
Copyright ©2000IEEE. Reprinted from (Proceedings of the 12th EEEE International
Conference on Tools with AI, held in Vancouver, Canada, 2000)).
This material is posted here with permission of the IEEE. Such permission of the IEEE
does not in any way imply IEEE endorsement of any of The Robert Gordon University’s
products or services. Internal or personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution must be obtained from the
IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

Self-Optimising CBR Retrieval�

Jacek Jarmulak1 Susan Craw1 Ray Rowe2

1School of Computer and Mathematical Sciences,
The Robert Gordon University,

St Andrew Street, Aberdeen, AB25 1HG, Scotland
fjacek js.craw g@scms.rgu.ac.uk

2AstraZeneca
Silk Road Business Park,

Macclesfield, Cheshire, SK10 2NA, UK
Ray.Rowe@astrazeneca.com

Appears in:
Proceedings 12th IEEE International Conference on Tools with Artificial Intelligence, pp. 376–383, 2000.
c
 2000 by IEEE, ISBN 0-7695-0909-6

Abstract

One reason why Case-Based Reasoning (CBR) has be-
come popular is because it reduces development cost com-
pared to rule-based expert systems. Still, the knowledge en-
gineering effort may be demanding. In this paper we present
a tool which helps to reduce the knowledge acquisition ef-
fort for building a typical CBR retrieval stage consisting of
a decision-tree index and similarity measure. We use Ge-
netic Algorithms to determine the relevance/importance of
case features and to find optimal retrieval parameters. The
optimisation is done using the data contained in the case-
base. Because no (or little) other knowledge is needed this
results in a self-optimising CBR retrieval. To illustrate this
we present how the tool has been applied to optimise re-
trieval for a tablet formulation problem.

1. Introduction

Case-based reasoning (CBR) is a problem-solving
methodology that finds solutions to new problems by
analysing previously solved problems [12]. At the centre
of a CBR system is a collection of solved cases, a case-
base. Given a new problem to be solved, the most similar
problems from the case-base are retrieved. Their solutions
may be directly applicable to the new problem, although
some adaptation of these solutions may be necessary to fit
the new problem better. The proposed solution may then be
stored in the case-base and in turn be used to solve future
problems.

CBR has become widely popular because of a number
of advantages. Among them, the ability to utilise exist-
ing data as cases provides an opportunity to reduce devel-
opment time. Nevertheless, knowledge engineering effort

�This work is supported by EPSRC grant (GR/L98015) awarded to Su-
san Craw.

required for constructing CBR systems for some types of
problems may still be significant [6]. Therefore, there is
a need for tools and methods which contribute to reducing
this effort.

The knowledge contained in a CBR system can be con-
sidered as distributed over several “knowledge contain-
ers” [17]: cases themselves, case representation, indexing
knowledge, similarity knowledge, adaptation knowledge.
Some of this knowledge is easily available, some has to be
entered by the expert, and some can be discovered using AI
and statistical techniques. In this paper we describe how the
knowledge needed in CBR retrieval may be acquired auto-
matically using just the available data, requiring no, or only
minimal, expert input. We use cases contained in the case-
base to determine the relevance/importance of the case fea-
tures and the best parameters for the retrieval. This results
in self-optimising retrieval. Our longterm goal is to apply
these methods both to the (initial) knowledge acquisition as
well as to the refinement of knowledge already contained in
a CBR system.

In Section 2 we describe both CBR and present our prob-
lem domain, tablet formulation. Section 3 discusses CBR
retrieval in more detail and shows ways of optimising it.
Details of our optimisation approach are discussed in Sec-
tion 4, and some experimental results are presented in Sec-
tion 5. We finish by discussing related research in Section 6,
followed by Conclusions in Section 7.

2. CBR for Tablet Formulation

The tool we have developed for optimising CBR retrieval
is generic and can be applied to many different problem do-
mains. In this paper we illustrate its use on a tablet formula-
tion domain. This domain is multi-faceted and shows well
the strengths as well as some weaknesses of this optimisa-
tion approach.

The design of a new tablet involves identifying inert sub-
stances calledexcipientsto balance the properties of the

376

drug

filler

binder

lubricant

disintegrant

surfactant

DRUG:
Active ingredient (typically 25%).

FILLER:
To increase bulk in order to produce a tablet of
practical weight for compression (typically 65%).

BINDER:
To impart cohesive properties to the powders by
the formulation of granules.

LUBRICANT:
To reduce interparticulate friction, prevent adhesion
of powder to the surfaces of punches and dies and
to facilitate tablet ejection from the die.

DISINTEGRANT:
To facilitate rapid breakup and disintegration after
administration.

SURFACTANT:
To aid wetting and dissolution of the drug.

Figure 1. Tablet and its ingredients.

drug (the medically active component) so that a tablet is
manufactured in a robust form, and the desired dose of drug
is delivered and absorbed by the patient. Excipients play
the role of fillers, binders, lubricants, disintegrants and sur-
factants in the tablet, Figure 1. The difficulty of this formu-
lation task arises from the need to select a set of mutually
compatible excipients, whilst at the same time satisfying a
variety of other constraints. A formulation also specifies the
quantity of each of the added excipients. Thus, full formula-
tion requires the determination of 5 nominal and 5 numeric
values.

Our collaborator AstraZeneca currently uses a rule-
based system TFS [18] to create tablet formulations. This
application required a large knowledge engineering effort
[5] and therefore we now work on constructing an equiva-
lent system using a CBR methodology. Our goal is to de-
velop techniques which ease the building of CBR systems
in general. These techniques would then be used to build
other CBR systems for AstraZeneca (e.g. injection formu-
lation or tablet coating) or other industries.

The idea of case-based tablet formulation is depicted in
Figure 2. When a new tablet for a given drug and dose is
to be formulated, we first retrieve similar tablet formula-
tions from the case-base. Our case-base contains feature-
value vectors representing previously formulated tablets,
Figure 3. The formulations suggested by the retrieved

retrieve

drug

dose

Case-base
with tablet

formulations

Find formulations
for tablets
with similar

drug and dose

Adapt retrieved
tablet formulations

if needed

Confirm
correctness of
the formulation

Store new tablet
formulation

for future use

case-base
adapt

reviewretain

ex
cip

ien
t

am
ount

filler DCP 0.923
binder GEL 0.021
lubricant MGS 0.010
disintegrant CRO 0.021
surfactant SLS 0.003

New
problem

Formulation

Figure 2. Case-Based Reasoning for tablet
formulation.

tablets may be adapted to give a formulation compatible
with our drug and having acceptable mechanical properties.
The suggested formulation may be reviewed – this may in-
clude actually making a tablet according to the formulation
– and if found to be correct the new formulation is stored in
the case-base.

It is possible to determine all the excipients and their
amounts in asingle retrieval. However, current practice
with tablet formulation suggests that the excipients and
their amounts can be chosen sequentially, e.g., filler, filler
amount, binder, binder amount, etc. Experiments have
shown that this indeed gives more accurate results. But this
also means that retrieval has to be done 10 times for a sin-
gle problem; each retrieval, in principle, requiring different
retrieval parameters. That is where the availability of a tool
which automatically determines optimal parameters for re-
trieval is particularly useful.

3. CBR Retrieval and its Optimisation

In this paper we are concerned with automatically op-
timising the retrieval stage of CBR, so that the most use-
ful cases are retrieved from the case-base, thereby re-
ducing the need for adaptation. Our retrieval stage con-
sists of decision-tree index and similarity measure, see
left part of Figure 4, and is typical for CBR. This type
of retrieval is widely used in commercial CBR tools,
such as: ReCall (ISoft, www.isoft.fr)1, Kate (AcknoSoft,
www.acknosoft.com), and The Easy Reasoner (The Haley
Enterprise, www.haley.com).

1ReCall is the CBR tool we use and we thank ISoft for its software
contribution.

377

ex
ci

pi
en

t

am
ou

nt

ex
ci

pi
en

t

am
ou

nt

ex
ci

pi
en

t

am
ou

nt

ex
ci

pi
en

t

am
ou

nt

ex
ci

pi
en

t

am
ou

nt

YP SRS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
feature #

tablet
properties

case
extra infoproblem solution

filler surfactant

do
se

physical
properties

chemical properties

drug disintegrantbinder lubricant

Figure 3. Contents of a case.

case-base

most
camostsesp

ro
g

re
ss

 o
f

re
tr

ie
va

l

CBR system
component

Subject of optimisation

index

similarity
matching

induction
parameters

(-c -m in C4.5)

k in k-NN

case-base

relevant cases

most similar
cases

feature
related

feature
weighting

feature
selection

component
parameters

WS PS

PIWI

Figure 4. Optimising the index and similarity
measure for CBR retrieval.

3.1. Decision-Tree Index

In our CBR system, the C4.5 induction algorithm [16] is
used to build a decision tree that is then used not as a clas-
sifier but as an index for the case-base. A classifier would
assign to each leaf of the tree a class corresponding to the
majority class of the data examples for that leaf and the
training data examples would then be discarded. Instead,
when a decision-tree is used as an index, the training data
examples (cases) are kept in the leaves. During retrieval,
this index guides the search to the group of cases stored in
a leaf node. These cases are deemed to be relevant since
the chain of decisions that discriminated them from others
when building the tree is also true of the new problem. From
these cases we then select the most similar ones using a fur-
ther similarity matching step.

Using an index serves two purposes: the retrieval
is faster because fewer cases have to undergo similarity
matching; and the retrieval accuracy is increased because
partitioning the cases by the index prevents irrelevant cases
from being considered in the similarity matching. The ac-
curacy of retrieval is influenced by the form of the index,
which in turn depends on the case data, the parameters used
to induce the index (e.g.-m and -c in C4.5), and which
case features are actually used in the induction, as we may
exclude some of the features (e.g. the irrelevant ones) from

being considered in the decision nodes. We shall improve
the index by finding the optimal feature selections (binary
weights), denoted byWI , and the optimal parameters-c
-m for index induction, denoted byPI , see Figure 4.

3.2. Similarity Matching – k Nearest Neighbour

After relevant cases have been selected by the index
we select those that are most similar to the new problem.
The similarity can be determined in many ways, however,
when cases are represented as feature vectors, calculating
the weighted sum of feature distances (e.g. a Hamming or
Euclidean distance) is the most common approach [22].

Usually, several most similar cases are retrieved, this is
calledk nearest neighbour (k-NN) retrieval. Their solutions
are combined; for example, using some voting technique.
Values ofk larger than 1 are used to improve the generali-
sation properties of the retrieval, reduce sensitivity to noise,
and obtain more accurate results (by interpolation). The ac-
curacy ofk-NN retrieval depends on the choice of the value
of k as well as on the feature weights used in the similarity
measure. We shall improve accuracy of this component of
retrieval by finding the optimal feature weights for the sim-
ilarity measure, denotedWS , and by finding the optimalk
parameter fork-NN, denotedPS , see Figure 4.

3.3. Self-Optimising Retrieval

We have seen that CBR retrieval typically contains two
components: a decision-tree index and similarity matching.
We want to optimise both of them to achieve best retrieval
results. It is important to note that C4.5 is a learning algo-
rithm intended for classification problems. Using an index
which corresponds to the maximum accuracy classifier for
the case-data does not always lead to the optimalretrieval
results. This also means that optimising of the index should
be done when it is part of the retrieval, as the index has to
choose good cases for similarity matching. Also the weights
needed by the similarity measure may be different when the
similarity is calculated for only a selection of cases in the
leaves of the index and not for all cases. The best retrieval

378

reproduce
(crossover)

select
best

determine
fitness of
chromosomes

mutate

population of
chromosomes

genes 0 n -m -c 0 n k

notation PS
type k in k-NN

purpose

WI PI WS

for inducing the index for similarity matching
binary weights c4.5 parameters weights

single
chromosome

Figure 5. GA for optimising retrieval.

results will be achieved when the two components are op-
timised simultaneously. Earlier work has shown that this is
indeed true [7].

Thus, the tool simultaneously optimises feature weights2

for the index and similarity measure (WI ;WS) and the
other parameters for index induction and similarity match-
ing (PI ; PS). Notice that feature weighting for the index
induction and similarity matching are not related: a feature
may be ignored (weight zero) for constructing the index,
while it may have a non-zero weight in the similarity mea-
sure.

If the cases contained in the case-base represent the prob-
lem domain reasonably well, one can use these cases to op-
timise the retrieval in a way that will result in improved
performance of the system on new cases. Basing the op-
timisation only on the cases from the case-base means that
the retrieval stage will be self-optimising, which is a partic-
ularly attractive feature of this approach.

4. Optimisation Approach

Optimisation is performed as a search in the space of
possible parameters. Finding only the optimal parameters
PI & PS would be trivial because of the small size of the
search space. However, feature weighting is more difficult
because of the large size of the search space – for the tablet
formulation problem we need weights for about 30 features
both for the index and similarity measure.

2In the following we consider feature selection as a special case of fea-
ture weighting, with just 2 weights, and do not address it separately.

x-val
case-base

compare

retrieved
case

rem
ove part of data

cases

solution

retrieval

Find most similar using

W
S & P

S

x-val lo
o

p

problem

case
data

x-val
test set

Sum results over
all x-val iterations

Induce index using
WI & PI

New case-base
for every x-val

iteration

fitness

ch
ro

m
o

so
m

e

Figure 6. Calculating fitness.

4.1. GA Search

We have chosen Genetic Algorithms (GA) [13] as the
search method. GAs are well suited to the high di-
mensionality of the search space and the combination of
the crossover operator and selection preserves successful
groups of feature weights. Our GA represents parame-
ters (PI ; PS) and feature weights (WI ;WS) as real-valued
genes in the GA chromosome, Figure 5. In each iteration
of the GA, the population of chromosomes undergoes the
process of selection, mutation, and reproduction. The selec-
tion type used is rank selection with elitism. New chromo-
somes replace old members of the population if their fitness
is higher. We next define a fitness function that estimates
the retrieval quality from the case-base using a decision-tree
induced using feature weightsWI and parametersPI and
applying ak-NN algorithm with the feature weightsWS

and parametersPS . By supplying fitness feedback from the
complete CBR retrieval process we achieve simultaneous
optimisation of both indexing and similarity matching.

4.2. GA Fitness Calculation

In Figure 6 we schematically present how the fitness
of a chromosome is determined. Because optimisation is
highly susceptible to data over-fitting we need to incorpo-
rate cross-validation in our fitness function. Therefore, we
apply cross-validation every time we evaluate the fitness of
a chromosome, the “x-val loop” in Figure 6. A leave-n-out
cross-validation partitions the original case-base repeatedly
into an x-val test set containing data forn cases, and an x-
val case-base containing the remaining cases. In each cross-
validation experiment a new decision-tree index is induced
for the x-val case-base using the feature weightsWI and pa-

379

rametersPI from the chromosome. The similarity match-
ing applies the weightsWS and the parameterPS from the
chromosome. In this way we have defined an x-val CBR
system which is now evaluated on the x-val test set. The so-
lution predicted by the x-val CBR system is compared with
the actual solution; this is known since the x-val test set
is a subset of the cases from the original case-base. Finally,
the average over all cross-validation experiments returns the
fitness for the given feature weightingsWI ;WS and param-
etersPI ; PS .

4.3. Using the Tool

The proper way to use the tool involves two phases: (1)
first we have to determine if the optimisation can be safely
applied to the given combination of the case-base data and
the target problem; and if this is true then (2) the actual op-
timisation can be performed. The reason why such an ap-
proach is required is that optimisation involves a danger of
data over-fitting. This is true even though cross-validation is
built into the calculation of the fitness, as we could see in the
previous Section. Whether the optimisation will suffer from
over-fitting will depend mainly on the problem type and the
amount of available data, but may also depend on, for exam-
ple, the number of possible feature weight values. In order
to see if optimisation can be safely applied to the case-base
data, we have to perform testing using a separate evalua-
tion set. The tool does it by running a cross-validation, as
shown in Figure 7. The figure shows the already described
optimisation cross-validation (x-val loop, also in Figure 6)
and the cross-validation for evaluation (e-x-val loop). It is
important to stress that the e-x-val cross-validation loop is
performed in order to evaluate the results of optimisation,
and not to do the optimisation itself.

A single run of the evaluation phase, for a given case-
base, will return the retrieval accuracies on the evaluation
sets for each of the e-x-val cross-validation iterations. The
average of these accuracies will show us the expected gain
from optimisation, and the variance will tell us how confi-
dent we can be that these gains will actually be achieved.
Each of the e-x-val iterations also returns a set of feature
weights and parameters found to be optimal for that opti-
misation set. The degree of correlation between the found
weights and parameters may give us an indication how well
they represent underlying domain knowledge such as the
importance of features. We can also compare the gains in
accuracies, relative to the non-optimised retrieval, for the
optimisation sets versus the evaluation sets; this is another
method to determine if our target problem is susceptible to
over-fitting. Once we are convinced that the optimisation
will bring the desired results, without over-fitting the data,
we can run the optimisation on all the case-base data to ob-
tain the finalWI ;WS ; PI ; PS . Alternatively, we might also

All
case-base

data

Evaluation
set

Optimisation
set

Test
set

Training
set

optim
isation x-val
x-val

evaluation x-val
e-x-val

Figure 7. Partitioning of the case-base data
for optimisation and evaluation.

obtain these parameters as the average of those found during
each e-x-val loop of the evaluation phase.

5. Experiments and Results

In the experiments we have used our tool to optimise re-
trieval for predicting five excipients and their amounts, as
well as two tablet properties YP and SRS that will be needed
for the CBR adaptation stage. Because all tablets in our data
set contained the same lubricant we omit results for lubri-
cant prediction, although lubricant amount predictions are
still included. Predicting surfactant amount has turned out
to be very simple, with even non-optimised 1-NN retrieval
returning 100% accuracy, so we also do not present these
results here. The data set we used contained 156 tablet
formulations for 39 different drugs. This data was gener-
ated by the rule-based TFS(see Section 2) and it represents
a realistic set of correct formulations. Earlier experiments
described in [7] suggested that use of a smaller number of
possible weights may reduce the danger of over-fitting for
small data sets. In experiments described here we used only
two possible weight values: 0 and 1. Later, for some of the
prediction problems which are not affected by over-fitting
much, we plan to use more possible weight values. It is
interesting to note that the tablet-formulation expert would
use only two possible weights when asked to specify feature
importance.

For each optimisation the GA population contained 100
individuals. We ran the GA through 100 cycles, each cycle
consisting of a mutation and crossover phase. In each muta-
tion phase 50 “mutants” were added to the population, and
in each crossover phase 50 “children” were added, before
selection of the most fit individuals reduced the population
back to 100. The e-x-val cross-validation was 9-fold. Time
needed for optimisation is not a critical issue, because op-
timisation will be done off-line, and is only applied rarely.

380

Predicting excipients, excipent amounts, and tablet properties

49.6%

18.2%

24.9%

80.2%

3.7%

63.9%

59.8%

3.0%

5.9%

72.9%

82.0%

30.0%

94.9%

79.5%

82.2%

95.4%

98.5%

82.0%

54.1%

74.4%

100.0%

33.5%

97.1%

96.9%

92.0%

100.0%

99.2%

97.8%

73.7%

0.0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

filler

filler
amount

binder

binder
amount

lubricant
amount

disintegrant

disintegrant
amount

surfactant

tablet YP

tablet SRS

percentage good predictions

retrieval with optimised settings and feature weights
retrieval non-optimised
default

Figure 8. Results for excipient type, excipient
amount and tablet property prediction.

Moreover, the extensive e-x-val cross-validation has to be
done mainly for the first use of a given case-base, since
maintenance optimisation does not necessarily require eval-
uation cross-validation. The average time required for a sin-
gle evaluation run (9 times e-x-val loop) was about 5 hours
on 400MHz SPARC workstation, a single optimisation run
took about half an hour. We note that we made no attempt
to optimise the GA used and shorter processing times are
possible.

The results of experiments are summarised in Figure 8.
It shows the accuracy on the evaluation set averaged over
5 runs of the tool, where the e-x-val splits are random, in
this way we obtained meaningful 95% confidence intervals.
For each retrieval target we show: (a) default accuracy, ei-
ther the majority class or the average value; (b) accuracy
of retrieval with standard C4.5 settings and 1-NN, no fea-
ture weighting; (c) accuracy with optimised-m, -c , k and
feature weights.

The results from Figure 8, can be divided into 3 groups:
(1) where the optimisation does bring an improvement that

Optimising tablet-SRS prediction

1.00

1.14

1.36

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

non-optimised

optimised
PI, PS

optimised
PI, PS, WI, WS

improvement in good predictions relative to non-optimised retrieval

Figure 9. Results for tablet SRS prediction.

Over-fitting behaviour

Improvement on optimisation set

Im
p
ro

ve
m

e
n
t
o
n
 e

va
lu

a
tio

n
 s

e
t

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65 1.75 1.85

filler

filler amount

disintegrant

tablet YP

tablet SRS

y=x

binder amount

disintegrant amount

surfactant

binder

(i)
(ii)

(iii)

lubricant amount

Figure 10. Analysis of over-fitting.

is statistically significant, e.g. for tablet YP and SRS; (2)
where the results without optimisation are already so good
that optimisation brings no significant improvement, e.g.
for surfactant and disintegrant amounts; (3) where optimi-
sation brings hardly any improvement due largely to over-
fitting, e.g. for filler and binder. We should note that even
when optimisation brings no improvement in accuracy, as
in case (2), it may be useful because it may identify the rel-
evant features and thus discover useful knowledge. In our
experiments we found, for example, that there was a per-
fect correlation between the type of disintegrant used and
its amount, and that the chosen surfactant depended only on
the value of one of the physical drug properties. Generally,
the gains from optimisation are the highest where we know
that there are many irrelevant features, like in the case of
filler amount prediction. The benefit of optimising all the
parameters and weights, compared to optimising only pa-
rameters, is illustrated in Figure 9.

In Figure 10 we analyse the problem of over-fitting more
closely. It shows the average improvement in accuracy rel-
ative to the non-optimised retrieval for optimisation set ver-
sus the same for the evaluation data set. In the figure, we
would ideally like our results to lie along the liney=x,

381

meaning that the improvement on the evaluation set corre-
sponds to that on the optimisation set. Results too far below
the liney=x suggest data over-fitting by the optimised re-
trieval because the improvement for the optimisation set is
not reflected in the evaluation set. Results lying above the
line y=x are unlikely and are obtained purely by chance.
In the plot of the results of our experiments we can distin-
guish three groups: (i) results around the point (1,1) show
little danger of over-fitting but also minimal gain from op-
timisation; (ii) results with great danger of over-fitting, like
the filler and binder prediction; and (iii) results which do
not suffer much from over-fitting. We can use a chart like
this to decide which retrieval targets should be optimised
before being used in a full CBR system. In this case, we
would apply optimisation for the retrievals in group (iii) to
derive retrieval parameters for our tablet formulation CBR
system. We could also apply the optimisation to some re-
trievals from group (i) if we are interested in feature rel-
evance in addition to simply increasing retrieval accuracy.
For the other problems (ii) it seems that the amount of data
is not sufficient to represent the underlying problem well,
and applying optimisation might reduce system accuracy
due to over-fitting.

6. Related work

The subject of optimising decision trees ork-NN classi-
fiers by feature selection or weighting has been extensively
treated in Machine Learning literature. The novel element
in our tool is combining the decision-tree andk-NN opti-
misation into optimising CBR retrieval as a whole. Previ-
ously we studied simultaneous optimisation for the filler-
selection formulation sub-problem [7]. Here, we extended
it to the whole formulation problem, using the optimisation
approach that was shown to give the best results in the ex-
periments for filler selection.

In our experiments the greatest improvement came from
optimising feature weights, see Figure 9. Indeed, it is
well-known that inducing decision trees for classification of
data examples with many irrelevant features results in sub-
optimal results [3], even though induction itself performs
feature selection. This has made many researchers look
for methods for identifying and removing irrelevant features
before induction starts [8]. The benefit of feature selection
is even more pronounced for nearest-neighbour classifiers
[2, 19] and these are often further improved by choosing
feature weights for the similarity measure [20, 10, 1]. This
is especially useful for problems where the relative impor-
tance of features plays a role in addition to simple feature
relevance.

The preferred way to determine the feature selections or
weights is to perform a search [8, 2, 20] using the ML al-
gorithm under optimisation to evaluate the intermediate re-

sults. This method of optimisation is called awrapper[4].
Genetic Algorithm (GA) wrappers are frequently used to
search for feature selections or weightings fork-NN algo-
rithms [9, 21, 23, 15]. In [15], optimisation of the similarity
weights fork-NN retrieval in a genuine CBR system is de-
scribed. The GA fitness is the degree of match between the
ranking of the retrieved cases and that defined by the expert.
However, this approach is expert intensive and was subse-
quently abandoned [14], and this underlines the advantage
of a fully automatic (self-)optimisation.

7. Conclusions

We have presented a tool which uses a Genetic Al-
gorithm to determine the optimal parameters and feature
weights for the retrieval stage of a CBR system. The op-
timisation is done using no other knowledge apart from that
contained in the cases already present in the case-base, re-
sulting in automatic self-optimisation of the retrieval, thus
reducing construction cost and effort. We use a GA because
of its search capabilities and the flexibility of defining the
fitness measure to suit the optimisation goal. We found that
using cross-validation in the fitness measure was critical to
obtaining good results.

The experiments have shown that using the tool indeed
improves the accuracy of CBR retrieval. The results are
particularly good for domains which do contain many irrel-
evant features; this is a common feature for cases derived
from a database. Our tool can be used safely because the
accuracies on the evaluation set(s) give a good indication if
over-fitting may occur. If this is the case then probably the
number of cases is not sufficient to cover the problem do-
main well. To achieve useful results even in such situations,
we are going to study whether adding jitter [11] during op-
timisation helps to reduce the over-fitting.

As far as scalability of our approach is concerned, it is
difficult to give clear cut answers. A lot depends on the
underlying real complexity of the problem represented by
the data set. For example, the same problem represented by
more data may require comparable time for optimisation if
a cross-validation setup with fewer folds is used. We have
also observed that for large data sets with many irrelevant
features the optimisation is relatively fast as the search sys-
tem quickly identifies the irrelevant features. Analysis of
scalability is made even more difficult by the random char-
acter of the search. Our approach leaves many possibilities
for speed improvements, like caching indexes and a “smart”
choice of the initial GA population.

We expect the techniques implemented in the tool to be
particularly useful when built into a CBR shell. We are cur-
rently working on integrating it with ReCall, first by means
of Tcl scripts, and when shown successful on a wider range
of problems, probably into ReCall itself. We are convinced

382

that the existing CBR shells would certainly benefit from
including the option to automatically generate a retrieval
stage with optimal settings, based just on the cases already
present in the case-base. This would reduce the develop-
ment time and cost for new CBR systems, but it could also
be useful for re-optimising retrieval during maintenance of
a CBR system.

References

[1] D. Aha. Feature weighting for lazy learning algorithms. In
H. Liu and H. Motoda, editors,Feature Extraction, Con-
struction and Selection: A Data Mining Perspective. Nor-
well MA: Kluwer, 1998.

[2] D. W. Aha and R. L. Bankert. Feature selection for case-
based classification of cloud types: An empirical compar-
ison. In Proceedings of the AAAI-94 Workshop on Case-
Based Reasoning, pages 106–112. AAAI Press, Seattle,
1994.

[3] H. Almuallim and T. G. Dietterich. Efficient algorithms for
identifying relevant features. InProceedings of the Ninth
Conference on Artificial Intelligence, pages 38–45. Morgan
Kaufman, Vancouver, 1992.

[4] A. L. Blum and P. Langley. Selection of relevant features
and examples in machine learning.Artificial Intelligence,
97(1-2):245–271, 1997.

[5] S. Craw, R. Boswell, and R. Rowe. Knowledge refinement to
debug and maintain a tablet formulation system. InProceed-
ings of the 9TH IEEE International Conference on Tools
with Artificial Intelligence (TAI’97), pages 446–453, New-
port Beach, CA, 1997. IEEE Press.

[6] P. Cunningham and A. Bonzano. Knowledge engineer-
ing issues in developing a case-based reasoning application.
Knowledge-Based Systems, 12:371–379, 1999.

[7] J. Jarmulak, S. Craw, and R. Rowe. Genetic algorithms to
optimise CBR retrieval. In E. Blanzieri and L. Portinale,
editors,Advances in Case-Based Reasoning: Proceedings
of EWCBR-2K, Trento, Italy, 2000.

[8] G. John, R. Kohavi, and K. Pfleger. Irrelevant features and
the subset selection problem. In W. W. Cohen and H. Hirsh,
editors,Machine Learning: Proceedings of the 11th Inter-
national Conference, pages 121–129. Morgan Kaufmann,
1994.

[9] J. D. Kelly and L. Davis. A hybrid genetic algorithm for
classification. InProceedings of the 12th IJCAI, pages 645–
650, Sidney, Australia, 1991.

[10] R. Kohavi, P. Langley, and Y. Yun. The utility of feature
weighting in nearest-neighbor algorithms. InProceedings
of the European Conference on Machine Learning (ECML-
97), 1997.

[11] P. Koistinen and L. Holmstrom. Kernel regression and back-
propagation training with noise. In J. E. Moody, S. J. Han-
son, and R. P. Lippman, editors,Advances in Neural In-
formation Processing Systems 4, pages 1033–1039. Morgan
Kaufmann Publishers, San Mateo, CA, 1992.

[12] D. B. Leake, editor.Case-Based Reasoning: Experiences,
Lessons & Future Directions. AAAI Press, Menlo Park, CA,
1996.

[13] M. Mitchell. An Introduction to Genetic Algorithms. MIT
Press, 1998.

[14] G. Oatley. An Investigation of Case-Based Reasoning
for Decision Support of Diagnosis in a Large-Scale Ill-
Structured Domain. PhD thesis, University of Sunderland,
2000.

[15] G. Oatley, J. Tait, and J. MacIntyre. A case-based reason-
ing tool for vibration analysis. In R. Milne, A. Macintosh,
and M. Bramer, editors,Applications and Innovations in Ex-
pert Systems VI: Proceedings of the BCS Expert Systems ’98
Conference, pages 132–146, Cambridge, December 1998,
1998. Springer-Verlag.

[16] J. Quinlan.C4.5: Programs for Machine Learning. Morgan
Kaufmann, San Mateo, CA, 1993.

[17] M. M. Richter. Introduction. In M. Lenz, B. Bartsch-Sprl,
H.-D. Burkhard, and S. Wess, editors,Case-Based Reason-
ing Technology: From Foundations to Applications, Lecture
Notes in Artificial Intelligence 1400. Springer Verlag, 1998.

[18] R. Rowe. An expert system for the formulation of phar-
maceutical tablets.Manufacturing Intelligence, 14:13–15,
1993.

[19] D. B. Skalak. Prototype and feature selection by sampling
and random mutation hill-climbing algorithms. InProceed-
ings of the Eleventh International Conference on Machine
Learning, pages 293–301, New Brunswick, New Jersey,
1994.

[20] D. Wettchereck and D. W. Aha. Weighting features. In
Proceedings of the 1st International Conference on CBR
(ICCBR-95), pages 347–358, 1995.

[21] D. R. Wilson and T. R. Martinez. Instance-based learning
with genetically derived attribute weights. InProceedings of
the International Conference on Artificial Intelligence, Ex-
pert Systems, and Neural Networks (AIE’96), pages 11–14,
1996.

[22] D. R. Wilson and T. R. Martinez. Improved heterogenous
distance functions. Journal of Artificial Intelligence Re-
search, 6:1–34, 1997.

[23] J. Yang and V. Honavar. Feature subset selection using a
genetic algorithm. In Motoda and Liu, editors,Feature Ex-
traction, Construction and Selection - A Data Mining Per-
spective. Kluwer, 1998.

383

