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Abstract

Knowledge re�nement tools seek to correct faulty
knowledge based systems (KBSs) by identifying
and repairing potentially faulty rules. The goal
of the KrustWorks project is to provide a source
of re�nement components from which specialised
re�nement tools tailored to the needs of a range
of KBSs are built. A core re�nement algorithm
reasons about the knowledge that has been ap-
plied, but this approach demands general knowl-
edge structures to represent the reasoning of a
particular problem solving episode. This paper in-
vestigates some complex forms of rule interaction
and de�nes a knowledge structure encompassing
these. The approach has been applied to KBSs
built in four shells and is demonstrated on a small
example that incorporates some of the complexity
found in real applications.

Introduction

Knowledge re�nement tools support the development
and maintenance of knowledge-based decision-support
systems by assisting with the debugging of faulty knowl-
edge based systems (KBSs) and the updating of KBSs
whose application environment is gradually changing,
so that the knowledge they contain remains e�ective
and current.
Many knowledge acquisition and re�nement systems

have been developed for particular expert system shells
(Murphy & Pazzani 1994) or logic programming lan-
guages (Richards & Mooney 1995; Ourston & Mooney
1994), or even speci�c applications. In contrast, we aim
to develop a re�nement framework that de�nes a set of
generic KBS concepts and re�nement steps. We are also
implementing an extensible toolkit that provides re�ne-
ment components to achieve these steps. To this end
we are designing an internal knowledge structure that
will allow the core knowledge re�nement algorithm to
reason about the problem-solving in the actual KBS.
We have found that, although knowledge re�nement

alters the knowledge content of the KBS, the knowledge
re�nement process must also take account of the KBS's
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problem-solving; i.e. re�nement is concerned with the
inferences of the KBS as well as its static knowledge. In
this paper we focus on the knowledge structure that rep-
resents individual problem-solving events. To achieve
our goal of generality, the structure we propose must
be suÆciently expressive and exible to cover the dif-
ferent inference mechanisms found in a variety of KBSs.
We �rst describe the KrustWorks framework and

the requirements of the re�nement tools it creates. We
then explore the e�ects on inference of chaining direc-
tion and conict resolution, in order to justify our claim
that re�nement tools must alter their process depending
on the inferencing that the KBS applies. This investi-
gation highlights the key features that must be incor-
porated in the generalised reasoning knowledge struc-
ture. Finally we describe the problem graph, the way
it is created from a problem solving episode, and how
it provides the knowledge about the reasoning that is
necessary to suggest useful re�nements.

A Generic Re�nement Framework

The goal of the KrustWorks framework is to provide
facilities to allow the construction of a specialised re-
�nement tool, a KrustTool, tailored to suit the par-
ticular KBS being re�ned. Central to our approach is
the idea that re�nement is achieved by selecting ap-
propriate re�nement operators from a repository and
applying them with a core re�nement algorithm to in-
ternal representations of the KBS to be re�ned (Fig-
ure 1). The core re�nement algorithm is abstracted
from experience with speci�c KrustTools applied to
KBSs on various platforms (Craw & Hutton 1995;
Craw, Boswell, & Rowe 1997): Prolog applies backward
chaining, both Clips and Logica's Pfes use exclusively
forward-chaining rules, and IntelliCorp's PowerModel
permits both forward and backward chaining.
KrustTools apply the standard re�nement steps of

allocating blame to potentially faulty rules and then
proposing repairs to rules that prevent this faulty be-
haviour. But KrustTools are unusual in generat-
ing many re�nements, and postponing the selection
of which repair to choose until the re�ned KBSs have
been evaluated by executing in the original KBS format
on further examples. Figure 2 illustrates the compo-
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Figure 1: Creating a KrustTool from KrustWorks

nents of a KrustTool, in particular the two key generic
knowledge structures, the knowledge skeleton and prob-
lem graph, that are central to this approach.
The knowledge skeleton is an internal representation

of the rules in the KBS. It contains the essential fea-
tures of the knowledge content; i.e. the KBS' knowl-
edge that is relevant to the re�nement process. During
translation, each knowledge element is classi�ed within
a knowledge hierarchy and this classi�cation is used to
reference suitable re�nement operators. Details of the
knowledge skeleton and its use appear in (Boswell &
Craw 1999).
The problem graph is the focus of this paper. It cap-

tures the problem-solving for the re�nement case and
allows the KrustTool to reason about the fault that
is being demonstrated. We investigate a range of KBS
inference mechanisms in order to de�ne the problem
graph, a general knowledge structure that e�ectively
represents the way rules interact. Minor de�ciencies of
the problem graph do not cause serious problems for the
re�nement generation process, given the KrustTool's
approach of generating large numbers of re�nements.
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==> f-0 (fact)
=> Activation 0
FIRE 1 not-artic: f4
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Figure 2: The KrustTool and KBS Processes

Reasoning in KBSs

Many re�nement systems assume that the KBS em-
ploys an exhaustive, monotonic reasoning (Richards &
Mooney 1995; Ourston &Mooney 1994). However, real-
life KBSs frequently employ non-logical features to re-
strict the search and exploit non-monotonic reasoning.
Since our goal is to re�ne a wide range of KBSs, we are
concerned with the e�ects of di�erent forms of reason-
ing on re�nement.

A General View of Inference

We start by adopting a simple iterative algorithm
(Fensel 1997) as the basis for inference:

1. Initialise the current state of the problem solving

2. Repeat until the termination condition is achieved:

(a) form the conict set: match the current state of
the problem-solving with rules in the KBS

(b) apply the conict resolution strategy: select the
rule in the conict set that should be used

(c) �re the rule: apply the selected rule to update the
current state of the problem-solving.

The initialisation step (1) sets the context of the new
problem-solving by representing the features of the new
problem and possibly indicating the goal to be achieved.
Therefore knowledge re�nement is not concerned with
this problem initialisation step.
In contrast, the iterative loop (2) determines the rea-

soning, and knowledge re�nement seeks to alter the
knowledge that is applied here. Identifying the conict
set (2a) is a purely logical step and so re�nement in-
volves altering the knowledge in rules that are, or should
be, in the conict set. All re�nement systems apply this
type of change.
However, many re�nement systems assume an ex-

haustive backward chaining approach in which conict
resolution (2b) is simply a search ordering mechanism
and has no ultimate e�ect on the solutions proposed by
the KBS. This assumption is appropriate for Prolog-like
applications with no non-logical features, but is not true
for real-life applications that commonly employ mech-
anisms, such as rule priority and conict resolution, to
restrict the search for a solution. This is particularly
true when the reasoning is forward chaining, and is rel-
evant if the termination condition determines that the
reasoning halts as soon as the goal is proved.
Firing the selected rule (2c) can be achieved in dif-

ferent ways. Monotonic systems add the new knowl-
edge irrespective of the existing knowledge already in-
ferred. However many systems are non-monotonic in
that knowledge can be overwritten (e.g. the �eld of an
object) or the old fact is retracted and a new one as-
serted. Such behaviour is unusual in Prolog applica-
tions but common with Clips facts, or PowerModel ob-
jects. These e�ects are considered in the next section.
In our diagrams that illustrate reasoning we adopt

the convention that leaf nodes at the bottom of the
graph are observable facts, nodes at the top of the graph
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are the goals of the reasoning process, and rules at the
top of the graph are called end-rules. We shall also be
concerned with the order of rule �rings; this is shown
in a left to right ordering of branches from a rule node.

When Chaining Direction Matters

In KBSs which exhaustively �nd all solutions and are
monotonic, backward and forward chaining �nd exactly
the same rule chains and so re�nement of each system
is equivalent. We now investigate how selection and
non-monotonicity complicate forward chaining and the
circumstances in which chaining direction a�ects the
conclusion of the KBS.
Selection from the conict set alters the order in

which inferences are made. Although on many occa-
sions this is used simply to guide the reasoning towards
more eÆcient routes and so has no e�ect on the ulti-
mate solutions, under some circumstances, such as early
termination, the order in which solutions appear is im-
portant because some are ignored.
A simple example when backward and forward chain-

ing di�er occurs when the KBS's inference terminates
as soon as the �rst end-rule �res. Figure 3 contains
a small example. The rule priority is shown in square
brackets and rules with higher priority are �red �rst. If
we assume P and Q are true, under forward chaining,
R2 �res �rst, then R4, and the conclusion is X=on. In
contrast, under backward chaining, R3 �res �rst, then
R1, and the conclusion is X=o�.

R1:Q->B [1]
R2:P->A [3]
R3:B->X=off[5]
R4:A->X=on [2]

A B

P Q

X=offX=on

R2 R1

R4 R3

Figure 3: Inference stops when an end-rule �res

Thus, when the relative priority of rules di�ers be-
tween layers of the inference, the priority of the �rst
layer to �re takes precedence; i.e. the leaf rules for for-
ward chaining, and the end-rules for backward chaining.
This e�ect also occurs when there are several potentially
clashing rules that infer di�erent values for the same at-
tribute without demanding the rules are end-rules, as
happened in Figure 3. Examples include Clips rules as-
serting new ordered terms with the same �rst element,
Prolog clauses having heads that unify, Clips rules up-
dating multi-valued �elds, and Pfes rules adding to
Pfes agendas1. In this case, conict resolution in later
cycles is a�ected by the order in which the various in-
stantiations from previous cycles are retrieved.

1A Pfes agenda is a stack or queue of potential formu-
lation components. This should not be confused with the
Clips execution agenda; i.e. the ordered conict set.

Non-Monotonicity is introduced when knowledge is
retracted or overwritten during problem solving. Ex-
plicit retraction can occur in backward and forward
chaining. Forward chaining systems may also update
objects, so that each rule in turn overwrites the value
written by the previous rule. Again sets of potentially
clashing rules are important.
Figure 4 contains another small rule-set where now

suppose Temp is an overwriting property. Under for-
ward chaining when P and Q are true, R1 �res �rst,
R2 �res next overwriting Temp=60 with 50 (shown as
a dotted arrow), then R4 �res concluding X=o�. R3 is
not able to �re since R2 �res �rst, thereby making its
antecedent false; this is shown as a shaded area.

R1:P->Temp=60 [5]
R2:Q->Temp=50 [3]

R3:Temp>55 ->X=on [1]
R4:Temp>45 ->X=off [2]

Temp=60 Temp=50

P Q

X=offX=on

R1 R2

R4R3

Figure 4: Chaining with Overwriting Rules

Thus, for clashing rules with overwriting conclusions
under forward chaining, the lowest priority satis�ed
path in the graph leads to the eventual solution. The
priority of each path is determined by the priority of
the leaf node rules. Under backward chaining, exactly
the reverse is true; the �rst rule to �re is the end-rule
with the highest priority, here R4 which then chains
back to R1 concluding X=o�, but this is overwritten
with X=on when R3 �res.
This example also demonstrates that the e�ect of rule

priority is not just to choose between the potentially
clashing rules R1 and R2 but it also encompasses the
rules with which they chain. Thus, rule priority has an
inuence in a vertical direction, not just horizontally.

Self-Disabling Rules These rules contain exception
conditions that ensure only the �rst from a set of rules
�re. They are a specialised form of non-monotonicity
since later rules are in e�ect retracted, and the result
is to select only the highest priority rules in the direc-
tion of chaining. Self-disabling rules constitute a special
case of negation and occur frequently in Pfes KBSs;
e.g. choosing a binder in the tablet formulation applica-
tion (Craw, Boswell, & Rowe 1997) where the exception
checks whether the value of binder has already been set:

If in-agenda stability-agenda
?stability after gelatin

And ?stability greater 90 And ...
Then refine-attribute binder gelatin
Unless attribute-has-value binder ?any
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Self-disabling also occurs in backward chaining systems,
as with Prolog's cut (!) for commitment; e.g.

temp(40) :- p, !. x :- temp(T), T > 45.
temp(50) :- q.

where the �rst temp rule �ring precludes the later temp
rule and so the rule for x would not �re.

Conict Resolution Strategies

We have consistently referred to rule priority and im-
plied that we are restricted to a Clips-like salience at-
tached to static rules. However, Clips uses rule prior-
ity only as the �rst criterion for choosing which rule
from the conict set should �re. Where rule priorities
are equal, a variety of further strategies are available;
other shells often o�er a subset of those available in
Clips. The e�ects of selection and non-monotonicity
apply equally to other conict resolution strategies such
as recency, speci�city, LEX and MEA2.

Representing Reasoning

We have seen that the behaviour of forward-chaining
rules can be di�erent from that of backward-chaining
ones. Therefore, re�nement systems need to alter
their process depending on the chaining direction of
the KBS. We have also seen that the behaviour of
forward-chaining rules is often more complex than that
of backward-chaining ones, so that if a common pro-
cedure is to be adopted for handling both, its form
will probably depend largely on the requirements of
forward-chaining rules. The comparison of forward and
backward chaining identi�es the areas of di�erence and
provides a foundation for the generalised mechanism
that we propose for both forward and backward chain-
ing KBSs.
Re�nement consists of determining what happened,

then trying to change it. There are two ways of de-
termining what happened: querying the KBS and then
reasoning about rule priorities and conict resolution
in order to infer what happened (i.e. running a partial
simulation), or else looking at the execution trace to
�nd out what actually happened. We have found the
retrospective approach works well for backward chain-
ing rules (Craw & Hutton 1995), but the preceding
examples suggest that accurately simulating forward-
chaining rules is likely to be diÆcult, so we propose an
approach based on traces.

The Problem Graph

We de�ne a knowledge structure that represents the
reasoning by capturing both the rules that �red for a
given problem-solving activity and the knowledge that
might have been applied at each stage in the process.
The knowledge is acquired directly from the execution
trace and by reasoning about the contents of the trace.

2LEX and MEA extend recency by considering the
relative assertion times of facts satisfying individual an-
tecedents.

Its content informs the blame allocation and re�nement
generation stages in the KrustTool's cycle.
Previously, with backward chaining systems, navigat-

ing a simple virtual structure worked well, so we are
now extending this approach to forward chaining sys-
tems, but here we have found it helpful to create the
structure explicitly. We have seen that the ordering of
the rules in the conict set has an e�ect only when the
rules are clashing and so involve some form of nega-
tion, retraction, or overwriting. From the point of view
of re�nement it does not matter why they clash pro-
vided we know how to re-order the �ring agenda. The
problem graph contains a history of the �ring agenda
and its e�ects. It links the knowledge that was applied
to the knowledge that was inferred, represents relative
timings of these events, and identi�es knowledge that
might have been applied. The problem graph in Fig-
ure 5 is applied in a later example.
The positive part of the problem graph is extracted

directly from the execution trace and contains the
knowledge that has been applied. Rule activation nodes
maintain logical knowledge such as the variable bind-
ings associated with this activation, and timing infor-
mation about when the rule was activated, when it was
�red, and when it was retracted, if appropriate. Simi-
larly, a fact assertion node stores the time of assertion
and the time of retraction if appropriate. The arcs in
the graph link rule activations to the facts they con-
clude, and fact assertions to the rule activations whose
antecedents they match. When an antecedent does
not involve another rule (e.g. an inequality check), the
structure records the test's truth as T or NIL.
We have been discussing rule activations and fact as-

sertions that actually took place when the KBS was run
on the re�nement example, but this is not enough. A
problem graph also has a negative part consisting of
rules activations and facts which did not appear dur-
ing the run, but which could contribute to the desired
behaviour of the system. We refer to these as non-
activations and non-facts. Some of a non-activation's
antecedents may actually be satis�ed; these are con-
nected to facts as in the positive part. Those that fail
are recorded as failure links connecting each antecedent
to matching non-facts.
The problem graph representation also applies to

negated antecedents; we assume negation as failure in
a closed world. For negated knowledge components,
we must decide how to link facts and non-facts. If
not(Goal) is satis�ed then there is a link to T. Con-
versely, if not(Goal) fails then there is a failure link
from the o�ending fact, Goal. When the negated an-
tecedent does not involve other rules, then the truth of
the antecedent as a whole is recorded; e.g. if the an-
tecedent not(X < 42) fails, then NIL is recorded.

Building the Problem Graph

The positive part of the problem graph is derived di-
rectly from the KBS's execution trace by extracting in-
formation about rule �rings and their associated vari-
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able bindings, and when facts were asserted and re-
tracted. The negative part of the problem graph is
formed by exhaustively exploring backwards from the
desired conclusion to identify potential routes through
the knowledge. When the KBS itself is backward chain-
ing then both steps can be naturally combined. This
may explain why most current work on re�nement has
dealt only with backward-chaining rules. Re�ning for-
ward chaining rules is more complicated since they exe-
cute in the opposite direction to the re�nement process,
and so the KrustTool must �nd a way to ensure that
the chosen route found by backward chaining is actually
executed under the KBS's forward chaining control.
A two-stage translation process creates the positive

part of the problem graph from the trace. This is
needed since there is not a 1-1 relationship between
nodes in the problem-graph and lines in the original
trace. For example, separate rule activation and rule
�ring statements in the Clips trace contribute to the
same rule activation node in the problem graph. Con-
versely, a rule �ring in the trace may contribute infor-
mation to both a rule activation node and a fact node.
The translation is therefore most conveniently done by
�rst creating an internal representation of the trace,
and then manipulating this internal trace to construct
the positive part of the problem graph.
Furthermore, representing rule �rings themselves is

not suÆcient. We also need to know the content of
working memory before any rule �ring, to determine
whether a rule failed to �re because its antecedents were
not satis�ed, or because its priority was too low. Many
KBSs have tracing facilities that provide all this infor-
mation; e.g. for a Clips trace we elect to watch rules,
facts and activations, with PowerModel we select the
highest level of verbosity. Otherwise, it is often possible
to deduce a snapshot of working memory from previous
rule �rings; we use this with Pfes.
The negative part of the problem graph is constructed

by backward chaining from the desired conclusion in the
knowledge skeleton. First, the desired conclusion is cre-
ated as a non-fact. Then rule non-activations are cre-
ated for all the rules that could conclude this fact, with
appropriate bindings. The algorithm then proceeds re-
cursively: for each rule antecedent in a non-activation,
if the antecedent is not satis�ed by an existing fact, then
a matching non-fact is created. The procedure termi-
nates when it reaches non-facts that do not match the
conclusion of any rule (observables).
If a rule's antecedents are matched by multiple facts

or non-facts, then non-activations are created for all
the possible combinations, provided that the variable
bindings are compatible; for example, if one antecedent
is matched by one fact and one non-fact, and another
by two non-facts, then up to four rule non-activations
will be created.

Problem Graphs in Practice

We have built problem graphs from Clips, PowerModel
and Pfes KBSs and their traces. Both stages of the

translation from trace to positive problem graph, to-
gether with the �rst internal representation of the trace,
are speci�c to the particular KBS. The form of the prob-
lem graph itself is generic. Consequently, the creation
of the negative part of the problem graph is indepen-
dent of the KBS.
Rather than demonstrating the approach using a

complex KBS, we have chosen to illustrate the process
on a very simple Clips KBS:

Initial Facts: (c), (a), (b)

Rules with Salience 5 Rules with Salience 10
rule1: (a) rule4: (not (result ?)), (p), (r)

) (assert (p)) ) (assert (result x))
rule2: (b) rule5: (not (result ?)), (q), (r)

) (assert (q)) ) (assert (result y))
rule3: (c)

) (assert (r))

Suppose also Clips applies the LEX conict resolu-
tion strategy when rule salience does not distinguish
a single rule on the activation agenda. This generates
the Clips trace showing the facts being asserted one at
a time, each followed by a Clips activation when the
rule it satis�es is placed in the conict set:

==> f-1 (c)
==> Activation 10 rule3: f-1
==> f-2 (a)
==> Activation 10 rule1: f-2
==> f-3 (b)
==> Activation 10 rule2: f-3
FIRE 1 rule2: f-3
==> f-4 (q)
FIRE 2 rule1: f-2
==> f-5 (p)
FIRE 3 rule3: f-1
==> f-6 (r)
==> Activation 5 rule5: ,,f-4,f-6
==> Activation 5 rule4: ,,f-5,f-6
FIRE 4 rule4: ,,f-5,f-6
==> f-7 (result x)
<== Activation 5 rule5: ,,f-4,f-6

LEX �res the rules as rule2, rule1, rule3, since the most
recently asserted fact is used �rst. To discriminate be-
tween rule4 and rule5, since they are both activated si-
multaneously (when fact r was asserted), LEX uses the
next most recent pairs of antecedents, p and q. p was
asserted more recently, so rule4 �res. But when rule4
�res this removes rule5 from the conict set (indicated
by <==) and so Clips's solution is result(x). Notice that
negation is not explicitly mentioned in the trace but the
knowledge skeleton provides the information.
Suppose in this example that the \correct" solution

is known to be result(y). Figure 5 shows the problem
graph that is constructed. Rule activations are rectan-
gular nodes, fact assertions are oval nodes, and dashed
outlines indicate non-facts and non-activations. Arcs
indicate the various links; conjunctive antecedents are
shown circled, arrows point towards conclusions, fail-
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ure links are shown dashed, and negations are indicated
with a ./ through the link.

name: (result x)
assert-time: 6

name: rule4
act-time: 5
firing-time: 6
retract-time:

name: q
assert-time: 3

name: r
assert-time: 5

name: rule5
act-time: 5
firing-time:
retract-time: 6

name: p
assert-time: 4

name: c
assert-time: 0

name: b
assert-time: 2

name: a
assert-time: 1

name: (result y)
assert-time:

name: rule3
act-time: 0
firing-time: 5
retract-time:

name: rule2
act-time: 2
firing-time: 3
retract-time:

name: rule1
act-time: 1
firing-time: 4
retract-time:

(not (result ?))
is True

Figure 5: A Sample Problem Graph

One of the many features of PowerModel and Pfes

which makes the construction of the problem graph
more diÆcult is the phenomenon of backtracking:
whenever a rule is executed, the interpreter forces the
generation of all possible variable instantiations, rather
as if a Prolog goal were followed by a fail statement.
Consequently, each successful rule �ring requires the
creation of a separate rule activation node, and deter-
mining the variable bindings for each rule �ring may re-
quire some searching forwards and backwards through
the trace.

Re�nement Generation

Blame allocation and re�nement generation seek to dis-
able a faulty proof and to identify and enable a correct
proof in the rules. The problem graph contains the
faulty proof and potential proofs together with the in-
formation that is required for the KrustTool to �nd
a way to ensure that the chosen route is actually exe-
cuted.
The most common type of re�nement operators found

in re�nement systems are those that alter the logical
content of the rule and so a�ect whether the rule is
added to the conict set. However, we believe there is
another important class of re�nements: those that alter
the way the rule is handled by the conict resolution
strategy and so a�ect whether the rule is selected to
�re or not. This is particularly relevant for forward
chaining rules where selection plays a larger role.
To correct the behaviour of the KBS, it may be nec-

essary to make several changes at the same time. For
example, if the KrustTool wants a rule to �re, but

two of its antecedents are currently unsatis�ed, the
KrustTool will probably have to make at least two
changes somewhere in the rules. We describe all the
individual changes required to �x a particular fault as
a re�nement. The output from the algorithm is a series
of re�nements, each of which individually is designed to
correct the behaviour of the KBS.

Logical Re�nements

This type of re�nement is common to all re�nement sys-
tems, although the changes that achieve the re�nement
can vary. Here we describe how a KrustTool generates
these from the problem graph.
To enable a desired conclusion the KrustTool en-

ables any one rule which matches that conclusion. Such
rules may be read from the problem graph, where
the desired fact is linked to one or more rule non-
activations. To enable a rule, for each failed antecedent
in the associated non-activation, the KrustTool either
weakens that antecedent so that it is satis�ed for the re-
�nement case, or else applies the algorithm recursively,
by enabling a non-fact linked to the failed antecedent.
To prevent an undesired conclusion the KrustTool

disables all rules that �red and match that conclusion.
To disable a rule, the KrustTool disables any one of
its antecedents, or deletes the rule. It disables an an-
tecedent either by strengthening it, or by disabling all
the rules linked to the fact that caused the antecedent
to be satis�ed.
The presence of negation requires the following exten-

sions to the above basic algorithms. To enable a failed
negation, the KrustTool identi�es the matching fact in
the problem graph, and disables all the rule activations
that concluded that fact, using the algorithm above.
Conversely, to disable a negation, the KrustTool iden-
ti�es the matching non-fact, and enables any one of the
rule non-activations which conclude that fact.

Conict Resolution Re�nements

It is always possible to generate only logical re�nements
but in certain circumstances it is appropriate to also
generate re�nements based on the conict resolution
strategy. Conict Resolution is used as a basis for re-
�nement in two situations: when a rule is activated but
then de-activated before �ring, and when a group of po-
tentially clashing rules �res in the wrong order, so that,
for example, the desired conclusion is overwritten by a
later conclusion. Multiple potentially clashing rules on
an agenda would most naturally arise in the case of a
group of self-disabling rules.
For the purposes of re�nement, the two situations

are handled in the same way: we observe that rule R1,
say, �res before R2, and we wish to ensure that R2 �res
before R1. One way to achieve this is by applying a log-
ical re�nement to disable rule R1. However, when the
KrustTool determines from the problem graph that R1
and R2 are on the rule execution agenda at the same
time then an alternative re�nement modi�es the prior-
ity of R2 so that it is higher than R1. To determine the
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required priority change, it is also necessary to identify
any other rules present on the agenda at the same time
which would also prevent R2 from �ring.
These re�nements have assumed a conict resolu-

tion strategy based on rule priority, but other strate-
gies are possible. In Clips, any conict resolution re-
�nement can be applied as a salience change, because
Clips uses other strategies only when rule priorities
are tied. However, in some situations rule priority
changes might be too radical and this might prevent the
KrustTool from �nding a satisfactory re�nement. We
now consider which conict strategy re�nements should
be adopted. Firstly, the KrustTool should not re�ne
the strategy itself, on the grounds that such a global
change would be non-conservative, and would have un-
predictable side-e�ects. Secondly, the KrustTool does
not propose to add or delete antecedents simply in order
to modify the e�ects of a speci�city/generality strategy,
again because of undesired side-e�ects. The remaining
strategies are based on the order of fact assertions, and
it is possible to take these into account when generat-
ing re�nements. The task of altering the �ring order
of rules at one level can be carried out by a recursive
procedure which alters priorities either at that level, or
at lower levels. Sucn lower level re�nements a�ect the
order of fact assertions, and and hence of rule �rings,
at higher levels. The example in the next section illus-
trates this.

Re�nement Using a Problem Graph

We have applied KrustTools to a range of KBSs, and
the problem graph is simply a common format in which
to represent the various reasoning mechanisms that can
happen in KBSs. The ability of the core re�nement al-
gorithm to generate useful re�nements has been demon-
strated elsewhere: a KrustTool achieves competitive
results with other re�ners when applied to a bench-
mark backward-chaining Prolog KBS (Craw & Hutton
1995); a Pfes KrustTool debugs an early version of
Zeneca's Tablet Formulation System, implemented in
forward-chaining Pfes, (Craw, Boswell, & Rowe 1997).
Our problem graph approach works well for larger

KBSs but these are diÆcult to illustrate. Instead, we
revert to the simple problem graph in Figure 5 as our
example and illustrate the problem graph's use when
re�ning this KBS. The re�nements are described be-
low but are highlighted by shading in Figure 6 where
disabled rules are shown with \X"s and the changed
priorities are shown with lightly shaded arrows.

Three Logical Re�nements:

� disable rule1, rule3 or rule4

Disabling rule3 does not actually repair the rules, as
it prevents rule5 from �ring as well as rule4, but this
is an unpredictable side-e�ect and is identi�ed by the
KrustTool when it tests its proposed re�nements. In
practice each disabling can be implemented in many
di�erent ways by disabling any one of the antecedents
or deleting the rule.

pq

a cb

r

rule3

rule4

(result y)

(result x)

rule1

rule5

X

XX

not()

rule2

Figure 6: Generated Re�nements

Two Conict Resolution Re�nements:

� increase the priority of rule5 above rule4 by setting
its salience to 11

� increase the priority of rule1 above rule2 by setting
its salience to 6.

Increasing the priority of rule1 has the e�ect that
rule2's conclusion is asserted later and so LEX will
�re rule5 before rule4. The KrustTool could in prin-
ciple recurse a further level when generating these
re�nements, and change the fact order.

Even this very simple example demonstrates the va-
riety of re�nements and the interactions that can occur.

Comparison with Other Approaches
The problem graph we have de�ned is the basis of
a common representation for reasoning. Fensel et
al. (1997) also seek to de�ne problem solving meth-
ods (PSMs) in a task-independent way so that they
can re-use the PSMs by tailoring them to a speci�c
task. Fensel et al.'s goal and approach is thus sim-
ilar to KrustWorks'. Their adapter selects a PSM
whose abilities partially match the task's requirements
and specialises the PSM for the task. Similarly, our
KrustWorks framework allows the use of generic com-
ponents which then act on a particular KBS
Both Etzioni (1993) and Smith & Peot (1996) cre-

ate structures similar to our negative problem graph.
Since their domain is planning, the nodes correspond
to operators and pre-conditions rather than rules and
conditions. Their graphs are constructed in a similar
way to ours, by backward chaining from the �nal goal,
and are used for reasoning about potential interactions
between operators. In both cases, the graph is created
before the planner is run, so no structure corresponding
to our positive problem graph is created. The purpose
of the graphs is to improve the subsequent performance
of the planners. Smith & Peot's operator graph deter-
mines which rule conditions have the potential to lead
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to recursion; knowing this, they can prevent the planner
from entering an in�nite loop. Etzioni uses the problem
space graph to learn control rules to guide operator ap-
plication, rejecting inappropriate operators and order-
ing appropriate ones.
Clips-R (Murphy & Pazzani 1994) re�nes Clips

KBSs, and is the only other re�nement system for
forward-chaining rules. Clips-R shares KrustWorks'
aim of applying knowledge re�nement to real-world ex-
pert systems, and thus takes account of non-logical fea-
tures such as rule priority. Instead of using the trace
from a single example, Clips-R combines the traces
of all examples into a trie-structure, grouping together
those examples which have a common initial sequence of
rule �rings. Clips-R chooses to re�ne �rst the group
that exhibits the greatest proportion of errors. The
trie-structure is not used directly for re�nement, in the
way that a KrustTool's problem graph is, but Clips-
R does backward chain from failed goals; it just does
not build an explicit structure like KrustTools.

Conclusions
Many re�nement tools assume an exhaustive backward
chaining control and therefore restrict attention to log-
ical re�nements. We have found that additional re�ne-
ments may be relevant; these alter the knowledge con-
tent so that the rule is handled di�erently by the conict
resolution strategy. An exploration of this behaviour
showed that backward and forward chaining could pro-
duce di�erent answers when the problem-solving ter-
minated prematurely (e.g. as soon as a solution was
found) or non-monotonicity was introduced. These are
common features of industrial KBSs where default rea-
soning is standard practice to achieve eÆciency.
The blame allocation phase of knowledge re�nement

naturally reasons backwards from the desired solution.
Therefore, forward chaining and mixed chaining KBSs
pose some problems. The proposed re�nement must en-
sure that the solution path found by backward chaining
is actually executed, and so blame allocation involves
more complex reasoning about what will happen.
We de�ned a knowledge structure that captures the

reasoning: what happened and what might have hap-
pened. This knowledge does not need to faithfully sim-
ulate the reasoning since the KrustTool does not rely
on it exclusively for generating re�nements. Instead,
it forms a basis for the reasoning about re�nements,
but all re�nements are checked by executing the re-
�ned KBS on its native platform. We have noted that
the knowledge cannot be extracted entirely from the ex-
ecution trace, but requires additional reasoning about
the static knowledge.
The approach has been evaluated with forward or

backward chaining systems in Prolog, Clips and Pfes,
and the mixed chaining of PowerModel. Experi-
ence with these KBSs has shown that the problem
graph contains the reasoning information that allows
a KrustTool to identify what may have gone wrong
and to suggest possible repairs.
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