decisions favouring specific choices of L-factors. The difference between
Pre-Processing and Post-Processing lies in the way such choices are made. Pre-Processing is a
process of making initial choices; e.g. to use algorithm NewlID, with the parameter “Pruning
Threshold” set to 0.1, using the attributes {colour, size}. Post-Processing, on the other hand,
is a process of updating existing choices, made as a result of previous runs; e.g. continue us-
ing NewlD, but increase the Pruning Threshold to 0.15, and discretise the numeric attribute
“size”.

2L-factors is an abbreviation for Learning-Factors.



Figure 3: The functional specification of Consultant-2

It is intuitively useful to think of Pre-Processing and Post-Processing in figure 3 as re-
spectively the initial setting and the subsequent modification steps of an iterative search for
optimal learning performance. The implied optimisation problem is multi-variate because
many L-factors are considered, and multi-functional since several evaluation criteria might be
important for the application in hand. In order to converge rapidly, the decisions taken at
each step of the search need to involve informative heuristics, and probably interaction with
the user. The implementation of these requirements is discussed in the next section.



4  The Architecture of Consultant-2

Consultant-2’s design is based on two sub-architectures, one for Pre-Processing and one for
Post-Processing as shown in figures 4 and 5. The two architectures share a common, “but-
terfly”, architectural style and the same representation mechanism. Historically, the Pre-
Processing architecture resulted from the architecture of the previous version of the system,
Consultant-1, and is almost identical to it. The Post-Processing architecture was built as
an extension of the Pre-Processing one, sharing its style and representation. The “butterfly”
style of the two architectures has been imposed, in the first place, by a need to structurally ac-
quire, and flexibly maintain, information coming from a wvariety of sources, and subsequently,
the desire to use this information for a variety of analyses.

The Pre-Processing architecture, figure 4, focuses on the acquisition and usage of
an explicit description of the application task and data, called the Task Description. The
acquisition can be guided by the combination of three different modes of interaction with the
user: fixed path, intelligent, or user-browsing. After acquiring the Task Description, a number
of different “knowledge functions” can be applied to it, to yield several types of advice such
as relative suitability of the MLT tools, providing explanations for choice of tools, comparing
tools, etc. If a particular tool is now selected by the user, Consultant asks some more tool-
specific questions and then applies other knowledge functions to the Task Description to yield
plausible Pre-Processing initialisations for the relevant L-factors.

In the Post-Processing architecture, figure 5, the front-end Acquisition Controller
manages the acquisition of information about the task, the data, the run of a specific MLT
tool and the output of the MLT tool as provided by four different sources. The MLT tool
provides tool-specific statistics about the run and its output. The evaluation module, LEM,
provides more general evaluation metrics about the output. The user provides subjective
and domain specific assessments. Finally, the Task Description that was acquired during
Pre-Processing provides information about the task and the data.

The various types of information are combined by the Acquisition Controller to build
a structured description of the run and its output, called the Run Description, and a new
updated version of the Task Description. These descriptions are then used to provide advice
on how to improve the next run. The heuristic knowledge required for this task is provided by
the Knowledge Base (KB). The potentially large number of advice fragments are processed
by the Advice Controller to yield the final recommendation. As discussed earlier, these pieces
of advice are settings or modifications of choices made for one or more of the four relevant
L-factors i.e. parameters, data, data description language, or ML tool.

Both the Pre- and Post-Processing architectures are focused on building and using three
knowledge sources consisting of sets of descriptor-value pairs:

Task Description: explicitly describes the task and the data of the specific application,

Run Description: explicitly describes a specific algorithm run that has just terminated
and its output,

L-factors description: explicitly describes the choices made (or to be made) for the L-
factors during a specific run.

The role of Consultant-2’s inference mechanism is to control the acquisition and use of
these Descriptions. The meta-knowledge required for this control task is located in three
knowledge bases, called Generic Descriptions:



Figure 4: The Pre-Processing architecture of Consultant-2

GTD : the Generic Task (and Data) Description,
GRD : the Generic Run (and Output) Description, and

GLFD : the Generic L-Factor Description.

Each descriptor in a Description is associated with a frame structure, which keeps meta-
knowledge about the specific descriptor. As an example, figure 6 shows the frame associated
with the GTD descriptor ‘data.negative-examples’. Probably, the most important type of
meta-knowledge included in the Generic Descriptions is dependency relationships among de-
scriptors. Such dependency knowledge is coded as pre-condition- and propagation- slots in
the descriptor frames. These dependencies support Consultant’s structured acquisition of
information.

5 The Knowledge of Consultant-2

Consultant-2 is a knowledge-based system and therefore the knowledge itself will largely
determine the performance of the system. This section describes the knowledge embodied in



Figure 5: The Post-Processing architecture of Consultant-2

Consultant-2, i.e. the three Generic Descriptions, GTD, GRD, and GLFD, as well as the KB.

Acquiring this knowledge was quite a complex task, as there were ten different algorithm
experts, and each of them had knowledge essentially of only his own algorithm. The Aberdeen
team had the task of developing an appropriate terminology and trying to ensure consistency
across the knowledge acquired from the several experts. Knowledge acquisition involved sub-
stantial interviewing, formalising the information, refining informal rule sets in order to build
the KB, iteratively integrating and compressing the knowledge acquired from the individual
experts, to construct the GTD, GRD and GLFD. For example, the first rule in Table 1 was
developed by the Aberdeen team, from “snippets” of information provided by the several ML
algorithm experts.

10



(PROPERTY data.negative-examples
:conditions ((problem.binary-decision yes) (data.examples-available yes))
:prompt "Can you provide both positive and negative examples?"
:help "You are trying to discriminate among two optiomns, e.g.
whether a decision should be taken or not. If you can
provide examples of when to take the decision as well as
when not to take it (or objects that belong to a certain
class as well as objects that don’t, etc.), answer YES. If
you only have examples of one type, answer NO."
:topics (examples)
:range YESNO
:value-strings ("you can provide both positive and negative examples"
"you can only provide positive examples")
:coefficients ((Q) ; if YES
(newid -1 cn2 -1 cigol -0.8 kbg -0.2 lash -0.5)) ; if NO
radvice (O
(kbg "If you only have examples of one class, you can
use KBG but it will just find a generalisation of your
examples." lash "LASH can in principle learn from positive
examples only, but it performs poorly in this case.")))

Figure 6: A GTD frame (associated to the descriptor “data.negative-examples”)

5.1 The Generic Task Description

The Generic Task Description (GTD) is a dynamic knowledge base containing a domain-
independent set of descriptors for characterising the application task and data along with
the meta-knowledge required for handling these descriptors. The GTD currently contains
seventy-two descriptor frames.

GTD descriptors are used in two ways. Many of the descriptors are used only for dis-
criminating among MLT tools during the tool selection phase. The remaining descriptors are
used after a tool has been selected to provide initial settings for the parameters with respect
to domain characteristics; e.g. setting a plausible value for a tolerance parameter given that
the dataset is known to be noisy. Clearly, both types of descriptors are used during Pre-
Processing. Post-Processing also makes use of GTD descriptors but mainly for constraining
the applicability of Post-Processing rules in the light of special domain characteristics; e.g. if
there is no noise in the data, hypothesis consistency parameters need not be updated.

Most GTD descriptors contain actual facts about the domain, but some of them describe
desired facts: for instance, “domain examples are described by 10 attributes” is a fact about
the dataset, while “the output should be a decision tree” is a desired, and possibly flexible,
constraint on the output of the learning process. A list of the main groups of descriptors
found in the GTD is given below, together with representative examples from each group:

application type: the problem solving type is classification, clustering, optimisation, etc.

input data: the number of classes, the number of examples, the main attribute type,
whether all possible examples are available, estimation of noise in the data, etc.

representation of the input: whether attributes can be defined, whether data are rela-
tional in nature, etc.
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background knowledge (BK): whether it is available, whether it is essential, its format,
whether the closed world assumption holds, etc.

output: the preferred output format, whether readability is required, the expected number
of clusters, etc.

5.2 The Generic Run Description

The Generic Run Description (GRD) is a knowledge base containing a set of descriptors for
characterising the run of a learning algorithm and its output along with the meta-knowledge
required for handling these descriptors.

There are currently 100 GRD descriptors. The instantiation of the GRD involves more
complicated information management than that of the GTD, because, while most of the
instantiation of the GTD is undertaken by the user, instantiating the GRD involves additional
information sources (see figure 5). A particular measurement that relates to the output (e.g.
tree size) might be provided either by the algorithm or by the Learning Evaluation Module
(LEM). It might then be used for inference (e.g. if the “tree size” is less than 4 then the “tree
size judgement” is set to “too small”). Or it might be assessed by the user, e.g., the user is
asked to judge whether the value 4 is large or small for the descriptor tree.size for the specific
domain. Hence, some GRD descriptors hold exact measurements about the run and output,
while others hold user (or system) assessments. A list of the main groups of descriptors to
be found in the GRD is given below, together with representative examples from each group:

the outcome of the run: whether the run was interrupted, the time spent for learning,
whether the memory was filled up, etc

the output (in general): the actual format of the output, complexity assessment of the
output, comprehensibility assessment, the exact coverage achieved, the exact accuracy
achieved, user assessment of the accuracy achieved etc.

tree (or graph) output: the minimum/maximum/average path length, the number of leaf
nodes, tree branchiness, overall size assessment, etc.

clusters output: number of clusters, average cluster size, average centre distance, etc.

rules output: the number of rules, the maximum path length, the average significance of
rules, etc.

5.3 The Generic L-Factors Description

The Generic L-Factor Description (GLFD) contains explicit descriptions and knowledge about
the L-factors; i.e., every factor that can affect learning performance and can be controlled by
Consultant-2.

Several slots of the GLFD frames are used to store algorithm parameters. The slots
describe parameter-specific knowledge such as the range of valid values of a parameter, infor-
mation on typical values, default values and knowledge about how to update the suggested
value when such an action has been decided.

The GLFD contains descriptors for the four L-factors handled by Consultant-2: MLT tool,
data, data description language, and parameters for the chosen algorithm. The last category
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of descriptors is the largest within the GLFD. We will further divided this category into
groups, based on the way the corresponding parameters affect learning performance. This
is usually done by imposing constraints on the way the tool generates and tests hypotheses.
Learning tools have traditionally been seen as programs that search a space of hypotheses
each of which can potentially and approximately fit the data, [9]. The way this space is
constructed and searched has a large impact on the learning performance and is sometimes
controlled by external parameters. Based on their role, the parameters represented in the
GLFD can be categorised into:

e parameters that impose constraints on the language in which hypotheses are made,
e parameters that specify when a hypothesis is to be rejected or accepted,

e parameters that impose a preference (preferred order) among hypotheses,

e parameters that specify the strategy used during the search for valid hypotheses, or

e parameters that specify the role of background knowledge in the generation of hypothe-
ses.

5.4 The Knowledge Base

Having described the GTD, GRD and GLFD, we can now present an overview of the heuristic
knowledge of Consultant-2 that links situations described by Task- and Run- Descriptions to
appropriate actions on the L-factor Descriptions. We have chosen to represent this expertise as
rules. The premises of these rules are conjunctive conditions on the values of GTD and GRD
descriptors. The rule actions consist of actions applied to L-factors. The actions either set a
plausible initial choice for an L-factor or modify an existing one. Each rule has an attached
coefficient which represents the certainty associated with the corresponding suggestion. When
more than one rule is applicable, the certainties are combined to yield the overall certainty
for the recommendation. The conflict resolution module bases its decisions on these several
certainties.
Consultant’s KB contains about 250 rules. Each of them is characterised by:

1. the phase in which the rule is applied: Pre-Processing or Post-Processing (i.e whether
the rule action initialises or modifies a choice).

2. the L-factor affected by the rule, i.e. one of MLT Tool, Parameter, Description Language
or Data.

These two “dimensions” define eight categories, summarised in table 1. Each cell of the
table shows an example of a rule taken from the corresponding category. The rest of this
section provides a general description of the rules included in each of these eight categories.

5.4.1 MLT tool

Pre-Processing: This category contains the rules used for the initial selection of a learning
tool. This selection is based solely on the Task Description. 25 GTD descriptors are used,
each of which contains evidence for, or against, the use of some MLT tools.

Post-Processing: Rules in this category would suggest modification of the choice of the
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H Pre-Processing ‘ Post-Processing

IF examples cannot be represented as
attribute/value pairs,

MLT Tool |l pHEN use Apt (0.2), use Cigol (0.2), do Left to the user.
not use CN2 (0.8), etc.
IF you are using CN2, IF you are using Lash,
AND your examples cover the whole AND the number of solutions found was
Parameters || example space, too small,
THEN set the error estimate function to THEN increase the Maximal Search Depth
“Naive”. by 1.
IF you are using NewlD, IF you are using CN2,
Descrinti AND the possible values of a symbolic AND an attribute has many possible
escription .
Language attribute are na'turally ordered, . values, .
THEN make this attribute numerical AND you obtained too many rules,
instead. THEN try to merge some of these values.

IF the learned rules perform poorly on test
examples,

AND your examples are sparse in the set of
possible examples,

AND an expert can provide new examples
interactively,

THEN use SMILE to acquire new
examples.

IF all possible examples are provided,
AND you are using CN2,

Data AND size of dataset >= 25000,
THEN use SMILE to select the most
informative examples.

Table 1: Sample rules from Consultant’s knowledge base.

MLT tool, after running it. This is usually advisable when a tool has been tried with many
other types of L-factors none of which gives satisfactory results. However, Consultant does
not currently include rules to make such a decision; this type of decision is left to the user.

5.4.2 Parameters

Once a tool has been selected, Consultant begins to search for optimal parameter values.
Pre-Processing: provides the starting values for this search. All MLT tools provide default
parameter values which are suitable for many applications, but when information from the
GTD allows Consultant-2 to select better values, the search is likely to be more efficient.
Post-Processing: modifies previous parameter values. Three types of modifications are
suggested by rules in this category: set parameter to a specific value, increase or decrease
value. The premises of these rules involve mostly GRD descriptors. This is the largest
category of rules.

5.4.3 Description Language

Processing Representations. A learning tool usually requires its data to be in a particular
formalism. Therefore, if the tool has been selected without regard to the formalism of the
available data, changes of formalism will often be required; such changes are often complex,
and can rarely be automated. The approach taken in Consultant is to use the formalism of the
available data as a crucial constraint during the selection of an MLT tool. Thus Consultant
only recommends a tool if it can use the available data with little or no modifications on
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its formalism. There are therefore no rules in the knowledge base that explicitly recommend
a change of formalism. On the other hand, the KB does contain rules which advise on the
description language.

Pre-Processing phase: An initial description language can sometimes be suggested and
the Consultant includes various rules for this.

Post-Processing phase:  After running a tool, Consultant can often recommend the
creation of new attributes, the merging of attribute values or other modifications of the

description language that can result in better performance with the specified ML algorithm
3

5.4.4 Data

Pre- and Post-Processing can also operate directly on data. Manual Data Pre- and Post-
Processing can be performed using the WILA workbench [17]. Semi-automatic Data Post-
Processing is performed by the SMILE scenario generator [11]. SMILE takes the output from
an MLT tool and generates templates (scenarios) that describe potentially interesting, but
unclassified, new examples. These can then be classified by an expert, that is acting as an
oracle, and added to the example set.

6 A session with Consultant-2

The goal of this session is to suggest one out of 6 possible treatments for a patient with
Maldescensous Testis; thus the task is essentially classificatory. Data and domain expertise
has been provided by the FORTH Institute of Heraklion, in Crete.

The protocol has essentially three phases: pre-processing; selection of algorithm and set-
ting of parameters; and post-processing. At several places in this interaction the system gives
the user a series of choices and the user selects the one he/she wants by clicking on the ap-
propriate option. To make this dialogue understandable we give the list of options and we
show the user’s reply (as if they had typed in their reply). The list of options are given in
bold as are the Consultant’s questions, which are also preceded by Q. The User’s answers are
preceded by A. Commentary on the dialogue are given in italics.

I. THE PRE-PROCESSING PHASE.
Q: Which of the following best describes what you want to do?

e Group entities with similar properties

e Select the most appropriate from 2 or more options
e Optimise the performance of a particular system

e Predict recurring events from past behaviour

e Find an ordered sequence of actions to solve a problem

3For simple propositional algorithms, such modifications of the description language together with the
necessary data modifications can be carried out using the WILA workbench, [17].
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e Detect instances of a pattern in data

e Build or refine a model of a domain
A: Select the most appropriate from two or more options

Q: How many options (classes) are there?
A: 6

Q: Are the classes mutually exclusive?

e YES
e NO

A: YES
Q: Could you provide examples from which an ML algorithm could learn?

e YES
e NO

A: YES
Q: Could you classify examples artificially generated by the system?

e YES
e NO

A: YES

Q: Can your data be noisy or inaccurate?

e YES
e NO

A: YES

Q: How many examples could you provide?
A: 200

Q: Can the examples be represented by attribute-value descriptions?

e YES
e NO
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A: YES
Q: Do all the examples use the same set of attributes?

e YES
e NO

A: YES
Q: What type of attributes do you have?

e Mostly numeric
e Mostly symbolic
e Mostly binary (Boolean)

e A mixture of different types

A: A mixture of different types

Q: Is an expert available to evaluate interactively hypotheses formulated by a
learning system?

e YES
e NO

A: YES
Q: Can you provide background knowledge to assist learning?

e YES
e NO

A: NO
Q: What kind of output would you like?

e A decision tree
e A set of IF THEN rules

e A recognition function

A: A set of IF-THEN rules

Q: Do you need the resulting rules (or tree or function) to completely cover the
example space?
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e YES
e NO

A: YES

CERTAINTIES after PRE-RUN session (displayed on the workstation)

e APT : -100%

e CIGOL : -91%

e CN2: 84%

e DMP : -44%

e KBG : 25%

e LASH : -68%

e MAKEY : -100%
e MOBAL : -100%
e NEWID : 60%

e SICLA : -100%

II. CHOICE OF ML ALGORITHM AND SETTING OF ALGORITHM’S PARAMETERS.

At this stage the user could have chosen to execute any of the algorithms given above.
Also, as introduced in Figure 4 he could have chosen to collect more information about the
task, or to have changed some of his earlier answers.

This user, in fact, selected the CN2 tool, when one additional question was asked:

Q: Do you wish to monitor the algorithm run?

e YES
e NO

A: YES

The run with the CN2 tool then occurs and several record files are produced. Some of these
are read by the Consultant after querying the user. The post-run phase then is entered.

III. POST-RUN PHASE.
Q: What is the status of the latest algorithm run in this session?

e Completed
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A:

e Interrupted by the user

: Completed

: The elapsed time (35.69 secs) is:

e Too long

e Satisfactory

: Satisfactory

: The number of rules (28 rules ) is:

e Too many
e Satisfactory

e Too few

: Too Many

: The average significance of the rules (9.43) is:

e Low
e Satisfactory
e High

Low

: The complexity of the learned result in general is:

e Too complex
e Satisfactory

e Too simple

: Satisfactory

: The completeness of the learned result in general is:

e Low, crucial knowledge has not been produced
e Satisfactory

e Quite complete

Satisfactory

Q: The comprehensibility of the learned result is:
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e Difficult to understand
e Able to be understood
e Very easily understood

A: Able to be Understood

Q: Does the expert want to include minority rules?
e YES
e NO

A: NO

Q: The accuracy of the learned result on the testing set (58.9 %) is:
e Too high
e Satisfactory
e Too low

A: Too Low

PARAMETER SUGGESTIONS (post-run phase)
The resulting parameter recommendations are:

e (.72 evidence to increase Significance Threshold to 10.0
e 0.6 evidence to increase Star Size to 6
e 0.6 evidence to decrease Star Size to 4

e 0.5 evidence to set Maximum Class Forcing to TRUE

As shown above, two conflicting recommendations are suggested for the Star-Size. This is
because the certainties are identical for each recommendation. One can resolve the conflict if
one knows the reasons supporting each of the recommendations. Hence the user asked for an
explanation for the star-size; based on this explanation, and given that the user in this session
was mostly concerned about accuracy, he chose to increase the star-size to 6. CN2 was then
rerun with the updated parameters. The new parameter settings suggested by Consultant-2
did in fact alter the performance of the algorithm, and a rule base resulted which had fewer
rules and higher accuracy. The value obtained were in fact 20 rules with 71% accuracy.

FEach version of the Consultant was thoroughly evaluated by partners who had primary
responsibility for applications (namely BAe, AAR, Siemens & FORTH). Consultant-2 was
used by each of these institutions; in the case of BAe and AAR, Consultant-2 was used by
domain specialists. In the case of FORTH, due to pressure of time, the Medical expert did
not use Consultant-2 directly but with a Knowledge engineer (a member of the MLT team).

The feedback from both groups of users on C2 was generally positive, [8].
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7 A further perspective on Consultant-2: Learning Biases

Once the target ML algorithm has been decided, then the remaining L-factors can be thought
of as biases for the execution of the algorithm. (For a definition of bias see [18].)

Early work in ML has been content to choose a single goal for the learning process, such
as minimising the number of rules to achieve coverage, minimising the time required for the
performance system to solve a range of tasks using the inferred knowledge, etc. Recently, the
field has reported the study of tradeoffs between conflicting goals such as achieved accuracy
vs. time required for learning, [13]. The MLT Case Studies, have led us to believe, that in
real world tasks, more than two criteria need to be considered simultaneously. Under these
conditions learning can be thought of as essentially a multi-criteria optimisation task; this is
the perspective we discussed in [14].

8 Conclusions and future directions

Although clearly helpful, ML is not a “panacea” for knowledge acquisition. The process of
using ML to develop large knowledge-based applications involves substantial decision making
and experimenting with a number of factors, such as the L-factors, that can influence the
success of the process. Introducing methodologies and advice systems, such as Consultant,
can substantially increase the tractability of the process, can result in better and faster
development cycles, and can make the technology available to a much wider range of potential
users. We have described Pre- and Post-Processing, a first, simple methodology to support
the processing of four specific L-factors: the ML tool itself, the data description language, the
data and the tool’s parameters. We also discussed our attempt to build a partially automated
support system for the Pre- and Post-Processing methodology (Consultant-2), and described
its functionality, architecture and the knowledge embodied in it.

Further developments may take various directions. Firstly, development can be focused
towards further automation and tighter coupling with the MLT tools. The ultimate goal of
this approach would be to build a “self-experimenting” version of the Consultant that would
be able to autonomously “play” with different MLT tools, data, description language and
parameter settings on a given application with a view to achieving some pre-specified goal.

Another idea is to experiment with new ML algorithms rather than with new subject
domains. Here, the enhanced Consultant would attempt to automate the knowledge acquisi-
tion task performed manually for Consultant-2, by experimenting with a number of different
applications. This approach, would aim at using automatic methods to induce rules about
the new ML algorithms. Preliminary studies of this kind have been reported in [1] and [2].

Finally, possibly the most challenging direction, would be the development of method-
ologies and systems to support processing of the more difficult L-factors that were omitted
from Consultant-2, namely, the selection of the Problem Solver and the Data Formalism. It
is clear that the nature of the target Problem Solver should affect the ML algorithm used.
The task of controlling the learning of required knowledge within a general framework is not
trivial; for a discussion see [7]. Re-using or sharing the knowledge once it has been inferred
is another issue. Modifying the data formalism, on the other hand, has also been identified
as an important processing action in such subtasks as problem reformulation, changing the
data to fit different ML tools, and integrating knowledge resulting from different learning
processes.
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